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ABSTRACT. In this paper, we endow the holomorphic tangent bundle with a
generalized Sasaki type lift G of the fundamental metric tensor of a complex
Finsler space. In order to build the Einstein equations on the holomorphic
tangent bundle, we determine the Levi-Civita complex linear connection
corresponding to this metric. As an application, we give some solutions of
the complex Einstein equations in a weakly gravitational space.

1. PRELIMINARIES

In the papers [3, 4] are studied complex Einstein equations for the weakly
gravitational field and for complex version of Schwartzschild metric. This
study is based on the idea to write the complex Einstein equations for these
metrics relative to the Chern-Finsler connection, which is metrical but with
torsion. For such theory to be consistent some restrictions are required, called
conservation laws, because the connection used is with torsion.

An alternative to this theory is the one expressed in the following. We
extend the metric structure of the weakly gravitational field to one on the
holomorphic tangent bundle 7'M of a complex manifold M, and we then
consider the Levi-Civita connection of this lifted metric, which is metrical and
torsion-free. Therefore the complex Einstein equations with respect to the
Levi-Civita connection have the classical from. In particular, if the space is
vacuum the complex Einstein equations reduce to the vanishing of the complex
Ricci tensor. Basically, the idea seems to be simple, but the first problem is
how to get such a lift and how they can be general. Then is the issue of writing
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the curvature tensors and Ricci tensors on T7"M. For this we turn again to the
well-known adapted frames of Chern-Finsler connection, and express all in this
complex adapted frames. A similar idea has been applied to the real case by
M. Anastasiei and H. Shimada, [5]. Finally, we propose to solve these complex
Einstein equations, at least in same particular cases of weakly gravitational
metric.

Let M be a complex manifold of complex dimension n. We consider z €

M and so z = (2',...,2") are complex coordinate in a local chart. Since
=2k + /= :E’”” k =1,...,n, the complex coordinates induce the real
coordmates {z', 22 ..., 2*"} on M. Let TrM be the real tangent bundle. Its

complexified tangent bundle T M splits into the sum of holomorphic tangent
bundle 7'M and its conjugate T M, under the action of the natural complex
structure J on M. The holomorphic tangent bundle 7'M is itself a complex
manifold, and the coordinates in a local chart will be denoted by u = (¥, 1),
kia=1,...,n. withn® =y*++/—1y**" a=1,...,n. Trough this paper the
indices 7, ,k,... and a,b, ¢, ... run over {1,...,n}, where the second denotes
geometric objects in local fibers of the holomorphic tangent bundle. This
notation of the indices is important for the clarity of the notions in geometry
of T"M manifold.

Consider the sections of the complexified tangent bundle T¢ M. Let VI'M C

T'(T'"M) be the vertical bundle, locally spanned by {%} ~ ,and VT"M

a=1,n
its conjugate. The idea of the complex non-linear connection, briefly c.n.c. is
an instrument in ‘linearization’ of the geometry of 7'M manifold. A c.n.c. is
a supplementary subbundle to VI'M in T'(T"M), i.e. T'(T'M) = HT'M &
VT'M. The horizontal distribution H,T"M is locally spanned by
o 0 0
N,

@ 5k = o iy

where N{(z,n) are the coefficients of the c.n.c. The pair {8}, := 52, Dy = 6?7(1}

will be called the adapted frame of the c.n.c., which obey the transformation

laws 0, = 82]5’ and 9, = 556}’%@; 9, where 6% is the Kronecker symbol. By

conjugation everywhere we obtain an adapted frame {0z, 9} on T"(T"M). The
dual adapted frame are {dz* dn®} and {dz* di®} its conjugate, where

(2) on" = dn® + N (z,n)dz".

Let N be a c.n.c. on T"M. An h—metric on 7'M is a d—tensor field hG =
gj,;(z,n)dzj ® dzF, with 9;i(2,n) = grj(2,m), det ||g;r(z,n)|| # 0. A v—metric
on T"M is a d—tensor field vG = hg;(z,n)on* ® i, with hz(z,1) = hea(z, 1),
det ||hgz(z,m)|| # 0. From here we obtain that an (h,v)—metric on 7'M is
tensor field G = hG 4+ vG. So, this metric will be written in the next form:

(3) G(z,m) = g;(z,n)dz! @ dZ* + hys(z,m)on" @ 67’
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A distinguished complex linear connection, briefly d-c.l.c., D on T'M is
called compatible with the metric G if DG = 0.

Definition 1. An n—dimensional complexr Finsler space is a pair (M, F),
where F : T'"M — R is a continuous function satisfying the conditions:

) L := F? is smooth on T'M :=T'M \ {0};
) F(z,m) > 0, the equality holds if and only if = 0;
) F(z,\n) = |A\|F(z,n) for VA € C;
) the Hermitian matrix
— 0*L

_ _ sasb
(4) 95k = 050k 5 ap
is positive-definite on T'M.
Then, g;; is called the fundamental metric tensor of the complex Finsler

99i% . a — 99% —a -0
) ana 77 877& 77 9

space. Consequently, from c) we have gTLan“ = g—ﬁLaﬁ“ =L
and L = 076F gz’

From [1, 7] we know there exists a unique metric Hermitian connection D,
of type (1,0)—type, which satisfies in addition D;xY = JDxY, for all X
horizontal vectors, called the Chern-Finsler connection, in brief C-F, which
have a special meaning in complex Finsler geometry. The C-F connection
DT = (N¥, L;'.k, Cg.,0,0) is locally given by the following coefficients:

a a m aglm a g a a5 glhg
() Nf = dahg™ gt = sl hts Ly = g"okgn Ch = 01609" gy

where the non-vanishing expressions of the C-F connection are Dy, d; = Ly,

a
A particular situation of the d—tensor g;; from (4) is:

Déb(?a = C’db(?d and its conjugates.

Definition 2. If g;; depends only on the variable z, then we say that the space
(M, F) is purely Hermitian.

The metric tensor g,z from (4) determines a metric structure G on T (17" M),
called the Sasaki lift of gz, [7], p.96:

(6) Gs = gpds’ @ dz* + 516k gi(2,m)0n° @ 677"

We introduce a generalization of the lift (6), which defines also an (h, v)—metric
on Te(T'M):

(7) G(z,n) = gi(z,n)de? @ dz" + h(z,n)én* © o1,

where g;; is the fundamental metric tensor of the Finsler space (M, F'), and
hg is an arbitrary d—tensor of (0,2)—type.
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2. THE LEVI-CIVITA CONNECTION ON T'M

From the standard definition of a complex linear connection on the man-
ifold 7'M, extended on the complexified tangent bundle T¢(7'M), a com-
plex linear connection V can be decomposed in the sum V = V' + V”,
where V': D(To(T'M)) — D(To(T'M) @ T'(T™*M)) and V": D(Te(T'M)) —
IF(Te(T'M) @ T"(T"*M)), which can be decomposed in

V/ _ V/h + v/v and V” — V”h + V”v-

So, in the adapted frame of the C-F c.n.c. {5k,3a,51;73a}7 V is defined by
the following coefficients:

1 2 3 4
(8) Vs, 0; = Lboi + A% 00 + Alyds + A% O
: 1 2, 3 4
V5,00 = BL,0; + L%.0; + BL,.6; + B0y
1 2 3 4
V5,05 = D% + D0 + L% 6: + D5 0g;
1 2 3 4
Vs, 0s = EL0; + B304 + Elké + L by
1 2 4
Vi, 05 = Ciydi +F,,ad+F;b5 + F0s;
2 4
V00 = G’bé +C% 0, + & Lo+ G405
1 2 4
Va'bfsj = H]lb@ +H 8d + Ozbé + flbag;
1 2 3 4

V4,00 = Mo + M&0q + M6, + Cs 4 Oy

and its conjugates, by VgV = VY.
Since VG = 0 and V is a symmetric connection, direct calculus leads to

Theorem 1. The Hermitian manifold (T'M,Gg) admits a unique complex
linear connection, which is symmetric and metrical in respect to G, defined by
(3). This is called the Levi-Civita connection on T'M , and its local coefficients
are represented in the local adapted frame {dy, o, 0%, (967} by the following non-
2€r0 erpressions:

(9)

L 1 2 4 1 .

Ly, = 59 9" (Org;1 + 8;910); D5, = —Di; = 5[53]\7;5 — h*(Da9x7)];
2 1 . 2 1 5 . .

Ly, = 5[71 “(0khag) + 0aNEJ; Eg, = Ehdc[(aaNIS)heJ — (0gNNg)heal;
3 L . 2 1 :

Lix = Di; = 59" (0xg;1 — 019;); Fjy = 5[h%(0haa) — 0uINF];
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4 2 1 - . L 1 - . - .-
Lop = Hiy = 5h*“(05hag = (0iNDhael; - Gop = 59" (N hag + (07 ) ol
li li 1 Tif < d 48 1 der & e - e
Cka = Bak = 59 [aﬂgk[+ (5kNl_ )hacf]; Hjl_; = _éh [(aJNj)heB + (%Nj)hecﬂ;
1

2 1 5 . ) : 3
Cop = §hdc(abhmi+ Oalipd); Mg, = My, =

LG od
591 [(aaNfl)hbJ — Oiheal;

3i 1i 1 lif d 4c 20 1 de( & °
Cls = Eaj = 59 105951 — QN hals - Cgp = My, = 5h™(Oshaa — Oahap)
and its conjugates.

This connection is not h- or v-metrical.

To study the Levi-Civita connection, we may consider a similar connection,
which help us to express easier the different properties of the Levi-Civita con-
nection. Indeed let D be a d-c.l.c. on Te(T"M):

~ 1 - . 2 3 - . i
(10) Dy, 8; = Liybi; Do, 00 = Liy0q ;5 Ds, 05 = L56r 3 Ds, 05 = L0y
~ 1 ~ . 2 . ~ 3 ~ . 4— .
] d 7 d
Dy 05 = C.0i Dy, 00 = Coy0a s Dy 05 = 5,071 Dy 0z = €505
and its conjugates, where the local coefficients are expressed in (9).

This d-c.l.c. is metrical with respect to G, i.e.

(1) Gikm = Gikla = Gjwm = 9jila = happm = Pabla = hapjm = hasla = 0,

where with

» 9 » |77 »on ‘
| ) | >

” are notated the h—, v—, h— and v—covariant

derivatives with respect to D.

Proposition 1. The non-zero components of the torsion of the d-c.l.c. D are
(12)

hT((SE,(SJ) = 7/\_,;]2 i ’UT((SE,(sj) = @;l];:(?d, hT(a@,(Sj) = T;a&“ hT(@a,éj) = ;ad“
VT (05, Da) = X400 vT(0a,0;) = P04 VT (05, Do) = £%0a; vT(,,0;) = ]Sjiéd;

and their conjugates.

After a straightforward computation we obtain the expressions for (12)

3 oy 3 L
(13) 7= Ll % = NG 15, = Ch; Clui

§ ik jas ;'a = Yjar
W~ A oad. S W Bd A ond g
X = Cas Fja = 0aNjs 245 = Liyi Pja = 0N} — L,
The curvature of D has twenty components in the form (see p. 44 of [7]):
~ L 11
(14) Rjyp, = Api{0n Ly + L3 Ly
~ 3 3 3
Ry, = Ani{0n Ly, + Lig Lyn b
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Qakh -
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Qakh -
=4
Qaich -

i
Jke

e

7kc =
~
HjEc o
=1
Pakc -

pd

akc

Bt

akc

~
@th -

d
Qagh o

=i

‘:‘jbc =

=7

‘:’Ebc =
=i _
—jbc
Sd
Sabc -
aod

S&bc

Se
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3 1 3 1 31 3 L
onLiy — 0Ly, + Ll Ly — Ly Ly + (00 NE)Cle — (05V5) Cles
2 2 2
Ani{On Ly, + Loy LS}
4 4 4
Ani{0nLe + Lo, L}
4 2 42 4 o

4 2
— LG Ly, + (0nN) Cae — 0k N} Cles
1 1 11 11

1
OcLjy — 0k Ce + L Crie — Ly e + (0 Ng) Cey;

ej’

onLly — 0 L%y, + Lz LY,

.3 3 3 3 3 3 . 3
BeLiy = 0kCl, + LiCle = Ly Clo + (ON)Cl;
.3 L 3 1 301 o1

.2 2 2 2 2 2 . 2
OcLgy, — 0,.C4, + Ly Ol — L.Che + (N Co;

4 4 4 4 4 4 ) 4
OcLigr — 0kCle + Ly O — L Cop + (0:N}) O

ae’

y ra T L R R A e

L — 6:C% + LoC% — LLCE, + (9.NE)C2;
S S T S T T

0nCls = OpLiy, + Clg Ly, — € 5 L, — (G5 N5 Ol

2
d
Leh

2

o . i 2 : d
— Oglgy, + CLey, — CGLay, — (O5Ny)Cre;

4

5,C%
. L 11

A {9:Cy + OO s

. 3 33
Acb{accjl'b + erchﬁc}a

. 3 . L 3 1 31
i 1 m Y 7 m.

.2 2 2
Aa{0.Cq, + Co,CL Y

4 4

— - 4_
= Acb{accgb + C5,CL Y

.4 .2 4 2 4 9
(906';% — 0,C% + C'EBCSC — C’;%C’e

ac?

where Aj;, means the difference between the terms in the brackets and the
terms obtained by replacing £ with h.

3. PURE HERMITIAN METRIC

The geometrical objects associated with GG are generally complicated. Some
simplifications appear for particular choices for g;; and h,. We studied in

a previous paper, [9], the case (5?62%5 =

ﬁgﬂ;, and G. Munteanu and N.
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Aldea studied the case 5?52%5 = g;s [7, 2]. Here we resume for a detailed
analysis the following particular case of the Sasaki type metric:

(15) Gy(z,m) = gj,;(z)dzj ® dz" + hyg(2)on® ® 67,
The Chern-Finsler c.l.c. of the complex Finsler space (M, F) is reduced to

CF

DU = (N# = 076, "”889;;"77 , Ly, = gm’ag’c ,0,0,0). The v— and v—covariant
derivatives Commdes with the partlal derlvatlves with respect to n* and 7%,
respectively. By direct calculation we prove:

Proposition 2. The Levi-Civita connection of the metric (15) is given by the
following non-zero coefficients

1
4 1
(16) Ly, = 59 (3k9ﬂ + 09k1);
2 1 _
Lk §[hd (Orhad) + 0aN{];
3 L 1
Lig = Dy = 59" (%951 — 99

4 2 1

Lop = Hp, = 5’1&[3@%& — (03N hael;

2 .
Eyy = [hdc(a haa) = 0aNJ];
1 3

) ) 1
Miy = My = 59" [(0a N g — Do,

%)

where 0, = FF

The curvature of the d-c.l.c. D from (15) is reduced to

(17) ]kh — Ahk{ah[/jk. + LmLZ h}
3
~ 3 1 3 1 301
Ry = 8thk akL’h + L7 L, — Ly Ly

Qaen = Ahk{ahLik + LZkLgh

o 4 4 4

Oy = A {OnLe, + LY, dh}'

~ 4 2 4 4 9

ngh - 8hLd 3k ah + Le Lzh LngLZh'

Let K be the curvature tensor field of the Levi-Civita connection V. We

shall denote its components by the same letters as N. Aldea in [2], indexed
with two types of indices with the understanding that different indices means
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different components. From the sixty different curvature components, where
will be 21 non-zero:

Proposition 3. Let D be a d-c.l.c. on Te(T'M) which local coefficients are
expressed in (17). With respect to the local adapted frame relative to the Chern-

Finsler c.n.c., the curvature local coefficients of the Levi-Civita d-c.l.c. on
(T'M,Gpy) are

(18) j’kh = Nj’kh;
, 3 13
leh = Ahk{LZﬂh + L%Lfnjk
leh = leh;
' 1 L 3 3 3
B 3 3 1
R;‘Eh L;Cj“l + L ]h’
(19) Qakh - Qakha
d ad
Qurn = Qak:h’
2
(20) H?kc = Fgc|h Fd Lik + (0, Ni)F!! jes
4 4
I, = Ld kT Lqu;ic Le Ldk + (9.NO) LY 2
4
d d d e m d .
HJEC - F’]C“ﬁ F L ck + Lk]Lcm7
] 1 2 1 13
(21) Pl = =My, — Ly Mg, — M7 Ly, + (O Ne)MZe;
) 1 5 1 1
ke = — Zauf - Lile (8 Nk) ea)
d % 2d : 2d
(22) @th - _ngEéh - (86N13>F}
‘ 1 4 1 1 3
(23) abh = Mga|h + Le MZ + MmLhm§
1 4 1

abh = Mlb|h+Le M;;

ae)’

(24) ”zbc cb{Le ML
4 1 2
Elge = Ly M, — F, Mbe;
1
2%, = Le ML
7bc ce

1 4

2
(25) A{MEFL, + ML)

abc —
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1 2 17 4
S&. = M{IF. .+ ML

abc ba™ mc cm)

and the rest are zero.

H H H v
o P P PP DT
The Ricci curvature tensors are Rjy, := R0 Ry i= Rjki’ Rjy, = Rﬁk’ 1L, ==
R
9. Pay = Ply; Sa = Sy From which we obtain the following Ricci

- H -V _H %
scalars r := ngRik; = gﬂkﬂjk; p:=h®Ps; s:=h™®Sg,.
Using some idea from the real case ([6]), a generalization of the classical
Einstein equations for an n—dimensional complex Finsler space is

(26) Rap — %P - Gpa = xTap,
where to standardize the notation we use the Greek letters o, 5 =1,...,n for
the two types of indices; Rss denotes the components of the Ricci tensors; p de-
notes the the Ricci scalar curvature; Ggg represents the metric tensors g, and
hgp, respectively; x is the universal constant; Tss are the energy-momentum
tensors ([3]). Since the Levi-Civita connection V is without torsion, the conser-
vation laws to the Einstein equations (26) are satisfied, i.e. Vo (R§—5pd3) = 0,
or equivalently V, T3 = 0.

By this, as in classical theory, in vacuum we have

Proposition 4. In vacuum the Ricci tensors of the Levi-Civita connection on
T'M are vanishing.

4. SOLUTIONS FOR THE COMPLEX EINSTEIN EQUATION IN VACUUM FOR
A WEAKLY GRAVITATIONAL METRIC

In this section our goal is to solve the complex Einstein equations for the
particular case of a 2—dimensional complex Finsler space in vacuum, when the
fundamental metric tensor has a form of a weakly gravitational metric [3]:

(27) 9315(2’777) = 77]'1% +pjfca

where (7;z) := (1 :i), is the Minkowski metric and

is a small perturbation of 7z, and ® has the meaning of a gravitational poten-
tial. Here ® is a real valued smooth function in 7'M, & # %, andc € R, ¢ # 0.
In [3], Proposition 4.1 is proved, that the metric (27) is Finsler if the follow-
ing statements are satisfied:
. 2
i) ®>
ii) ® is homogeneous function respect to 7;

m)@gzébwmm®ﬂ:§ga:Lz
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and it can be used in the study of the weakly gravitational fields in the complex
Finsler space (M, F), with

2P ) 20 _
(28) L= (1 + ?) In'|? —i (1 — ?> n'i?

: 2¢ _ 29
+1 (1 - ?> 0t — (1 - §> In?|?.

Remark 1. In the following, we will use the letters j, k,[,... = 1,...,n for
both the horizontal and vertical indices.

Using some elementary calculus, it is obtained the local expressions of the
Chern-Finsler c.l.c.:

—21 ,
(29) Ny =0; Ni= m(ﬁl —in°) Py
21
1 _ 9. 2 T2 .
L]k = O, le = —mék = ZLQk,

C;kzo; Cgk:()a for j,k =1,2,

J

where ¢, := %, k=1,2.
The above requirements i) and 74i) imply ®.;(n! —in?) = i®5(n' —in?) =0,
and their conjugates, which implies the following

Theorem 2 ([4, Theorem 3.1]). Let (M, F') be a complex Finsler space, where
L = F? is the metric (28). Then (M, F) is either a purely Hermitian space or
a locally Minkowski space with n' = in?.

In the following we assume that (M, F') is a purely Hermitian space, i.e.
9;i(z,m) = g;r(2), which implies that form (27) the function ® = ®(z). We
consider the corresponding Hermitian metric Gy given by (15) customized for
the weakly gravitational metric (27)

(30) Gug(z,m) = npd2’ @ d2F + g;z00 @ 677",

where (1;z) = (1 :i), with the inverse matrix (n¥/) := (

(31) (9;5(2:1)) k=12 = <Z (1 + %,) —_Z((f_—j%))) _where i := /—1:

with its inverse

1 —i
- 3 -
(32) 9’”(2,77))]-;;:1,2 = <1 1+ > .
2
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In order to solve the Einstein equations for this particular case of Finsler
space, we can express the coefficients of the Levi-Civita connection correspond-

ing to the metric (30). The non-vanishing local expressions of the above men-
tioned connection are:

(33) l?k::g?(‘ijggj(@-+(—4jk®k%
22 Zk
F2 = O+ Dy);
K
11 _Z]
M32 = —((bi + Z@Q),

)]
M2 = 2_2(2'@1 +dy), g k=12

The non-zero local expression of the Ricci tensors with respect to the Levi-
Civita connection (33) are as follows:

I 2 .
2
H ij . .
Py = g(q)ﬁ + iP5 — iDPyy — Py3) +
21 o ' .
—l—m(l — 42 N (P1P1 + 1P D5 — 1Dy P; — P Ds3) ;
|4 Z'j . |
ﬂ:gijﬁﬂ—M®+®ﬂ%—¢@,]:Lz
=

Now we are able to write the complex Einstein equations of this space.

Theorem 3. The complex Einstein equations in vacuum corresponding to a
two-dimensional complex Finlser space (M, F'), with the complex Finsler metric
(28) and with the Levi-Civita connection (33) are

2 - . 2P
(35) —m (D1 D7 + D1 P5 — 1D Dy — Dy Ps3) + (1 _ §> p=0;
2 ; : . 20
m ((1)1(1)1 + Zq)lq)i — Z(I)Qq)i — (I)QCI)Q) +1 (1 —_ C_2> p=0;
i2—j<q) By iy Do)+ 2i (1= ) (@101
— (D7 + iP5 — i Py; — Po3) + ———————(1 — 4 i
C2 11 12 21 22 C4 (1 _ 20_(21)) 1P1
; : N 20
+Zq)1q)i — Z@Qq)i — (I)QCI)i) + (_Z)J (1 _ CQ > p=0;
B (1= i@+ @) (B — vi1-22),_¢
gyt D@ F )@= R+ (P15 ) o =0

(j =1,2), and their conjugates, where p represents the scalar curvature.
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Instead to solve the system of PDE’s (35) we can use the Proposition 3.3
to simplify this. According to the mentioned Proposition, the Ricci tensors in
vacuum are zero, which implies that the Ricci scalars are vanishing too in the
same conditions. Then the system (35) is equivalent with

(36) (Dl(pj + ’i(I)l(I)Q - 7;(1)2@1 - (I)Qq)é = O,
Qi1 + 1P15 — 1Py — Py = 0;
((I) + @1) ((I)j — (IDQ) =0.

Proposition 5. The real valued smooth function on T'M, ®(z2) = ®(21, 21, 22, 22),
is a solution for the system of equations (36), when it satisfies the following
conditions:

a) @1 = @2,

b) &1 = 3.

Ewample 1. We consider the function ®(z) = £¢/*'~#)+i=*=2*) on C2. Requir-
ing ® > < by (28), it induce on D := {z € C?| Im(z" + 2%) > 0} the purely
Hermitian complex Finsler metric

(37) L= (1+ez) In'[? —i(l — eZ) 7717_]2+i(1 —ez) n*nt — (1 —eZ) In?%,

where Z = i(z' — z') +i(2? — z%). Since ® satisfies the conditions a) and b)
from Proposition 4.1, the Sasaki type metric defined by (30) is a solution for
the complex Einstein equations in vacuum.

We notice that besides the solutions provided by Proposition 4.1, there exists
also different type of solutions:

Ezxample 2. Let ®(z) = %e*(zlﬁl)“z)”z a real valued function on 7'M. Re-

quiring ¢ > %, by (28), the purely Hermitian complex Finsler metric induced
on D :={z € C*| Re(z? —2') >0} is

(38) L= (1+ez) In'[? —i(l — eZ) n'an? —i—z’(l — eZ) n*nt — (1 —eZ) In? %,

where Z = —(z! + z!) + 22 + 2%, Because @ is a solution for the system of
equations (36), a solution for the complex Einstein equations in vacuum is the
Sasaki type metric defined by (30).
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