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GRADIENT RICCI ALMOST SOLITONS IN SASAKIAN
MANIFOLD

NIRABHRA BASU AND ARINDAM BHATTACHARYYA

ABSTRACT. In this paper we have shown that if a Sasakian manifold satis-
fies Ricci gradient almost soliton then the potential function f can not be
constant.

1. INTRODUCTION

R. Hamilton introduced the concept of Ricci flow in [5]. Since then Ricci
flow has enriched the ways of the study of Riemannian manifolds, especially
for those manifolds with positive curvature. G. Perelman[8, 9] has made Ricci
flow more interesting to scientists with the excellence of his work in this field.
The Ricci flow equation is given by

% = —2Ric ¢
Ricci soliton emerges as the limit of the solutions of Ricci flow [6]. A solution
to the Ricci flow is called a Ricci soliton [4] if it moves only by a one-parameter
group of diffeomorphism and scaling. A Riemannian manifold (M, g) is called
Ricci soliton if there exists a smooth vector field X, such that the Ricci tensor
satisfies the following equation

1
(1.1) Ric+§£Xg = \g

for some constant A and Lx is the Lie-derivative.

Ricci soliton is called a gradient Ricci soliton if X = V f, for some smooth
function f on M. They are also natural generalizations of Einstein metrics.
Note that a soliton is called shirking, steady and expanding according as A >
0,A=0and A < 0. When A <0, all compact solitons are necessarily Einstein.
Chenxu He and Meng Zhu [7] have shown that if a Sasakian manifold satisfies
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the gradient Ricci soliton, then f is a constant function and the manifold is
an Einstein manifold.

Pigola and his co-researchers [10] have introduced a natural extension of the
concept of gradient Ricci soliton; the Ricci almost soliton. R. Sharma [11],
Barros [1, 2] did some significant research work on Ricci almost soliton. Pigola
[10] defined Ricci almost soliton equation as a Riemannian manifold (M, g)
satisfying the condition

2Ric+Lxg = 2\g

where X is a smooth function on M. For A constant, the equation (1.2) will
become the Ricci soliton equation (1.1). The Ricci almost soliton is said to be
shrinking, steady or expanding according to the fact that A is positive, zero or
negative respectively; otherwise it is said to be indefinite. If the vector field X
is gradient of a smooth function f, then we can replace the soliton vector field
X by Vf in the previous equation and (M, g, X, \) is called a gradient Ricci
almost soliton. The equation of gradient Ricci almost soliton is given below.

(1.2) Ric +V(Vf) = Ag

where A is a smooth function.
We have studied the nature of the function f in a Sasakian manifold which
satisfies the gradient Ricci almost soliton equation.

2. PRELIMINARIES

A Sasakian manifold (M?" ™! g, & n; ¢) is a contact manifold on which there
exists a unit Killing vector field &, n is the dual one-form of € and ¢ is a (1,1)
tensor defined by ¢(Y') = Vy £ [3]. The metric (M, g) is called Sasakian if and
only if

(Vx9)Y =g(X,Y)o —n(Y)X
R(X,Y)E =n(Y)X —n(z)Y
S(¢X,¢Y) = 5(X,Y)
R(Y,§)Z = —g(Y, Z)§ + 9(Z,§)Y
for any vector fields Y, Z € TM.

Let D C T'M be the distribution defined by n(Y) = ¢(Y,¢). Then D is
nowhere integrable as n is a contact 1-form, Science £ is a unit Killing vector
field, we have ¢(Y) = Vy& € D, forany Y € TM.

Now R(Y,§,Z,Y) = g(R(Y,§)Z,)Y) = —g(Y, Z)g(&,Y) + 9(Z,£)g(Y,Y).
Using n(Y) = g(§,Y) = 0; we get

R(Y.§2,Y) = g(Z,Y]"
If we take Y = ¢; and summing over ¢, we have

(2.1) Ric(¢, Z) = 2mg(&, Z).

Now we shall prove the main result.
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3. RESULT

Theorem 1. If (M, g) is a Sasakian manifold satisfies gradient Ricci almost
soliton equation, then the smooth function f of the gradient Ricci almost soliton
is neither a constant nor V f is perpendicular to the vector field Y € D, where
D C T'M be the distribution and X is the nonzero function of the gradient Ricci
almost soliton.

Proof. Let us start with L£¢(L£xg) = 0 which implies
(3.1) R(X,§.6Y) 4+ Vyg(VeX,§) + g(VeVe X, Y) = 0.
Now the Ricci almost soliton equation is
Using (2.1) we get
implies
Xg(&,W) = g(Lx&, W) — g(& LxW) = 2(A = 2m)g(&, W)
Science (Vxg)(&, W) = 0; we have
g(VeX, W) + g(§, Vi X) = 2(A = 2m)g(§, W).
Now if we put W = &, we get
(3.2) 9(VeX, &) = (A —2m)g(&,§)
Now from (3.1), we get
R(X,8,&Y) + Vyg(VeX,§) + 9(VeVe,Y) =0
ie.
(3.3) = g(X,Y)+Vy(A=2m) + g(VeVeXY) = 0.
For gradient almost soliton we put Vf for X in (3.3), where f is a smooth
function, we have
(34) g(Vf, Y) + Vy(/\ — QTTL) + g(V§V5Vf, Y) = 0.
From (3.2), we get Ve X = (A —2m)&; i.e VeV = (A —2m)E. Putting this in
(3.4), we get
gV YY)+ VyA+g(VeA§,Y) =0
gVEY)+ YA+ g(VeAE,Y) =0.
Putting V¢(A) = (EN)€ in the previous equation we get
gVEY)+ YA+ (EN)g(&Y) =0
=g(VfY)=-Y\
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So, we can conclude that f is neither a constant nor V f is perpendicular to
Y € D for the nonzero function \. ([l
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