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Baryon octet and decuplet phenomenology in a three-flavor extended linear sigma

model
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Institute for Particle and Nuclear Physics, Wigner Research Center for Physics,
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We present an effective model, which is an extension of the usual linear sigma model, that con-
tains a low energy multiplet for every hadronic particle type. These multiplets are a scalar nonet,
a pseudoscalar nonet, a vector nonet, an axialvector nonet, a baryon octet and a baryon decuplet.
Tree level baryon masses and possible two body decuplet decays are calculated. The baryon masses
are generated through spontaneous symmetry breaking. The calculated quantities are used to de-
termine the model parameters through a multiparametric minimalization process, which compares
the calculated physical quantities with their experimental values. We found that the calculated
quantities are in good agreement with the experimental data.

PACS numbers: 12.39.Fe, 12.40.Yx, 14.20.Dn, 14.20.Jn

I. INTRODUCTION

The phase diagram of QCD, the theory of strong interaction, is a heavily studied field both theoretically (see e.g.
[1–10] and references therein) and experimentally (see e.g. [11–15] and references therein). Our aim is to develop a
model for that problem, which also reproduces the vacuum phenomenology.

QCD can be solved perturbatively only at very high energies. Although it is possible to solve QCD nonperturbatively
on the lattice, that is computationally demanding and not very well suited for instance for scattering problems, or
for high densities. We are therefore left with effective theories. The underlying principle in the construction of such
theories is that they share the same global symmetries as QCD [16].

For massless quarks (which is a very good approximation for u and d and less good for s quarks) the global symmetry
of QCD is U(Nf )R × U(Nf )L ≡ U(Nf)V × U(Nf )A, the so-called chiral symmetry (R stands for right-handed, L for
left-handed quark flavors, and Nf denotes the number of massless quark flavors). The U(1)A part of the symmetry is
broken by topological charges [17], while in the vacuum SU(3)A is spontaneously broken [18] due to the existence of
quark-antiquark condensates.

There are different ways in which the chiral symmetry of QCD can be realized. In the QCD Lagrangian, the
symmetry is linearly realized, while in the vacuum and at low energies, the symmetry is nonlinearly realized. Linear
realizations of chiral symmetry have the property that states are doubled. In nonlinear realizations [19], there can be
states without associated chiral partners. Around the phase transition the chiral partners are degenerate, so none of
them is negligible. Therefore, in order to investigate the mechanism of chiral symmetry restoration, which is one of
our final aims, effective theories with linearly realized chiral symmetry [20] are most appropriate.

The last version of our model [21] contained the scalar, pseudoscalar, vector- and axial-vector nonets of mesons.
That model described the vacuum phenomenology of mesons very well. In this paper we include the nucleon-octet
and the Delta-decuplet to extend the vacuum phenomenology for baryons as well. Other investigations concerning on
baryon phenomenology can be found for instance in [22–31].

Our paper is organized as follows. In Sec. II we describe our model with some of the details taken from [21] relegated
to App. A. Sec. III is dedicated to calculation of tree-level baryon masses and decay widths, while Sec. IV contains
our results of the fitting procedure. We conclude in Sec. V.
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II. THE MODEL

The model construction is based on the idea of inclusion of the lowest lying multiplets for every hadronic particle
type, where we assume that mesons are qq̄ and baryons are qqq states. This means that for mesons we included a
scalar, a pseudoscalar, a vector and an axialvector nonet, while for baryons an octet and a decuplet. Accordingly,
our Lagrangian consist of a mesonic and a baryonic part, the latter also includes the baryon-meson interaction terms,
L = Lmeson + Lbaryon, from which we already constructed and analyzed the meson part in [21], and it is presented
briefly in App. A.

The Lagrangian of the baryon sector is constructed as follows. In addition to the kinetic terms of the octet
and decuplet baryons we included such interaction terms with the lowest possible dimension, that either describe
decuplet decays into one octet baryon and one (pseudo)scalar – which are the physically relevant two-body decays of
the decuplet –, or such baryon-(pseudo)scalar interactions that generate octet/decuplet mass terms via spontaneous
symmetry breaking (SSB). The lowest possible dimension for the decuplet decay terms is four containing one vector-
spinor, one spinor, and one (pseudo)scalar field, and together with the kinetic terms are taken from the leading
order expansion of the nonlinear sigma model [19] (for more details see App. B). In case of the baryon-(pseudo)scalar
interaction terms (that can produce octet/decuplet mass terms) the lowest possible dimension is five, containing two
spinor and two (pseudo)scalar fields. Correspondingly, we included every possible SU(3)V invariants [32], which can
be constructed with the given number of fields (see e.g. App. C of [33]).

A. Lagrangian

The baryonic part of the Lagrangian reads

Lbaryon = Tr
[
B̄
(
iD/−M(8)

)
B
]

− Tr
{
∆̄µ ·

[(
iD/−M(10)

)
gµν − i (γµDν + γνDµ) + γµ

(
iD/+M(10)

)
γν

]
∆ν

}

+ C Tr

[

∆̄µ ·
(

− 1

f
(∂µ − ieAe

µ[T3,Φ])−
1

f
[Φ, Vµ] +Aµ

)

B

]

+ h. c.

− ξ1 Tr
(
B̄B

)
Tr

(
Φ†Φ

)
− ξ2 Tr

(
B̄{{Φ,Φ†}, B}

)
− ξ3 Tr

(
B̄[{Φ,Φ†}, B]

)

− ξ4
(
Tr

(
B̄Φ

)
Tr

(
Φ†B

)
+Tr

(
B̄Φ†)Tr (ΦB)

)
− ξ5 Tr

(
B̄{[Φ,Φ†], B}

)
(1)

− ξ6 Tr
(
B̄[[Φ,Φ†], B]

)
− ξ7

(
Tr

(
B̄Φ

)
Tr

(
Φ†B

)
− Tr

(
B̄Φ†)Tr (ΦB)

)

− ξ8
(
Tr

(
B̄ΦBΦ†)− Tr

(
B̄Φ†BΦ

))
+ χ1 Tr

(
∆̄ ·∆

)
Tr

(
Φ†Φ

)

+ χ2 Tr
(
(∆̄ ·∆){Φ,Φ†}

)
+ χ3 Tr

(
(∆̄ · Φ)(Φ† ·∆) + (∆̄ · Φ†)(Φ ·∆)

)

+ χ4 Tr
(
(∆̄ ·∆)[Φ,Φ†]

)
,

where B,∆µ,Φ, Vµ, Aµ, A
e
µ stands for the baryon octet, the baryon decuplet, the scalar-pseudoscalar meson octet, the

vectormeson octet, the axialvector meson octet and the electromagnetic field, respectively. M(8), M(10) are the bare
baryon octet and decuplet masses, f is related to the pion decay constant, while Ta denotes the SU(3) generators,
[ , ] and { , } denote commutator and anticommutator, respectively. Moreover, the covariant derivatives are defined
as

DµB = ∂µB + i[B, Vµ] +
1

f
{[Aµ,Φ], B} ,

Dµ∆
ijk
ν = ∂∆ijk

ν +

(
1

f
[Aµ,Φ]

i
l − iV i

µ l

)

∆ljk
ν +

(
1

f
[Aµ,Φ]

j
l − iV j

µ l

)

∆ilk
ν +

(
1

f
[Aµ,Φ]

k
l − iV k

µ l

)

∆ijl
ν ,

and we used the following dot notation:

(∆̄ ·∆)mk ≡ ∆̄ijk∆
ijm, (∆̄ · Φ)mk ≡ ∆̄ijkΦ

i
lǫ

jlm, (Φ ·∆)mk ≡ ∆ijmΦl
iǫjlm. (2)

The explicit forms of the baryon multiplets are as follows

B =
√
2

8∑

i=1

BaTa =






1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

−Ξ− Ξ0 − 2√
2
Λ0




 , (3)
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∆111
µ = ∆++

µ , ∆112
µ =

1√
3
∆+

µ , ∆122
µ =

1√
3
∆0

µ, ∆222
µ = ∆−

µ , (4)

∆113
µ =

1√
3
Σ⋆+

µ , ∆123
µ =

1√
6
Σ⋆0

µ , ∆223
µ =

1√
3
Σ⋆−

µ , (5)

∆133
µ =

1√
3
Ξ⋆0
µ , ∆233

µ =
1√
3
Ξ⋆−
µ , (6)

∆333
µ = Ω−

µ , (7)

while the explicit form of the scalar-pseudoscalar octet is

Φ ≡ ΦS +ΦP =

8∑

i=0

(Si + iPi)Ti =
1√
2






(σN+a0
0)+i(ηN+π0)√

2
a+0 + iπ+ K⋆+

0 + iK+

a−0 + iπ− (σN−a0
0)+i(ηN−π0)√

2
K⋆0

0 + iK0

K⋆−
0 + iK− K̄⋆0

0 + iK̄0 σS + iηS




 , (8)

and the remaining two multiplets can be found in App. A.
An important point here is that in the physical scalar sector of low energy QCD beside the scalar qq̄ octet included

in our model there are other states like glueballs and tetraquarks having similar or even lower mass than the qq̄ states,
which in principle can mix with their corresponding qq̄ partner. However the scalar tetraquarks, like f0(500) have
a much smaller mass then the diquark state with the same quantum number, thus we expect that their mixings are
small. The glueball f0 - which should have mass around 1.5 GeV - probably has a considerable mixing with the f0
states considered here (see the discussion in [21]), which should be investigated, but the properties of the scalar sector
are not included in the fitting procedure and are beyond the scope of this paper. On the other hand, the scalars have
no direct influence on the properties of the baryons considered here, because none of these baryons has large partial
decay widths into scalars and baryons [35], which means either their couplings are weak or the considered scalar mass
is too large. In both cases the contribution of the scalars to the self-energies of the baryons are small. Thus at first
glance a more precise description of the scalar sector is not essential in this discussion.

It is worth noted that the pseudoscalar (Pa), axialvector (Aµ
a) and baryon octet (Ba) fields are not physically

observable in their current form, since for example P1 is not observable, only the combination (P1− iP2)/
√
2, which is

π+. Thus for later calculation it is worth to transform the above fields into physically observable forms 1, as already
shown in their matrix form. This can be done with the following 8× 8 (in case of the baryon octet) and 9× 9 (in case
of the meson nonets) transformations as

Q(8) = diag

(
1√
2

(
1 −i
1 i

)

, 1,
1√
2

(
1 −i
1 i

)

,
1√
2

(
1 −i
1 i

)

, 1

)

,

Q(9) = diag

(

1,
1√
2

(
1 −i
1 i

)

, 1,
1√
2

(
1 −i
1 i

)

,
1√
2

(
1 −i
1 i

)

, 1

)

, (9)

with which the fields can be written as

PA = Q
(9)
AaPa =

(
P0, π

+, π−, π0,K+,K−,K0, K̄0, P8

)
,

Aµ
A = Q

(9)
AaA

µ
a =

(

A0, a
+
1 , a

−
1 , a

0
1,K

+
1 ,K−

1 ,K0
1 , K̄1

0
, A8

)µ

, (10)

BA = Q
(8)
AaBa =

(
Σ+,Σ−,Σ0, p,−Ξ−, n,Ξ0,Λ8

)
.

As one can see from the Lagrangian, the baryonic sector has 16 – yet unknown – parameters: two bare masses
M(8) and M(10); eight octet baryon-(pseudo)scalar couplings ξ1, . . . , ξ8; four decuplet baryon-(pseudo)scalar couplings
χ1, . . . , χ4; one ∆-decay constant C, and the parameter f . However, as one shall see in the next chapter not all the
16 parameters are independent or some of them not even appear in the formulas of the physical quantities considered
here.

1 In the 0 − 8 sector of the (pseudo)scalars, where there is particle mixing, another orthogonal transformation is needed in order to
transform them into physically observable particles
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III. BARYON MASSES AND DECUPLET DECAYS

After the Lagrangian is fixed, as a usual procedure we require non-zero vacuum expectation values for certain scalar
fields, namely for the non strange σN and strange σS scalar fields2, which corresponds to the isospin symmetric case
(see e.g. [34]). The vacuum expectation values will be denoted by

φN ≡< σN >, φS ≡< σS > . (11)

Than one should shift the σN , σS scalar fields by their expectation values in the Lagrangian in order to get the
tree-level masses and decay widths around the true vacuum,

σN → σN + φN , σS → σS + φS . (12)

It is easy to see that the terms proportional to ξ5, ξ6, χ4 and ξ7, ξ8 do not contribute to the masses. In case of the
first three terms it is due to the fact that [T0, T8] = 0, while in case of the second two terms it is due to the scalar
octet is hermitian (ΦS = Φ†

S). Moreover, in the expression of the baryon octet masses ξ1 and M(8), while in case of
the decuplet baryon masses χ1 and M(10) always appear in the same combination, thus without loss of generality we
can set ξ1 = χ1 = 0. Although, in scattering processes both ξ1 and χ1 would be needed, but these processes are not
considered here.

After some straightforward calculation the terms quadratic in the fields B and ∆µ can be determined, and conse-
quently the three-level baryon masses are found to be

mp = mn = M(8) +
1

2
ξ2(Φ

2
N + 2Φ2

S) +
1

2
ξ3(Φ

2
N − 2Φ2

S), (13)

mΞ = M(8) +
1

2
ξ2(Φ

2
N + 2Φ2

S)−
1

2
ξ3(Φ

2
N − 2Φ2

S), (14)

mΣ = M(8) + ξ2Φ
2
N , (15)

mΛ = M(8) +
1

3
ξ2(Φ

2
N + 4Φ2

S) +
1

3
ξ4(ΦN −

√
2ΦS)

2, (16)

m∆ = M(10) +
1

2
χ2Φ

2
N , (17)

mΣ⋆ = M(10) +
1

3
χ2(Φ

2
N +Φ2

S) +
1

6
χ3(ΦN −

√
2ΦS)

2, (18)

mΞ⋆ = M(10) +
1

6
χ2(Φ

2
N + 4Φ2

S) +
1

6
χ3(ΦN −

√
2ΦS)

2, (19)

mΩ = M(10) + χ2Φ
2
S . (20)

A. Decay widths

According to the PDG [35], one can consider four physically allowed two-body decays of the decuplet baryons.
These are the following

∆ → pπ, Σ⋆ → Λπ, Ξ⋆ → Ξπ, Σ⋆ → Σπ. (21)

After applying the field shifts Eq. (12) in the C-term of the Lagrangian Eq. (1) the corresponding interaction part is
given by

L∆→BP = −C

f
Gab

ijk∆̄
µ
ijk(∂µPa)Bb + C ·Gab

ijk∆̄
µ
ijkAa µBb, (22)

where the Gab
ijk coupling constant reads as

Gab
ijk ≡

√
2

4
ǫilm(λa)jl(λ

b)km. (23)

2 We use the so-called non strange–strange basis defined in Eq. (A5).



5

Looking at Eq. (22) one could ask why the second term present, since it does not contain pseudoscalars, however all
of the decays in Eq. (21) does. Actually, due to a mixing between the (axial)vectors and the (pseudo)scalars in the
meson sector a redefinition of certain (axial)vector fields is needed (see App. A for details), which will bring in the
(pseudo)scalars into the second term (see Eq. (A8)).

Using the Eq. (9) transformations and the field redefinitions Eq. (A8) in Eq. (22) the resulting Lagrangian is

L∆→BP =
G√
2
∆−−

µ (∂µπ+)p− G

2
Σ⋆−

µ (∂µπ+)Λ0

− G

2
√
3
Σ⋆−

µ

[
(∂µπ+)Σ0 + (∂µπ0)Σ+

]
+

G

2
√
3
Ξ⋆−
µ

[
(∂µπ+)Ξ− + (∂µπ0)Ξ0

]
,

(24)

with

G = CZπ

(

g1wa1
− i

f

)

,

where Zπ and wa1
are defined in App. A. Moreover, terms including the same decaying particle with different charges

are not written out, since they would result in the same decay widths. According to Eq. (C7) the decay width can be
calculated as

Γ∆→PB = I∆→PB
k3

12m∆
(mB + EB)|G(∆→PB)|2, (25)

where k and EB are given by Eq. (C8) and Eq. (C9), while the isospin factor I∆→PB is one for ∆++ → pπ+ and

Σ⋆+ → Λπ+, two for Σ⋆+ → Σ
0
+π

+

0 , since there are two channels Σ+π0 and Σ0π+, and three for Ξ⋆ 0 → Ξ
−

0π
+

0 , where
there is one charged Ξ−π+ and one neutral channel Ξ0π0. Accordingly, for the decays of Eq. (21), the decay widths
are given by

Γ∆→πp =
k3p

24m∆
(mp + Ep)G

2, ΓΣ⋆→πΛ =
k3Λ

48mΣ⋆

(mΛ + EΛ)G
2,

ΓΞ⋆→πΞ =
k3Ξ

48mΞ⋆

(mΞ + EΞ)G
2, ΓΣ⋆→πΣ =

k3Σ
72mΣ⋆

(mΣ + EΣ)G
2, (26)

with

G2 = C2Z2
π

(

g21w
2
a1

+
1

f2

)

.

IV. χ2-FIT AND RESULTS

In the fitting procedure we used a χ2 minimalization method to determine the parameters of the baryon Lagrangian
as we did for the meson Lagrangian in [21] from where we took the parameters of the mesonic sector. Our aim was to
find a parameter set with which the calculated values of the observables deviate from their experimental values only
within a given error. Since, isospin breaking is neglected, our calculation is at tree-level and our model is an effective
model of QCD, not the QCD itself, we do not expect that it reproduces all the observables perfectly. Accordingly, we
artificially set the errors to 5% for the masses and to 10% for the decay width, since they have a larger uncertainty.

In the baryon Lagrangian there are 8 unknown parameters, namely, M(8), ξ2, ξ3 and ξ4 are describing the octet

masses, M(10), χ2 and χ3 the decuplet masses, while G ≡ CZπ

√

g21w
2
a1

+ 1/f2 the decay widths. In order to determine

these parameters we define the χ2 as

χ2(x1, . . . , xN ) =
M∑

i=1

[
Qi(x1, . . . , xN )−Qexp

i

δQi

]2

, (27)

where x1, . . . , xN are the unknown parameters, the M observables Qi(x1, . . . , xN ) are calculated from the model,
while Qexp

i are taken from the PDG [35] with the chosen error δQi as discussed above. For the multiparametric
minimalization of χ2(x1, . . . , xN ) the MINUIT [36] code was used. In this particular case we have 8 parameters to
fit for the 12 observables. The resulting parameters are given in Table I along with their theoretical errors, which
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Parameter Value

M(8) [GeV] 1.92± 0.05

ξ2 [GeV−1] −27.01± 1.57

ξ3 [GeV−1] 79.35 ± 16.70

ξ4 [GeV−1] 139.33 ± 1063.42

M(10) [GeV] −1.27± 0.03

χ2 [GeV−1] 184.42 ± 2.13

χ3 [GeV−1] 213.00 ± 4387.18

G [GeV−1] 9.88± 2.16

TABLE I: Baryon parameters and their theoretical errors

Observable Fit [MeV] Experiment [MeV]

mp 939.0 ± 59.6 939.0 ± 47.0

mΛ 1116.0 ± 67.0 1116.0 ± 55.8

mΣ 1193.0 ± 69.3 1193.0 ± 59.7

mΞ 1318.0 ± 75.3 1318.0 ± 65.9

m∆ 1231.9 ± 58.5 1232.0 ± 61.6

mΣ⋆ 1385.5 ± 50.6 1385.0 ± 69.3

mΞ⋆ 1532.3 ± 51.1 1533.0 ± 76.7

mΩ 1672.3 ± 78.3 1672.0 ± 83.6

Γ∆→pπ 72.4± 3.5 110.0 ± 11.0

ΓΣ⋆→Λπ 29.1± 1.4 32.0 ± 3.2

ΓΣ⋆→Σπ 3.9± 0.2 4.3 ± 0.4

ΓΞ⋆→Ξπ 12.0± 0.6 9.5 ± 1.0

TABLE II: Calculated and experimental values of the observables along with their theoretical and experimental errors

characterize how sensitive quantities are to the change of the given variable. For instance the large error of χ3 in
Table I means that χ3 should be changed by 4387.18 in order to change χ2 by one. The values of the observables along
with their experimental values and errors can be found in Table II. It is important to note that all the parameters
appeared already in the meson sector are fixed during the fit and their values are presented in Table III. It can
be seen from Table II that the octet masses can be described perfectly, which is not so surprising, since we have
four parameters to fit for four quantity and all the equations are linear in the parameters. It is more interesting
that the decuplet masses are given with almost the same precision as the octet masses, even if we have only three
independent parameters in this sector to fit. Finally, for the decuplet decays we have only one parameter for four
physical observables and as expected the tree level expressions, which differ from each other only in their kinematic
parts, can not give back all the experimental values with a very good precision. The unnatural values of M(8) and
M(10) do not concern us, since with appropriately chosen values of ξ1 and χ1 we can achieve any values for M(8) and
M(10).

V. CONCLUSIONS

We have presented a possible baryon octet and decuplet extension to our previous meson model [21]. We included
interaction terms, such as ∆−B−P suggested by the lowest order chiral perturbation theory, other interaction terms
like the B−B−Φ−Φ kind of terms was introduced in order to generate baryon masses. In the last case we included
every possible SU(3)V invariants.

From the constructed Lagrangian we calculated the tree-level masses and physically relevant decuplet decay widths
and we found that in general they are in good agreement with the experimental data taken from the PDG [35].

As a continuation other interaction terms, which contain derivatives could also be introduced (see e.g. [26]), which
are important if one would like to investigate scattering processes as well. Another interesting direction is to move on
to finite temperature and/or densities with these fields included in our model. However, this task seems not an easy
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one. For instance it is not obvious how one can switch from the baryon octet and decuplet degrees of freedom, which
are the appropriate degrees of freedom at low temperature and densities, to the constituent quarks, which are better
candidates for degrees of freedom as one approaches the phase transition region.
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Appendix A: Meson Lagrangian

The meson Lagrangian is basically the same, as in [21] with the exception that the dilaton field is completely
neglected and it reads as

Lmeson = Tr[(DµΦ)
†(DµΦ)]−m2

0 Tr(Φ
†Φ)− λ1[Tr(Φ

†Φ)]2 − λ2 Tr(Φ
†Φ)2

− 1

4
Tr(L2

µν +R2
µν) + Tr

[(
m2

1

2
+ ∆

)

(L2
µ +R2

µ)

]

+Tr[H(Φ + Φ†)]

+ c1(detΦ− detΦ†)2 + i
g2
2
(Tr{Lµν [L

µ, Lν ]}+Tr{Rµν [R
µ, Rν ]})

+
h1

2
Tr(Φ†Φ)Tr(L2

µ +R2
µ) + h2 Tr[(LµΦ)

2 + (ΦRµ)
2] + 2h3 Tr(LµΦR

µΦ†).

+ g3[Tr(LµLνL
µLν) + Tr(RµRνR

µRν)] + g4[Tr (LµL
µLνL

ν) + Tr (RµR
µRνR

ν)]

+ g5Tr (LµL
µ) Tr (RνR

ν) + g6[Tr(LµL
µ) Tr(LνL

ν) + Tr(RµR
µ) Tr(RνR

ν)] , (A1)

where

DµΦ ≡ ∂µΦ− ig1(L
µΦ− ΦRµ)− ieAe µ[T3,Φ] ,

Lµν ≡ ∂µLν − ieAeµ[T3, L
ν ]− {∂νLµ − ieAe ν [T3, L

µ]} ,

Rµν ≡ ∂µRν − ieAe µ[T3, R
ν ]− {∂νRµ − ieAe ν [T3, R

µ]} ,

The quantities Φ, Rµ, and Lµ represent the scalar-pseudoscalar, the left- and right-handed vector nonets:

Φ =

8∑

i=0

(Si + iPi)Ti =
1√
2







(σN+a0
0)+i(ηN+π0)√

2
a+0 + iπ+ K⋆+

0 + iK+

a−0 + iπ− (σN−a0
0)+i(ηN−π0)√

2
K⋆0

0 + iK0

K⋆−
0 + iK− K̄⋆0

0 + iK̄0 σS + iηS







, (A2)

Lµ =
8∑

i=0

(V µ
i +Aµ

i )Ti =
1√
2







ωN+ρ0

√
2

+
f1N+a0

1√
2

ρ+ + a+1 K⋆+ +K+
1

ρ− + a−1
ωN−ρ0

√
2

+
f1N−a0

1√
2

K⋆0 +K0
1

K⋆− +K−
1 K̄⋆0 + K̄0

1 ωS + f1S







µ

, (A3)

Rµ =

8∑

i=0

(V µ
i −Aµ

i )Ti =
1√
2







ωN+ρ0

√
2

− f1N+a0
1√

2
ρ+ − a+1 K⋆+ −K+

1

ρ− − a−1
ωN−ρ0

√
2

− f1N−a0
1√

2
K⋆0 −K0

1

K⋆− −K−
1 K̄⋆0 − K̄0

1 ωS − f1S







µ

, (A4)

where the assignment to physical particles is also shown, except in the 0 − 8 sector, where there is particle mixing
[9, 21, 37] and the physical fields are given by certain orthogonal transformation from the non-physical fields. Here,
Ti (i = 0, . . . , 8) denote the generators of U(3), while Si represents the scalar, Pi the pseudoscalar, V µ

i the vector, and
Aµ

i the axial-vector meson fields, and Ae µ is the electromagnetic field. It should be noted that here and throughout
the article we use the so-called non strange – strange basis in the (0− 8) sector, defined as

ϕN =
1√
3

(√
2 ϕ0 + ϕ8

)

,

ϕS =
1√
3

(

ϕ0 −
√
2 ϕ8

)

, ϕi ∈ (Si, Pi, V
µ
i , Aµ

i ) , (A5)
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which is more suitable for our calculations. Moreover, H and ∆ are constant external fields defined as

H = H0T0 +H8T8 =






h0N

2 0 0

0 h0N

2 0

0 0 h0S√
2




 , (A6)

∆ = ∆0T0 +∆8T8 =






δ̃N
2 0 0

0 δ̃N
2 0

0 0 δ̃S√
2




 ≡






δN 0 0

0 δN 0

0 0 δS




 . (A7)

Shifting the fields σN and σS with their non zero expectation values φN and φS (Eq. (11)), the quadratic terms of
the Lagrangian, from which the tree-level meson masses originate, can be determined. The quadratic terms contain,
beside the mixing in the N − S (or 0− 8) sector of the scalar and pseudoscalar octet, vector-scalar and axialvector-
pseudoscalar mixing terms as well. The later can be resolved by redefinition of certain (axial-)vector fields (for details
see [21]). In our case, only one such field enters in the calculations, namely the aµ1 axialvector meson, which should
be redefined as

aµ1
±,0 −→ aµ1

±,0
+ Zπwa1

∂µπ±,0, (A8)

where

Zπ =
ma1

√

m2
a1

− g21φ
2
N

, (A9)

wa1
=

g1φN

m2
a1

, (A10)

and the aµ1 axialvector mass is given by

m2
a1

= m2
1 +

1

2
(2g21 + h1 + h2 − h3)φ

2
N +

h1

2
φ2
S + 2δN . (A11)

Since in all decuplet decays (Eq. (21)) a pion is formed, we also need the explicit expression of the pion mass, which
is

m2
π = Z2

π

[

m2
0 +

(

λ1 +
λ2

2

)

φ2
N + λ1φ

2
S

]

. (A12)

The parameters of the meson Lagrangian are determined through the comparison of the calculated tree-level expres-
sions of the spectrum and decay widths [21] with their experimental value taken from [35]. Some of the parameters
are only appear in certain combinations in every calculated quantities, namely

C1 = m2
0 + λ1

(
φ2
N + φ2

S

)
and C2 = m2

1 +
h1

2

(
φ2
N + φ2

S

)
(A13)

are such combinations. Moreover without the loss of generality we can set δN = 0, while all the other meson
parameters, taken from [21], are given in Table III

Appendix B: On the construction of the Lagrangian

The leading order chiral Lagrangian containing baryon octet, baryon decuplet and pseudoscalar octet fields is (see
e.g. [33])

L(1)
chiral = Tr

[
B̄
(
iD/−M(8)

)
B
]

− Tr
{
∆̄µ ·

[(
iD/−M(10)

)
gµν − i (γµDν + γνDµ) + γµ

(
iD/+M(10)

)
γν

]
∆ν

}

+ F Tr
(
B̄γµγ5 [iUµ, B]

)
+DTr

(
B̄γµγ5 {iUµ, B}

)
(B1)

+ C
{
Tr

[(
∆̄µ · iUµ

)
B
]
+ h.c.

}
+H Tr

[(
∆̄µ · γνγ5∆µ

)
iUν

]
,
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Parameter Value

C1 [GeV2] −0.9183 ± 0.0006

C2 [GeV2] 0.4135 ± 0.0147

c1 [GeV−2] 450.5420 ± 7.0339

δS [GeV2] 0.1511 ± 0.0038

g1 5.8433 ± 0.0176

g2 3.0250 ± 0.2329

φN [GeV] 0.1646 ± 0.0001

φS [GeV] 0.1262 ± 0.0001

h2 9.8796 ± 0.6627

h3 4.8667 ± 0.0864

λ2 68.2972 ± 0.0435

TABLE III: Meson parameters and their errors

where

DµB = ∂µB + ΓµB +BΓ+
µ , (B2)

Dµ∆
ijk
ν = ∂µ∆

ijk
ν + (Γµ)

i
l∆

ljk
ν + (Γµ)

j
l∆

ilk
ν + (Γµ)

k
l ∆

ijl
ν , (B3)

with Γµ =
1

2
[u†, ∂µu]−

i

2
(u†Lµu+ uRµu

†);

Uµ = −1

2
u (∇µU)

†
u, (B4)

with ∇µU = ∂µU + i (URµ − LµU) ,

and it should be noted that the convention for the left- (Lµ ≡ Vµ + Aµ) and right-handed (Rµ ≡ Vµ − Aµ) fields is
just the opposite as in [33]. Moreover the U and u fields are defined as

U = ei2Φ̃/f , u = eiΦ̃/f . (B5)

Here U is an SU(3) matrix, which parametrizes the Φ̃ pseudoscalar octet non-linearly according to the Callan-
Coleman-Wess-Zumino prescription [38], while the f constant with energy dimension one is related to the pion decay
constant. In order to get the relevant terms from Eq. (B1) it should be expanded in Φ̃. Expanding Eq. (B2)-(B4) in
Φ̃ results in

DµB = ∂µB + i[B, Vµ] +
1

f

{

[Aµ, Φ̃], B
}

+O(Φ̃2), (B6)

Dµ∆
ijk
ν = ∂µ∆

ijk
ν +

(
1

f
[Aµ, Φ̃]

i
l − iV i

µ l

)

∆ljk
ν +

(
1

f
[Aµ, Φ̃]

j
l − iV j

µ l

)

∆ilk
ν +

(
1

f
[Aµ, Φ̃]

k
l − iV k

µ l

)

∆ijl
ν +O(Φ̃2),

(B7)

Uµ =
i

f
∂µΦ̃− 1

f
[Φ̃, Vµ]− iAµ +O(Φ̃2), (B8)

which should be substituted into Eq. (B1) and replace Φ̃ by Φ to get the first three terms of the baryon Lagrangian
Eq. (1).

More details about the chiral Lagrangian and its expansion up to different orders can be found in [39–41].

Appendix C: Two body, tree-level decay width of decuplets

As can be found in any standard textbook (see e.g. [42]) the tree-level two body decay width can be written as

ΓA→BC = I
k

8πm2
A

|MA→BC |2 , (C1)
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where A is the decaying particle, B and C are the resulting particles k ≡ kC = kB is the magnitude of the momentum
of the resulting particles in the restframe of A, MA→BC is the matrix element and I is the isospin factor, which shows
how many independent decay channels we have (see later). In our case A is a vectorspinor, B is a pseudoscalar and
C is a spinor field. According to Eq. (24), the structure of the interaction Lagrangian is G(A→BC)Aµ(∂

µB)C, from
which the matrix element can be written as

iMA→BC = G(A→BC) · uA
µ (kA, s) · ikµB · ūC(kC , s

′). (C2)

Taking the average for the incoming and sum for the outgoing polarizations the absolute square of the matrix element
is given by

|MA→BC |2 = |G(A→BC)|2 Tr
{

1

4

3/2
∑

s=−3/2

uA
µ (kA, s)ū

A
ν (kA, s)

︸ ︷︷ ︸

−(k/A+mA)PA
µν

1/2
∑

s′=−1/2

uC(kC , s
′)ūC(kC , s

′)

︸ ︷︷ ︸

k/C+mC

}

kµBk
ν
B , (C3)

where the P projector is defined as [43]

PA
µν = gµν −

1

3
γµγν − 2

3m2
A

kAµ k
A
ν +

1

3mA
(kAµ γν − kAν γµ). (C4)

After some straightforward calculation the matrix element can be written as

|MA→BC |2 =
2

3
|G(A→BC)|2k2mA(mC + EC), (C5)

with, Ec =
m2

A +m2
C −m2

B

2mA
. (C6)

Consequently, the decay width reads

ΓA→BC = I
k3

12mA
(mC + EC)|G(A→BC)|2, (C7)

where k =

√

(m2
A −m2

B −m2
C)

2 − 4m2
Bm

2
C

4m2
A

, (C8)

and Ec =
m2

A +m2
C −m2

B

2mA
. (C9)
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