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33 (2017), 215–220
www.emis.de/journals

ISSN 1786-0091

ON OSCILLATING SOLUTIONS OF DIFFERENTIAL
EQUATIONS OF FIRST ORDER WITH RETARDED

ARGUMENT WITH EXPONENTIAL NONLINEARITY

MIRONOVA YU. N.

Abstract. We obtain some estimations for solutions of nonlinear delay
differential equation.

In this work, we study the behavior of oscillating solutions of differential
equations of the first order lag with a power-law nonlinearity. The abundance
of applications is stimulating a rapid development of the theory of differential
equations with deviating argument. The solutions of such equations have spe-
cial properties which do not have corresponding differential equations without
deviating argument [6], [7], [3], [4], [5], [1], [2].

It is shown that if the value of the Φ0 = sup
(−∞,A]

|ϕ(x)|, where ϕ(x) — initial

function, A — the starting point, small enough, then the oscillating solutions
of the considered equation is limited, and when exponent α > 1 are dampted,
if kernel r(x, s) does not decrease on s. Thus, the greater the delay ∆0, the
less Φ0.

Considers the equation

(1) y′(x) =

∫ ∞
0

yα(x− s)dr(x, s) (A 6 x <∞),

where the number α > 0, (−1)α = −1. The integration is on s for a fixed x, the
integral is understood in sense of Stieltjes. The kernel r(x, s) is defined when
x ∈ [A,∞), s ∈ [0,∞) and ensures the existence and uniqueness of the solution
y(x) of the equation (1) on [A,∞) with the initial condition y(x) = ϕ(x)
(−∞, A], where ϕ(x) — continuous on (−∞, A] function (we use description,
introduced in [6, § 6]). So, for example, if the kernel r(x, s) satisfies the
conditions imposed on the kernels in [6, pp. 12, 60–63].

For each fixed x ∈ [A,∞) function r(x, s) is constant for sufficiently large s.
The value of r(x, s) under such s define as r(x,∞).
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Supremum of those s, for which r(x, s) 6= r(x,∞), define as ∆(x). Let

∆0 = sup
[A,∞)

∆(x), M0 = sup
[A,∞)

∞∨
s=0

r(x, s),

Φ0 = sup
(−∞,A]

|ϕ(x)| <∞, 0 < ∆0 <∞, 0 < M0 <∞.

If y(x) — oscillating solution of equation (1), the kernel r(x, s) not decreasing
on the variable s for each fixed x and (−1)α = −1, then on any interval of
length ∆0 it at least once changes its sign.

Theorem 1. Let the kernel r(x, s) is a non-decreasing function on s for each
fixed x, α > 1, ∆0M0Φα−1

0 6 1 y(x) — the oscillating solution of the equation
(1). Then

(2) |y(x)| 6
(

∆0M0

2

) 1
1−α
((

∆0M0

2

) 1
α−1

Φ0

)α
x−A−∆0

2∆0

(A 6 x <∞).

Proof. Define A0 = A−∆0, Ak = A+(2k−1)∆0, lk = [Ak−1, Ak] (k = 1, 2, . . . ).
Pre-prove that max

[A,A+∆0]
|y(x)| 6 Φ0.

If ϕ(A) = 0, then

max
[A,A+∆0]

|y(x)| 6 ∆0M0

2
Φα

0 < Φ0.

Indeed, let [a, b], (a > A) — the first half-cycle of the solution y(x), located to
the right of point A, that is y(a) = y(b) = 0, y(x) 6= 0 (a < x < b).

Then b−a < ∆0. For definiteness, we assume it is negative, that is y(x) < 0
(a < x < b). Move the start point to the point a and denote by T any point
of (a, b), in which y(x) takes the least value on [a, b].

From equation (1) we have

y(T ) = y(T )−y(b) = (T−b)y′(x1) = (T−b)
∞∫

0

yα(x1−s)dr(x1, s) < 0 (T < x1 < b),

from which
∞∫

0

yα(x1 − s)dr(x1, s) > 0.

As [a, b] (a > A) — the first half-cycle of the solution y(x), then y(x) ≡ 0
(A 6 x 6 a). And as y(x) < 0 (a < x < b), then |y(T )| 6 (b− T )Φα

0M0. So

b− T > |y(T )|
Φα

0M0

.

Similarly get

T − a > |y(T )|
Φα

0M0

.
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In the end we have

∆0 > b− a = (b− T ) + (T − a) >
2|y(T )|
Φα

0M0

,

that is

|y(T )| < ∆0M0

2
Φα

0 < Φ0.

Let ϕ(A) 6= 0. For definiteness, put ϕ(A) < 0. Because on the interval
[A,A+ ∆0] there is at least one zero of solution y(x), let y(x) for the first time
becomes zero at [A,A + ∆0] at the point b. Then y(x) < 0 on the interval
[A, b).

Denote by T1 any point of [A, b), in which y(x) on [A, b] reaches the smallest
value. Then

|y(T1)| 6 (b− T1)Φα
0M0 6 ∆0M0Φα

0 6 Φ0.

Moving the start point to the point b, we have

max
[A,A+∆0]

|y(x)| 6 Φ0.

It follows that max
l1
|y(x)| 6 Φ0,

max
lk+1

|y(x)| 6 ∆0M0

2
max
lk
|yα(x)|, (k = 1, 2 . . . ).

The case ϕ(A) > 0 analyzed similarly.
For k = 1, 2, . . . we have

max
lk+1

|y(x)| 6
(

∆0M0

2

)1+α+···+αk−1

Φαk

0 =

(
∆0M0

2

)αk−1
α−1

Φαk

0 =

=

(
∆0M0

2

) 1
1−α
((

∆0M0

2

) 1
α−1

Φ0

)αk

.

From A+ (2k − 1)∆0 6 x 6 A+ (2k + 1)∆0 we find k > x−A−∆0

2∆0
. And as(

∆0M0

2

) 1
α−1

Φ0 < 1,

then

|y(x)| 6
(

∆0M0

2

) 1
1−α
((

∆0M0

2

) 1
α−1

Φ0

)α
x−A−∆0

2∆0

for A 6 x <∞. �

Thus, the oscillating solutions dampted, if α > 1, ∆0M0Φα−1
0 6 1.

Now let 0 < α < 1. In this case ∆0M0 < 2 it is possible to prove the
boundedness of the solution y(x) of equation (1) at [A,∞), if it changes its
sign on any interval of length ∆0. It should be emphasized that this property
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holds for non-monotonic kernel r(x, s), satisfying the conditions imposed on
the kernel in [1], § 1.

Theorem 2. Let 0 < α < 1, ϕ(A) = 0,

(3) ∆0M0 < 2

and the solution y(x) (A 6 x < B) changes its sign on any interval [a, a+∆0],
A 6 a 6 a+ ∆0, B − A > 2∆0. Then
1) max

[A,A+∆0]
|y(x)| 6 ∆0M0

2
Φα

0 < Φ0 when Φ0 > 1,

2) max
[A,A+∆0]

|y(x)| < ∆0M0

2
when Φ0 < 1.

Proof. If y(x) ≡ 0 (A 6 x 6 A+ ∆0), the theorem is obvious.
Let x = T (A < T 6 A + ∆0) — any point of the interval [A,A + ∆0],

in which |y(x)| reaches the highest value at [A,A + ∆0]. Let B1 < T and
B2 > T — coming to the point T zeros of solution y(x). Such zeroes exist by
the condition of the theorem, and B1 > A, T < B2 6 B1 + ∆0.

From equation (1) we find that

|y(T )| 6 (T −B1) max
[A−∆0,B2]

|yα(x)|M0.

Similarly
|y(T )| 6 (B2 − T ) max

[A−∆0,B2]
|yα(x)|M0.

Since B2 −B1 6 ∆0, then

(4) ∆0 > (B2 − T ) + (T −B1) >
2|y(T )|

M0 max
[A−∆0,B2]

|yα(x)|
.

Here two cases are possible.
1) max

[A−∆0,B2]
|y(x)| > 1. Then max

[A−∆0,B2]
|yα(x)| 6 max

[A−∆0,B2]
|y(x)| and from (4)

we find

∆0 >
2|y(T )|

M0 max
[A−∆0,B2]

|yα(x)|
>

2|y(T )|
M0 max

[A−∆0,B2]
|y(x)|

.

Hence

|y(T )| 6 ∆0M0

2
max

[A−∆0,B2]
|y(x)| < max

[A−∆0,B2]
|y(x)|.

At the point T the function |y(x)| reaches the highest value at [A,A + ∆0].
Since max

[A−∆0,A]
|y(x)| = Φ0, |y(T )| < max

[A−∆0,B2]
|y(x)|, then max

[A−∆0,B2]
|y(x)| = Φ0.

Substituting this in (4), we obtain the first assertion of the theorem.
2) max

[A−∆0,B2]
|y(x)| < 1. From (4) we immediately have

|y(T )| 6 ∆0M0

2
max

[A−∆0,B2]
|yα(x)| < ∆0M0

2
.

�
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Theorem 2 allows to get the following conclusions. If a — zero of solution
y(x) and max

[a−∆0,a]
|y(x)| > 1, then realization of the conditions of the theorem 2

the solution y(x) satisfies the inequality

max
[a,a+∆0]

|y(x)| < max
[a−∆0,a]

|y(x)|.

This inequality can be disrupted only when max
[a−∆0,a]

|y(x)| < 1, but then the

solution y(x) never comes out of the band, limited straight lines y = ±∆0M0

2
.

If the kernel r(x, s) is a monotonic function of s for each fixed x ∈ [A,∞),
the condition (3) is it possible to allow the equal sign, the assertion 1) of
theorem 2 is strict.

In theorems 1 and 2 we not consider the case α = 1. The corresponding
equation was investigated in detail in [1]. In particular it is proved that if
∆0M0 < 2 and the solution y(x) changes its sign on any interval of length ∆0,
when α = 1 a true evaluation

|y(x)| 6
(

2

∆0M0

) 1
2

sup
[−∞,A+∆0]

|y(x)|
(

∆0M0

2

)x−A
2∆0

(A 6 x <∞).

Note that equation (1) with monotone kernel was considered in [3], and with
non-monotone kernel — in [4].
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