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ON A FINSLER SPACE WITH A SPECIAL METRICAL
CONNECTION

M. K. GUPTA AND ANIL K. GUPTA

ABSTRACT. In this paper, we consider a Finsler space with a special metri-
cal connection and find necessary and sufficient condition when the (v)hv-
torsion tensor *P;k with respect to the special metrical connection coincides
with the (v)hv-torsion P}k with respect to general Finsler connection. The
relation in hv-curvature tensor, h-curvature tensor and v(h)-torsion tensor
with respect to these two connection are also obtained.

1. INTRODUCTION

Let F™ = (M™, L) be an n-dimensional Finsler space equipped with the
fundamental function L(z,y). The metric tensor, the angular metric tensor
and Cartan tensor are defined by

9ij = 531'8]'[/2, hij = L@Z@L and Cijk = éﬁkg”

respectively, where d; = 9/0y'.

A Finsler connection is a triad FT' = (T, N7, C%,), where T, are connec-
tion coefficients of h-connection, N} are connection coefficients of non-linear
connection and C’;k are connection coefficients of v-connection. For a given
connection, the h- and v-covariant derivatives of any vector X* are given by

Xiy = 8.X 4 X7Ty.
and
X'y = X"+ X"C}y,
where 6, = O, — N};& and 0y = %.
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In 2006, H. S. Park et.al. [4] defined a new non-linear connection N; with
the help of given non-linear connection N JZ for an (a, B)-metric as

(1.1) N, :N;+VijZ,
where ‘V;’ denotes the covariant derivative with respect to the associated
Riemannian connection.

In 2008, H. G. Nagaraja [3] defined a new non-linear connection *N ]’ with
the help of given non-linear connection for Randers space as

A o Lyt
(1:2) "N = NG+
where ‘;” denote the covariant derivative with respect to Finsler connection

FT, and find a new Finsler connection *FT' = ('}, * N7, C%,).

In this paper, we consider a Finsler space F" admlttlng the Finsler connec-
tion *FT" and we find a relation between v(hv)-torsion tensors with respect to
these two Finsler connection connections FT' and *FT'. We obtain necessary
and sufficient condition that two (v)hv-torsions coincides. We also find rela-
tion in hv-curvature tensor, h-curvature tensor and v(h) torsion tensor with
respect to these two Finsler connections.

The Terminology and notion are referred to [2, 5].

2. A SPECIAL METRICAL CONNECTION

Let F* = (M", L) be an n-dimensional Finsler space and FT' = (I}, N}, C; )
be a Finsler connection. Let the Finsler space F™ = (M", L) admits a neW
Finsler connection *FT' = (*I'},;* N}, C%,), which is h(h)-torsion free and non-
linear coefficients * N7 are given by (1.4). Then we have

. . L Liy” .
(21) 6y =0y —*NI, = &), — NIO, — "“y S G, = 5, — 'Zy b,
The h-covariant derivative of L with respect to *FT' is given by

L|ky

(2.2) Loy =*6: L = 6L — =229, L = 6, L — Ly, = 0.

Therefore the Finsler connection *F F is h-metrical. Since *FT' is h-metrical
and h(h)- torsion *Tj, is zero, the linear connection coefficients *T"%; of *FT
are given in [1] by

I ir 1 ir
(2.3) Uiy =9"Tj = 59 0,97k + OkGrj — Orgjk]-
Using (2.1) and (d;g:)y’ = 0 in (2.3), we have

Thus, the new connection *FI" = (*T%,,* N7, C%,) reduces to * FI" = (I, ,* N7, Cl.).
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The (v)hv-torsion tensor. The (v)hv-torsion tensor Pj of a Finsler space
with respect to connection FT' is defined by
P}y, = 0N} — T

Therefore the (v)hv-torsion tensor * Py, of a Finsler space with respect to the
connection *FT' is given by

P = G, T
Using (1.2) and (2.4), we get

7

Let us suppose *P;k = P;k Then equation (2.5) implies that ly;I" + Llj% =0.
Transvecting by y; and using hyy; = 0, we get Ll; = 0, which gives [;; = 0.

Conversely, let ly; = 0. Also let us assume that deflection tensor D; for the
Finsler connection FT' is zero, i.e. D} = 0. Then we get yj; = 0. Again l; = 0
and yfj = 0, implies that L); = 0, and hence equation (2.5) yields *P}, = Pj,.
Thus, we have:

Theorem 2.1. Let the Finsler space F™ admits a Finsler connection FI' with
zero deflection tensor and a Finsler connection *FT. Then * Pl = Pl if and
only if ly; = 0.

Rephrasing, the theorem concludes that (v)hv-torsion tensors with respect
to Finsler connections FT" and *FT are equal if and only if covariant differen-
tiation of directional derivative of Fundamental metric function L vanishes.

The hv-curvature tensor. The hv-curvature tensor Pj ;. of a Finsler space
with respect to connection FT' is defined by

Piijk = C%F?;j - Olizk\j + C;Lm‘P;Z

Therefore the hv-torsion tensor *P;k of a Finsler space with respect to connec-
tion *FT is given by

*Plijk = 0; ;zj - O;tk|j + Gt jis
Using (2.4) and (2.5) we get

, . , Ly;
(2.6) “Piji = Piyp+ Clnhit =
Thus, we have:

Theorem 2.2. Let the Finsler space F™ admits the Finsler connections FT
and *FT. Then expression for *Pj,, is given by (2.6).



138 M. K. GUPTA AND A. K. GUPTA

Let us suppose that *P;;, = P .. Then equation (2.6) implies that
. Ly
Chmhi' = =0,
which gives C} =0, i.e. the space is Riemannian. Thus, we have:

Theorem 2.3. If hv-curvature tensor with respect to Finsler connections FT'
and *FT' coincides, then the space will be Riemannian.

The v(h)-torsion tensor. The v(h)-torsion tensor R, of a Finsler space with
respect to connection FT' is defined by

R, = 8,N! — 6;N}.

J
Therefore the v(h)-torsion tensor *R;-k of a Finsler space with respect to con-
nection *FT is given by
“Ri, = 6N =8N
Using (1.2) and (2.1) and simplification gives us
(2.7) "Ry, = Rjy+ (L’ + Lyl — Ll lgl" = /K],

J

where —j/k denotes interchange of j and k and subtract the terms within the
bracket.

Theorem 2.4. Let the Finsler space F™ admits the Finsler connections FT
and *FT. Then expression for * R, is given by (2.7).

Equation (2.7) can be re-written as
i |Z y|J ylrj i y\k
(2.8) *Rjy = Riy + [(Lyjie — Liwgy)1 +L|jf — L L U0 = Ly
Let us assume that deflection tensor D} for the Finsler connection FT' is zero
i.e. Dj = 0. Then we get y/; = 0 and then equation (2.8) becomes

(2.9) "Ry = Rly + (Lijje — L)l

Thus, we have:

ZE ).

Corollary 1. Let the Finsler space F™ admits the Finsler connection FT' with
zero deflection tensor and a Finsler connection *FT'. Then v(h)-torsion tensor
"« for the connection *FT' is given by (2.9).

The h-curvature tensor. The h-curvature tensor Rj . of a Finsler space
with respect to connection FT' is defined by

Wik = Chm R+ 0,15 + Dl — 6,0, — Ty

Therefore the h-curvature tensor Rjk, of a Finsler space with respect to con-
nection *FT is given by
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Using (2.1) and (2.7) and simplifying, we obtain
(2.10) ' ij = R;ij - (L|lea‘TF;Lj - L|lea'7'F7}:“Lk> + C;:Lm[LUllTZ - lelm~
Thus, we have:

Theorem 2.5. Let the Finsler space F" admits Finsler connections FI' and

* 11

“FT. Then expression for *R} . is given by (2.10).

Equation (2.10) can be re-written as
Y Yy
kg, 2.
L eyl
Also let us assume that deflection tensor Dj» for the Finsler connection FT is
zero, i.e. D% = 0. Then we get y‘ij = 0 and the equation (2.11) yields
(2.12) "Rk = Rij — (Lipl"0:0%) + (Lj170,T),).

Thus, we have:

(2.11) "Ry, = Ry — Lyl 0,1}, + Lyl " 0,1 + ChlLy

Corollary 2. Let the Finsler space F™ admits the Finsler connections F1' with
deflection zero and *FT'. Then expression for *Rj . is given by (2.12).
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