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FIXED POINTS THEOREMS FOR MONOTONE
SET-VALUED MAPS IN PSEUDO-ORDERED SETS

ABDELKADER STOUTI

ABSTRACT. In this paper, we first establish the existence of the greatest
and the least fixed points for monotone set-valued maps defined on non-
empty pseudo-ordered sets. Furthermore, we prove that the set of all fixed
points of two classes of monotone set-valued maps defined on a non-empty
complete trellis is also a non-empty complete trellis. As a consequence we
obtain a generalization of the Skala’s result [4, Theorem 37].

1. INTRODUCTION AND PRELIMINARIES

Let X be a non-empty set and let > be a binary relation defined on its. If
the binary relation > is reflexive and antisymmetric, we say that (X,>) is a
pseudo-ordered set or a psoset. We will usually omit the pair notation and
call X a pseudo-ordered set also. Every subset A of X is a pseudo-ordered set
with the induced pseudo-ordered from X and will be called a pseudo-ordered
set. Let x,y € X. If z # y and x > y, then we shall write x > y.

Let A be a non-empty subset of a psoset (X,>). An element u is said to
be an upper bound of A (respectively v a lower bound of A) if = &> u for every
x € A (respectively v > x for every z € A). An element s of X is called a
greatest element or the maximum of A and denoted by s = maxy(A) if s is
an upper bound of A and s € A. An element / is the least or the minimum
element of A and denoted by ¢ = mins(A)) if £ is a lower bound of A and
¢ € A. When the least upper bound (L.u.b.) s of A exists, we shall denoted
its by s = sup. (A). Dually if the greatest lower bound (g.1.b.) of A exists, we
shall denoted its by ¢ = infs (A).

A psoset (X, >) is said to be a trellis if every pair of elements of (X, >) has a
greatest lower bound (g.1.b) and a least upper bound (l.u.b). A psoset (X, >)
is said to be a complete trellis if every non-empty subset of X has a g.l.b and
a L.u.b. More details for those notions can be found in H. L. Skala (see [5, 4]).

2010 Mathematics Subject Classification. 06B23, 06B05, 54C60, 47TH10.
Key words and phrases. Pseudo-ordered set, fixed point, monotone map, trellis, complete
trellis.
187



188 ABDELKADER STOUTI

Let (X,>) be a non-empty pseudo-ordered set and f: X — X a map. We
shall say that f is monotone if for every x,y € X, with  I> y, then we have
flz) > f(y).

An element z of X is said to be a fixed point of amap f: X — X if f(x) =
The set of all fixed points of f is denoted by Fix(f).

Let X be a non-empty set and 2% be the set of all non-empty subsets of X.
A set-valued map on X is any map T: X — 2%. An element x of X is called
a fixed point of 7" if x € T'(x). We denote by Fix(T") the set of all fixed points
of T.

In this paper, we shall use the following definition of monotonicity for set-
valued maps.

Definition 1.1. Let (X, >) be a non-empty pseudo-ordered set. A set-valued
map T: X — 2% is said to be monotone if for any z,y € X with x > y, then
for every a € T'(x) and b € T'(y), we have a > b.

In this work, we shall need the following notion of inverse relation.

Definition 1.2. Let X be a non-empty set and let > be a relation on its. The
inverse relation < of I> is defined for every z,y € X by:

(zdy) & (y> o).

In this paper, we shall need the two following technical lemmas which their
proofs will be given in the Appendix.

Lemma 1.3. Let &> be a pseudo-order relation defined on a non-empty set X
and let < be its inverse relation. Then, < is a pseudo-order relation on X.

Lemma 1.4. Let > be a pseudo-order relation defined on a non-empty set X,
let < be its inverse relation and let A be a non-empty subset of X. Then, we
have

(i) if sup(A) ewists, so inf4(A) ewists too and supy (A) = inf4(A);

(i) if infu (A) exists, hence sup4(A) exists also and infs(A) = sup,(A);
(iii) if mins (A) ewists, then max(A) ewists too and mins (A) = maxq(A);

)

)

i

(iv) if maxs(A) ezists, so ming(A) ezists too and maxs(A) = ming(A).

(v) if T: X — 2% is a monotone set-valued map for >, then T is also a
set-valued map for <.

In 1971, H. Skala introduced the notions of pseudo-ordered sets and trellises
and gave some fixed points theorems in this setting (see Theorems 36 and 37
in [4]). Later on, S. Parameshwara Bhatta and all [3, 1] studied the fixed point
property in pseudo-ordered sets. In this work, we first establish the existence
of the greatest and the least fixed points for monotone set-valued maps defined
on non-empty pseudo-ordered sets. Furthermore, we prove that the set of all
fixed points of of two classes of monotone set-valued maps defined on a non-
empty complete trellis is also a non-empty complete trellis. As a consequence,
we reobtain the Skala’s result [4, Theorem 37].
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2. LEAST AND GREATEST FIXED POINTS FOR MONOTONE SET-VALUED
MAPS IN PSEUDO-ORDERED SETS

In this section, we shall establish the existence of the least and the great-
est fixed points for monotone set-valued maps defined on non-empty pseudo-
ordered sets. First, we shall prove our key result in this paper.

Theorem 2.1. Let (X,>) be a non-empty pseudo-ordered set with a least
element £. Assume that every non-empty subset of X has a supremum in
(X,>>). Then, the set of all fized points Fix(T') of every monotone set-valued
map T: X — 2% is non-empty and has a least element.

Proof. Let (X,>) be a non-empty pseudo-ordered set with a least element ¢
and let T: X — 2% be a monotone set-valued map.
First step. We have Fix(T') # (). Indeed, let F be the family of all subsets
A of X satisfying the following three conditions:
(i) L€ A;
(ii) T(A) C A
(ili) for every non-empty subset B of A, we have supy (B) € A.
Since X € F,s0 F # 0. Set S = (47 A
Claim 1. The subset S is the least non-empty element of F for the inclusion

relation. Indeed, as £ € A for every A € F,s0 ¢ € S. Since S = (), A4, then

T(S)=T((JA)c (T4 c[)A
AeF AeF AeF
Thus, we get T(S) C S. Now, let D C S such that D # (). Then, D C A
for every A € F. So, sup.(D) € A for every A € F. Hence, we obtain
sup. (D) € S. Therefore, S is the least non-empty element of F for the
inclusion relation. Then, we set m = sup. (9).

Claim 2. We have m € Fix(T). Indeed, since m € S and T(S) C S, then
for every a € T'(m), we have a > m. By absurd assume that m ¢ T'(m). So,
we get at>m, for every a € T'(m). Next, we shall associate for every a € T'(m)
a subset B, defined by

B, ={xr € S:z>a}.
As { = minz(X), so ¢ € B,. We shall show that B, € F. Let x € B, and
y € T(z). Sox € S. As m = sup.(95), then x > m. We claim that  # m.
Indeed, if © = m, so m > a. Hence we get @ = m. That is not possible. Then,
x > m. Hence, from the monotonicity of T, we get y > a, for every y € T'(z).
So, T'(z) C B, for every x € B,. Thus, we have T'(B,) C B,. Now, let
C C B,and C # (. So, C € S. Then, t = sup.(C) € S. On the other
hand By definition of B, we deduce that a is an upper bound of C. Hence,
we obtain ¢ > a. Thus sup. (C) € B,. Therefore, B, € F for every a € T'(m).
As S is the least non-empty element of F for the inclusion relation, so we get
S C B, for every a € T(m). On the other hand, we know that B, C S for
every a € T'(m). Therefore, we obtain S = B,, for every a € T(m). Then,
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as m € B, so m > a for every a € T(m). Thus, we get m = a, for every
a € T(m). So, T(m) = {m}. That is a contradiction with our assumption
that m & T'(m). Therefore, m € T'(m).

Second step. The subset Fix(T') has a least element. Indeed from the first
step above, we know that Fix(7T) # (). Next, we consider the following subset
B of X defined by

B={x € X 2>z for every z € Fix(T)}.

As ¢ = mins(X), so ¢ € B. Hence, we get { = min.(B). By absurd assume
that Fix(T') has not a least element. So, for every z € B, we have x > z for
every z € Fix(T). Next, we shall show that T(B) C B. Indeed, if z € B,
y € T'(x) and z € Fix(T'), then by the monotonicity of T" we get y > z for every
y € T(z) and z € Fix(T). Hence, we get T'(x) C B, for every « € B. Thus,
T(B) C B. Now, let C' be a non-empty subset of B and let ¢ = sup.(C). By
definition of B, we know that every element z of Fix(T') is an upper bound of
C'. So, we get ¢ > z for every z € Fix(T'). Thus, we have ¢ € B. Hence, from
claim 1, we get B € F. Since S is the least element of F, so S C B. On the
other hand, by Claim 1, we know that the supremum m of S is a fixed point
of T. Hence, m € B. Thus, m is the least fixed of T". That is a contradiction
with our assumption. Therefore, Fix(7") has a least element. O

As a consequence of Theorem 2.1, we get the following result.

Corollary 2.2. Let (X, <) be a non-empty partially ordered ordered set with a
least element {. Assume that every non-empty subset of X has a supremum in
(X, <). Then, the set of all fized points Fix(T) of every monotone set-valued
map T: X — 2% is non-empty and has a least element.

Next, by combining Lemmas 1.3 and 1.4 and Theorem 2.1 we obtain the the
existence of the greatest fixed point for monotone set-valued maps defined on
non-empty pseudo-ordered sets.

Theorem 2.3. Let (X,>) be a non-empty pseudo-ordered set with a greatest
element g. Assume that every non-empty subset of X has an infimum in
(X,>). Then, the set of all fized points of every monotone set-valued map
T: X — 2% is non-empty and has a greatest element.

Proof. Let (X,>) be a non-empty pseudo-ordered set with a greatest element
g such that every non-empty subset of X has an infimum in (X,>). Let
T: X — 2% be a monotone set-valued map for the pseudo-order relation >
and let < be its inverse relation. Then from Lemma 1.2, we know that < is
a pseudo-order relation on X. On the other hand by Lemma 1.3, ming(X)
exists and we have ming(X) = g. As by our hypothesis T: X — 2% is a
monotone set-valued map for >, so from Lemma 1.3 the set-valued map T is
also a monotone set-valued map for <. Thus, all hypothesis of Theorem 2.1
are satisfied. Therefore, The set Fix(T") of all fixed points of 7" is non-empty
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and has a least element in (X, <), m, say. Then from Lemma 1.3, we get
m = ming(Fix(7T")) = maxs (Fix(T)). O

Combining Theorems 2.1 and 2.3, we obtain the existence of the least and
the greatest fixed points of monotone set-valued maps defined on non-empty
complete trellises.

Corollary 2.4. Let (X,>) be a non-empty complete trellis. Then, the set
of all fived points Fix(T) of every monotone set-valued map T: X — 2% is
non-empty and has a least and a greatest element.

For complete lattice, we obtain the following result.

Corollary 2.5. Let (X, <) be a non-empty complete lattice. Then, the set
of all fived points Fix(T) of every monotone set-valued map T: X — 2% is
non-empty and has a least and a greatest element.

3. FIXED POINTS FOR MONOTONE SET-VALUED MAPS IN COMPLETE
TRELLISES

In this section, we shall establish that the set of all fixed points of two classes
of monotone set-valued maps defined on a non-empty compete trellis is also a
non-empty compete trellis. First, we shall prove the following result.

Theorem 3.1. Let (X,D>) be a non-empty complete trellis and let T: X — 2%
be a monotone set-valued map such that for every x € X there is y € T(z)
such that © > y. Then, the set of all fized points Fix(T') of T' is a non-empty
complete trellis.

Proof. Let (X, >) be a non-empty complete trellis and T: X — 2% be a mono-
tone set-valued map such that for every = € X there is y € T'(x), such that
x> y. Then by Corollary 2.4, we know that Fix(7") is non-empty and has a
least and a greatest element. Let A be a non-empty subset of Fix(T).

Claim 1. The infimum of A in Fix(7T") belongs to Fix(T"). Indeed, consider
the following subset D of X defined by

D={xe X x>z for every z € A}.

From Corollary 2.4, we know that the set-valued map 7" has a least fixed point.
So, D # 0. Let d = sup. (D). We shall prove that d € T'(d). Indeed assume
on the contrary that d & T'(d). Since every element z of A is an upper bound
of D, so we get d>> z for every z € A. As d & T(d), then d > z for every z € A.
We claim that 7'(d) C D. Indeed, let x € T(d). So, by the monotonicity of
T we get x > z for every z € A. Thus, we have T'(d) C D. Hence, we obtain
x> d for every x € T(d). On the other hand, by our hypothesis we know that
there is an element ¢ € T'(d) such that d > ¢. Hence, from the antisymmetry
of the relation > we deduce that ¢t = d and d € T'(d). That is a contradiction.
Hence, d € Fix(T'). Now, let B be the following subset of Fix(7") defined by

B ={x € Fix(T) : x &> z for every z € A}.
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From Corollary 2.4, we know that the set-valued map T has a least fixed point.
So, B # 0. Let m = sup.(B). As B C D, then we get m > d. On the other
hand, we know that d € B. Hence, we get d > m. So, from the antisymmetry
of the relation > we deduce that m = d. Then, m € Fix(T'). Therefore, the
infimum of A in Fix(T") belongs to Fix(T').

Claim 2. The supremum of A in Fix(T") belongs to Fix(T"). Indeed, let E
be the following subset of X defined by

E={rxeX:z>xforevery z € A}.

From Corollary 2.4, we know that T has a greatest fixed point. Then Fix(T) #
0. As (X, ) is a nonempty complete trellis, so let g = max(X). Hence, g € F.
Thus, F # () and ¢ = max(FE). Now, we claim that £ N Fix(T) # (. Assume
in the contrary that £ N Fix(T) = (). Then, T(E) C E. Indeed, let z € E,
y € T(x)and let z € A. As z > x and T is monotone, so for every z € A, we
get z>y. Thus, we have T'(xz) C E for every € E. Hence T(F) C E. On the
other hand, as by our definition T'(z) # 0 for every x € X. From the axiom of
choice, there exists a map ®: 2% — X such for every nonempty subset A of
X we have ®(A) € A. Then, for every z € X we define a new map f: X — X
by setting: f(z) = ®(7T'(z)). We claim that f is a monotone map from (X, >)
to (X,>). Indeed, let 2,y € X with z > y. Since f(x) € T(x), f(y) € T(y)
and 7' is monotone, then we get f(x) > f(y). Hence, f is a monotone map.
Let F' be a nonempty subset of E, f = inf(F) and x € F. As for every z € A
we have z > x, then z is a lower bound of F'. Hence, we get 2> f. Thus, every
nonempty subset of £ has an infimum in F and (F,>) has a greatest element.
Therefore, all hypothesis of Theorem 3.3 in [6] are satisfied for the monotone
map f: E — E. Hence, Fix(f) # 0. Since Fix(f) ¢ ENFix(T), so we get
ENFix(T) # (. That is a contradiction. Therefore, ENFix(T") # (. Then, the
set of all supremums of A in (Fix(T"),>) : G = ENFix(T) is nonempty. Let
¢ = inf(G). Then we get £ € E. We claim that ¢ € Fix(T). On the contrary
assume that ¢ ¢ Fix(T). Now, let x € G and t € T'(e) be given. As (> z,
z € Fix(T') and T is monotone, so we get ¢t > z. Thus, ¢ is a lower bound of
G. As ( = infy (G), then we deduce that we have ¢ > ¢, for every ¢t € T'(¢). On
the other hand, we know that by our hypothesis there is an element g € T'(¢)
such that £ > g. So, from the antisymmetry of the relation > we deduce that
¢ = g. Then, ¢ € Fix(T). Therefore, the infimum of A in Fix(7") belongs to
Fix(T). O

As a consequence of Theorem 3.1, we reobtain the Skala’s result [4, Theorem
37].

Corollary 3.2. Let (X,>) be a non-empty complete trellis and let f: X — X
be a monotone map such that for every x € X, x > f(z). Then, the set of all
fized points Fix(f) of [ is a non-empty complete trellis.

Using Lemmas 1.3 and 1.4 and Theorem 3.1, we get the following dual result.
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Theorem 3.3. Let (X,>) be a non-empty complete trellis and let T: X — 2%
be a monotone set-valued map such that for every x € X there is y € T(z)
satisfying y &> x. Then, the set of all fixed points Fix(T) of T is a non-empty
complete trellis.

As a corollary of Theorem 3.3, we obtain the following result for monotone
map. That is a dual result of Theorem 37 in [4].

Corollary 3.4. Let (X,>) be a non-empty complete trellis and let f: X — X
be a monotone map such that for every x € X, f(x) > x. Then, the set of all
fized points Fix(f) of f is a non-empty complete trellis.

4. APPENDIX

In this section, we shall give the proofs of Lemmas 1.3 and 1.4.

Proof of Lemma 1.5. Let > be a pseudo-order defined on a non-empty set X
and let < be its inverse relation.

(i) The relation < is reflexive. Let x € X. Then, z > z. So, x < x. Hence,
< is reflexive.

(ii) The relation < is antisymmetric. Let x,y € X such that <y and y <z.
So, we get y > x and x B> y. Since B> is antisymmetric, then we obtain x = y.
Thus, the relation < is antisymmetric. O

Proof of Lemma 1.4. Let > be a pseudo-order defined on a non-empty set X,
let < be its inverse relation and let A be a non-empty subset of X.

(i) Assume that supy (A) exists. Set s = sup.(A). Now, let € A. Then,
> 5. So, we get s <z for every z € A. Thus, s is a <-lower bound of A. Let
¢ be another <-lower bound of A. So, we have ¢ < x for every x € A. Hence,
x> /(. Then, ¢ is a >—upper bound of A. As s = sup,.(A), so s> {. Hence, we
get £ <'s. Thus, s is the greatest <-lower bound of A. Then, s = inf4(A).

(ii) Assume that infy(A) exists. Set ¢ = infp(A). Now, let x € A. Then,
(> x. So, we get x </ for every x € A. Thus, £ is a <-upper bound of A. Let
m be another <—upper bound of A. So, we have x <m for every z € A. Hence,
m > x. Then, m is a >-lower bound of A. As ¢ = inf.(A), so m > ¢. Thus,
we have £ I m. Thus, ¢ is the least <-upper bound of A. Then, ¢ = sup,(A).

(iii) Let m = mins(A). Then, m = infs(A) and m € A. From (ii) above,
we get m = sup4(A). As m € A, hence we deduce that m = max(A).

(iv) Let s = maxs(A). So, s = sup.(A) and m € A. From (ii) above, we
get s = inf4(A). As s € A, hence we obtain s = ming(A).

(v) Let let T: X — 2% be a monotone set-valued map in (X,>>). Let
x,y € X such that  <y. So, we have y > x. As T is >—monotone, so we for
every a € T(x) and b € T'(y), we get b> a. Hence, we deduce that for every
a € T(x)and b e T(y), we have a <b. Thus, T" is <-monotone. O
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