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Abstract

In this paper the asymptotic behavior of the conditional least squares estimators of

the autoregressive parameters (α, β), of the stability parameter ̺ := α + β, and of

the mean µ of the innovation εk, k ∈ N, for an unstable integer-valued autoregressive

process Xk = α ◦Xk−1+β ◦Xk−2+ εk, k ∈ N, is described. The limit distributions and

the scaling factors are different according to the following three cases: (i) decomposable,

(ii) indecomposable but not positively regular, and (iii) positively regular models.

1 Introduction

The theory and practice of statistical inference for integer-valued time series models are rapidly

developing and important topics of the modern theory of statistics. A number of results are

now available in specialized monographs and review papers, to name a few, see, e.g., Steutel

and van Harn [33] and Weiß [36]. Among the most successful integer-valued time series models

proposed in the literature we mention the INteger-valued AutoRegressive model of order p

(INAR(p)). This model was first introduced by McKenzie [27] and Al-Osh and Alzaid [1] for

the case p = 1. The INAR(1) model has been investigated by several authors. The more

general INAR(p) processes were first introduced by Alzaid and Al-Osh [2]. In their setup the

autocorrelation structure of the process corresponds to that of an ARMA(p, p − 1) process.

Another definition of an INAR(p) process was proposed independently by Du and Li [10] and
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by Gauthier and Latour [13] and Latour [26], and is different from that of Alzaid and Al-Osh [2].

In Du and Li’s setup the autocorrelation structure of an INAR(p) process is the same as that of

an AR(p) process. The setup of Du and Li [10] has been followed by most of the authors, and

our approach will also be the same. In Barczy et al. [5] we investigated the asymptotic behavior

of unstable INAR(p) processes, i.e., when the characteristic polynomial has a unit root. Under

some natural assumptions we proved that the sequence of appropriately scaled random step

functions formed from an unstable INAR(p) process converges weakly towards a squared Bessel

process. This limit process is a continuous time branching process with immigration also known

as the square-root process or the Cox–Ingersoll–Ross process.

Parameter estimation for INAR(p) models has a long history. Franke and Seligmann [12]

analyzed conditional maximum likelihood estimator of some parameters (including the au-

toregressive parameter) for stable INAR(1) models with Poisson innovations. Du and Li [10,

Theorem 4.2] proved asymptotic normality of the conditional least squares (CLS) estimator

of the autoregressive parameters for stable INAR(p) models (see also Latour [26, Proposition

6.1]), Brännäs and Hellström [7] considered generalized method of moment estimation. Silva

and Oliveira [31] proposed a frequency domain based estimator of the autoregressive parameters

for stable INAR(p) models with Poisson innovations. Ispány et al. [17], [18] derived asymptotic

inference for nearly unstable INAR(1) models which has been refined by Drost et al. [9] later.

In [17] the mean of the innovation was supposed to be known, while in [18] both the autore-

gressive parameter and the mean of the innovation have been estimated jointly. Drost et al. [8]

studied asymptotically efficient estimation of the parameters for stable INAR(p) models. The

stability parameter ̺ := α1 + · · ·+ αp of an INAR(p) model with autoregressive parameters

(α1, . . . , αp) has not been treated yet, but this stability parameter is well investigated in case

of unstable AR(p) processes, see the unit root tests, e.g., in Hamilton [15, Section 17, Table

17.3, Case 1]. Namely, for the simplicity in case of p = 1, if (Yk)k>0 is an AR(1) process,

i.e., Yk = ̺Yk−1 + ζk, k > 1, with Y0 := 0 and an i.i.d. sequence (ζk)k>1 having mean 0

and positive variance, then the ordinary least squares estimator of the stability parameter ̺

based on the sample Y n := (Y1, . . . , Yn) takes the form

̺̂n(Y n) =

∑n
k=1 Yk−1Yk∑n
k=1 Y

2
k

, n > 1,

see, e.g., Hamilton [15, 17.4.2], and, by Hamilton [15, 17.4.7], in the unstable case, i.e., when

̺ = 1,

n(̺̂n(Y n)− 1)
L−→
∫ 1

0
Wt dWt∫ 1

0
W2

t dt
as n→ ∞,

where (Wt)t>0 is a standardWiener process and
L−→ denotes convergence in distribution. Here

n(̺̂n(Y n)− 1) is known as the Dickey–Fuller statistics. In this paper the asymptotic behavior

of the CLS estimators of the autoregressive and the stability parameters and of the mean of

the innovation for unstable INAR(2) models is described (see our main results in Section 2)

which can be considered as a first step of examining this question for general unstable INAR(p)

processes and more generally for critical multitype branching processes. We call the attention
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that in case of unstable INAR(2) processes new types of limit distribution occur (see Theorem

2.1) compared to those of unstable AR(p) processes.

First we recall INAR(2) models. Let Z+, N, R and R+ denote the set of non-negative

integers, positive integers, real numbers and non-negative real numbers, respectively. Every

random variable will be defined on a fixed probability space (Ω,A,P).

1.1 Definition. Let (εk)k∈N be an independent and identically distributed (i.i.d.) sequence

of non-negative integer-valued random variables, and let (α, β) ∈ [0, 1]2. An INAR(2) time

series model with autoregressive parameters (α, β) and innovations (εk)k∈N is a stochastic

process (Xk)k>−1 given by

Xk =

Xk−1∑

j=1

ξk,j +

Xk−2∑

j=1

ηk,j + εk, k ∈ N,(1.1)

where for all k ∈ N, (ξk,j)j∈N and (ηk,j)j∈N are sequences of i.i.d. Bernoulli random variables

with mean α and β, respectively, such that these sequences are mutually independent and

independent of the sequence (εk)k∈N, and X0 and X−1 are non-negative integer-valued

random variables independent of the sequences (ξk,j)j∈N, (ηk,j)j∈N, k ∈ N, and (εk)k∈N.

The INAR(2) model (1.1) can be written in another way using the binomial thinning oper-

ator ◦ (due to Steutel and van Harn [33]) which we recall now. Let X be a non-negative

integer-valued random variable. Let (ξj)j∈N be a sequence of i.i.d. Bernoulli random variables

with mean α ∈ [0, 1]. We assume that the sequence (ξj)j∈N is independent of X . The

non-negative integer-valued random variable α ◦X is defined by

α ◦X :=





X∑
j=1

ξj, if X > 0,

0, if X = 0.

The sequence (ξj)j∈N is called a counting sequence. Then the INAR(2) model (1.1) takes the

form

Xk = α ◦Xk−1 + β ◦Xk−2 + εk, k ∈ N.

Note that the above form of the INAR(2) model is quite analogous with a usual AR(2) process

(another slight link between them is the similarity of some conditional expectations, see (3.1)).

For the sake of simplicity we consider a zero start INAR(2) process, that is we suppose

X0 = X−1 = 0. The general case of nonzero initial values may be handled in a similar way,

but we renounce to consider it.

In the sequel we always assume E(ε21) < ∞. Let us denote the mean and variance of ε1
by µ and σ2. Further, we assume µ > 0, otherwise Xk = 0 for all k ∈ N.

Based on the asymptotic behavior of E(Xk) as k → ∞ described in Barczy et al. [5,

Proposition 2.6], we distinguish three types of INAR(2) models. The asymptotic behavior of
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E(Xk) as k → ∞ is determined by the spectral radius r of the matrix

(1.2) A :=

[
α β

1 0

]
,

i.e., by the maximum of the modulus of the eigenvalues of A. The case r < 1, when E(Xk)

converges to a finite limit as k → ∞, is called stable or asymptotically stationary, whereas

the cases r = 1, when E(Xk) tends linearly to ∞, and r > 1, when E(Xk) converges to

∞ with an exponential rate, are called unstable and explosive, respectively. It is easy to check

that r < 1, r = 1, and r > 1 are equivalent with ̺ < 1, ̺ = 1, and ̺ > 1, respectively,

where ̺ := α + β is called the stability parameter, see Barczy et al. [5, Proposition 2.2].

We also note that an INAR(2) process can be considered as a special 2-type branching

process with immigration. Namely, by (1.1),

[
Xk

Xk−1

]
=

Xk−1∑

j=1

[
ξk,j

1

]
+

Xk−2∑

j=1

[
ηk,j

0

]
+

[
εk

0

]
, k ∈ N,

and hence the so-called mean matrix of an INAR(2) process with autoregressive parameters

(α, β) (considered as a 2-type branching process) is nothing else but A. This process is called

positively regular if there is a positive integer k ∈ N such that the entries of Ak are positive

(see Kesten and Stigum [23]), which is equivalent with α > 0 and β > 0. The model is

called decomposable if the matrix A is decomposable (see Kesten and Stigum [25]), which is

equivalent with β = 0. If α = 0 and β > 0, then the process is indecomposable but not

positively regular (see Kesten and Stigum [24]). If α > 0 and β = 0, then the decomposable

process (Xk)k>−1 is an INAR(1) process with autoregressive parameter α. If α = 0 and

β > 0, then the indecomposable process (Xk)k>−1 takes the form

Xk = β ◦Xk−2 + εk, k ∈ N,

and hence the subsequences (X2k−j)k>0, j ∈ {0, 1}, form independent positively regular

INAR(1) processes with autoregressive parameter β such that X−j = 0, j ∈ {0, 1}. For

more details of this classification of INAR(2) processes, see Appendix A.

Next we give an overview of the structure of the paper. Section 2 contains our main

results, see Theorem 2.1 for unstable and positively regular INAR(2) processes, Theorem 2.2 for

unstable and decomposable INAR(2) processes, and Theorem 2.3 for unstable, indecomposable

but not positively regular ones. In order to highlight our main results, the preliminaires and

(technical) details on CLS estimators are presented only after our main results, see Section 3.

In Theorems 4.1, 4.2 and 4.3 of Section 4 we present joint asymptotic behaviours of the building

blocks of the CLS estimators (according to the above mentioned three cases), and by applying a

version of the continuous mapping theorem (which is formulated for completeness in Appendix

B) we show how one can derive Theorems 2.1, 2.2 and 2.3 using these theorems. Section 5

is devoted to the proof of Theorem 4.1 which is based on Lemma 5.1 and Theorem 5.1. Due

to its length, the proof of Theorem 5.1 is given separately in Section 6. Sections 7 and 8 are
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devoted to the proofs of Theorem 4.2 and Theorem 4.3, respectively. In Section 9 we present

estimates for the moments of the processes involved, these estimates are used throughout the

paper. In Appendix C we recall a result about convergence of random step processes noting

that the proof of Theorem 5.1 is based on this result.

2 Main results

In what follows we always assume ̺ = α + β = 1, that is, the process (Xk)k>−1 is unstable.

For each n ∈ N, any CLS estimator (α̂n(Xn), β̂n(Xn), µ̂n(Xn)) of the autoregressive

parameters (α, β) and of the mean µ of the innovation based on a sample Xn := (X1, . . . , Xn)

has the form



α̂n(Xn)

β̂n(Xn)

µ̂n(Xn)


 =




n∑

k=1




X2
k−1 Xk−1Xk−2 Xk−1

Xk−1Xk−2 X2
k−2 Xk−2

Xk−1 Xk−2 1







−1

n∑

k=1




XkXk−1

XkXk−2

Xk




on the set {ω ∈ Ω :
∑n

k=1Xk−2(ω)
2 > 0} with limn→∞ P

(∑n
k=1X

2
k−2 > 0

)
= 1, see

Proposition 3.1. Moreover, for each n ∈ N, any CLS estimator of the stability parameter ̺

takes the form

̺̂n(Xn) = α̂n(Xn) + β̂n(Xn)

on the set {ω ∈ Ω :
∑n

k=1Xk−2(ω)
2 > 0}, see Section 3.

2.1 Theorem. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters (α, β) ∈
(0, 1)2 such that α + β = 1 (hence it is unstable and positively regular). Suppose that

X0 = X−1 = 0, E(ε81) <∞ and µ > 0. Then

(2.1) n
(
̺̂n(Xn)− 1

) L−→
√
2αβ

∫ 1

0
X 3/2
t dWt − [(1 + β)X1 − µ]

∫ 1

0
Xt dt∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2

(2.2)

[
n1/2(α̂n(Xn)− α)

n1/2(β̂n(Xn)− β)

]
L−→
√
α(1 + β)

∫ 1

0
Xt dW̃t∫ 1

0
Xt dt

[
−1

1

]

and

(2.3) µ̂n(Xn)− µ
L−→ −√

2αβ
∫ 1

0
Xt dt

∫ 1

0
X 3/2
t dWt + [(1 + β)X1 − µ]

∫ 1

0
X 2
t dt∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2

as n→ ∞, where (Xt)t∈R+ is the unique strong solution of the stochastic differential equation

(SDE)

(2.4) dXt =
1

1 + β

(
µ dt+

√
2αβX+

t dWt

)
, t ∈ R+,

with initial value X0 = 0, where (Wt)t∈R+, (W̃t)t∈R+ are independent standard Wiener

processes, and x+ denotes the positive part of x ∈ R.
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2.1 Remark. The moment condition E(ε81) < ∞ in Theorem 2.1 seems to be too strong,

but we call the attention that the process (Xk)k>−1 can be considered as a heteroscedastic

time series. Indeed, Xk = αXk−1 + βXk−2 +Mk + µ, see (3.3), and by (9.1), E(M2
k | Fk−1) =

α(1−α)Xk−1+β(1−β)Xk−2+σ
2, k ∈ N. That is why we think that the behavior of the process

(Xk)k>−1 is similar to GARCH models, where, even in the stable case, high moment conditions

are needed for convergence of estimators such as the quasi-maximum likelihood estimator in

Hall and Yao [14] or the Whittle estimator in Mikosch and Straumann [28]. ✷

2.2 Remark. The SDE (2.4) has a unique strong solution (X (x)
t )t>0 for all initial values

X (x)
0 = x ∈ R. Indeed, since |√x − √

y| 6
√

|x− y| for x, y > 0, the coefficient functions

R ∋ x 7→ µ/(1 + β) and R ∋ x 7→ √
2αβx+/(1 + β) satisfy conditions of part (ii) of Theorem

3.5 in Chapter IX in Revuz and Yor [30] or the conditions of Proposition 5.2.13 in Karatzas

and Shreve [22]. Further, by the comparison theorem (see, e.g., Revuz and Yor [30, Theorem

3.7, Chapter IX]), if the initial value X (x)
0 = x is nonnegative, then X (x)

t is nonnegative for

all t ∈ R+ with probability one. Hence X+
t may be replaced by Xt under the square root

in (2.4). The unique strong solution of the SDE (2.4) is known as a squared Bessel process, a

squared-root process or a Cox–Ingersoll–Ross (CIR) process. ✷

2.3 Remark. By Itô’s formula and Remark 2.2, Mt := (1+β)Xt−µt, t ∈ R+, is the unique

strong solution of the SDE

(2.5) dMt =

√
2αβ

1 + β
(Mt + µt)+ dWt, t ∈ R+,

with initial value M0 = 0, and (Mt + µt)+ may be replaced by Mt + µt under the square

root in (2.5). Hence dMt =
√
2αβXt dWt, and the convergences (2.1) and (2.3) can also be

formulated as

(2.6) n(̺̂n(Xn)− 1)
L−→
∫ 1

0
Xt dMt −M1

∫ 1

0
Xt dt∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2 as n→ ∞,

(2.7) µ̂n(Xn)− µ
L−→ −

∫ 1

0
Xt dt

∫ 1

0
Xt dMt +M1

∫ 1

0
X 2
t dt∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2 as n→ ∞.
✷

The next theorem contains our result for decomposable unstable INAR(2) processes.

2.2 Theorem. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters (1, 0)

(hence it is unstable and decomposable). Suppose that X0 = X−1 = 0, E(ε41) <∞ and µ > 0.

Then

n3/2
(
̺̂n(Xn)− 1

) L−→ N1

(
0,

12σ2

µ2

)
as n→ ∞,(2.8)
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[
n1/2(α̂n(Xn)− 1)

n1/2β̂n(Xn)

]
L−→ Z

[
−1

1

]
as n→ ∞,(2.9)

and

n1/2
(
µ̂n(Xn)− µ

) L−→ N1(0, µ
2 + 4σ2) as n→ ∞,(2.10)

where Z is a standard normally distributed random variable.

2.4 Remark. Note that an unstable and decomposable INAR(2) process has autoregressive

parameters (1, 0), i.e., it is actually an unstable INAR(1) process. However, we call the

attention that the asymptotic behaviour of the estimators ̺̂n(Xn), (α̂n(Xn), β̂n(Xn)) and

µ̂n(Xn) as n → ∞ in Theorem 2.2 can not be derived from the corresponding results

for an unstable INAR(1) process, since the CLS estimator of the coefficient (which can also be

considered as the stability parameter) of an INAR(1) process is different from ̺̂n(Xn), see, e.g.,

Ispány et al. [18]. Remark also that the CLS estimator of the coefficient of an unstable INAR(1)

process is also asymptotically normal with the same scaling n3/2, but the asymptotic variance

3σ2/µ2 is different from the corresponding one 12σ2/µ2 for an unstable and decomposable

INAR(2) process, see Ispány et al. [18, Theorem 2.1]. ✷

The last theorem contains our result for unstable, indecomposable but not positively regular

INAR(2) processes.

2.3 Theorem. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters (0, 1)

(hence it is unstable, indecomposable but not positively regular). Suppose that X0 = X−1 = 0,

E(ε21) <∞ and µ > 0. Then

n3/2
(
̺̂n(Xn)− 1

) L−→ N1

(
0,

48σ2

µ2

)
as n→ ∞,(2.11)

[
nα̂n(Xn)

n(β̂n(Xn)− 1)

]
L−→
∫ 1

0
Wt dWt∫ 1

0
W2

t dt

[
−1

1

]
as n→ ∞,(2.12)

and

n1/2
(
µ̂n(Xn)− µ

) L−→ N1

(
0, 4σ2

)
as n→ ∞,(2.13)

where (Wt)t∈R+ is a standard Wiener process.

2.5 Remark. We note that in all unstable cases the limit distributions for the estimators of

the autoregressive parameters are concentrated on the same line {(x, y) ∈ R
2 : x + y = 0}.

However, these limit distributions are pairwise different. Surprisingly, both in the unstable

positively regular case and in the unstable decomposable case the scaling factor is
√
n, while

in the unstable, indecomposable but not positively regular case it is n. In the stable case
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this factor is again
√
n (see Du and Li [10, Theorem 4.2] or Latour [26, Proposition 6.1]).

The reason of this strange phenomena can be understood from the asymptotic behavior of the

sequence (An,dn)n∈N of random vectors defined and analyzed in Sections 3, 4, 5, 7 and 8.

Namely, the scaling factor for the entries of the matrices (An)n∈N as well as for the entries of

the vectors (dn)n∈N are different. In order to get over these difficulties, we use the canonical

form of the process (Xk)k∈N due to Sims, Stock and Watson [32]. Further, one of the decisive

tools in deriving the needed asymptotic behavior is a good bound for the moments of the

involved processes, see Corollary 9.1. ✷

2.6 Remark. We recall that the distribution of
∫ 1

0
Wt dWt

/ ∫ 1

0
W2

t dt in Theorem 2.3 agrees

with the limit distribution of the Dickey–Fuller statistics for unit root test of AR(1) time series,

see, e.g., Hamilton [15, 17.4.2 and 17.4.7] or Tanaka [34, (7.14) and Theorem 9.5.1]. The limit

distribution in (2.2) is also a fraction of two stochastic integrals, but it contains two independent

standard Wiener processes. This phenomena is very similar to the appearing of two independent

standard Wiener processes in limit theorems for CLS estimators of the variance of the offspring

and immigration distributions for critical branching processes with immigration in Winnicki

[37, Theorems 3.5 and 3.8]. Finally, note that the limit distribution of the CLS estimator of the

autoregressive parameters (α, β) is symmetric in Theorems 2.1 and 2.2, and non-symmetric in

Theorem 2.3. Indeed, since (Wt)t∈R+ and (W̃t)t∈R+ are independent, by the SDE (2.4), the

processes (Xt)t∈R+ and (W̃t)t∈R+ are also independent, which yields that the limit distribution

of the CLS estimator of (α, β) is symmetric in Theorem 2.1. ✷

2.7 Remark. We note that the CLS estimator ̺̂n(Xn) of ̺, and the CLS estimator

(α̂n(Xn), β̂n(Xn) of (α, β) are asymptotically weakly consistent as n → ∞ in Theo-

rems 2.1, 2.2 and 2.3. The CLS estimator µ̂n(Xn) of µ in Theorems 2.2 and 2.3 is also

asymptotically weakly consistent as n→ ∞, however in Theorem 2.1 it is not asymptotically

weakly consistent. Note that in the case of an unstable INAR(1) model the CLS estimator of

the mean of the innovation is asymptotically weakly consistent, see Ispány et al. [18]. Further,

we remark that in Theorem 2.1 the variance σ2 of the innovation does not show up in the

limit distributions, while in Theorems 2.2 and 2.3 it appears. Finally, in Theorems 2.1, 2.2 and

2.3 one could prove joint convergence as well. ✷

3 CLS estimators

For all k ∈ Z+, let us denote by Fk the σ-algebra generated by the random variables

X−1, X0, X1, . . . , Xk. (Note that F0 = {Ω, ∅}, since X0 = X−1 = 0.) By (1.1),

E(Xk | Fk−1) = αXk−1 + βXk−2 + µ, k ∈ N.(3.1)

Let us introduce the sequence

(3.2) Mk := Xk − E(Xk | Fk−1) = Xk − αXk−1 − βXk−2 − µ, k ∈ N,
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of martingale differences with respect to the filtration (Fk)k∈Z+. The process (Xk)k>−1

satisfies the recursion

(3.3) Xk = αXk−1 + βXk−2 +Mk + µ, k ∈ N.

For each n ∈ N, a CLS estimator (α̂n(Xn), β̂n(Xn), µ̂n(Xn)) of the parameters (α, β, µ)

based on a sample Xn = (X1, . . . , Xn) can be obtained by minimizing the sum of squares

(3.4)

n∑

k=1

(
Xk − E(Xk | Fk−1)

)2
=

n∑

k=1

(Xk − αXk−1 − βXk−2 − µ)2

with respect to (α, β, µ) over R
3. For all n ∈ N and x1, . . . , xn ∈ R, let us put

xn := (x1, . . . , xn),

and in what follows we use the convention

x−1 := x0 := 0.

For all n ∈ N, we define the function Qn : Rn × R
3 → R by

Qn(xn;α
′, β ′, µ′) :=

n∑

k=1

(xk − α′xk−1 − β ′xk−2 − µ′)2

for all α′, β ′, µ′ ∈ R and xn ∈ R
n. By definition, for all n ∈ N, a CLS estimator of the

parameters (α, β, µ) is a measurable function (α̂n, β̂n, µ̂n) : R
n → R

3 such that

Qn(xn; α̂n(xn), β̂n(xn), µ̂n(xn)) = inf
(α′,β′,µ′)∈R3

Qn(xn;α
′, β ′, µ′) ∀ xn ∈ R

n.

Since the variance σ2 of the innovation does not appear in the conditional expectation

E(Xk | Fk−1) given in (3.1), and hence, in the definition of Qn, we do not need to know

the value of σ2 for the calculation of the CLS estimator of the parameters (α, β, µ).

Next we give the solutions of this extremum problem.

3.1 Lemma. For each n > 2, n ∈ N, any CLS estimator of the parameters (α, β, µ) is a

measurable function (α̂n, β̂n, µ̂n) : R
n → R

3 for which

(3.5)




α̂n(xn)

β̂n(xn)

µ̂n(xn)


 = Fn(xn)

−1gn(xn)

if
∑n

k=1 x
2
k−2 > 0, where

Fn(xn) :=

n∑

k=1




xk−1

xk−2

1







xk−1

xk−2

1




⊤

, gn(xn) :=

n∑

k=1

xk




xk−1

xk−2

1


 ,
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(3.6) α̂n(xn) =
xn
xn−1

− 1

n− 1
, µ̂n(xn) =

xn−1

n− 1

if x1 = · · · = xn−2 = 0 and xn−1 6= 0, and

(3.7) µ̂n(xn) =
xn
n

if x1 = · · · = xn−1 = 0.

Note that (α̂n, β̂n, µ̂n) is not defined uniquely on the set {xn ∈ R
n : x1 = · · · = xn−2 = 0}.

Namely, if x1 = · · · = xn−2 = 0 and xn−1 6= 0, then β̂n can be chosen as an arbitrary

measurable function, while if x1 = · · · = xn−1 = 0, then the same holds for (α̂n, β̂n). We

call the attention that Lemma 3.1 holds for all types of INAR(2) processes, i.e., it covers the

stable, unstable and explosive cases as well.

Proof of Lemma 3.1. For any fixed xn ∈ R
n with

∑n
k=1 x

2
k−2 > 0, the quadratic function

R
3 ∋ (α′, β ′, µ′) 7→ Qn(xn;α

′, β ′, µ′) can be written in the form

Qn(xn;α
′, β ′, µ′) =







α′

β ′

µ′


− Fn(xn)

−1gn(xn)




⊤

Fn(xn)







α′

β ′

µ′


− Fn(xn)

−1gn(xn)


+ Q̃n(xn),

where

Q̃n(xn) :=
n∑

k=1

x2k − gn(xn)
⊤Fn(xn)

−1gn(xn).

We check that the matrix Fn(xn) is strictly positive definite. For this, it is enough to show

that
∑n

k=1 x
2
k−2 > 0 implies that the rank of the system of vectors




xk−1

xk−2

1


 , k ∈ {1, . . . , n},(3.8)

equals 3. Indeed, if ai ∈ R
3, i ∈ {1, . . . , n}, and the rank of the system {a1, . . . , an} is 3,

then A :=
∑n

i=1 aia
⊤
i is strictly positive definite which can be checked as follows. For any

z ∈ R
3,

〈Az, z〉 =
n∑

i=1

〈aia⊤i z, z〉 =
n∑

i=1

〈a⊤i z, a⊤i z〉 > 0,

and 〈Az, z〉 = 0 holds if and only if a⊤i z = 0, i = 1, . . . , n. Since the rank of the system

{a1, . . . , an} is 3, we have z = 0.

The rank of the system of vectors in (3.8) is 3, since the rank of the matrix



xn−1 xn−2 · · · x2 x1 0

xn−2 xn−3 · · · x1 0 0

1 1 1 1 1 1
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equals 3. Indeed, there exists some i ∈ {1, . . . , n− 2} such that xi 6= 0 and xi−1 = 0, and

hence there exists a submatrix with negative determinant
∣∣∣∣∣∣∣∣

xi+1 xi 0

xi xi−1 0

1 1 1

∣∣∣∣∣∣∣∣
= xi−1xi+1 − x2i = −x2i < 0.

Hence we obtain (3.5).

For any fixed xn ∈ R
n with x1 = · · · = xn−2 = 0 and xn−1 6= 0, the quadratic function

R
3 ∋ (α′, β ′, µ′) 7→ Qn(xn;α

′, β ′, µ′) can be written in the form

Qn(xn;α
′, β ′, µ′) = (xn − α′xn−1 − µ′)2 + (xn−1 − µ′)2 + (n− 2)(µ′)2, (α′, β ′, µ′) ∈ R

3.

The system of equation consisting of the first order partial derivates of Qn with respect to α′

and µ′ takes the form

xn − α′xn−1 − µ′ = 0,

xn − α′xn−1 − µ′ + xn−1 − µ′ − (n− 2)µ′ = 0.

Using that n > 2, by an easy computation, we conclude (3.6).

If xn ∈ R
n with x1 = · · · = xn−1 = 0, then Qn(xn;α

′, β ′, µ′) = (xn − µ′)2 + (n− 1)(µ′)2,

which implies (3.7). ✷

We note that one could give a different proof of Lemma 3.1 as in Barczy et al. [4, Lemma

2.1].

Next we present a result about the existence and uniqueness of (α̂n(Xn), β̂n(Xn), µ̂n(Xn)).

3.1 Proposition. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters

(α, β) ∈ [0, 1]2 such that α + β = 1 (hence it is unstable). Suppose that X0 = X−1 = 0,

E(ε21) <∞ and µ > 0. Then

lim
n→∞

P

(
n∑

k=1

X2
k−2 > 0

)
= 1,

and hence the probability of the existence of a unique CLS estimator (α̂n(Xn), β̂n(Xn), µ̂n(Xn))

converges to 1 as n→ ∞, and this CLS estimator has the form

(3.9)




α̂n(Xn)

β̂n(Xn)

µ̂n(Xn)


 = F−1

n gn

on the set {ω ∈ Ω :
∑n

k=1Xk−2(ω)
2 > 0}, where

F n := Fn(Xn) =

n∑

k=1




X2
k−1 Xk−1Xk−2 Xk−1

Xk−1Xk−2 X2
k−2 Xk−2

Xk−1 Xk−2 1


 , gn := gn(Xn) =

n∑

k=1




XkXk−1

XkXk−2

Xk


 .
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Proof. First we prove the statements for (α, β) ∈ (0, 1)2. For each n ∈ N, consider the

random step process

X (n)
t := n−1X⌊nt⌋, t ∈ R+,

where ⌊x⌋ denotes the integer part of a real number x ∈ R. By Barczy et al. [5, Theorem

3.1] we have

(3.10) X (n) L−→ X as n→ ∞,

where the process (Xt)t∈R+ is the unique strong solution of the SDE (2.4) with initial value

X0 = 0. Next we show that

1

n3

n∑

k=1

X2
k−2

L−→
∫ 1

0

X 2
t dt as n→ ∞.(3.11)

Let us apply Lemmas B.2 and B.3 with the special choices d := p := q := 1, h : R → R,

h(x) := x, x ∈ R, K : [0, 1]× R
2 → R,

K(s, x1, x2) := x21, (s, x1, x2) ∈ [0, 1]× R
2,

and U := X , U (n) := X (n), n ∈ N. Then

|K(s, x1, x2)−K(t, y1, y2)| = |x21 − y21| 6 (|x1|+ |y1|)|x1 − y1| 6 2R(|t− s|+ |x1 − y1|)

6 2R
(
|t− s|+ ‖(x1, x2)− (y1, y2)‖

)

for all s, t ∈ [0, 1] and (x1, x2), (y1, y2) ∈ R
2 with ‖(x1, x2)‖ 6 R and ‖(y1, y2)‖ 6 R, where

R > 0. Further, using the definition of Φ and Φn, n ∈ N, given in Lemma B.3,

Φn(X (n)) =

(
X (n)

1 ,
1

n

n∑

k=1

(
X (n)
k/n

)2
)

=

(
1

n
Xn,

1

n3

n∑

k=1

X2
k

)
,

Φ(X ) =

(
X1,

∫ 1

0

X 2
u du

)
.

Since the process (Xt)t∈R+ admits continuous paths with probability one, Lemma B.2 (with

the choice C := C(R+,R)) and Lemma B.3 yield (3.11). Since µ > 0, by the SDE (2.4), we

have P
(
Xt = 0, t ∈ [0, 1]

)
= 0, which implies that P

(∫ 1

0
X 2
t dt > 0

)
= 1. Consequently, the

distribution function of
∫ 1

0
X 2
t dt is continuous at 0, and hence, by (3.11),

P

(
n∑

k=1

X2
k−2 > 0

)
= P

(
1

n3

n∑

k=1

X2
k−2 > 0

)
→ P

(∫ 1

0

X 2
t dt > 0

)
= 1 as n→ ∞.

Clearly, (3.9) also holds, hence we obtain the statement in the case of (α, β) ∈ (0, 1)2.

Next we consider the case of (α, β) = (1, 0). In this case equation (1.1) has the form

Xk = Xk−1 + εk, k ∈ N, and hence Xn =
∑n

k=1 εk, n ∈ N. By the strong law of large

numbers we have

(3.12) n−1Xn
a.s.−→ µ,

12



and hence

n−2X2
n

a.s.−→ µ2,

where
a.s.−→ denotes almost sure convergence. Then, by Toeplitz theorem, we conclude

(3.13) n−3

n∑

k=1

X2
k =

n∑

k=1

k2

n3
k−2X2

k
a.s.−→ 1

3
µ2,

where we used that

lim
n→∞

n∑

k=1

k2

n3
= lim

n→∞

n(n+ 1)(2n+ 1)

6n3
=

1

3
.

Since µ > 0, this implies the existence of an event Ω0 ∈ A such that P(Ω0) = 1, and for

all ω ∈ Ω0 there exists an n0(ω) ∈ N such that
∑n

k=1Xk−2(ω)
2 > 0 for n > n0(ω). This

is equivalent with P(
⋃∞
n=1{

∑n
k=1X

2
k−2 > 0}) = 1, and, by continuity of probability, is also

equivalent with limn→∞ P({∑n
k=1X

2
k−2 > 0}) = 1. Clearly (3.9) also holds, hence we obtain

the statement in case (α, β) = (1, 0).

Finally, we consider the case (α, β) = (0, 1). In this case equation (1.1) has the form

Xk = Xk−2 + εk, k ∈ N, and hence X2n =
∑n

k=1 ε2k, X2n−1 =
∑n

k=1 ε2k−1, n ∈ N. By the

strong law of large numbers we have

n−1X2n
a.s.−→ µ, n−1X2n−1

a.s.−→ µ,

which yield that

(3.14) n−1Xn
a.s.−→ 1

2
µ.

Using Toeplitz theorem, as in case (α, β) = (1, 0), we get

(3.15) n−3

n∑

k=1

X2
k

a.s.−→ 1

12
µ2.

One can finish the proof as in case (α, β) = (1, 0). ✷

The recursion (3.3) can also be written in the form

(3.16) Xk = ̺Xk−1 − β(Xk−1 −Xk−2) +Mk + µ, k ∈ N.

The representation (3.16) is called the canonical form of Sims, Stock and Watson [32], see

also Hamilton [15, 17.7.6]. A natural CLS estimator of the stability parameter ̺ takes

the form ̺̂n(Xn) = α̂n(Xn) + β̂n(Xn), since, for each n ∈ N, a CLS estimator

(̺̂n(Xn), β̂n(Xn), µ̂n(Xn)) of (̺, β, µ) based on a sample Xn = (X1, . . . , Xn) can be

obtained by minimizing the sum of squares

(3.17)
n∑

k=1

(
Xk − E(Xk | Fk−1)

)2
=

n∑

k=1

(
Xk − ̺Xk−1 + β(Xk−1 −Xk−2)− µ

)2
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with respect to (̺, β, µ) over R
3. One can easily argue that any CLS estimator (̺̂n, β̂n, µ̂n) :

R
n → R

3 of (̺, β, µ) is of the form




̺̂n(xn)
β̂n(xn)

µ̂n(xn)


 =




1 1 0

0 1 0

0 0 1







α̂n(xn)

β̂n(xn)

µ̂n(xn)


 , xn ∈ R

n,(3.18)

where (α̂n, β̂n, µ̂n) is a CLS estimator of (α, β, µ). Namely, if ψ : R3 → R
3 is a bijective

measurable function such that

R
3 ∋ (α′, β ′, µ′) 7→ ψ(α′, β ′, µ′) :=

[
α′ + β ′

h(α′, β ′, µ′)

]
=:




̺′

γ′

δ′




with some function h : R3 → R
2, then there is a bijection between the set of CLS estimators of

the parameters (α, β, µ) and the set of CLS estimators of the parameters ψ(α, β, µ). Indeed,

for all n ∈ N, (x1, . . . , xn) ∈ R
n and (α′, β ′, µ′) ∈ R

3,

n∑

k=1

(xk − α′xk−1 − β ′xk−2 − µ′)2 =
n∑

k=1


xk −




α′

β ′

µ′




⊤ 


xk−1

xk−2

1







2

=

n∑

k=1


xk −

(
ψ−1(̺′, γ′, δ′)

)⊤




xk−1

xk−2

1







2

,

hence (α̂n, β̂n, µ̂n) : R
n → R

3 is a CLS estimator of (α, β, µ) if and only if ψ(α̂n, β̂n, µ̂n) is

a CLS estimator of ψ(α, β, µ). With the special choice h : R3 → R
2, h(α, β, µ) := (β, µ),

(α, β, µ) ∈ R
3, we get (3.18). In what follows, by speaking about the CLS estimator ̺̂n of ̺

we mean the first coordinate of ψ(α̂n, β̂n). Hence, by Proposition 3.1, the probability of the

existence of a unique CLS estimator (̺̂n(Xn), β̂n(Xn), µ̂n(Xn)) converges to 1 as n → ∞,

and this CLS estimator has the form

(3.19)




̺̂n(Xn)

β̂n(Xn)

µ̂n(Xn)


 = A−1

n bn

on the set {ω ∈ Ω :
∑n

k=1Xk−2(ω)
2 > 0}, where

An :=

n∑

k=1




X2
k−1 −Xk−1Vk−1 Xk−1

−Xk−1Vk−1 V 2
k−1 −Vk−1

Xk−1 −Vk−1 1


 , bn :=

n∑

k=1




XkXk−1

−XkVk−1

Xk
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with

Vk−1 := Xk−1 −Xk−2, k ∈ N.

(In Appendix A, in Remark 9.2 one can find a detailed motivation of the definition of Vk,

k ∈ N.) Indeed, by (3.9),




̺̂n(Xn)

β̂n(Xn)

µ̂n(Xn)


 =




1 1 0

0 1 0

0 0 1


F−1

n gn =







1 0 0

−1 1 0

0 0 1


F n




1 1 0

0 1 0

0 0 1




−1


−1 


1 0 0

−1 1 0

0 0 1


 gn = A−1

n bn,

which also shows that A−1
n exists on the set {ω ∈ Ω :

∑n
k=1Xk−2(ω)

2 > 0}.
Alternatively, the CLS estimator ̺̂n(Xn) of the stability parameter ̺ could also be

obtained via a CLS estimator (α̂n(Xn), ̺̂n(Xn), µ̂n(Xn)) of (α, ̺, µ).

Note also that in case of an unstable INAR(2) process, i.e., when ̺ = 1, we have

(3.20) Vk = −βVk−1 +Mk + µ, k ∈ N,

hence (Vk)k∈N is a stable AR(1) process with heteroscedastic innovations (Mk)k∈N and with

positive drift µ whenever 0 6 β < 1.

4 Proof of the main results

In case of an unstable INAR(2) process, i.e., when ̺ = α + β = 1, by (3.19), we have

(4.1)




̺̂n(Xn)− 1

β̂n(Xn)− β

µ̂n(Xn)− µ


 = A−1

n dn, n ∈ N,

on the set {ω ∈ Ω :
∑n

k=1Xk−2(ω)
2 > 0}, where

dn :=

n∑

k=1




MkXk−1

−MkVk−1

Mk


 , n ∈ N.

Theorems 2.1, 2.2, and 2.3 will follow from Theorems 4.1, 4.2, and 4.3, respectively (see the

details below).

4.1 Theorem. Under the assumptions of Theorem 2.1 we have (Ãn, d̃n)
L−→ (Ã, d̃) as

n→ ∞, where

Ãn :=




n−3/2 0 0

0 n−1 0

0 0 n−1/2


An




n−3/2 0 0

0 n−1 0

0 0 n−1/2


 , d̃n :=




n−2 0 0

0 n−3/2 0

0 0 n−1


dn,
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Ã :=




∫ 1

0
X 2
t dt 0

∫ 1

0
Xt dt

0 2β
1+β

∫ 1

0
Xt dt 0

∫ 1

0
Xt dt 0 1


 , d̃ :=




√
2αβ

∫ 1

0
X 3/2
t dWt

− 2β
√
α√

1+β

∫ 1

0
Xt dW̃t

(1 + β)X1 − µ


 ,

where (Wt)t∈R+ and (W̃t)t∈R+ are independent standard Wiener processes.

4.2 Theorem. Under the assumptions of Theorem 2.2 we have (Ãn, d̃n)
L−→ (Ã, d̃) as

n→ ∞, where

Ãn :=




n−3/2 0 0

0 n−1/2 0

0 0 n−1/2


An




n−3/2 0 0

0 n−1/2 0

0 0 n−1/2


 , d̃n :=




n−3/2 0 0

0 n−1/2 0

0 0 n−1/2


dn,

Ã :=




1
3
µ2 −1

2
µ2 1

2
µ

−1
2
µ2 µ2 + σ2 −µ

1
2
µ −µ 1


 , d̃

L
= N3(0, σ

2Ã).

4.3 Theorem. Under the assumptions of Theorem 2.3 we have (Ãn, d̃n)
L−→ (Ã, d̃) as

n→ ∞, where

Ãn :=




n−3/2 0 0

0 n−1 0

0 0 n−1/2


An




n−3/2 0 0

0 n−1 0

0 0 n−1/2


 , d̃n :=




n−3/2 0 0

0 n−1 0

0 0 n−1/2


dn,

Ã :=




1
12
µ2 0 1

4
µ

0 σ2
∫ 1

0
W2

t dt 0
1
4
µ 0 1


 , d̃ :=




1
2
µσ
∫ 1

0
t dW̃t

σ2
∫ 1

0
Wt dWt

σW̃1


 ,

where (Wt)t∈R+ and (W̃t)t∈R+ are independent standard Wiener processes.

Now we briefly summarize how Theorem 4.1 yields Theorem 2.1. The function g : R3×3 ×
R

3×1 → R
3×1, defined by

g(X,y) :=

{
X−1y, if ∃ X−1,

0, otherwise,
(4.2)

is continuous on the set {X ∈ R
3×3 : ∃X−1} × R

3×1, and the limit distribution in Theorem

4.1 is concentrated on this set, since,

det(Ã) =
2β

1 + β

∫ 1

0

Xt dt

(∫ 1

0

X 2
t dt−

(∫ 1

0

Xt dt

)2
)
,
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and, by Remark 2.2 and the proof of Proposition 3.1,

P

(∫ 1

0

Xt dt > 0

)
= P

(∫ 1

0

X 2
t dt > 0

)
= 1,

and, by Lemma 4.3 in Barczy et al. [3],

P

(∫ 1

0

X 2
t dt−

(∫ 1

0

Xt dt

)2

> 0

)
= 1.

Hence the continuous mapping theorem (see, e.g., Theorem 2.3 in van der Vaart [35]) yields

that

g
(
Ãn, d̃n

) L−→ g
(
Ã, d̃

)

as n→ ∞. Under the conditions of Proposition 3.1, by (3.11) and (4.1), we have

P







n 0 0

0 n1/2 0

0 0 1







̺̂n(Xn)− 1

β̂n(Xn)− β

µ̂n(Xn)− µ


 = g

(
Ãn, d̃n

)

 > P

(
∃ Ã−1

n

)
= P

(
∃A−1

n

)

> P

(
n∑

k=1

X2
k−2 > 0

)
= P

(
1

n3

n∑

k=1

X2
k−2 > 0

)
→ P

(∫ 1

0

X 2
t dt > 0

)
= 1

as n → ∞. Clearly, if ξn, ηn, n ∈ N, and ξ are random variables such that ξn
L−→ ξ as

n → ∞ and limn→∞ P(ξn = ηn) = 1, then ηn
L−→ ξ as n → ∞, see, e.g., Barczy et al. [4,

Lemma 3.1]. Consequently, under the conditions of Theorem 2.1, Theorem 4.1 yields that



n(̺̂n(Xn)− 1)

n1/2(β̂n(Xn)− β)

µ̂n(Xn)− µ




L−→ g
(
Ã, d̃

)
as n→ ∞,

where

g
(
Ã, d̃

)
= Ã

−1
d̃

=
1

∫ 1

0
X 2
t dt−

(∫ 1

0
Xt dt

)2




1 0 −
∫ 1

0
Xt dt

0 1+β
2β

∫ 1
0
X 2

t dt−(
∫ 1
0
Xt dt)

2

∫ 1
0 Xt dt

0

−
∫ 1

0
Xt dt 0

∫ 1

0
X 2
t dt







√
2αβ

∫ 1

0
X 3/2
t dWt

− 2β
√
α√

1+β

∫ 1

0
Xt dW̃t

(1 + β)X1 − µ




=




√
2αβ

∫ 1
0 X 3/2

t dWt−[(1+β)X1−µ]
∫ 1
0 Xt dt

∫ 1
0
X 2

t dt−
(∫ 1

0
Xt dt
)2

−
√
α(1+β)

∫ 1
0
Xt dW̃t∫ 1

0
Xt dt

−
√
2αβ

∫ 1
0 Xt dt

∫ 1
0 X 3/2

t dWt+[(1+β)X1−µ]
∫ 1
0 X 2

t dt
∫ 1
0
X 2

t dt−
(∫ 1

0
Xt dt
)2




.
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Hence we obtain (2.1) and (2.3), and, using that
∫ 1

0
Xt dW̃t is symmetric, also the convergence

of the second coordinate in (2.2). By Slutsky’s lemma, convergence (2.1) implies n1/2(̺̂n(Xn)−
1)

P−→ 0 as well, where
P−→ denotes convergence in probability, hence

[
n1/2(α̂n(Xn)− α)

n1/2(β̂n(Xn)− β)

]
= n1/2(β̂n(Xn)− β)

[
−1

1

]
+ n1/2(̺̂n(Xn)− 1)

[
1

0

]

yields (2.2).

Next we briefly summarize how Theorem 4.2 yields Theorem 2.2. Similarly to the previous

case, under the conditions of Proposition 3.1, by (3.11) and (4.1), we have

P







n3/2 0 0

0 n1/2 0

0 0 n1/2







̺̂n(Xn)− 1

β̂n(Xn)

µ̂n(Xn)− µ


 = g

(
Ãn, d̃n

)

 > P

(
n∑

k=1

X2
k−2 > 0

)
→ 1

as n→ ∞. Consequently, under the conditions of Theorem 2.2, Theorem 4.2 yields that




n3/2(̺̂n(Xn)− 1)

n1/2β̂n(Xn)

n1/2(µ̂n(Xn)− µ)




L−→ g
(
Ã, d̃

)
as n→ ∞,

where

g
(
Ã, d̃

)
= Ã

−1
d̃

L
= Ã

−1N3(0, σ
2Ã)

L
= N3

(
0, σ2Ã

−1)

L
= N3







0

0

0


 ,

1

µ2




12σ2 0 −6µσ2

0 µ2 µ3

−6µσ2 µ3 µ2(µ2 + 4σ2)





 .

Hence we obtain (2.8), (2.10), and convergence of the second coordinate in (2.9). By Slutsky’s

lemma, convergence (2.8) implies n1/2(̺̂n(Xn)− 1)
P−→ 0 as well, hence

[
n1/2(α̂n(Xn)− 1)

n1/2β̂n(Xn)

]
= n1/2β̂n(Xn)

[
−1

1

]
+ n1/2(̺̂n(Xn)− 1)

[
1

0

]

yields (2.9).

Finally, we briefly summarize how Theorem 4.3 yields Theorem 2.3. Similarly as above,

under the conditions of Proposition 3.1, by (3.11) and (4.1), we have

P







n3/2 0 0

0 n 0

0 0 n1/2







̺̂n(Xn)− 1

β̂n(Xn)− 1

µ̂n(Xn)− µ


 = g

(
Ãn, d̃n

)

 > P

(
n∑

k=1

X2
k−2 > 0

)
→ 1

18



as n→ ∞. Consequently, under the conditions of Theorem 2.3, Theorem 4.3 yields that




n3/2(̺̂n(Xn)− 1)

n(β̂n(Xn)− 1)

n1/2(µ̂n(Xn)− µ)




L−→ g
(
Ã, d̃

)
as n→ ∞,

where

g
(
Ã, d̃

)
= Ã

−1
d̃ =




48
µ2

0 −12
µ

0 1

σ2
∫ 1
0
W2

t dt
0

−12
µ

0 4







1
2
µσ
∫ 1

0
t dW̃t

σ2
∫ 1

0
Wt dWt

σW̃1




=




24σ
µ

∫ 1

0
t dW̃t − 12σ

µ
W̃1

∫ 1
0
Wt dWt∫ 1

0 W2
t dt

−6σ
∫ 1

0
t dW̃t + 4σW̃1


 =




12σ
µ

∫ 1

0
(2t− 1) dW̃t
∫ 1
0
Wt dWt∫ 1

0 W2
t dt

2σ
∫ 1

0
(2− 3t) dW̃t


 .

Since
∫ 1

0
(2t − 1) dW̃t and

∫ 1

0
(2 − 3t) dW̃t are normally distributed random variables with

mean 0 and with variance
∫ 1

0

(2t− 1)2 dt =
1

3
,

∫ 1

0

(2− 3t)2 dt = 1,

respectively, we obtain (2.11), (2.13), and convergence of the second coordinate in (2.12). By

Slutsky’s lemma, convergence (2.11) implies n(̺̂n(Xn)− 1)
P−→ 0 as well, hence

[
nα̂n(Xn)

n(β̂n(Xn)− 1)

]
= n(β̂n(Xn)− 1)

[
−1

1

]
+ n(̺̂n(Xn)− 1)

[
1

0

]

yields (2.12).

5 Proof of Theorem 4.1

We have

Ãn =
n∑

k=1




n−3X2
k−1 −n−5/2Xk−1Vk−1 n−2Xk−1

−n−5/2Xk−1Vk−1 n−2V 2
k−1 −n−3/2Vk−1

n−2Xk−1 −n−3/2Vk−1 n−1


 ,

d̃n =

n∑

k=1




n−2MkXk−1

−n−3/2MkVk−1

n−1Mk


 .

(5.1)
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5.1 Lemma. Under the assumptions of Theorem 2.1 we have

n−3/2

n∑

k=1

Vk
P−→ 0 as n→ ∞,(5.2)

n−5/2
n∑

k=1

XkVk
P−→ 0 as n→ ∞,(5.3)

n−2

(
n∑

k=1

V 2
k − 2β

1 + β

n∑

k=1

Xk−1

)
P−→ 0 as n→ ∞.(5.4)

Proof. We have
∑n

k=1 Vk = Xn > 0, n ∈ N, and, by Corollary 9.1, E(Xn) = O(n), hence

we conclude (5.2). We have
n∑

k=1

(Xk −Xk−1)
2 =

n∑

k=1

X2
k − 2

n∑

k=1

XkXk−1 +

n∑

k=1

X2
k−1 = 2

n∑

k=1

X2
k − 2

n∑

k=1

XkXk−1 −X2
n

= 2

n∑

k=1

Xk(Xk −Xk−1)−X2
n,

thus
n∑

k=1

XkVk =
1

2
X2
n +

1

2

n∑

k=1

V 2
k > 0.(5.5)

Corollary 9.1 implies

E

(
n∑

k=1

XkVk

)
=

1

2
E(X2

n) +
1

2

n∑

k=1

E(V 2
k ) = O(n2),

hence we obtain (5.3).

In order to prove (5.4) we derive a decomposition of
∑n

k=1 V
2
k as a sum of a martingale

and some negligible terms. Using recursion (3.20) and Lemma 9.1, we obtain

E(V 2
k | Fk−1) = E

(
(−βVk−1 +Mk + µ)2 | Fk−1

)

= β2V 2
k−1 − 2βµVk−1 + µ2 + E(M2

k | Fk−1)

= β2V 2
k−1 − 2βµVk−1 + µ2 + αβ(Xk−1 +Xk−2) + σ2

= β2V 2
k−1 + 2αβXk−1 + µ2 + σ2 − (2βµ+ αβ)Vk−1

= β2V 2
k−1 + 2αβXk−1 + constant + constant × Vk−1,

where we used that Xk−1 +Xk−2 = 2Xk−1 − Vk−1, k ∈ N. Thus
n∑

k=1

V 2
k =

n∑

k=1

[
V 2
k − E(V 2

k | Fk−1)
]
+

n∑

k=1

E(V 2
k | Fk−1)

=

n∑

k=1

[
V 2
k − E(V 2

k | Fk−1)
]
+ β2

n∑

k=1

V 2
k−1 + 2αβ

n∑

k=1

Xk−1 +O(n) + constant ×
n∑

k=1

Vk−1.
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Consequently,

n∑

k=1

V 2
k =

1

1− β2

n∑

k=1

[
V 2
k − E(V 2

k | Fk−1)
]
+

2β

1 + β

n∑

k=1

Xk−1

− β2

1− β2
V 2
n +O(n) + constant ×

n∑

k=1

Vk−1.

(5.6)

By the tower rule of conditional expectation, V 2
k − E(V 2

k | Fk−1) and V 2
ℓ − E(V 2

ℓ | Fℓ−1) are

uncorrelated if k 6= ℓ, so

E



(

n∑

k=1

[
V 2
k − E(V 2

k | Fk−1)
]
)2

 =

n∑

k=1

E

([
V 2
k − E(V 2

k | Fk−1)
]2)

6

n∑

k=1

E(V 4
k ) = O(n3),

where we also used Corollary 9.1 and

E

([
ξ − E(ξ | F)

]2)
= E(ξ2)− E

(
E(ξ | F)2

)
6 E(ξ2)(5.7)

for an arbitrary random variable ξ with E(ξ2) <∞ and σ-algebra F ⊂ A. Hence

1

n2

n∑

k=1

[
V 2
k − E(V 2

k | Fk−1)
]

P−→ 0 as n→ ∞.

We note that this convergence follows also by (9.16) with the choice (ℓ, i, j) = (8, 0, 2). Again,

by Corollary 9.1, we obtain E(V 2
n ) = O(n) and E(X2

n−1) = O(n2), and since
∑n

k=1 Vk−1 =

Xn−1, n ∈ N, we get n−2V 2
n

P−→ 0 and n−2
∑n

k=1 Vk−1
P−→ 0 as n→ ∞ (we note that the

second convergence follows also by (9.14) with the choice (ℓ, i, j) = (8, 0, 1)). Consequently,

by (5.6), we obtain (5.4). ✷

Now let

Uk := Xk + βXk−1, k ∈ Z+,

with the convention U−1 := U0 := 0. In Appendix A, in Remark 9.2 one can find a detailed

motivation of the definition of Uk, k ∈ N. One can observe that Uk > 0 for all k ∈ Z+,

and, by α+ β = 1,

(5.8) Uk = Uk−1 +Mk + µ, k ∈ Z+,

hence (Uk)k∈Z+ is a nonnegative unstable AR(1) process with positive drift µ sharing the

innovation (Mk)k∈N with the stable AR(1) process (Vk)k∈Z+ .

Consider the sequence of stochastic processes

Z
(n)
t :=




M(n)
t

N (n)
t

P(n)
t


 :=

⌊nt⌋∑

k=1

Z
(n)
k with Z

(n)
k :=




n−1Mk

n−2MkUk−1

n−3/2MkVk−1


 , t ∈ R+, k, n ∈ N.

Theorem 4.1 will follow from Lemma 5.1 and the following theorem (which will be detailed

after Theorem 5.1).
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5.1 Theorem. Under the assumptions of Theorem 2.1 we have

(5.9) Z
(n) L−→ Z as n→ ∞,

where the process (Zt)t∈R+ with values in R
3 is the unique strong solution of the SDE

(5.10) dZ t = γ(t,Z t) dW t, t ∈ R+,

with initial value Z0 = 0, where W t :=
[
Wt W̃t

]⊤
, t ∈ R+, being a 2-dimensional

standard Wiener process, and γ : R+ × R
3 → R

3×2 is defined by

γ(t,x) :=




√
2αβ
1+β

[(x1 + µt)+]1/2 0√
2αβ
1+β

[(x1 + µt)+]3/2 0

0 2β
√
α

(1+β)3/2
(x1 + µt)




for t ∈ R+ and x = (x1, x2, x3) ∈ R
3.

Indeed, the unique strong solution of (5.10) with initial value Z0 = 0 can be written in

form

Z t :=




Mt

Nt

Pt


 :=




(1 + β)Xt − µt

(1 + β)
√
2αβ

∫ t
0
X 3/2
s dWs

2β
√
α√

1+β

∫ t
0
Xs dW̃s


 , t ∈ R+,

since, by Remark 2.3,

dZ t =




dMt

dNt

dPt


 =




√
2αβ
1+β

[(Mt + µt)+]1/2 dWt√
2αβ
1+β

[(Mt + µt)+]3/2 dWt

2β
√
α

(1+β)3/2
(Mt + µt) dW̃t


 =




√
2αβX 1/2

t dWt

(1 + β)
√
2αβX 3/2

t dWt

2β
√
α√

1+β
Xt dW̃t


 , t ∈ R+.

By the method of the proof of X (n) L−→ X in Theorem 3.1 in Barczy et al. [5] one can easily

derive
[
X (n)

Z
(n)

]
L−→
[
X
Z

]
as n→ ∞.(5.11)

More precisely, using that

Xk =
k∑

j=1

(Mj + µ)e⊤
1 A

k−je1, k ∈ N, where e1 :=

[
1

0

]
,

see, e.g., Barczy et al. [5, (3.11)], we have

[
X (n)

Z
(n)

]
= ψn(Z

(n)), n ∈ N,
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where the mapping ψn : D(R+,R
3) → D(R+,R

4) is given by

ψn(f1, f2, f3)(t) :=




∑⌊nt⌋
j=1

(
f1
(
j
n

)
− f1

(
j−1
n

)
+ µ

n

)
e⊤
1 A

⌊nt⌋−je1

f1(t)

f2(t)

f3(t)




for f1, f2, f3 ∈ D(R+,R), t ∈ R+, n ∈ N. Further, using that, by Remark 2.3,

Xt =
1

1 + β
(Mt + µt), t ∈ R+,

we have [
X
Z

]
= ψ(Z),

where the mapping ψ : D(R+,R
3) → D(R+,R

4) is given by

ψ(f1, f2, f3)(t) :=




1
1+β

(f1(t) + µt)

f1(t)

f2(t)

f3(t)




for f1, f2, f3 ∈ D(R+,R) and t ∈ R+. By page 603 in Barczy et al. [5], the mappings ψn,

n ∈ N, and ψ are measurable (the latter one is continuous too), since the coordinate functions

are measurable. Using page 604 in Barczy et al. [5], we get the set

C :=
{
f ∈ C(R+,R

3) : f(0) = 0 ∈ R
3
}

has the properties C ⊆ Cψ,(ψn)n∈N
with C ∈ B(D(R+,R

3)) and P(Z ∈ C) = 1, where

Cψ,(ψn)n∈N
is defined in Appendix B. Hence, by (5.9) and Lemma B.2, we have

[
X (n)

Z
(n)

]
= ψn(Z

(n))
L−→ ψ(Z) =

[
X
Z

]
as n→ ∞,

as desired. Next, similarly to the proof of (3.11), by Lemmas B.2 and B.3, convergence (5.11)

implies

n∑

k=1




n−1Mk

n−3X2
k−1

n−2Xk−1

n−2MkUk−1

n−3/2MkVk−1




L−→




(1 + β)X1 − µ
∫ 1

0
X 2
t dt∫ 1

0
Xt dt

(1 + β)
√
2αβ

∫ 1

0
X 3/2
t dWt

2β
√
α√

1+β

∫ 1

0
Xt dW̃t




as n→ ∞.(5.12)
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Namely,

⌊nt⌋∑

k=1




n−1Mk

n−3X2
k−1

n−2Xk−1

n−2MkUk−1

n−3/2MkVk−1




= ψ̃n

([
X (n)

Z
(n)

])
(t), t ∈ R+, n ∈ N,

where ψ̃n : D(R+,R
4) → D(R+,R

5) is given by

ψ̃n(f1, f2, f3, f4)(t) :=




f2(t)

n−1
∑⌊nt⌋

k=1

(
f1
(
k−1
n

))2

n−1
∑⌊nt⌋

k=1 f1
(
k−1
n

)

f3(t)

f4(t)




for f1, f2, f3, f4 ∈ D(R+,R), t ∈ R+, n ∈ N. Further,




(1 + β)Xt − µ
∫ t
0
X 2
s ds∫ t

0
Xs ds

(1 + β)
√
2αβ

∫ t
0
X 3/2
s dWs

2β
√
α√

1+β

∫ t
0
Xs dW̃s




= ψ̃

([
X
Z

])
(t), t ∈ R+,

where ψ̃ : D(R+,R
4) → D(R+,R

5) is given by

ψ̃(f1, f2, f3, f4)(t) :=




f2(t)∫ 1

0
(f1(s))

2 ds
∫ 1

0
f1(s) ds

f3(t)

f4(t)




for f1, f2, f3, f4 ∈ D(R+,R), t ∈ R+. As in the proof of Lemma B.3, one can check that the

set

C̃ :=
{
f ∈ C(R+,R

4) : f(0) = 0 ∈ R
4
}

has the properties C̃ ⊆ Cψ̃,(ψ̃n)n∈N
with C̃ ∈ B(D(R+,R

4)) and

P

([
X
Z

]
∈ C̃

)
= 1.
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Hence, by (5.11) and Lemma B.2, we have

ψ̃n

([
X (n)

Z
(n)

])
L−→ ψ̃

([
X
Z

])
as n→ ∞,

which yields (5.12).

Using Uk−1 = (1+β)Xk−1−βVk−1 and convergence of the third coordinates in Z
(n) L−→ Z

as n→ ∞ we obtain

n−2

(
n∑

k=1

MkXk−1 −
1

1 + β

n∑

k=1

MkUk−1

)
=

β

(1 + β)n2

n∑

k=1

MkVk−1
P−→ 0 as n→ ∞.

Using (5.1), the above two convergences and Lemma 5.1 we obtain Theorem 4.1 by Slutsky’s

lemma.

6 Proof of Theorem 5.1

In order to show convergence Z
(n) L−→ Z, we apply Theorem C.1 with the special choices

U := Z, U
(n)
k := Z

(n)
k , n, k ∈ N, (F (n)

k )k∈Z+ := (Fk)k∈Z+ and the function γ which is

defined in Theorem 5.1. Note that the arguments in Section 5 and Remark 2.2 show that the

SDE (5.10) admits a unique strong solution (Zz

t )t∈R+ for all initial values Z
z

0 = z ∈ R
3.

Now we show that conditions (i) and (ii) of Theorem C.1 hold. The conditional variances

have the form

E
(
Z

(n)
k (Z

(n)
k )⊤ | Fk−1

)
= E(M2

k | Fk−1)




n−2 n−3Uk−1 n−5/2Vk−1

n−3Uk−1 n−4U2
k−1 n−7/2Uk−1Vk−1

n−5/2Vk−1 n−7/2Uk−1Vk−1 n−3V 2
k−1




for n ∈ N, k ∈ {1, . . . , n}, and

γ(s,Z (n)
s )γ(s,Z (n)

s )⊤ =




2αβ
1+β

(M(n)
s + µs) 2αβ

1+β
(M(n)

s + µs)2 0
2αβ
1+β

(M(n)
s + µs)2 2αβ

1+β
(M(n)

s + µs)3 0

0 0 4αβ2

(1+β)3
(M(n)

s + µs)2




for s ∈ R+, where we used that (M(n)
s + µs)+ = M(n)

s + µs, s ∈ R+, n ∈ N, see Barczy et

al. [5, page 598] or (6.7) later on. In order to check condition (i) of Theorem C.1, we need to

25



prove that for each T > 0,

sup
t∈[0,T ]

∣∣∣∣
1

n2

⌊nt⌋∑

k=1

E(M2
k | Fk−1)−

2αβ

1 + β

∫ t

0

(M(n)
s + µs) ds

∣∣∣∣
P−→ 0,(6.1)

sup
t∈[0,T ]

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

Uk−1 E(M
2
k | Fk−1)−

2αβ

1 + β

∫ t

0

(M(n)
s + µs)2 ds

∣∣∣∣
P−→ 0,(6.2)

sup
t∈[0,T ]

∣∣∣∣
1

n4

⌊nt⌋∑

k=1

U2
k−1 E(M

2
k | Fk−1)−

2αβ

1 + β

∫ t

0

(M(n)
s + µs)3 ds

∣∣∣∣
P−→ 0,(6.3)

sup
t∈[0,T ]

∣∣∣∣
1

n3

⌊nt⌋∑

k=1

V 2
k−1E(M

2
k | Fk−1)−

4αβ2

(1 + β)3

∫ t

0

(M(n)
s + µs)2 ds

∣∣∣∣
P−→ 0,(6.4)

sup
t∈[0,T ]

∣∣∣∣
1

n5/2

⌊nt⌋∑

k=1

Vk−1E(M
2
k | Fk−1)

∣∣∣∣
P−→ 0,(6.5)

sup
t∈[0,T ]

∣∣∣∣
1

n7/2

⌊nt⌋∑

k=1

Uk−1Vk−1E(M
2
k | Fk−1)

∣∣∣∣
P−→ 0(6.6)

as n → ∞. Covergence (6.1) follows from (5.1) in Barczy et al. [5] with the special choices

p = 2, α1 = α and α2 = β.

Next we turn to prove (6.2). Since α + β = 1, by (3.2), we get

M(n)
s + µs =

1

n

⌊ns⌋∑

k=1

(
Xk − αXk−1 − βXk−2 − µ

)
+ µs

=
1

n

(
X⌊ns⌋ + βX⌊ns⌋−1

)
+
ns− ⌊ns⌋

n
µ =

1

n
U⌊ns⌋ +

ns− ⌊ns⌋
n

µ

(6.7)

for s ∈ R+, n ∈ N. Thus

∫ t

0

(M(n)
s + µs)2 ds =

1

n3

⌊nt⌋−1∑

k=1

U2
k +

µ

n3

⌊nt⌋−1∑

k=1

Uk +
nt− ⌊nt⌋

n3
U2
⌊nt⌋

+
µ(nt− ⌊nt⌋)2

n3
U⌊nt⌋ +

⌊nt⌋ + (nt− ⌊nt⌋)3
3n3

µ2.

Since

Xk−1 =
1

1 + β
(Uk − Vk), Xk =

1

1 + β
(Uk + βVk), k ∈ N,(6.8)
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using Lemma 9.1, we obtain

⌊nt⌋∑

k=1

Uk−1 E(M
2
k | Fk−1) =

⌊nt⌋∑

k=1

Uk−1

[
αβ(Xk−1 +Xk−2) + σ2

]

=

⌊nt⌋∑

k=1

Uk−1

[
αβ

1 + β
(2Uk−1 − αVk−1) + σ2

]
(6.9)

=
2αβ

1 + β

⌊nt⌋∑

k=1

U2
k−1 −

α2β

1 + β

⌊nt⌋∑

k=1

Uk−1Vk−1 + σ2

⌊nt⌋∑

k=1

Uk−1.

Thus, in order to show (6.2), it suffices to prove

n−3

⌊nT ⌋∑

k=1

|UkVk| P−→ 0,(6.10)

n−3

⌊nT ⌋∑

k=1

Uk
P−→ 0,(6.11)

n−3/2 sup
t∈[0,T ]

U⌊nt⌋
P−→ 0,(6.12)

n−3 sup
t∈[0,T ]

[
⌊nt⌋ + (nt− ⌊nt⌋)3

]
→ 0(6.13)

as n → ∞. Using (9.14) with (ℓ, i, j) = (8, 1, 1) and (ℓ, i, j) = (8, 1, 0), we have (6.10)

and (6.11), respectively. Using (9.15) with (ℓ, i, j) = (8, 1, 0), we have (6.12). Clearly, (6.13)

follows from |nt− ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude (6.2).

Now we turn to check (6.3). Again by (6.7), we have

∫ t

0

(M(n)
s + µs)3 ds =

1

n4

⌊nt⌋−1∑

k=1

U3
k +

3µ

2n4

⌊nt⌋−1∑

k=1

U2
k +

µ2

n4

⌊nt⌋−1∑

k=1

Uk +
nt− ⌊nt⌋

n4
U3
⌊nt⌋

+
3µ(nt− ⌊nt⌋)2

2n4
U2
⌊nt⌋ +

µ2(nt− ⌊nt⌋)3
n4

U⌊nt⌋ +
⌊nt⌋ + (nt− ⌊nt⌋)4

4n4
µ3.

Using Lemma 9.1, we obtain

⌊nt⌋∑

k=1

U2
k−1 E(M

2
k | Fk−1) =

⌊nt⌋∑

k=1

U2
k−1

[
αβ(Xk−1 +Xk−2) + σ2

]

=

⌊nt⌋∑

k=1

U2
k−1

[
αβ

1 + β
(2Uk−1 − αVk−1) + σ2

]

=
2αβ

1 + β

⌊nt⌋∑

k=1

U3
k−1 −

α2β

1 + β

⌊nt⌋∑

k=1

U2
k−1Vk−1 + σ2

⌊nt⌋∑

k=1

U2
k−1.
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Thus, in order to show (6.3), it suffices to prove

n−4

⌊nT ⌋∑

k=1

|U2
kVk|

P−→ 0,(6.14)

n−4

⌊nT ⌋∑

k=1

U2
k

P−→ 0,(6.15)

n−4

⌊nT ⌋∑

k=1

Uk
P−→ 0,(6.16)

n−4/3 sup
t∈[0,T ]

U⌊nt⌋
P−→ 0,(6.17)

n−4 sup
t∈[0,T ]

[
⌊nt⌋ + (nt− ⌊nt⌋)4

]
→ 0(6.18)

as n → ∞. Using (9.14) with (ℓ, i, j) = (8, 2, 1), (ℓ, i, j) = (8, 2, 0) and (ℓ, i, j) = (8, 1, 0),

we have (6.14), (6.15) and (6.16), respectively. Using (9.15) with (ℓ, i, j) = (8, 1, 0), we have

(6.17). Clearly, (6.18) follows again from |nt− ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude

(6.3).

Next we turn to prove (6.4). By (6.9), (6.10) and (6.11) we get

n−3 sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

Uk−1 E(M
2
k | Fk−1)−

2αβ

1 + β

⌊nt⌋∑

k=1

U2
k−1

∣∣∣∣∣∣
P−→ 0 as n→ ∞(6.19)

for all T > 0. Using (6.2), in order to prove (6.4), it is sufficient to show that

n−3 sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

V 2
k−1 E(M

2
k | Fk−1)−

4αβ2

(1 + β)3

⌊nt⌋∑

k=1

U2
k−1

∣∣∣∣∣∣
P−→ 0 as n→ ∞(6.20)

for all T > 0. As in the previous case, using Lemma 9.1 and (6.8), we obtain

⌊nt⌋∑

k=1

V 2
k−1 E(M

2
k | Fk−1) =

⌊nt⌋∑

k=1

V 2
k−1[αβ(Xk−1 +Xk−2) + σ2]

=

⌊nt⌋∑

k=1

V 2
k−1

[
αβ

1 + β
(2Uk−1 − αVk−1) + σ2

]

=
2αβ

1 + β

⌊nt⌋∑

k=1

Uk−1V
2
k−1 −

α2β

1 + β

⌊nt⌋∑

k=1

V 3
k−1 + σ2

⌊nt⌋∑

k=1

V 2
k−1.

Using (9.14) with (ℓ, i, j) = (8, 0, 3) and (ℓ, i, j) = (8, 0, 2), we have

n−3

⌊nT ⌋∑

k=1

|Vk|3 P−→ 0, n−3

⌊nT ⌋∑

k=1

V 2
k

P−→ 0 as n→ ∞,
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hence (6.20) will follow from

n−3 sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

Uk−1V
2
k−1 −

2β

(1 + β)2

⌊nt⌋∑

k=1

U2
k−1

∣∣∣∣∣∣
P−→ 0 as n→ ∞(6.21)

for all T > 0.

The aim of the following discussion is to decompose
∑⌊nt⌋

k=1 Uk−1V
2
k−1−2β(1+β)−2

∑⌊nt⌋
k=1 U

2
k−1

as a sum of a martingale and some negligible terms. Using recursions (3.20), (5.8) and Lemma

9.1 (formula (9.1)), we obtain

E(Uk−1V
2
k−1 | Fk−2) = E

(
(Uk−2 +Mk−1 + µ)(−βVk−2 +Mk−1 + µ)2 | Fk−2

)

= β2Uk−2V
2
k−2 + αβ(Xk−2 +Xk−3)(Uk−2 − 2βVk−2 + 3µ) + E(M3

k−1 | Fk−2)

+ constant + linear combination of Uk−2Vk−2, V 2
k−2, Uk−2 and Vk−2.

Using again Lemma 9.1 (formula (9.3)) and (6.8), we get

E(Uk−1V
2
k−1 | Fk−2)

= β2Uk−2V
2
k−2 +

αβ

1 + β
(2Uk−2 − αVk−2)(Uk−2 − 2βVk−2 + 3µ) + E(M3

k−1 | Fk−2)

+ constant + linear combination of Uk−2Vk−2, V 2
k−2, Uk−2 and Vk−2

= β2Uk−2V
2
k−2 +

2αβ

1 + β
U2
k−2 + constant

+ linear combination of Uk−2Vk−2, V 2
k−2, Uk−2 and Vk−2.

(6.22)

Thus

⌊nt⌋∑

k=1

Uk−1V
2
k−1 =

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
+

⌊nt⌋∑

k=2

E(Uk−1V
2
k−1 | Fk−2)

=

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
+ β2

⌊nt⌋∑

k=2

Uk−2V
2
k−2 +

2αβ

1 + β

⌊nt⌋∑

k=2

U2
k−2

+O(n) + linear combination of

⌊nt⌋∑

k=2

Uk−2Vk−2,

⌊nt⌋∑

k=2

V 2
k−2,

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.
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Consequently,

⌊nt⌋∑

k=1

Uk−1V
2
k−1 =

1

1− β2

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
+

2αβ

(1 + β)(1− β2)

⌊nt⌋∑

k=2

U2
k−2

− β2

1− β2
U⌊nt⌋−1V

2
⌊nt⌋−1 +O(n)

+ linear combination of

⌊nt⌋∑

k=2

Uk−2Vk−2,

⌊nt⌋∑

k=2

V 2
k−2,

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.

Using (9.16) with (ℓ, i, j) = (8, 1, 2) we have

n−3 sup
t∈[0,T ]

∣∣∣∣∣

⌊nt⌋∑

k=2

[
Uk−1V

2
k−1 − E(Uk−1V

2
k−1 | Fk−2)

]
∣∣∣∣∣

P−→ 0 as n→ ∞.

Thus, in order to show (6.21), it suffices to prove

n−3

⌊nT ⌋∑

k=1

|UkVk| P−→ 0,(6.23)

n−3

⌊nT ⌋∑

k=1

V 2
k

P−→ 0,(6.24)

n−3

⌊nT ⌋∑

k=1

Uk
P−→ 0,(6.25)

n−3

⌊nT ⌋∑

k=1

|Vk| P−→ 0,(6.26)

n−3 sup
t∈[0,T ]

U⌊nt⌋V
2
⌊nt⌋

P−→ 0,(6.27)

n−3 sup
t∈[0,T ]

U2
⌊nt⌋

P−→ 0(6.28)

as n → ∞. Using (9.14) with (ℓ, i, j) = (8, 1, 1), (ℓ, i, j) = (8, 0, 2), (ℓ, i, j) = (8, 1, 0), and

(ℓ, i, j) = (8, 0, 1), we have (6.23), (6.24), (6.25) and (6.26). Using (9.15) with (ℓ, i, j) = (8, 1, 2)

and (ℓ, i, j) = (8, 2, 0), we have (6.27) and (6.28). Thus we conclude (6.4).
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For (6.5), consider

⌊nt⌋∑

k=1

Vk−1 E(M
2
k | Fk−1) =

⌊nt⌋∑

k=1

Vk−1

(
αβ(Xk−1 +Xk−2) + σ2

)

=

⌊nt⌋∑

k=1

Vk−1

(
αβ

1 + β
(2Uk−1 − αVk−1) + σ2

)

=
2αβ

1 + β

⌊nt⌋∑

k=1

Uk−1Vk−1 −
α2β

1 + β

⌊nt⌋∑

k=1

V 2
k−1 + σ2

⌊nt⌋∑

k=1

Vk−1,

where we used Lemma 9.1 and (6.8). Using (9.14) with (ℓ, i, j) = (8, 0, 2), and (ℓ, i, j) =

(8, 0, 1), we have

n−5/2

⌊nT ⌋∑

k=1

V 2
k

P−→ 0, n−5/2

⌊nT ⌋∑

k=1

|Vk| P−→ 0 as n→ ∞,

hence (6.5) will follow from

n−5/2 sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

Uk−1Vk−1

∣∣∣∣∣∣
P−→ 0.(6.29)

The aim of the following discussion is to decompose
∑⌊nt⌋

k=1 Uk−1Vk−1 as a sum of a martingale

and some negligible terms. Using the recursions (3.20), (5.8) and Lemma 9.1, we obtain

E(Uk−1Vk−1 | Fk−2) = E
(
(Uk−2 +Mk−1 + µ)(−βVk−2 +Mk−1 + µ) | Fk−2

)

= −βUk−2Vk−2 + µUk−2 − βµVk−2 + µ2 + E(M2
k−1 | Fk−2)

= −βUk−2Vk−2 + constant + linear combination of Uk−2 and Vk−2.

Thus

⌊nt⌋∑

k=1

Uk−1Vk−1 =

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
+

⌊nt⌋∑

k=2

E(Uk−1Vk−1 | Fk−2)

=

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
− β

⌊nt⌋∑

k=2

Uk−2Vk−2

+O(n) + linear combination of

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.
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Consequently

⌊nt⌋∑

k=2

Uk−1Vk−1 =
1

1 + β

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
+

β

1 + β
U⌊nt⌋−1V⌊nt⌋−1

+O(n) + linear combination of

⌊nt⌋∑

k=2

Uk−2 and

⌊nt⌋∑

k=2

Vk−2.

Using (9.16) with (ℓ, i, j) = (8, 1, 1) we have

n−5/2 sup
t∈[0,T ]

∣∣∣∣∣

⌊nt⌋∑

k=2

[
Uk−1Vk−1 − E(Uk−1Vk−1 | Fk−2)

]
∣∣∣∣∣

P−→ 0 as n→ ∞.

Thus, in order to show (6.29), it suffices to prove

n−5/2

⌊nT ⌋∑

k=1

Uk
P−→ 0,(6.30)

n−5/2

⌊nT ⌋∑

k=1

|Vk| P−→ 0,(6.31)

n−5/2 sup
t∈[0,T ]

|U⌊nt⌋V⌊nt⌋| P−→ 0(6.32)

as n→ ∞. Using (9.14) with (ℓ, i, j) = (8, 1, 0), and (ℓ, i, j) = (8, 0, 1), we have (6.30) and

(6.31). Using (9.15) with (ℓ, i, j) = (8, 1, 1) we have (6.32), thus we conclude (6.5).

Convergence (6.6) can be handled in the same way as (6.5). For completeness we present

all of the details. By Lemma 9.1 and (6.8), we have

⌊nt⌋∑

k=1

Uk−1Vk−1E(M
2
k | Fk−1) =

⌊nt⌋∑

k=1

Uk−1Vk−1

(
αβ(Xk−1 +Xk−2) + σ2

)

=
2αβ

1 + β

⌊nt⌋∑

k=1

U2
k−1Vk−1 −

α2β

1 + β

⌊nt⌋∑

k=1

Uk−1V
2
k−1 + σ2

⌊nt⌋∑

k=1

Uk−1Vk−1.

Using (9.14) with (ℓ, i, j) = (8, 1, 2), and (ℓ, i, j) = (8, 1, 1), we have

n−7/2

⌊nT ⌋∑

k=1

Uk−1V
2
k−1

P−→ 0, n−7/2

⌊nT ⌋∑

k=1

Uk−1|Vk−1| P−→ 0 as n→ ∞,

hence (6.6) will follow from

n−7/2 sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

U2
k−1Vk−1

∣∣∣∣∣∣
P−→ 0 as n→ ∞.(6.33)
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The aim of the following discussion is to decompose
∑⌊nt⌋

k=1 U
2
k−1Vk−1 as a sum of a martingale

and some negligible terms. Using the recursions (3.20) and (5.8), we obtain

E(U2
k−1Vk−1 | Fk−2) = E

(
(Uk−2 +Mk−1 + µ)2(−βVk−2 +Mk−1 + µ) | Fk−2

)

= −βU2
k−2Vk−2 + µU2

k−2 − βµ2Vk−2 − 2βµUk−2Vk−2 + 2µ2Uk−2

+ (2Uk−2 − βVk−2 + 3µ)E(M2
k−1 | Fk−2) + E(M3

k−1 | Fk−2) + µ3.

Hence, by Lemma 9.1 and (6.8),

E(U2
k−1Vk−1 | Fk−2) = −βU2

k−2Vk−2 + constant

+ linear combination of Uk−2, Vk−2, U
2
k−2, V

2
k−2 and Uk−2Vk−2.

Thus

⌊nt⌋∑

k=1

U2
k−1Vk−1 =

⌊nt⌋∑

k=2

[
U2
k−1Vk−1 − E(U2

k−1Vk−1 | Fk−2)
]
+

⌊nt⌋∑

k=2

E(U2
k−1Vk−1 | Fk−2)

=

⌊nt⌋∑

k=2

[
U2
k−1Vk−1 − E(U2

k−1Vk−1 | Fk−2)
]
− β

⌊nt⌋∑

k=2

U2
k−2Vk−2 +O(n)

+ linear combination of

⌊nt⌋∑

k=1

Uk−2,

⌊nt⌋∑

k=1

Vk−2,

⌊nt⌋∑

k=1

U2
k−2,

⌊nt⌋∑

k=1

V 2
k−2 and

⌊nt⌋∑

k=1

Uk−2Vk−2.

Consequently

⌊nt⌋∑

k=1

U2
k−1Vk−1 =

1

1 + β

⌊nt⌋∑

k=2

[
U2
k−1Vk−1 − E(U2

k−1Vk−1 | Fk−2)
]
+

β

1 + β
U2
⌊nt⌋−1V⌊nt⌋−1

+O(n) + linear combination of

⌊nt⌋∑

k=1

Uk−2,

⌊nt⌋∑

k=1

Vk−2,

⌊nt⌋∑

k=1

U2
k−2,

⌊nt⌋∑

k=1

V 2
k−2 and

⌊nt⌋∑

k=1

Uk−2Vk−2.

Using (9.16) with (ℓ, i, j) = (8, 2, 1) we have

n−7/2 sup
t∈[0,T ]

∣∣∣∣∣

⌊nt⌋∑

k=2

[
U2
k−1Vk−1 − E(U2

k−1Vk−1 | Fk−2)
]
∣∣∣∣∣

P−→ 0 as n→ ∞.

Thus, in order to show (6.33), it suffices to prove

n−7/2

⌊nT ⌋∑

k=1

Uk
P−→ 0,(6.34)

n−7/2

⌊nT ⌋∑

k=1

U2
k

P−→ 0,(6.35)
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n−7/2

⌊nT ⌋∑

k=1

|Vk| P−→ 0,(6.36)

n−7/2

⌊nT ⌋∑

k=1

V 2
k

P−→ 0,(6.37)

n−7/2

⌊nT ⌋∑

k=1

|UkVk| P−→ 0,(6.38)

n−7/2 sup
t∈[0,T ]

|U2
⌊nt⌋V⌊nt⌋|

P−→ 0(6.39)

as n→ ∞. Here (6.34), (6.35), (6.36), (6.37) and (6.38) follow by (9.14), and (6.39) by (9.15),

thus we conclude (6.6).

Finally, we check condition (ii) of Theorem C.1, i.e., the conditional Lindeberg condition

(6.40)

⌊nT ⌋∑

k=1

E
(
‖Z(n)

k ‖21{‖Z(n)
k ‖>θ}

∣∣Fk−1

)
P−→ 0 as n→ ∞ for all θ > 0 and T > 0.

We have E
(
‖Z(n)

k ‖21{‖Z(n)
k ‖>θ}

∣∣Fk−1

)
6 θ−2

E
(
‖Z(n)

k ‖4
∣∣Fk−1

)
and

‖Z(n)
k ‖4 6 3

(
n−4M4

k + n−8M4
kU

4
k−1 + n−6M4

kV
4
k−1

)
.

Hence

⌊nT ⌋∑

k=1

E
(
‖Z(n)

k ‖21{‖Z(n)
k ‖>θ}

)
→ 0 as n→ ∞ for all θ > 0 and T > 0,

since E(M4
k ) = O(k2), E(M4

kU
4
k−1) 6

√
E(M8

k )E(U
8
k−1) = O(k6) and E(M4

kV
4
k−1) 6

√
E(M8

k )E(V
8
k−1) = O(k4) by Corollary 9.1. Here we call the attention that our eight or-

der moment condition E(ε81) <∞ is used for applying Corollary 9.1. This yields (6.40).

7 Proof of Theorem 4.2

We have

(Ãn, d̃n) =




n∑

k=1




n−3X2
k−1 −n−2Xk−1Vk−1 n−2Xk−1

−n−2Xk−1Vk−1 n−1V 2
k−1 −n−1Vk−1

n−2Xk−1 −n−1Vk−1 n−1


 ,

n∑

k=1




n−3/2MkXk−1

−n−1/2MkVk−1

n−1/2Mk





 .

Theorem 4.2 will follow from the following statement (using also Slutsky’s lemma).
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7.1 Theorem. Under the assumptions of Theorem 2.2 we have

n−2
n∑

k=1

Xk−1
a.s.−→ µ

2
, n−1

n∑

k=1

Vk−1
a.s.−→ µ, n−3

n∑

k=1

X2
k−1

a.s.−→ µ2

3
,

n−2

n∑

k=1

Xk−1Vk−1
a.s.−→ µ2

2
, n−1

n∑

k=1

V 2
k−1

a.s.−→ µ2 + σ2,

and

n∑

k=1




n−3/2MkXk−1

−n−1/2MkVk−1

n−1/2Mk




L−→ N3







0

0

0


 , σ

2




1
3
µ2 −1

2
µ2 1

2
µ

−1
2
µ2 µ2 + σ2 −µ

1
2
µ −µ 1





 .

Proof. In this case equation (1.1) has the form Xk = Xk−1 + εk, k ∈ N, and hence

Xk = ε1 + · · ·+ εk, Mk = Xk −Xk−1 − µ = εk − µ and Vk = Xk −Xk−1 = εk, k ∈ N.

The first statement follows from (3.12) by Toeplitz theorem, where we used that

lim
n→∞

n∑

k=1

k

n2
=

1

2
.

Again by (3.12),

n−1

n∑

k=1

Vk = n−1Xk
a.s.−→ µ as n→ ∞.

We have already shown the third statement, see (3.13). By the strong law of large numbers we

have

(7.1) n−1
n∑

k=1

V 2
k = n−1

n∑

k=1

ε2k
a.s.−→ σ2 + µ2 as n→ ∞.

Moreover,

n∑

k=1

Xk−1Vk−1 =
n∑

k=1

Xk−1εk−1 =
n∑

k=1

ε2k−1 +
n∑

k=1

Xk−2εk−1 =
n∑

k=1

ε2k−1 +
n∑

k=1

εk−1

k−2∑

i=1

εi

=
n∑

k=1

ε2k−1 +
∑

16i<j6n−1

εiεj =
1

2



(

n∑

k=1

εk−1

)2

+
n∑

k=1

ε2k−1




with ε0 := 0, and hence by (3.12) and (7.1),

(7.2) n−2

n∑

k=1

Xk−1Vk−1
a.s.−→ µ2

2
.

The last statement can be proved by the multidimensional martingale central limit theorem

(see, e.g., Jacod and Shiryaev [20, Chapter VIII, Theorem 3.33]) for the sequence (Y
(n)
k ,Fk)k∈N,
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n ∈ N, of square-integrable martingale differences given by

Y
(n)
k :=




n−3/2MkXk−1

−n−1/2MkVk−1

n−1/2Mk


 =




n−3/2(εk − µ)Xk−1

−n−1/2(εk − µ)εk−1

n−1/2(εk − µ)


 , n, k ∈ N.

We have

E(Y
(n)
k (Y

(n)
k )⊤ | Fk−1) = σ2




n−3X2
k−1 −n−2Xk−1εk−1 n−2Xk−1

−n−2Xk−1εk−1 n−1ε2k−1 −n−1εk−1

n−2Xk−1 −n−1εk−1 n−1


 , n, k ∈ N,

hence by (3.13), (7.1), and (7.2), we have the asymptotic covariance matrix

n∑

k=1

E(Y
(n)
k (Y

(n)
k )⊤ | Fk−1)

a.s.−→ σ2




µ2

3
−µ2

2
µ
2

−µ2

2
σ2 + µ2 −µ

µ
2

−µ 1


 as n→ ∞.

The conditional Lindeberg condition

n∑

k=1

E(‖Y (n)
k ‖21{‖Y (n)

k ‖>θ} | Fk−1)
P−→ 0 as n→ ∞

is satisfied for all θ > 0, since using that E(ε41) <∞,

n∑

k=1

E(‖Y (n)
k ‖21{‖Y (n)

k ‖>θ} | Fk−1) 6
1

θ2

n∑

k=1

E(‖Y (n)
k ‖4 | Fk−1)

6
3

θ2

n∑

k=1

E
(
n−6(εk − µ)4X4

k−1 + n−2(εk − µ)4(ε4k−1 + 1) | Fk−1

)

6
3E
(
(ε1 − µ)4

)

θ2

n∑

k=1

(
n−6X4

k−1 + n−2(ε4k−1 + 1)
)

P−→ 0

as n→ ∞, where the last but one step follows by that εk and Fk−1 are independent, εk−1

is measurable with respect to the σ-algebra Fk−1 (since εk−1 = Xk−1 −Xk−2), and the last

step follows by E(X4
k) = O(k4) (see Corollary 9.1). ✷

8 Proof of Theorem 4.3

We have

Ãn =

n∑

k=1




n−3X2
k−1 −n−5/2Xk−1Vk−1 n−2Xk−1

−n−5/2Xk−1Vk−1 n−2V 2
k−1 −n−3/2Vk−1

n−2Xk−1 −n−3/2Vk−1 n−1


 , d̃n =

n∑

k=1




n−3/2MkXk−1

−n−1MkVk−1

n−1/2Mk


 .
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8.1 Lemma. Under the assumptions of Theorem 2.3, as n→ ∞, we have

n−2

n∑

k=1

Xk−1
a.s.−→ µ

4
,(8.1)

n−1

n∑

k=1

Vk−1
a.s.−→ µ

2
,(8.2)

n−3
n∑

k=1

X2
k−1

a.s.−→ µ2

12
,(8.3)

n−5/2
n∑

k=1

Xk−1Vk−1
P−→ 0,(8.4)

n−2

n∑

k=1

[
E(Vk−1)

]2 → 0,(8.5)

n−2
n∑

k=1

(Vk−1 − E(Vk−1))E(Vk−1)
P−→ 0,(8.6)

n−3/2
n∑

k=1

Mk

(
Xk−1 − E(Xk−1)

)
P−→ 0,(8.7)

n−1
n∑

k=1

Mk E(Vk−1)
P−→ 0.(8.8)

Proof. In this case equation (1.1) has the form Xk = Xk−2 + εk, k ∈ N, and hence

X2k = ε2 + ε4 + · · ·+ ε2k, X2k−1 = ε1 + ε3 + · · ·+ ε2k−1, Mk = Xk −Xk−2 − µ = εk − µ and

V2k = X2k −X2k−1 = (ε2 − ε1) + · · ·+ (ε2k − ε2k−1), V2k−1 = X2k−1 −X2k−2 = (ε1 − ε2) + · · ·+
(ε2k−3 − ε2k−2) + ε2k−1, k ∈ N.

Convergence (8.1) follows from (3.14) by Toeplitz theorem. Again by (3.14), we obtain

n−1
n∑

k=1

Vk−1 = n−1Xn−1
a.s.−→ µ

2
,

yielding (8.2). We have already shown (8.3), see (3.15).

In order to show (8.4), we use (5.5). Clearly we have

E

(
n∑

k=1

XkVk

)
=

1

2
E(X2

n) +
1

2

n∑

k=1

E(V 2
k ) = O(n2),

since, by Corollary 9.1, E(X2
n) = O(n2), n ∈ N, and E(V 2

k ) = O(k), k ∈ N, and hence we

obtain (8.4). For each k ∈ N, we have E(V2k) = 0 and E(V2k−1) = µ, hence we conclude
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(8.5), and

E

(∣∣∣∣∣

n∑

k=1

(Vk−1 − E(Vk−1))E(Vk−1)

∣∣∣∣∣

)
6

n∑

k=1

µE
(
|Vk−1 − E(Vk−1)|

)

6

n∑

k=1

µ
√

E
(
(Vk−1 − E(Vk−1))2

)
= O(n3/2),

since E(Vk − E(Vk))
2 6 E(V 2

k ) = O(k), k ∈ N (by Corollary 9.1), which implies (8.6).

Moreover, using that Mk(Xk−1 − E(Xk−1)), k ∈ {1, . . . , n}, are uncorrelated,

E



(

n∑

k=1

Mk

(
Xk−1 − E(Xk−1)

)
)2

 =

n∑

k=1

E

(
(εk − µ)2

(
Xk−1 − E(Xk−1)

)2)

= σ2
n∑

k=1

E

((
Xk−1 − E(Xk−1)

)2)
= O(n2),

since E(Xk−1 − E(Xk−1))
2 6 ⌊k/2⌋σ2, k ∈ N (by Corollary 9.1), thus we get (8.7).

Since E(V2k) = 0 and E(V2k−1) = µ, k ∈ N, we have

E



(

n∑

k=1

Mk E(Vk−1)

)2

 =

n∑

k=1

[
E(Vk−1)

]2
E
(
(εk − µ)2

)
= σ2

n∑

k=1

[
E(Vk−1)

]2
= O(n),

which implies (8.8). ✷

Theorem 4.3 will follow from Lemma 8.1 and the following statement (using Slutsky’s

lemma).

8.1 Theorem. Under the assumptions of Theorem 2.3 we have

n∑

k=1




n−2
(
Vk−1 − E(Vk−1)

)2

n−3/2Mk E(Xk−1)

−n−1Mk

(
Vk−1 − E(Vk−1)

)

n−1/2Mk




L−→




σ2
∫ 1

0
W2

t dt
1
2
µσ
∫ 1

0
t dW̃t

σ2
∫ 1

0
Wt dWt

σW̃1




as n→ ∞,

where (Wt)t∈R+ and (W̃t)t∈R+ are independent standard Wiener processes.

Proof. Consider the sequence
[
S(n)
t

T (n)
t

]
:=

[
n−1/2

(
X2⌊nt⌋ − E(X2⌊nt⌋)

)

n−1/2
(
X2⌊nt⌋−1 − E(X2⌊nt⌋−1)

)
]
, t ∈ R+, n ∈ N,

of stochastic processes. Then, by the multidimensional martingale central limit theorem,

(8.9)

[
S(n)

T (n)

]
L−→ σ

[
B
B̃

]
as n→ ∞,
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where (Bt)t∈R+ and (B̃t)t∈R+ are independent standard Wiener processes. Indeed, with the

notation

Y
(n)
k :=

[
n−1/2(ε2k − µ)

n−1/2(ε2k−1 − µ)

]
, n, k ∈ N,

we have that (Y
(n)
k ,F2k)k∈N, n ∈ N, is a sequence of square integrable martingale differences

such that
⌊nt⌋∑

k=1

Y
(n)
k =

[
S(n)
t

T (n)
t

]
, n ∈ N, t ∈ R+,

E
(
Y

(n)
k | F2(k−1)

)
= 0 ∈ R

2 and

E
(
Y

(n)
k (Y

(n)
k )⊤ | F2(k−1)

)
= σ2n−1I2, n, k ∈ N,

where I2 denotes the 2× 2 identity matrix. Then the asymptotic covariance matrix

⌊nt⌋∑

k=1

E
(
Y

(n)
k (Y

(n)
k )⊤ | F2(k−1)

) a.s.−→ σ2tI2 as n→ ∞ for t ∈ R+.

The conditional Lindeberg condition

⌊nt⌋∑

k=1

E
(
‖Y (n)

k ‖21{‖Y (n)
k ‖>θ} | F2(k−1)

)
P−→ 0 as n→ ∞(8.10)

is satisfied for all t ∈ R+ and θ > 0. Indeed, we have

⌊nt⌋∑

k=1

E
(
‖Y (n)

k ‖21{‖Y (n)
k ‖>θ}

)

=
1

n

⌊nt⌋∑

k=1

E

( (
(ε2k − µ)2 + (ε2k−1 − µ)2

)
1{(ε2k−µ)2+(ε2k−1−µ)2>nθ2}

)

=
⌊nt⌋
n

E

( (
(ε2 − µ)2 + (ε1 − µ)2

)
1{(ε2−µ)2+(ε1−µ)2>nθ2}

)
→ 0,

by dominated convergence theorem. This yields that the convergence in (8.10) holds in fact in

L1-sense. Thus we obtain (8.9). We are going to prove that convergence (8.9) implies

(8.11)
n∑

k=1




n−2
(
Vk−1 − E(Vk−1)

)2

n−3/2Mk E(Xk−1)

−n−1Mk

(
Vk−1 − E(Vk−1)

)

n−1/2Mk




L−→




1
2
σ2
∫ 1

0
(Bt − B̃t)2 dt

1
23/2

µσ
(
B1 + B̃1 −

∫ 1

0
(Bt + B̃t) dt

)

1
4
σ2
[
(B1 − B̃1)

2 − 2
]

1
21/2

σ(B1 + B̃1)




as n→ ∞, which yields the statement. Indeed,
(
2−1/2(Bt+ B̃t)

)
t∈R+

and
(
2−1/2(Bt−B̃t)

)
t∈R+

are independent standard Wiener processes, and by Itô’s formula,
∫ 1

0
t dW̃t = W̃1 −

∫ 1

0
W̃t dt
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and
∫ 1

0
Wt dWt = 2−1(W2

1−1), which yield the statement with the choices W̃t := 2−1/2(Bt+B̃t),
t > 0, and Wt := 2−1/2(Bt − B̃t), t > 0.

Applying Lemmas B.2 and B.3 as in the proof of Proposition 3.1 and using Slutsky’s lemma,

(8.11) will follow from

1

n2

n∑

k=1

(
Vk−1 − E(Vk−1)

)2 − 1

n

⌊n/2⌋∑

k=1

(
S(⌊n/2⌋)
2k/n − T (⌊n/2⌋)

2k/n

)2
P−→ 0,(8.12)

1

n3/2

n∑

k=1

Mk E(Xk−1)−
µ

23/2

(
S(⌊n/2⌋)
1 + T (⌊n/2⌋)

1 − 2

n

⌊n/2⌋∑

k=1

(
S(⌊n/2⌋)
2k/n + T (⌊n/2⌋)

2k/n

))
P−→ 0,(8.13)

1

n

n∑

k=1

Mk

(
Vk−1 − E(Vk−1)

)
+

1

4

[
(S(⌊n/2⌋)

1 − T (⌊n/2⌋)
1 )2 − 2σ2

]
P−→ 0,(8.14)

1

n1/2

n∑

k=1

Mk −
1

21/2
(
S(⌊n/2⌋)
1 + T (⌊n/2⌋)

1

)
P−→ 0.(8.15)

Indeed, first considering the subsequence (2n)n∈N, let us apply Lemmas B.2 and B.3 with the

special choices d := 2, p := 2, q := 2, h : R2 → R
2,

h(x1, x2) :=

(
x1 + x2,

1

4
(x1 − x2)

2 − σ2

2

)
, (x1, x2) ∈ R

2,

K : [0, 1]× R
4 → R

2,

K(s, x1, x2, x3, x4) :=

(
1

2
(x1 − x2)

2, x1 + x2

)
, (s, x1, x2, x3, x4) ∈ [0, 1]× R

4,

and

U := σ

[
B
B̃

]
, U (n) :=

[
S(n)

T (n)

]
, n ∈ N.

Then

‖K(s, x1, x2, x3, x4)−K(t, y1, y2, y3, y4)‖

=

(
1

4

(
(x1 − x2)

2 − (y1 − y2)
2
)2

+ (x1 − y1 + x2 − y2)
2

)1/2

=

(
1

4
(x1 − y1 + y2 − x2)

2(x1 − x2 + y1 − y2)
2 + (x1 − y1 + x2 − y2)

2

)1/2

6 2
((
(x1 − y1)

2 + (y2 − x2)
2
)(
(x1 − x2)

2 + (y1 − y2)
2
)
+
(
(x1 − y1)

2 + (x2 − y2)
2
))1/2

6 8R ‖(x1, x2, x3, x4)− (y1, y2, y3, y4)‖
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for all s, t ∈ [0, 1] and (x1, x2, x3, x4), (y1, y2, y3, y4) ∈ R
4 with ‖(x1, x2, x3, x4)‖ 6 R and

‖(y1, y2, y3, y4)‖ 6 R, where R > 0, since

(x1 − x2)
2 + (y1 − y2)

2
6 2(x21 + x22) + 2(y21 + y22) 6 8R2.

Further, using the definitions of Φ and Φn, n ∈ N, given in Lemma B.3, we have

Φn

([
S(n)

T (n)

])

=

(
S(n)
1 + T (n)

1 ,
1

4
(S(n)

1 − T (n)
1 )2 − σ2

2
,
1

n

n∑

k=1

1

2
(S(n)

k/n − T (n)
k/n)

2,
1

n

n∑

k=1

(S(n)
k/n + T (n)

k/n)

)

and

Φ

(
σ

[
B
B̃

])
=

(
σ(B1 + B̃1),

σ2

4
(B1 − B̃1)

2 − σ2

2
,

∫ 1

0

σ2

2
(Bu − B̃u)2 du,

∫ 1

0

σ(Bu + B̃u) du
)
.

Since the process σ[Bt B̃t]⊤t∈R+
admits continuous paths with probability one, (8.9), Lemma

B.2 (with the choice C := C(R+,R
2)), and Lemma B.3 yield that

Φn

([
S(n)

T (n)

])
L−→ Φ

(
σ

[
B
B̃

])
as n→ ∞.

By another easy application of continuous mapping theorem (one can again apply Lemmas B.2

and B.3) we have




1
2n

∑n
k=1(S

(n)
k/n − T (n)

k/n)
2

S(n)
1 + T (n)

1 − 1
n

∑n
k=1(S

(n)
k/n + T (n)

k/n)
1
4
(S(n)

1 − T (n)
1 )2 − σ2

2

S(n)
1 + T (n)

1




L−→




σ2

2

∫ 1

0
(Bu − B̃u)2 du

σ
(
B1 + B̃1 −

∫ 1

0
(Bu + B̃u) du

)

σ2

4

(
(B1 − B̃1)

2 − 2
)

σ(B1 + B̃1)




as n→ ∞.

Hence, using (8.12), (8.13), (8.14), and Slutsky’s lemma, we have (8.11) for the subsequence

(2n)n∈N. To prove (8.11) for the subsequence (2n− 1)n∈N, by Slutsky’s lemma, it is enough

to check that as n→ ∞,

1

n2
(Vn − E(Vn))

2 P−→ 0,(8.16)

1

n3/2
Mn E(Xn−1)

P−→ 0,(8.17)

1

n
Mn(Vn−1 − E(Vn−1))

P−→ 0(8.18)

1

n1/2
Mn

P−→ 0.(8.19)
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By Corollary 9.1, E((Vn − E(Vn))
2) = O(n),

E(|Mn E(Xn−1)|) = E(|Mn|)E(Xn−1) = E(|ε1 − µ|)E(Xn−1) = O(n),

E(M2
n(Vn−1 − E(Vn−1))

2) = E
(
(Vn−1 − E(Vn−1))

2
E(M2

n | Fn−1)
)

= σ2
E((Vn−1 − E(Vn−1))

2) = O(n),

and

E(M2
n) = E((εn − µ)2) = σ2, n ∈ N,

thus we obtain (8.16), (8.17), (8.18), and (8.19).

First we will prove (8.12), (8.13), (8.14) and (8.15) for the subsequence (2n)n∈N and then

the subsequence (2n− 1)n∈N. In order to prove (8.12) first observe that, for all k ∈ N,

V2k − E(V2k) = (X2k − E(X2k))− (X2k−1 − E(X2k−1)) = n1/2(S(n)
k/n − T (n)

k/n),

V2k−1 − E(V2k−1) = (ε2k − E(ε2k))− (V2k − E(V2k)) = (ε2k − µ)− n1/2(S(n)
k/n − T (n)

k/n).

Then

1

(2n)2

2n∑

k=1

(
Vk−1 − E(Vk−1)

)2
=

1

4n2

n−1∑

k=1

(
V2k − E(V2k)

)2
+

1

4n2

n∑

k=1

(
V2k−1 − E(V2k−1)

)2

=
1

4n

n−1∑

k=1

(S(n)
k/n − T (n)

k/n)
2 +

1

4n2

n∑

k=1

[
(ε2k − µ)− n1/2(S(n)

k/n − T (n)
k/n)

]2

=
1

2n

n∑

k=1

(S(n)
k/n − T (n)

k/n)
2 − 1

4n
(S(n)

1 − T (n)
1 )2

− 1

2n3/2

n∑

k=1

(ε2k − µ)(S(n)
k/n − T (n)

k/n) +
1

4n2

n∑

k=1

(ε2k − µ)2

=
1

2n

n∑

k=1

(S(n)
k/n − T (n)

k/n)
2 − 1

4n2
(V2n − E(V2n))

2

− 1

2n2

n∑

k=1

(ε2k − µ)(V2k − E(V2k)) +
1

4n2

n∑

k=1

(ε2k − µ)2.

Thus, in order to prove (8.12) for the subsequence (2n)n∈N, it suffices to prove

1

n2
(V2n − E(V2n))

2 P−→ 0,(8.20)

1

n2

n∑

k=1

(ε2k − µ)(V2k − E(V2k))
P−→ 0,(8.21)

1

n2

n∑

k=1

(ε2k − µ)2
P−→ 0(8.22)
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as n → ∞. By Corollary 9.1, we have E
(
(V2n − E(V2n))

2
)
= O(n) and E

(
(ε2k − µ)2

)
= σ2,

thus we obtain (8.20) and (8.22). Further, V2k−E(V2k) = (ε2k−µ)−(V2k−1−E(V2k−1)), hence

(8.21) follows from (8.22) and from

E



(

n∑

k=1

(ε2k − µ)(V2k−1 − E(V2k−1))

)2

 =

n∑

k=1

E
(
(ε2k − µ)2(V2k−1 − E(V2k−1))

2
)

= σ2
n∑

k=1

E
(
(V2k−1 − E(V2k−1))

2
)
= O(n2),

and we finish the proof of (8.12) for the subsequence (2n)n∈N.

Now we turn to prove (8.13) for the subsequence (2n)n∈N. First observe that

2n∑

k=1

Mk E(Xk−1) = µ
n−1∑

k=1

(ε2k+1 − µ)k + µ
n∑

k=1

(ε2k − µ)k.

We have

n∑

k=1

(ε2k − µ)k =
n∑

k=1

k∑

j=1

(ε2k − µ) =
n∑

j=1

n∑

k=j

(ε2k − µ) =
n∑

j=1

(
n∑

k=1

(ε2k − µ)−
j−1∑

k=1

(ε2k − µ)

)

=
n∑

j=1

[
(X2n − E(X2n))− (X2j−2 − E(X2j−2))

]
= n3/2S(n)

1 − n1/2
n∑

j=1

S(n)
(j−1)/n,

and, in a similar way,

n−1∑

k=1

(ε2k+1 − µ)k =
n−1∑

k=1

k∑

j=1

(ε2k+1 − µ) =
n−1∑

j=1

n−1∑

k=j

(ε2k+1 − µ)

=
n−1∑

j=1

(
n−1∑

k=1

(ε2k+1 − µ)−
j−1∑

k=1

(ε2k+1 − µ)

)

=

n−1∑

j=1

(
X2n−1 − ε1 − (n− 1)µ− (X2j−1 − ε1 − (j − 1)µ)

)

=

n−1∑

j=1

(
(X2n−1 − E(X2n−1)− ε1 + µ)− (X2j−1 − E(X2j−1)− ε1 + µ)

)

=
n−1∑

j=1

(
X2n−1 − E(X2n−1)− (X2j−1 − E(X2j−1))

)

= n1/2(n− 1)T (n)
1 − n1/2

n−1∑

j=1

T (n)
j/n = n3/2T (n)

1 − n1/2

n∑

j=1

T (n)
j/n .
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Hence

1

(2n)3/2

2n∑

k=1

Mk E(Xk−1) =
µ

23/2

(
S(n)
1 + T (n)

1 − 1

n

n∑

k=1

(
S(n)
k/n + T (n)

k/n

))
+

µ

23/2n
S(n)
1 .

Convergence (8.9) implies S(n)
1

L−→ σB1 and hence n−1S(n)
1

P−→ 0, thus we obtain (8.13) for

the subsequence (2n)n∈N.

Now we turn to prove (8.14) for the subsequence (2n)n∈N. First observe that

2n∑

k=1

Mk

(
Vk−1 − E(Vk−1)

)
=

n−1∑

k=1

(ε2k+1 − µ)
[
(X2k − E(X2k))− (X2k−1 − E(X2k−1))

]

+
n∑

k=1

(ε2k − µ)
[
(X2k−1 − E(X2k−1))− (X2k−2 − E(X2k−2))

]

=

n−1∑

k=1

(ε2k+1 − µ)

k∑

j=1

(ε2j − µ)−
n−1∑

k=1

(ε2k+1 − µ)

k∑

j=1

(ε2j−1 − µ)

+

n∑

k=1

(ε2k − µ)

k∑

j=1

(ε2j−1 − µ)−
n∑

k=1

(ε2k − µ)

k−1∑

j=1

(ε2j − µ).

Here the sum of the first and third summands is
n−1∑

k=1

(ε2k+1 − µ)
k∑

j=1

(ε2j − µ) +
n∑

k=1

(ε2k − µ)
k∑

j=1

(ε2j−1 − µ)

=
n∑

k=2

k−1∑

j=1

(ε2k−1 − µ)(ε2j − µ) +
n∑

j=1

j∑

k=1

(ε2j − µ)(ε2k−1 − µ)

=

n∑

j=1

n∑

k=j+1

(ε2k−1 − µ)(ε2j − µ) +

n∑

j=1

j∑

k=1

(ε2j − µ)(ε2k−1 − µ)

=

n∑

j=1

n∑

k=1

(ε2k−1 − µ)(ε2j − µ)

=
n∑

j=1

(ε2j − µ)
n∑

k=1

(ε2k−1 − µ) = nS(n)
1 T (n)

1 ,

the second summand is

n−1∑

k=1

(ε2k+1 − µ)

k∑

j=1

(ε2j−1 − µ) =
∑

16j<ℓ6n

(ε2j−1 − µ)(ε2ℓ−1 − µ)

=
1

2



(

n∑

k=1

(ε2k−1 − µ)

)2

−
n∑

k=1

(ε2k−1 − µ)2


 =

1

2

[
n(T (n)

1 )2 −
n∑

k=1

(ε2k−1 − µ)2

]
,
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and similarly, the forth summand is

n∑

k=1

(ε2k − µ)
k−1∑

j=1

(ε2j − µ) =
1

2

[
n(S(n)

1 )2 −
n∑

k=1

(ε2k − µ)2

]
.

Consequently,

1

2n

2n∑

k=1

Mk

(
Vk−1 − E(Vk−1)

)
= −1

4

[
(S(n)

1 − T (n)
1 )2 − 2σ2

]
+

1

4n

2n∑

k=1

(εk − µ)2 − 1

2
σ2.

By the strong law of large numbers (2n)−1
∑2n

k=1(εk−µ)2
a.s.−→ σ2 as n→ ∞, hence we obtain

(8.14) for the subsequence (2n)n∈N. Note also that the convergence in (8.14) holds almost

surely, too.

Now we turn to prove (8.15) for the subsequence (2n)n∈N. First observe that

2n∑

k=1

Mk =
2n∑

k=1

(εk − µ) =
n∑

k=1

(ε2k − µ) +
n∑

k=1

(ε2k−1 − µ).

Hence

1

(2n)1/2

2n∑

k=1

Mk =
1

21/2

[
1

n1/2
(X2k − E(X2k)) +

1

n1/2
(X2k−1 − E(X2k−1))

]
=

1

21/2

(
S(n)
1 + T (n)

1

)
,

thus we obtain (8.15) for the subsequence (2n)n∈N.

Finally, one can show (8.12), (8.13), (8.14), and (8.15) for the subsequence (2n− 1)n∈N in

the same way. ✷

9 Estimations of moments

In the proofs of Theorem 2.1, Theorem 2.2 and Theorem 2.3 good bounds for moments of the

random variables (Mk)k∈Z+, (Xk)k∈Z+, (Uk)k∈Z+ and (Vk)k∈Z+ are extensively used. First

note that, for all k ∈ N, E(Mk | Fk−1) = 0 and E(Mk) = 0, since Mk = Xk − E(Xk | Fk−1).

9.1 Lemma. Let (Xk)k>−1 be an INAR(2) process. Suppose that X0 = X−1 = 0 and
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E(ε21) <∞. Then, for all k, ℓ ∈ N,

E(MkMℓ | Fmax{k,ℓ}−1) =

{
α(1− α)Xk−1 + β(1− β)Xk−2 + σ2 if k = ℓ,

0 if k 6= ℓ,
(9.1)

E(MkMℓ) =

{
α(1− α)E(Xk−1) + β(1− β)E(Xk−2) + σ2 if k = ℓ,

0 if k 6= ℓ,
(9.2)

E(M3
k | Fk−1) = Xk−1E

[
(ξ1,1 − E(ξ1,1))

3
]
+Xk−2 E

[
(η1,1 − E(η1,1))

3
]
+ E

[
(ε1 − E(ε1))

3
]
,

(9.3)

E(M3
k ) = E

[
(ξ1,1 − E(ξ1,1))

3
]
E(Xk−1) + E

[
(η1,1 − E(η1,1))

3
]
E(Xk−2) + E

[
(ε1 − E(ε1))

3
]
.

(9.4)

Proof. By (1.1) and (3.2),

(9.5) Mk =

Xk−1∑

j=1

(
ξk,j − E(ξk,j)

)
+

Xk−2∑

j=1

(
ηk,j − E(ηk,j)

)
+
(
εk − E(εk)

)
, k ∈ N.

For all k ∈ N, the random variables
{
ξk,j − E(ξk,j), ηk,j − E(ηk,j), εk − E(εk) : j ∈ N

}
are

independent of each other, independent of Fk−1, and have zero mean, thus in case k = ℓ

we conclude (9.1) and hence (9.2). If k < ℓ, then E(MkMℓ | Fℓ−1) = Mk E(Mℓ | Fℓ−1) = 0.

Thus we obtain (9.1) and (9.2) in case k 6= ℓ. Shedding more light we give more details for

deriving (9.3) and (9.4). Namely, using multinomial theorem the above mentioned properties

of the random variables
{
ξk,j − E(ξk,j), ηk,j − E(ηk,j), εk − E(εk) : j ∈ N

}
yield that

E(M3
k | Fk−1) = E

(
Xk−1∑

j=1

(ξk,j − E(ξk,j))
3 +

Xk−2∑

j=1

(ηk,j − E(ηk,j))
3 + (εk − E(εk))

3
∣∣∣ Fk−1

)

= Xk−1 E[(ξ1,1 − E(ξ1,1))
3] +Xk−2E[(η1,1 − E(η1,1))

3] + E[(ε1 − E(ε1))
3].

This readily implies (9.4). ✷

9.2 Lemma. Let (ζk)k∈N be independent and identically distributed random variables such

that E
(
|ζ1|ℓ

)
<∞ for some ℓ ∈ N.

(i) If E(ζ1) 6= 0, then there exists a polynomial Qℓ of degree ℓ such that its leading

coefficient is
[
E(ζ1)

]ℓ
and

E
(
(ζ1 + · · ·+ ζN)

ℓ
)
= Qℓ(N), N ∈ N.

(ii) If E(ζ1) = 0, then there exists a polynomial Rℓ of degree at most ℓ/2 such that

E
(
(ζ1 + · · ·+ ζN)

ℓ
)
= Rℓ(N), N ∈ N.
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The coefficients of the polynomials in question depend on the moments E(ζj1), j ∈ {1, . . . , ℓ}.

Proof. (i) By multinomial theorem,

E
(
(ζ1 + · · ·+ ζN)

ℓ
)
=

∑

ℓ1+···+ℓN=ℓ,
ℓ1,...,ℓN∈Z+

ℓ!

ℓ1! · · · ℓN !
E(ζℓ11 · · · ζℓNN )

=
∑

ℓ1+···+ℓN=ℓ,
ℓ1,...,ℓN∈Z+

ℓ!

ℓ1! · · · ℓN !
E(ζℓ11 ) · · ·E(ζℓN1 )

=
∑

k1+2k2+···+sks=ℓ,
k1,...,ks∈Z+, 16s6ℓ

(
N

k1

)(
N − k1
k2

)
· · ·
(
N − k1 − · · · − ks−1

ks

)

× ℓ!

(2!)k2(3!)k3 · · · (s!)ks
[
E(ζ1)

]k1 · · ·
[
E(ζs1)

]ks
.

Since
(
N

k1

)(
N − k1
k2

)
· · ·
(
N − k1 − · · · − ks−1

ks

)
=
N(N − 1) · · · (N − k1 − k2 − · · · − ks + 1)

k1!k2! · · ·ks!
is a polynomial of the variable N having degree k1+ · · ·+ks 6 ℓ, there is a polynomial Qℓ of

degree at most ℓ such that E
(
(ζ1+ · · ·+ ζN)ℓ

)
= Qℓ(N), N ∈ N. Note that a term of degree

ℓ can occur only in the case k1+ · · ·+ ks = ℓ. Since k1+2k2+ · · ·+ sks = ℓ, we have s = 1

and k1 = ℓ, and the corresponding term of degree ℓ is N(N − 1) · · · (N − ℓ + 1)
[
E(ζ1)

]ℓ
.

Hence Qℓ is polynomial of degree ℓ having leading coefficient
[
E(ζ1)

]ℓ
.

(ii) Using again the multinomial theorem we have

E
(
(ζ1 + · · ·+ ζN)

ℓ
)
=

∑

ℓ1+···+ℓN=ℓ,
ℓ1,...,ℓN∈Z+

ℓ!

ℓ1! · · · ℓN !
E(ζℓ11 · · · ζℓNN )

=
∑

ℓ1+···+ℓN=ℓ,
ℓ1,...,ℓN∈Z+\{1}

ℓ!

ℓ1! · · · ℓN !
E(ζℓ11 ) · · ·E(ζℓN1 )

=
∑

2k2+3k3+···+sks=ℓ,
k2,...,ks∈Z+, 26s6ℓ

(
N

k2

)(
N − k2
k3

)
· · ·
(
N − k2 − · · · − ks−1

ks

)

× ℓ!

(2!)k2(3!)k3 · · · (s!)ks
[
E(ζ21)

]k2 · · ·
[
E(ζs1)

]ks
.

Here(
N

k2

)(
N − k2
k3

)
· · ·
(
N − k2 − · · · − ks−1

ks

)
=
N(N − 1) · · · (N − k2 − k3 − · · · − ks + 1)

k2!k3! · · ·ks!
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is a polynomial of the variable N having degree k2 + · · ·+ ks. Since

ℓ = 2k2 + 3k3 + · · ·+ sks > 2(k2 + k3 + · · ·+ ks),

we have k2 + · · ·+ ks 6 ℓ/2 yielding part (ii). Note that if ℓ is even and E(ζ21) 6= 0, then

the degree of Rℓ is ℓ/2; if ℓ is odd and E(ζ21 ) 6= 0, E(ζ31) 6= 0, then the degree of Rℓ is

also ℓ/2. ✷

9.1 Remark. In what follows using the proof of Lemma 9.2 we give a bit more explicit form

of the polynomial Rℓ in part (ii) of Lemma 9.2 for the special cases ℓ ∈ {1, 2, 3, 4, 5, 6}. If

ℓ = 1, then E(ζ1 + · · ·+ ζN) = 0 and R1 : R → R, R1(x) := 0, x ∈ R.

If ℓ = 2, then

E((ζ1 + · · ·+ ζN)
2) = N E(ζ21),

and R2 : R → R, R2(x) := E(ζ21)x, x ∈ R.

If ℓ = 3, then

E((ζ1 + · · ·+ ζN)
3) = N E(ζ31),

and R3 : R → R, R3(x) := E(ζ31)x, x ∈ R.

If ℓ = 4, then

E((ζ1 + · · ·+ ζN)
4) = N E(ζ41) +

(
N

2

)
4!

2!2!
(E(ζ21))

2,

and R4 : R → R, R4(x) := E(ζ41)x+ 3(E(ζ21 ))
2x(x− 1), x ∈ R.

If ℓ = 5, then

E((ζ1 + · · ·+ ζN)
5) = N E(ζ51) + 2

(
N

2

)
5!

2!3!
E(ζ31)E(ζ

2
1 ),

and R5 : R → R, R5(x) := E(ζ51)x+ 10E(ζ31)E(ζ
2
1 )x(x− 1), x ∈ R.

If ℓ = 6, then

E((ζ1+· · ·+ζN)6) = N E(ζ61)+2

(
N

2

)
6!

2!4!
E(ζ41 )E(ζ

2
1)+

(
N

2

)
6!

3!3!
(E(ζ31 ))

2+

(
N

3

)
6!

2!2!2!
(E(ζ21))

3,

and R6 : R → R,

R6(x) := E(ζ61)x+15E(ζ41)E(ζ
2
1 )x(x−1)+10(E(ζ31))

2x(x−1)+15(E(ζ21 ))
3x(x−1)(x−2), x ∈ R.

✷

9.3 Lemma. If α + β = 1, then the matrix A defined in (1.2) has eigenvalues 1 and

α− 1 = −β, and the powers of A take the following form

Ak =
1

1 + β

[
1 β

1 β

]
+

(−β)k
1 + β

[
β −β
−1 1

]
= uũ

⊤ + (−β)kvṽ⊤, k ∈ Z+,
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with

u :=
1

1 + β

[
1

1

]
, ũ :=

[
1

β

]
, v :=

1

1 + β

[
β

−1

]
, ṽ :=

[
1

−1

]
.

Proof. The formula for the powers of A follows by the so-called Putzer’s spectral formula,

see, e.g., Putzer [29]. ✷

9.2 Remark. Using Lemma 9.3 we obtain the decomposition

(9.6)

[
Xk

Xk−1

]
= Uku+ Vkv =

1

1 + β

[
Uk + βVk

Uk − Vk

]
=

1

1 + β

[
1 β

1 −1

][
Uk

Vk

]
, k ∈ N,

with

(9.7) Uk = Xk + βXk−1, Vk = Xk −Xk−1, k ∈ N.

Note that (9.6) is valid for k = 0 with the convention U0 := 0 and V0 := 0. The

decomposition (9.6) can be considered as a motivation for the definition of Uk and Vk, k ∈ N,

given in Sections 3 and 5. ✷

9.4 Lemma. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters (α, β) ∈
[0, 1]2 such that α + β = 1 (hence it is unstable). Suppose that X0 = X−1 = 0 and

E(εℓ1) <∞ with some ℓ ∈ N. Then there exists a constant cℓ such that E(Xℓ1
n X

ℓ2
n−1) 6 cℓn

ℓ,

n ∈ N, for all ℓ1, ℓ2 ∈ Z+ with ℓ1 + ℓ2 6 ℓ.

First proof. Observe that the statement is equivalent with the following: for each poly-

nomial P of two variables having degree at most ℓ, there exists a constant cP such that

E
(
|P (Xn, Xn−1)|

)
6 cPn

ℓ, n ∈ N.

First let us suppose that (α, β) ∈ (0, 1)2. If ℓ = 1, i.e., (ℓ1, ℓ2) = (1, 0) or (ℓ1, ℓ2) = (0, 1),

then to conclude the statement we show that

E(Xn) =
µ

1 + β
n+

µβ

(1 + β)2
(1− (−β)n), n ∈ N.(9.8)

Since E(Xn | Fn−1) = αXn−1+βXn−2+µ, n ∈ N, we have E(Xn) = αE(Xn−1)+β E(Xn−2)+µ,

n ∈ N, yielding that

[
E(Xn)

E(Xn−1)

]
=

[
α β

1 0

][
E(Xn−1)

E(Xn−2)

]
+

[
µ

0

]
= A

[
E(Xn−1)

E(Xn−2)

]
+

[
µ

0

]
, n ∈ N.

By Lemma 9.3, we get

[
E(Xn)

E(Xn−1)

]
=

n∑

j=1

An−j

[
µ

0

]
=

(
n

1 + β

[
1 β

1 β

]
+

1− (−β)n
(1 + β)2

[
β −β
−1 1

])[
µ

0

]
, n ∈ N,
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which yields (9.8).

Let us suppose now that the statement holds for 1, . . . , ℓ− 1. By multinomial theorem,

Xk
n =

∑

k1+k2+k3=k,
k1,k2,k3∈Z+

k!

k1!k2!k3!

(
Xn−1∑

j=1

ξn,j

)k1 (Xn−2∑

j=1

ηn,j

)k2

εk3n , k ∈ N.(9.9)

Since for all n ∈ N the random variables {ξn,j, ηn,j, εn : j ∈ N} are independent of each other

and of the σ-algebra Fn−1, we have for all ℓ1, ℓ2 ∈ Z+ with ℓ1 + ℓ2 = ℓ

E(Xℓ1
n X

ℓ2
n−1 | Fn−1)

= Xℓ2
n−1

∑

k1+k2+k3=ℓ1,
k1,k2,k3∈Z+

ℓ1!

k1!k2!k3!
E



(

M∑

j=1

ξn,j

)k1


∣∣∣∣∣
M=Xn−1

E



(

N∑

j=1

ηn,j

)k2


∣∣∣∣∣
N=Xn−2

E(εk31 ).

Using part (i) of Lemma 9.2 and separating the terms having degree ℓ and less than ℓ, we

have

E(Xℓ1
n X

ℓ2
n−1 | Fn−1) =

∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1Xℓ2+k1

n−1 βk2Xk2
n−2 +Qℓ1,ℓ2(Xn−1, Xn−2),

where Qℓ1,ℓ2 is a polynomial of two variables having degree at most ℓ− 1. Hence

E(Xℓ1
n X

ℓ2
n−1) =

∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1βk2 E

(
Xℓ2+k1
n−1 Xk2

n−2

)
+ E

(
Qℓ1,ℓ2(Xn−1, Xn−2)

)
.

By the induction hypothesis (used for polynomials, see the beginning of the proof), there exists

a constant cQℓ1,ℓ2
such that E

(
|Qℓ1,ℓ2(Xn, Xn−1)|

)
6 cQℓ1,ℓ2

nℓ−1, n ∈ N. In fact, we have

E
(
|Qℓ1,ℓ2(Xn, Xn−1)|

)
6 c̃ℓn

ℓ−1(9.10)

for n ∈ N and ℓ1, ℓ2 ∈ Z+ with ℓ1 + ℓ2 = ℓ, where c̃ℓ := max06i6ℓ cQi,ℓ−i
. Consequently, we

have

E(Xℓ1
n X

ℓ2
n−1) 6

∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1βk2 E

(
Xℓ2+k1
n−1 Xk2

n−2

)
+ c̃ℓ(n− 1)ℓ−1.

Similarly, for all k1, k2 ∈ Z+ with k1 + k2 = ℓ1, we have

E
(
Xℓ2+k1
n−1 Xk2

n−2

)
=

∑

j1+j2=ℓ2+k1,
j1,j2∈Z+

(ℓ2 + k1)!

j1!j2!
αj1βj2 E

(
Xk2+j1
n−2 Xj2

n−3

)
+ E

(
Qℓ2+k1,k2(Xn−2, Xn−3)

)
.
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Hence we have

E(Xℓ1
n X

ℓ2
n−1) =

∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1βk2

∑

j1+j2=ℓ2+k1,
j1,j2∈Z+

(ℓ2 + k1)!

j1!j2!
αj1βj2 E

(
Xk2+j1
n−2 Xj2

n−3

)

+
∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1βk2 E

(
Qℓ2+k1,k2(Xn−2, Xn−3)

)
+ E

(
Qℓ1,ℓ2(Xn−1, Xn−2)

)
.

Applying (9.10) and

∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1βk2 = (α + β)ℓ1 = 1,

we conclude

E(Xℓ1
n X

ℓ2
n−1) 6

∑

k1+k2=ℓ1,
k1,k2∈Z+

ℓ1!

k1!k2!
αk1βk2

∑

j1+j2=ℓ2+k1,
j1,j2∈Z+

(ℓ2 + k1)!

j1!j2!
αj1βj2 E

(
Xk2+j1
n−2 Xj2

n−3

)

+ c̃ℓ(n− 2)ℓ−1 + c̃ℓ(n− 1)ℓ−1.

Using that E(Xr
1X

q
0) = 0, r, q ∈ Z+ (since X0 = 0), after n− 1 steps, one can derive

E(Xℓ1
n X

ℓ2
n−1) 6 c̃ℓ

n−1∑

i=1

iℓ−1
6 c̃ℓn · nℓ−1 = O(nℓ), n ∈ N,

that is, E(P (Xn, Xn−1)) 6 c̃ℓn
ℓ for all monomials P (x, y) := xℓ1yℓ2, x, y ∈ R, with ℓ1+ℓ2 = ℓ,

ℓ1, ℓ2 ∈ Z+. If P has the form

P (x, y) :=

ℓ∑

i=0

pix
iyℓ−i +Q(x, y), x, y ∈ R,

where pi ∈ R, i ∈ {0, . . . , ℓ}, and Q is a polynomial of two variables having degree at most

ℓ− 1, then for all n ∈ N,

E(|P (Xn, Xn−1)|) 6
ℓ∑

i=0

|pi|E(X i
nX

ℓ−i
n−1) + E(Q(Xn, Xn−1)) 6

(
ℓ∑

i=0

|pi|cℓ
)
nℓ + cQn

ℓ−1
6 cPn

ℓ,

where cP := cQ + cℓ
∑ℓ

i=0 |pi|, as desired.

Next let us suppose that (α, β) = (1, 0). Then Xn = Xn−1 + εn, n ∈ N, which implies

that Xn =
∑n

i=1 εi, n ∈ N. By part (i) of Lemma 9.2,

E(Xℓ
n) = Qℓ(n), n ∈ N,(9.11)
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where Qℓ is a polynomial of degree ℓ. If ℓ1, ℓ2 ∈ Z+ with ℓ1 + ℓ2 6 ℓ, then using

independence of Xn−1 and εn we have

E(Xℓ1
n X

ℓ2
n−1) = E((Xn−1 + εn)

ℓ1Xℓ2
n−1) = E

(
ℓ1∑

j=0

(
ℓ1
j

)
Xj
n−1ε

ℓ1−j
n Xℓ2

n−1

)

=

ℓ1∑

j=0

(
ℓ1
j

)
E(Xj+ℓ2

n−1 )E(ε
ℓ1−j
n ), n ∈ N.

Using (9.11),

E(Xℓ1
n X

ℓ2
n−1) =

ℓ1∑

j=0

(
ℓ1
j

)
Qj+ℓ2(n− 1)E(εℓ1−j1 ) = O(nℓ), n ∈ N,

since for each j ∈ {0, . . . , ℓ1}, the polynomial Qj+ℓ2 is of degree j + ℓ2 6 ℓ, which yields

the statement in case (α, β) = (1, 0).

Finally, let us suppose that (α, β) = (0, 1). Then Xn = Xn−2+ εn, n ∈ N, which implies

that

X2n =

n∑

i=1

ε2i, X2n−1 =

n∑

i=1

ε2i−1, n ∈ N.

By part (i) of Lemma 9.2, we have

E(Xℓ
2n) = Qℓ(n), n ∈ N, E(Xℓ

2n−1) = Qℓ(n), n ∈ N,

where Qℓ is a polynomial of degree ℓ. Using the independence of X2n and X2n−1, for

ℓ1 + ℓ2 6 ℓ, ℓ1, ℓ2 ∈ Z+, we have

E(Xℓ1
2nX

ℓ2
2n−1) = E(Xℓ1

2n)E(X
ℓ2
2n−1) = Qℓ1(n)Qℓ2(n) = O(nℓ), n ∈ N,

as desired. Similarly,

E(Xℓ1
2n−1X

ℓ2
2n−2) = E(Xℓ1

2n−1)E(X
ℓ2
2n−2) = Qℓ1(n)Qℓ2(n− 1) = O(nℓ), n ∈ N.

Hence we have the assertion.

Second proof. It is enough to prove that there exists some cℓ ∈ R+ such that E(Xℓ1
n X

ℓ2
n−1) 6

cℓn
ℓ for all n ∈ N and ℓ1, ℓ2 ∈ Z+ with ℓ1 + ℓ2 = ℓ. Let us introduce the notation

X(k)
n :=

[
Xk
n Xk−1

n Xn−1 Xk−2
n X2

n−1 · · · XnX
k−1
n−1 Xk

n−1

]⊤
∈ R

k+1
+ , n, k ∈ N.

First we check that

E(X(k)
n | Fn−1) = AkX

(k)
n−1 +

k−1∑

j=1

Bk,jX
(j)
n−1 + µk, n ∈ N, k ∈ {1, . . . , ℓ},(9.12)
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where

Ak :=




αk
(
k
1

)
αk−1β · · ·

(
k
k−1

)
αβk−1 βk

αk−1
(
k−1
1

)
αk−2β · · · βk−1 0

...
...

. . .
...

...

α β · · · 0 0

1 0 · · · 0 0




∈ R
(k+1)×(k+1)
+

and Bk,j ∈ R
(k+1)×(j+1)
+ are appropriate matrices of which the entries are non-negative and

depend only on α and the moments of ε1 of order less than or equal to (k − j) and

µk :=
[
E(εk1) 0 · · · 0

]⊤
∈ R

k+1
+ .

For a better understanding, first we give a proof for (9.12) in the case of k = 1 and k = 2.

If k = 1, then

E(X(1)
n | Fn−1) =

[
E(Xn | Fn−1)

E(Xn−1 | Fn−1)

]
=

[
α β

1 0

][
Xn−1

Xn−2

]
+

[
µ

0

]
= A1X

(1)
n−1 + µ1, n ∈ N.

If k = 2, then, by (9.9), we have

E(X2
n | Fn−1) = E




∑

k1+k2+k3=2,
k1,k2,k3∈Z+

2!

k1!k2!k3!

(
Xn−1∑

j=1

ξn,j

)k1 (Xn−2∑

j=1

ηn,j

)k2

εk3n

∣∣∣∣∣ Fn−1




= αXn−1 + α2(X2
n−1 −Xn−1) + βXn−2 + β2(X2

n−2 −Xn−2) + 2αβXn−1Xn−2

+ 2αXn−1E(ε1) + 2βXn−2E(ε1) + E(ε21), n ∈ N,

and hence, using also that

E(XnXn−1 | Fn−1) = Xn−1E(Xn | Fn−1) = αX2
n−1 + βXn−1Xn−2 +Xn−1 E(ε1), n ∈ N,

we have

E(X(2)
n | Fn−1) = E







X2
n

XnXn−1

X2
n−1




∣∣∣∣∣ Fn−1


 = A2




X2
n−1

Xn−1Xn−2

X2
n−2


+B2,1

[
Xn−1

Xn−2

]
+ µ2, n ∈ N,

where

A2 =




α2 2αβ β2

α β 0

1 0 0


 and B2,1 =




αβ + 2αE(ε1) αβ + 2β E(ε1)

E(ε1) 0

0 0
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as desired. In the general case using part (i) of Lemma 9.2 one can prove (9.12) (giving also

explicit forms for the matrices Bk,j).

Taking expectation of (9.12), we have

E(X(k)
n ) = Ak E(X

(k)
n−1) +

k−1∑

j=1

Bk,j E(X
(j)
n−1) + µk, n ∈ N, k ∈ {1, . . . , ℓ}.(9.13)

For a d-dimensional vector v = (vi)
d
i=1 ∈ R

d and a d× d matrix M = (mi,j)
d
i,j=1 ∈ R

d×d, let

us introduce the notations

‖v‖∞ := max
16i6d

|vi| and ‖M‖∞ := max
16i6d

d∑

j=1

|mi,j|.

By the binomial theorem one can easily have ‖Ak‖∞ = 1, k ∈ {1, . . . , ℓ}. We prove the

statement using a double induction with respect to k ∈ {1, . . . , ℓ} and n ∈ N. First we show

that the statement holds for k = 1 using induction with respect to n. Namely, we show that

‖E(X(1)
n )‖∞ 6 c1n, n ∈ N,

where c1 := ‖µ1‖∞. If n = 1, then

E(X
(1)
1 ) =

[
E(X1)

E(X0)

]
=

[
E(ε1)

0

]
= µ1,

which implies that ‖E(X(1)
1 )‖∞ = c1. Let us suppose now that ‖E(X(1)

m )‖∞ 6 c1m holds

for m ∈ {1, . . . , n− 1} with n > 2. Then, (9.13),

‖E(X(1)
n )‖∞ = ‖AE(X

(1)
n−1) + µ1‖∞ 6 ‖AE(X

(1)
n−1)‖∞ + ‖µ1‖∞

6 ‖A‖∞‖E(X(1)
n−1)‖∞ + ‖µ1‖∞ 6 c1(n− 1) + c1 = c1n,

as desired.

Let us suppose now that the statement holds for j = 1, . . . , ℓ− 1, i.e.,

‖E(X(j)
n )‖∞ 6 cjn

j , n ∈ N, j ∈ {1, . . . , ℓ− 1}.

Next, using induction with respect to n ∈ N we prove that

‖E(X(ℓ)
n )‖∞ 6 cℓn

ℓ, n ∈ N,

where

cℓ :=

ℓ−1∑

j=1

cj‖Bℓ,j‖∞ + ‖µℓ‖∞.

If n = 1, then, using that X0 = 0 and X1 = ε1, we have

E(X
(ℓ)
1 ) =

[
E(εℓ1) 0 · · · 0

]⊤
= µℓ,
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which yields that ‖E(X(ℓ)
1 )‖∞ = ‖µℓ‖∞ 6 cℓ. Let us suppose now that

‖E(X(ℓ)
m )‖∞ 6 cℓm

ℓ, m ∈ {1, . . . , n− 1},

where n > 2. Then, by (9.13),

‖E(X(ℓ)
n )‖∞ 6 ‖Aℓ‖∞‖E(X(ℓ)

n−1)‖∞ +
ℓ−1∑

j=1

‖Bℓ,j‖∞‖E(X(j)
n−1)‖∞ + ‖µℓ‖∞

6 cℓ(n− 1)ℓ +
ℓ−1∑

j=1

‖Bℓ,j‖∞cj(n− 1)j + ‖µℓ‖∞

6 cℓ(n− 1)ℓ +

(
ℓ−1∑

j=1

cj‖Bℓ,j‖∞ + ‖µℓ‖∞
)
(n− 1)ℓ−1

= cℓ(n− 1)ℓ−1(n− 1 + 1)

6 cℓn
ℓ,

as desired. ✷

9.1 Corollary. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters (α, β) ∈
[0, 1]2 such that α+β = 1 (hence it is unstable). Suppose that X0 = X−1 = 0 and E(εℓ1) <∞
with some ℓ ∈ N. Then

E(X i
k) = O(ki), E(M i

k) = O(k⌊i/2⌋), E(U i
k) = O(ki), E(V 2j

k ) = O(kj), k ∈ N,

for i, j ∈ Z+ with i 6 ℓ and 2j 6 ℓ.

Proof. The estimate E(X i
k) = O(ki) readily follows by Lemma 9.4. Next we turn to prove

E(M i
k) = O(k⌊i/2⌋). Using (9.5) and that the random variables {ξn,j, ηn,j, εn : j ∈ N} are

independent of each other and of the σ-algebra Fn−1, we have for all n ∈ N,

E(M i
n | Fn−1) =

∑

i1+i2+i3=i,
i1,i2,i3∈Z+

i!

i1!i2!i3!
E



(

M∑

j=1

(ξn,j − E(ξn,j))

)i1


∣∣∣∣∣
M=Xn−1

× E



(

N∑

j=1

(ηn,j − E(ηn,j))

)i2


∣∣∣∣∣
N=Xn−2

E
(
(εn − E(εn))

i3
)
.

By part (ii) of Lemma 9.2, there exist polynomials Qi1 , i1 ∈ N, of degree at most i1/2, and

Q̃i2 , i2 ∈ N, of degree at most i2/2 such that

E(M i
n | Fn−1) =

∑

i1+i2+i3=i,
i1,i2,i3∈Z+

i!

i1!i2!i3!
Qi1(Xn−1)Q̃i2(Xn−2)E

(
(ε1 − E(ε1))

i3
)
.
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Hence

E(M i
n) =

∑

i1+i2+i3=i,
i1,i2,i3∈Z+

i!

i1!i2!i3!
E
(
Qi1(Xn−1)Q̃i2(Xn−2)

)
E
(
(ε1 − E(ε1))

i3
)
, n ∈ N.

Clearly, Qi1(Xk−1)Q̃i2(Xk−2) = Q∗
i1+i2(Xk−1, Xk−2), where Q∗

i1+i2 is a polynomial of two

variables having degree at most (i1 + i2)/2 6 i/2, and hence, at most ⌊i/2⌋. By Lemma 9.4,

there exists a constant cQ∗
i1+i2

such that E
(
|Q∗

i1+i2
(Xk−1, Xk−2)

∣∣) 6 cQ∗
i1+i2

(k− 1)⌊i/2⌋. Hence

|E(M i
k)| 6 (k − 1)⌊i/2⌋

∑

i1+i2+i3=i,
i1,i2,i3∈Z+

i!

i1!i2!i3!
cQ∗

i1+i2

∣∣E
(
(ε1 − E(ε1))

i3
)∣∣

for all k ∈ N, as desired.

Next we turn to prove E(U i
k) = O(ki), i, k ∈ N with i 6 ℓ. First note that, by power

mean inequality, for all i ∈ N,

a+ b

2
6

(
ai + bi

2

) 1
i

, a, b > 0,

yielding that (a+ b)i 6 2i−1(ai + bi), a, b > 0. Hence, by Lemma 9.4,

E(U i
k) = E((Xk + βXk−1)

i) 6 2i−1(E(X i
k) + βi E(X i

k−1)) 6 2i−1(Pi(k) + βiPi(k − 1)),

where Pi is a polynomial of degree at most i, which yields that E(U i
k) = O(ki).

Finally, for 2j 6 ℓ, j ∈ Z+, we prove E(V 2j
k ) = O(kj), k ∈ N, using induction in k.

By the recursion Vk = −βVk−1 +Mk + µ, k ∈ N, we have E(Vk) = −β E(Vk−1) + µ, k ∈ N,

with initial value E(V0) = 0, hence

E(Vk) = µ

k−1∑

i=0

(−β)i, k ∈ N,

which yields that |E(Vk)| = O(1). Indeed, for all k ∈ N,

∣∣∣∣∣

k−1∑

i=0

(−β)i
∣∣∣∣∣ 6

{
1

1−β if 0 6 β < 1,

1 if β = 1,

where the inequality for the case β = 1 follows by that the sequence of partial sums in

question is nothing else but the alternating one 1, 0, 1, 0, 1, 0, . . .. Let us introduce the notation

Ṽk := Vk − E(Vk), k ∈ N. Since, by the triangular inequality for the L2j-norm,

(
E(V 2j

k )
) 1

2j
6

(
E(Ṽ 2j

k )
) 1

2j
+ E(|Vk|),
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and |E(Vk)| = O(1), for proving E(V 2j
k ) = O(kj), k ∈ N, it is enough to show that

E(Ṽ 2j
k ) = O(kj), k ∈ N. Using again the recursion Vk = −βVk−1 +Mk + µ, k ∈ N, we get

Ṽk = −βṼk−1 +Mk, k ∈ N. Hence

(
E(Ṽ 2j

k )
) 1

2j

6 β
(
E(Ṽ 2j

k−1)
) 1

2j

+
(
E(M2j

k )
) 1

2j =
(
O((k − 1)j)

) 1
2j +

(
O(kj)

) 1
2j = O(k1/2),

where the first inequality follows by the triangular inequality for the L2j-norm, and the second

one by the induction hypothesis and that E(M2j
k ) = O(kj). Hence E(Ṽ 2j

k ) = O(kj), k ∈ N,

as desired. ✷

9.2 Corollary. Let (Xk)k>−1 be an INAR(2) process with autoregressive parameters (α, β) ∈
[0, 1]2 such that α+β = 1 (hence it is unstable). Suppose that X0 = X−1 = 0 and E(εℓ1) <∞
with some ℓ ∈ N. Then

(i) for all i, j ∈ Z+ with max{i, j} 6 ℓ/2, and for all κ > i+ j
2
+ 1, we have

n−κ
n∑

k=1

|U i
kV

j
k |

P−→ 0 as n→ ∞,(9.14)

(ii) for all i, j ∈ Z+ with max{i, j} 6 ℓ, for all T > 0, and for all κ > i+ j
2
+ i+j

ℓ
, we

have

n−κ sup
t∈[0,T ]

|U i
⌊nt⌋V

j
⌊nt⌋|

P−→ 0 as n→ ∞,(9.15)

(iii) for all i, j ∈ Z+ with max{i, j} 6 ℓ/4, for all T > 0, and for all κ > i+ j
2
+ 1

2
, we

have

n−κ sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

[U i
kV

j
k − E(U i

kV
j
k | Fk−1)]

∣∣∣∣∣∣
P−→ 0 as n→ ∞.(9.16)

Proof. By Cauchy-Schwartz’s inequality and Lemma 9.1, we have

E

(
n∑

k=1

|U i
kV

j
k |
)

6

n∑

k=1

√
E(U2i

k )E(V 2j
k ) =

n∑

k=1

√
O(k2i) O(kj) =

n∑

k=1

O(ki+j/2) = O(n1+i+j/2).

Using Slutsky’s lemma this implies (9.14).

Now we turn to prove (9.15). First note that

sup
t∈[0,T ]

|U i
⌊nt⌋V

j
⌊nt⌋| 6 sup

t∈[0,T ]
|U i

⌊nt⌋| sup
t∈[0,T ]

|V j
⌊nt⌋|,(9.17)
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and for all ε > 0 and δ > 0, we have, by Markov’s inequality,

P

(
n−ε sup

t∈[0,T ]
|U i

⌊nt⌋| > δ

)
= P

(
n−ℓε/i sup

t∈[0,T ]
|U ℓ

⌊nt⌋| > δℓ/i

)
6

⌊nT ⌋∑

k=1

P(U ℓ
k > δℓ/inℓε/i)

6

⌊nT ⌋∑

k=1

E(U ℓ
k)

δℓ/inℓε/i
=

⌊nT ⌋∑

k=1

O(kℓ)

δℓ/inℓε/i
= O(nℓ+1−ℓε/i), i ∈ {1, 2, . . . , ℓ},

and

P

(
n−ε sup

t∈[0,T ]
|V j

⌊nt⌋| > δ

)
= P

(
n−ℓε/j sup

t∈[0,T ]
|V ℓ

⌊nt⌋| > δℓ/j

)
6

⌊nT ⌋∑

k=1

P(|V ℓ
k | > δℓ/jnℓε/j)

6

⌊nT ⌋∑

k=1

E(|V ℓ
k |)

δℓ/jnℓε/j
6

⌊nT ⌋∑

k=1

√
E(V 2ℓ

k )

δℓ/jnℓε/j
=

⌊nT ⌋∑

k=1

O(kℓ/2)

δℓ/jnℓε/j
= O(nℓ/2+1−ℓε/j), j ∈ {1, 2, . . . , ℓ}.

Hence, if ℓ+ 1− ℓε/i < 0, i.e., ε > ℓ+1
ℓ
i, then

n−ε sup
t∈[0,T ]

|U i
⌊nt⌋|

P−→ 0 as n→ ∞,

and if ℓ/2 + 1− ℓε/j < 0, i.e., ε > ℓ/2+1
ℓ
j, then

n−ε sup
t∈[0,T ]

|V j
⌊nt⌋|

P−→ 0 as n→ ∞.

By (9.17), we get (9.15).

Finally, we show (9.16). Applying Doob’s maximal inequality (see, e.g., Revuz and Yor [30,

Chapter II, Theorem 1.7]) for the martingale

n∑

k=1

[
U i
kV

j
k − E(U i

kV
j
k | Fk−1)

]
, n ∈ N,

(with the filtration (Fk)k∈N) and then (5.7), we obtain

E


 sup
t∈[0,T ]

(⌊nt⌋∑

k=1

[
U i
kV

j
k − E(U i

kV
j
k | Fk−1)

]
)2

 6 4E



(⌊nT ⌋∑

k=1

[
U i
kV

j
k − E(U i

kV
j
k | Fk−1)

]
)2



6 4

⌊nT ⌋∑

k=1

E(U2i
k V

2j
k ) =

⌊nT ⌋∑

k=1

O(k2i+j) = O(n2i+j+1),

since E(U2i
k V

2j
k ) 6

√
E(U4i

k )E(V 4j
k ) = O(k2i+j) by Corollary 9.1. ✷
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9.3 Remark. We note that in the special case (ℓ, i, j) = (2, 1, 0), we also get

n−κ sup
t∈[0,T ]

U⌊nt⌋
P−→ 0 as n→ ∞ for κ > 1.(9.18)

Indeed, by (5.8), we have

(9.19) Un =
n∑

k=1

(Mk + µ), n ∈ N,

and hence convergence (9.18) will follow from

n−κ sup
t∈[0,T ]

∣∣∣∣∣∣

⌊nt⌋∑

k=1

Mk

∣∣∣∣∣∣
P−→ 0 as n→ ∞ for all κ > 1.(9.20)

Doob’s maximal inequality (see, e.g., Revuz and Yor [30, Chapter II, Theorem 1.7]) for the

martingale
∑k

i=1Mi, k ∈ N, (with the filtration (Fk)k∈N) gives

E


 sup
t∈[0,T ]

(⌊nt⌋∑

k=1

Mk

)2

 6 4E



(⌊nT ⌋∑

k=1

Mk

)2

 = 4

⌊nT ⌋∑

k=1

E(M2
k ) = O(n2),

since E(M2
k ) = O(k) by Corollary 9.1. This implies (9.20), hence (9.18).

However, it turns out that we do not need this stronger statement. ✷

Appendicies

A Classification of INAR(2) processes

An INAR(2) process is called positively regular if there is a positive integer k such that the

entries of Ak are positive (see Kesten and Stigum [23]). If α > 0 and β > 0 then the

INAR(2) process is positively regular, since

A =

[
α β

1 0

]
, A2 =

[
α2 + β αβ

α β

]
.

If α = 0, then

A2k+1 = βkA = βk

[
0 β

1 0

]
, A2k = βk

[
1 0

0 1

]
, k ∈ Z+,

hence the process is not positively regular. If β = 0, then

Ak = αk−1A = αk−1

[
α 0

1 0

]
, k ∈ N,
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hence the process is not positively regular. Consequently, an INAR(2) process is positively

regular if and only if α > 0 and β > 0.

An INAR(2) process is called decomposable if the matrix A is decomposable (see Kesten

and Stigum [25]). Note that an INAR(2) process is decomposable if and only if the matrix A

is reducible (see Horn and Johnson [16, Definition 6.2.21]), that is, there exists a permutation

matrix P ∈ R
2×2 such that

P⊤AP =

[
b c

0 d

]
,

where b, c, d ∈ R. Since [
0 1

1 0

][
α β

1 0

][
0 1

1 0

]
=

[
0 1

β α

]
,

we get an INAR(2) process is decomposable if and only if β = 0. Moreover, an INAR(2)

process is indecomposable but not positively regular if and only if α = 0 and β > 0.

Note that an INAR(2) process is positively regular if and only if the matrix A is primitive

(see Horn and Johnson [16, Definition 8.5.0 and Theorem 8.5.2]), so this case can also be called

primitive (see Barczy et al. [5, Definition 2.4]). Further we remark that the not positively

regular case is also called non-primitive.

B A version of the continuous mapping theorem

A function f : R+ → R
d is called càdlàg if it is right continuous with left limits. Let D(R+,R

d)

and C(R+,R
d) denote the space of all Rd-valued càdlàg and continuous functions on R+,

respectively. Let B(D(R+,R
d)) denote the Borel σ-algebra on D(R+,R

d) for the metric defined

in Jacod and Shiryaev [20, Chapter VI, (1.26)] (with this metric D(R+,R
d) is a complete and

separable metric space and the topology induced by this metric is the so-called Skorokhod

topology). For Rd-valued stochastic processes (Y t)t∈R+ and (Y
(n)
t )t∈R+ , n ∈ N, with càdlàg

paths we write Y
(n) L−→ Y if the distribution of Y

(n) on the space (D(R+,R),B(D(R+,R
d)))

converges weakly to the distribution of Y on the space (D(R+,R),B(D(R+,R
d))) as n→ ∞.

Concerning the notation
L−→ we note that if ξ and ξn, n ∈ N, are random elements with

values in a metric space (E, d), then we also denote by ξn
L−→ ξ the weak convergence of

the distributions of ξn on the space (E,B(E)) towards the distribution of ξ on the space

(E,B(E)) as n→ ∞, where B(E) denotes the Borel σ-algebra on E induced by the given

metric d.

The following version of continuous mapping theorem can be found for example in Kallen-

berg [21, Theorem 3.27].

B.1 Lemma. Let (S, dS) and (T, dT ) be metric spaces and (ξn)n∈N, ξ be random elements

with values in S such that ξn
L−→ ξ as n→ ∞. Let f : S → T and fn : S → T , n ∈ N, be
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measurable mappings and C ∈ B(S) such that P(ξ ∈ C) = 1 and limn→∞ dT (fn(sn), f(s)) = 0

if limn→∞ dS(sn, s) = 0 and s ∈ C. Then fn(ξn)
L−→ f(ξ) as n→ ∞.

For the case S := D(R+,R
d) and T := R

q (T := D(R+,R
q)), where d, q ∈ N, we

formulate a consequence of Lemma B.1.

For functions f and fn, n ∈ N, in D(R+,R
d), we write fn

lu−→ f if (fn)n∈N
converges to f locally uniformly, i.e., if supt∈[0,T ] ‖fn(t) − f(t)‖ → 0 as n → ∞ for all

T > 0. For measurable mappings Φ : D(R+,R
d) → R

q (D(R+,R
q)) and Φn : D(R+,R

d) →
R
q (D(R+,R

q)), n ∈ N, we will denote by CΦ,(Φn)n∈N
the set of all functions f ∈ C(R+,R

d)

such that Φn(fn) → Φ(f) (
lu−→ Φ(f)) whenever fn

lu−→ f with fn ∈ D(R+,R
d), n ∈ N.

We will use the following version of the continuous mapping theorem several times, see, e.g.,

Barczy et al. [4, Lemma 4.2] and Ispány and Pap [19, Lemma 3.1].

B.2 Lemma. Let d, q ∈ N, and (U t)t∈R+ and (U
(n)
t )t∈R+, n ∈ N, be R

d-valued stochastic

processes with càdlàg paths such that U
(n) L−→ U . Let Φ : D(R+,R

d) → R
q (D(R+,R

q))

and Φn : D(R+,R
d) → R

q (D(R+,R
q)), n ∈ N, be measurable mappings such that there exists

C ⊂ CΦ,(Φn)n∈N
with C ∈ B(D(R+,R

d)) and P(U ∈ C) = 1. Then Φn(U
(n))

L−→ Φ(U).

In order to apply Lemma B.2, we will use the following statement several times.

B.3 Lemma. Let d, p, q ∈ N, h : Rd → R
q be a continuous function and K : [0, 1]×R

2d → R
p

be a function such that for all R > 0 there exists CR > 0 such that

(B.1) ‖K(s, x)−K(t, y)‖ 6 CR (|t− s|+ ‖x− y‖)

for all s, t ∈ [0, 1] and x, y ∈ R
2d with ‖x‖ 6 R and ‖y‖ 6 R. Moreover, let us define the

mappings Φ,Φn : D(R+,R
d) → R

q+p, n ∈ N, by

Φn(f) :=

(
h(f(1)),

1

n

n∑

k=1

K

(
k

n
, f

(
k

n

)
, f

(
k − 1

n

)))
,

Φ(f) :=

(
h(f(1)),

∫ 1

0

K(u, f(u), f(u)) du

)

for all f ∈ D(R+,R
d). Then the mappings Φ and Φn, n ∈ N, are measurable, and

CΦ,(Φn)n∈N
= C(R+,R

d) ∈ B(D(R+,R
d)).

Proof. For an arbitrary Borel set B ∈ B(Rq+p) we have

Φ−1
n (B) = π−1

0, 1
n
, 2
n
,...,1

(K̃−1
n (B)), n ∈ N,

where for all n ∈ N the mapping K̃n : (Rd)n+1 → R
q+p is defined by

K̃n(x0, x1, . . . , xn) :=

(
h(xn),

1

n

n∑

k=1

K

(
k

n
, xk, xk−1

))
, x0, x1, . . . , xn ∈ R

d,
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and the natural projections πt0,t1,t2,...,tn : D(R+,R
d) → (Rd)n+1, t0, t1, t2, . . . , tn ∈ R+, are

given by πt0,t1,t2,...,tn(f) := (f(t0), f(t1), f(t2), . . . , f(tn)), f ∈ D(R+,R
d), t0, t1, t2, . . . , tn ∈ R+.

Since h and K are continuous, K̃n is also continuous, and hence K̃−1
n (B) ∈ B((Rd)n+1).

It is known that πt0,t1,t2,...,tn , t0, t1, t2, . . . , tn ∈ R+, are measurable mappings (see, e.g.,

Billingsley [6, Theorem 16.6 (ii)] or Ethier and Kurtz [11, Proposition 3.7.1]), and hence Φn =

K̃n ◦ π0, 1
n
, 2
n
,...,1 is also measurable.

Next we show the measurability of Φ. Since the natural projection D(R+,R
d) ∋ f 7→

f(1) = π1(f) is measurable, h is continuous, it is enough to show that the mapping

D(R+,R
d) ∋ f 7→ Φ̃(f) :=

∫ 1

0

K(t, f(t), f(t)) dt

is measurable. Namely, we show that Φ̃ is continuous. We have to check that Φ̃(fn) → Φ̃(f)

in R
p as n → ∞ whenever fn → f in D(R+,R

d) as n → ∞, where f, fn ∈ D(R+,R
d),

n ∈ N. Due to Ethier and Kurtz [11, Proposition 3.5.3], for all T > 0 there exists a sequence

λn : R+ → R+, n ∈ N, of strictly increasing continuous functions with λn(0) = 0 and

limt→∞ λn(t) = ∞ such that

lim
n→∞

sup
t∈[0,T ]

|λn(t)− t| = 0, lim
n→∞

sup
t∈[0,T ]

‖fn(t)− f(λn(t))‖ = 0.(B.2)

We check that limn→∞ fn(t) = f(t) whenever t ∈ R+ is a continuity point of f . This readily

follows by

‖fn(t)− f(t)‖ 6 ‖fn(t)− f(λn(t))‖+ ‖f(λn(t))− f(t)‖, n ∈ N, t ∈ R+.

Using that f has at most countably many discontinuities (see, e.g., Jacod and Shiryaev [20,

page 326]), we have limn→∞ fn(t) = f(t) for all t ∈ R+ except a countable set having

Lebesgue measure zero. In what follows we check that

sup
n∈N

sup
t∈[0,1]

‖K(t, fn(t), fn(t))‖ <∞.

Since K is continuous and hence it is bounded on a compact set, it is enough to verify that

sup
n∈N

sup
t∈[0,1]

‖fn(t)‖ <∞.

This follows by Jacod and Shiryaev [20, Chapter VI, Lemma 1.14 (b)], since fn → f in

D(R+,R
d) yields that {fn : n ∈ N} is a relatively compact set (with respect to the Skorokhod

topology). Then Lebesgue dominated convergence theorem yields the continuity of Φ̃.

In order to show CΦ,(Φn)n∈N
= C(R+,R

d) we have to check that Φn(fn) → Φ(f) whenever
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fn
lu−→ f with f ∈ C(R+,R

d) and fn ∈ D(R+,R
d), n ∈ N. We have

‖Φn(fn)− Φ(f)‖ 6 ‖h(fn(1))− h(f(1))‖

+
1

n

n∑

k=1

∥∥∥∥K
(
k

n
, fn

(
k

n

)
, fn

(
k − 1

n

))
−K

(
k

n
, f

(
k

n

)
, f

(
k − 1

n

))∥∥∥∥

+

n∑

k=1

∫ k/n

(k−1)/n

∥∥∥∥K
(
k

n
, f

(
k

n

)
, f

(
k − 1

n

))
−K(t, f(t), f(t))

∥∥∥∥ dt

=: ‖h(fn(1))− h(f(1))‖+ A(1)
n + A(2)

n .

Since fn
lu−→ f implies that fn(1) → f(1) as n→ ∞, using the continuity of h, we get

‖h(fn(1))− h(f(1))‖ → 0 as n→ ∞.

Let us also observe that

sup
n∈N

sup
t∈[0,1]

‖fn(t)‖ 6 sup
n∈N

sup
t∈[0,1]

‖fn(t)− f(t)‖+ sup
t∈[0,1]

‖f(t)‖ =: c <∞,

hence
∥∥∥∥
(
fn

(
k

n

)
, fn

(
k − 1

n

))∥∥∥∥ 6
√
2c, n ∈ N, k ∈ {1, . . . , n},

and then, by (B.1),

A(1)
n 6

√
2C√

2c sup
t∈[0,1]

‖fn(t)− f(t)‖ → 0

as n→ ∞. Moreover,

A(2)
n 6 C√

2c

n∑

k=1

∫ k/n

(k−1)/n

(∣∣∣∣
k

n
− t

∣∣∣∣ +
∥∥∥∥
(
f

(
k

n

)
, f

(
k − 1

n

))
− (f(t), f(t))

∥∥∥∥
)
dt

6
√
2C√

2c(n
−1 + ω1(f, n

−1)),

where

ω1(f, ε) := sup
t, s∈[0,1], |t−s|<ε

‖ f(t)− f(s)‖, ε > 0,

denotes the modulus of continuity of f on [0, 1]. Since f is continuous, ω1(f, n
−1) → 0

as n → ∞ (see, e.g., Jacod and Shiryaev [20, Chapter VI, 1.6]), and we obtain A
(2)
n → 0 as

n→ ∞. Then CΦ,(Φn)n∈N
= C(R+,R

d).

Finally, C(R+,R
d) ∈ B(D(R+,R

d)) holds since D(R+,R
d) \ C(R+,R

d) is open. Indeed, if

f ∈ D(R+,R
d) \ C(R+,R

d) then there exists t ∈ R+ such that ε := ‖f(t)− lims↑t f(s)‖ > 0,

and then the open ball in D(R+,R
d) with centre f and radius ε/2 does not contain any

continuous function. We note that for C(R+,R
d) ∈ B(D(R+,R

d)) one can also simply refer to

Ethier and Kurtz [11, Problem 3.11.25]. ✷
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C Convergence of random step processes

We recall a result about convergence of random step processes towards a diffusion process, see

Ispány and Pap [19]. This result is used for the proof of convergence (5.9).

C.1 Theorem. Let γ : R+ × R
d → R

d×r be a continuous function. Assume that uniqueness

in the sense of probability law holds for the SDE

(C.1) dU t = γ(t,U t) dW t, t ∈ R+,

with initial value U0 = u0 for all u0 ∈ R
d, where (W t)t∈R+ is an r-dimensional standard

Wiener process. Let (U t)t∈R+ be a solution of (C.1) with initial value U0 = 0 ∈ R
d.

For each n ∈ N, let (U
(n)
k )k∈N be a sequence of d-dimensional martingale differences with

respect to a filtration (F (n)
k )k∈Z+, i.e., E(U

(n)
k | F (n)

k−1) = 0, k, n ∈ N. Let

U
(n)
t :=

⌊nt⌋∑

k=1

U
(n)
k , t ∈ R+, n ∈ N.

Suppose that E
(
‖U (n)

k ‖2
)
<∞ for all k, n ∈ N. Suppose that for each T > 0,

(i) sup
t∈[0,T ]

∥∥∥∥∥
⌊nt⌋∑
k=1

E

(
U

(n)
k (U

(n)
k )⊤ | F (n)

k−1

)
−
∫ t
0
γ(s,U (n)

s )γ(s,U (n)
s )⊤ds

∥∥∥∥∥
P−→ 0,

(ii)
⌊nT ⌋∑
k=1

E
(
‖U (n)

k ‖21{‖U (n)
k ‖>θ}

∣∣F (n)
k−1

)
P−→ 0 for all θ > 0,

where
P−→ denotes convergence in probability. Then U

(n) L−→ U as n→ ∞.

Note that in (i) of Theorem C.1, ‖ · ‖ denotes a matrix norm, while in (ii) it denotes a

vector norm.
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[14] Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed

errors. Econometrica 71(1) 285–317.

[15] Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton.

[16] Horn, R. A. and Johnson, Ch. R. (1985). Matrix Analysis. Cambridge University

Press, Cambridge.
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