
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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ON A FINSLER SPACE WITH A SPECIAL METRICAL
CONNECTION

M. K. GUPTA AND ANIL K. GUPTA

Abstract. In this paper, we consider a Finsler space with a special metri-
cal connection and find necessary and sufficient condition when the (v)hv-
torsion tensor ∗P i

jk with respect to the special metrical connection coincides

with the (v)hv-torsion P i
jk with respect to general Finsler connection. The

relation in hv-curvature tensor, h-curvature tensor and v(h)-torsion tensor
with respect to these two connection are also obtained.

1. Introduction

Let F n = (Mn, L) be an n-dimensional Finsler space equipped with the
fundamental function L(x, y). The metric tensor, the angular metric tensor
and Cartan tensor are defined by

gij =
1

2
∂̇i∂̇jL

2, hij = L∂̇i∂̇jL and Cijk =
1

2
∂̇kgij

respectively, where ∂̇i = ∂/∂yi.
A Finsler connection is a triad FΓ = (Γi

jk, N
i
j , C

i
jk), where Γi

jk are connec-

tion coefficients of h-connection, N i
j are connection coefficients of non-linear

connection and Ci
jk are connection coefficients of v-connection. For a given

connection, the h- and v-covariant derivatives of any vector X i are given by

X i
|k = δkX

i +XrΓi
rk,

and

X i|k = ∂̇kX
i +XrCi

rk,

where δk = ∂k −N r
k ∂̇r and ∂k =

∂
∂xk .
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In 2006, H. S. Park et.al. [4] defined a new non-linear connection N
i

j with

the help of given non-linear connection N i
j for an (α, β)-metric as

(1.1) N
i

j = N i
j +∇jL

yi

L
,

where ‘∇j’ denotes the covariant derivative with respect to the associated
Riemannian connection.

In 2008, H. G. Nagaraja [3] defined a new non-linear connection ∗N i
j with

the help of given non-linear connection for Randers space as

(1.2) ∗N i
j = N i

j +
L|jy

i

L
,

where ‘|j’ denote the covariant derivative with respect to Finsler connection
FΓ, and find a new Finsler connection ∗FΓ = (Γi

jk,
∗ N i

j , C
i
jk).

In this paper, we consider a Finsler space F n admitting the Finsler connec-
tion ∗FΓ and we find a relation between v(hv)-torsion tensors with respect to
these two Finsler connection connections FΓ and ∗FΓ. We obtain necessary
and sufficient condition that two (v)hv-torsions coincides. We also find rela-
tion in hv-curvature tensor, h-curvature tensor and v(h) torsion tensor with
respect to these two Finsler connections.

The Terminology and notion are referred to [2, 5].

2. A special metrical connection

Let F n = (Mn, L) be an n-dimensional Finsler space and FΓ = (Γi
jk, N

i
j , C

i
jk)

be a Finsler connection. Let the Finsler space F n = (Mn, L) admits a new
Finsler connection ∗FΓ = (∗Γi

jk,
∗N i

j , C
i
jk), which is h(h)-torsion free and non-

linear coefficients ∗N i
j are given by (1.4). Then we have

(2.1) ∗δk = ∂k −∗N r
k ∂̇r = ∂k −N r

k ∂̇r −
L|ky

r

L
∂̇r = δk −

L|ky
r

L
∂̇r.

The h-covariant derivative of L with respect to ∗FΓ is given by

L∗|k =
∗δkL = δkL−

L|ky
r

L
∂̇rL = δkL− L|k = 0.(2.2)

Therefore the Finsler connection ∗FΓ is h-metrical. Since ∗FΓ is h-metrical
and h(h)- torsion ∗T i

jk is zero, the linear connection coefficients ∗Γi
jk of ∗FΓ

are given in [1] by

(2.3) Γi
jk = girΓjrk =

1

2
gir[δjgrk + δkgrj − δrgjk].

Using (2.1) and (∂̇jgik)y
j = 0 in (2.3), we have

(2.4) ∗Γi
jk = Γi

jk.

Thus, the new connection ∗FΓ = (∗Γi
jk,

∗N i
j , C

i
jk) reduces to

∗FΓ = (Γi
jk,

∗N i
j , C

i
jk).
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The (v)hv-torsion tensor. The (v)hv-torsion tensor P i
jk of a Finsler space

with respect to connection FΓ is defined by

P i
jk = ∂̇kN

i
j − Γi

jk.

Therefore the (v)hv-torsion tensor ∗P i
jk of a Finsler space with respect to the

connection ∗FΓ is given by

∗P i
jk = ∂̇∗

kN
i
j −∗Γi

jk.

Using (1.2) and (2.4), we get

(2.5) ∗P i
jk = P i

jk + lk|jl
i + L|j

hi
k

L
.

Let us suppose ∗P i
jk = P i

jk. Then equation (2.5) implies that lk|jl
i+L|j

hi
k

L
= 0.

Transvecting by yi and using hi
kyi = 0, we get Llk|j = 0, which gives lk|j = 0.

Conversely, let lk|j = 0. Also let us assume that deflection tensor Di
j for the

Finsler connection FΓ is zero, i.e. Di
j = 0. Then we get yi|j = 0. Again lk|j = 0

and yi|j = 0, implies that L|j = 0, and hence equation (2.5) yields ∗P i
jk = P i

jk.
Thus, we have:

Theorem 2.1. Let the Finsler space F n admits a Finsler connection FΓ with
zero deflection tensor and a Finsler connection ∗FΓ. Then ∗P i

jk = P i
jk if and

only if lk|j = 0.

Rephrasing, the theorem concludes that (v)hv-torsion tensors with respect
to Finsler connections FΓ and ∗FΓ are equal if and only if covariant differen-
tiation of directional derivative of Fundamental metric function L vanishes.

The hv-curvature tensor. The hv-curvature tensor P i
hjk of a Finsler space

with respect to connection FΓ is defined by

P i
hjk = ∂̇kΓ

i
hj − Ci

hk|j + Ci
hmP

m
jk .

Therefore the hv-torsion tensor ∗P i
jk of a Finsler space with respect to connec-

tion ∗FΓ is given by

∗P i
hjk = ∂̇∗

kΓ
i
hj − Ci

hk|j + Ci
hm

∗Pm
jk.

Using (2.4) and (2.5) we get

∗P i
hjk = P i

hjk + Ci
hmh

m
k

L|j

L
.(2.6)

Thus, we have:

Theorem 2.2. Let the Finsler space F n admits the Finsler connections FΓ
and ∗FΓ. Then expression for ∗P i

hjk is given by (2.6).
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Let us suppose that ∗P i
hjk = P i

hjk. Then equation (2.6) implies that

Ci
hmh

m
k

L|j

L
= 0,

which gives Ci
hm = 0, i.e. the space is Riemannian. Thus, we have:

Theorem 2.3. If hv-curvature tensor with respect to Finsler connections FΓ
and ∗FΓ coincides, then the space will be Riemannian.

The v(h)-torsion tensor. The v(h)-torsion tensor Ri
jk of a Finsler space with

respect to connection FΓ is defined by

Ri
jk = δkN

i
j − δjN

i
k.

Therefore the v(h)-torsion tensor ∗Ri
jk of a Finsler space with respect to con-

nection ∗FΓ is given by
∗Ri

jk =
∗δk

∗N i
j − ∗δj

∗N i
k.

Using (1.2) and (2.1) and simplification gives us

(2.7) ∗Ri
jk = Ri

jk + [L|j|kl
i + L|jl

i
|k − L|kl

rlr|jl
i − j/k],

where −j/k denotes interchange of j and k and subtract the terms within the
bracket.

Theorem 2.4. Let the Finsler space F n admits the Finsler connections FΓ
and ∗FΓ. Then expression for ∗Ri

jk is given by (2.7).

Equation (2.7) can be re-written as

(2.8) ∗Ri
jk = Ri

jk + [(L|j|k −L|k|j)l
i +L|j

yi|k
L

−L|k
yi|j
L

+L|k
yr|j
L
lrli −L|j

yr|k
L
lrli].

Let us assume that deflection tensor Di
j for the Finsler connection FΓ is zero

i.e. Di
j = 0. Then we get yi|j = 0 and then equation (2.8) becomes

(2.9) ∗Ri
jk = Ri

jk + (L|j|k − L|k|j)l
i.

Thus, we have:

Corollary 1. Let the Finsler space F n admits the Finsler connection FΓ with
zero deflection tensor and a Finsler connection ∗FΓ. Then v(h)-torsion tensor
∗Ri

jk for the connection ∗FΓ is given by (2.9).

The h-curvature tensor. The h-curvature tensor Ri
hjk of a Finsler space

with respect to connection FΓ is defined by

Ri
hjk = Ci

hmR
m
jk + δkΓ

i
hj + Γm

hjΓ
i
mk − δjΓ

i
hk − Γm

hkΓ
i
mj.

Therefore the h-curvature tensor ∗Ri
jk of a Finsler space with respect to con-

nection ∗FΓ is given by
∗Ri

hjk = Ci
hm

∗Rm
jk +

∗δkΓ
i
hj + Γm

hjΓ
i
mk − ∗δjΓ

i
hk − Γm

hkΓ
i
mj.
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Using (2.1) and (2.7) and simplifying, we obtain

∗Ri
hjk = Ri

hjk − (L|kl
r∂̇rΓ

i
hj − L|jl

r∂̇rΓ
i
hk) + Ci

hm[L|jl
m
|k − L|kl

m
|j ].(2.10)

Thus, we have:

Theorem 2.5. Let the Finsler space F n admits Finsler connections FΓ and
∗FΓ. Then expression for ∗Ri

hjk is given by (2.10).

Equation (2.10) can be re-written as

(2.11) ∗Ri
hjk = Ri

hjk − L|kl
r∂̇rΓ

i
hj + L|jl

r∂̇rΓ
i
hk + Ci

hm[L|j
ym|k
L

− L|k
ym|j
L

].

Also let us assume that deflection tensor Di
j for the Finsler connection FΓ is

zero, i.e. Di
j = 0. Then we get yi|j = 0 and the equation (2.11) yields

(2.12) ∗Ri
hjk = Ri

hjk − (L|kl
r∂̇rΓ

i
hj) + (L|jl

r∂̇rΓ
i
hk).

Thus, we have:

Corollary 2. Let the Finsler space F n admits the Finsler connections FΓ with
deflection zero and ∗FΓ. Then expression for ∗Ri

hjk is given by (2.12).
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