Acta Mathematica Academiae Paedagogicae Nyíregyháziensis **34** (2023), 112–119.

www.emis.de/journals ISSN 1786-0091

SEMI-SYMMETRIC GENERALIZED SASAKIAN-SPACE-FORMS

VIDYAVATHI K. R., SUSHILABAI ADIGOND, AND C. S. BAGEWADI

ABSTRACT. We show that semi symmetric and pseudo symmetric generalized Sasakian-space-forms are Einstein when (0,6)-tensors satisfy $R \cdot R = 0$, $R \cdot R = L_R Q(g,R)$, $R \cdot C = 0$, $R \cdot C = L_C Q(g,C)$, and $C \cdot C = 0$, where C is Quasi conformal curvature tensor. Further we discuss about Ricci solitons.

1. Introduction

Let (M, g) be a (2n + 1) dimensional Riemannian manifold and let ∇ be its Levi-Civita connection. The endomorphism R(X, Y)Z of the Lie algebra of vector fields on M, named the curvature operator is defined by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

where X, Y, and Z are vector fields on M and [X, Y] denotes the Lie bracket of X and Y. We also denote R(X, Y)Z as the derivation induced by the curvature operator. For a symmetric (0, 2)-tensor A and any vector fields X, Y, and Z on M, we define the endomorphism $(X \wedge_A Y)$ of M by

$$(X \wedge_A Y)Z = A(Y, Z)X - A(X, Z)Y.$$

The Riemannian Christoffel curvature tensor R and the (0,4)-tensor G are defined by

$$R(X, Y, W, Z) = g(R(X, Y)W, Z),$$

$$G(X, Y, W, Z) = g((X \land_g Y)Z, W).$$

respectively.

The (0,6)-tensor $R \cdot R$, obtained by the action of the curvature operators R(X,Y) on the (0,4)-curvature tensor R, is given by [9]

(1)

$$(R \cdot R)(U, V, W, Z; X, Y) = -R(R(X, Y)U, V, W, Z)$$

$$-R(U, R(X, Y)V, W, Z) - R(U, V, R(X, Y)W, Z) - R(U, V, W, R(X, Y)Z),$$

Key words and phrases. Einstien manifold, conformal Killing, Tachibana tensor.

²⁰²⁰ Mathematics Subject Classification. 53C25, 53A30, 53A45.

where $U, V, W, Z, X, Y \in M$.

The tensor $R \cdot R$ has the following algebraic properties:

$$(R \cdot R)(U, V, W, Z; X, Y) = -(R \cdot R)(V, U, W, Z; X, Y)$$

$$= -(R \cdot R)(U, V, Z, W; X, Y),$$

$$(R \cdot R)(U, V, W, Z; X, Y) + (R \cdot R)(U, W, Z, V; X, Y)$$

$$+ (R \cdot R)(U, Z, V, W; X, Y) = 0,$$

$$(R \cdot R)(U, V, W, Z; X, Y) = -(R \cdot R)(U, V, W, Z; Y, X),$$

$$(R \cdot R)(U, V, W, Z; X, Y) + (R \cdot R)(W, Z, X, Y; U, V)$$

$$+ (R \cdot R)(X, Y, U, V; W, Z) = 0.$$

The simplest (0,6)-tensor having the same symmetry properties as $R \cdot R$ may well be the Tachibana tensor Q(g,R) defined by [9]

(2)
$$Q(g,R)(U,V,W,Z;X,Y) = R((X \land Y)U,V,W,Z) + R(U,(X \land Y)V,W,Z) + R(U,V,(X \land Y)W,Z) + R(U,V,W,(X \land Y)Z)$$

In the context of generalized Sasakian-space-forms, U. K. Kim [7] studied locally symmetric properties of generalized Sasakian-space-forms. In [5] U. C. De and A. Sarkar have studied some symmetry properties of generalized Sasakian-space-forms regarding the projective curvature tensor. In [8] D. G. Prakasha studied some pseudosymmetric properties of generalized Sasakian-space-forms with Weyl conformal curvature tensor. In [3] C. S. Bagewadi and G. Ingalahalli studied some results of C-Bochner curvature tensor and τ -curvature tensor of a generalized Sasakian space forms. As a continuation of this, we plan to study generalized Sasakian space forms satisfying certain curvature conditions on Quasi conformal curvature tensor.

2. Preliminaries

A (2n+1) dimensional Riemannian manifold is called an almost contact metric manifold if the following results hold [4]

$$\phi^{2}X = -X + \eta(X)\xi, \phi\xi = 0,$$

$$\eta(\xi) = 1, g(X, \xi) = \eta(X),$$

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta(\phi X) = 0,$$

$$g(\phi X, Y) = -g(X, \phi Y), g(\phi X, X) = 0,$$

$$(\nabla_{X}\eta)(Y) = g(\nabla_{X}\xi, Y).$$

For a (2n + 1) dimensional generalized Sasakian-space-forms we have [1]

$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\}$$

$$+ f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+ f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}.$$

For any vector fields X, Y, Z on M, where R denotes the curvature tensor of M,

$$S(X,Y) = (2nf_1 + 3f_2 - f_3)g(X,Y) + (3f_2 - (2n-1)f_3)\eta(X)\eta(Y),$$

$$QX = (2nf_1 + 3f_2 - f_3)X + (3f_2 - (2n-1)f_3)\eta(X)\xi,$$

$$r = 2n(2n+1)f_1 + 6nf_2 - 4nf_3$$

are valid, where f_1 , f_2 , f_3 are differentiable functions on M and X,Y,Z are vector fields on M. In such case we will write the manifold as $M(f_1, f_2, f_3)$. This kind of manifolds appears as natural generalization of the Sasakian-space-forms by taking $f_1 = \frac{c+3}{4}$ and $f_2 = f_3 = \frac{c-1}{4}$, where c denotes constant ϕ -sectional curvature. The ϕ -sectional curvature of generalized Sasakian-space-forms $M(f_1, f_2, f_3)$ is $f_1 + 3f_2$. Moreover, cosymplectic space-forms and Kenmotsu space-forms are also particular case of generalized Sasakian-space-forms.

For generalized Sasakian-space-forms we also have

(4)
$$R(X,Y)\xi = (f_1 - f_3)[\eta(Y)X - \eta(X)Y],$$

$$R(\xi,X)Y = (f_1 - f_3)[g(X,Y)\xi - \eta(Y)X],$$

$$R(\xi,X)\xi - (f_1 - f_2)[\eta(X)\xi - X]$$

(5)
$$R(\xi, X)\xi = (f_1 - f_3)[\eta(X)\xi - X],$$
$$R(\xi, \xi)X = 0,$$
$$S(X, \xi) = 2n(f_1 - f_3)\eta(X).$$

3. Semi symmetric generalized Sasakian-space-forms

Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional semi symmetric generalized Sasakian-space-forms. Then from (1) we have

$$(R \cdot R)(U, V, W, Z; X, Y) = 0,$$

$$(R(X, Y) \cdot R)(U, V, W, Z) = 0,$$

$$-R(R(X, Y)U, V, W, Z) - R(U, R(X, Y)V, W, Z)$$

$$-R(U, V, R(X, Y)W, Z) - R(U, V, W, R(X, Y)Z) = 0,$$

$$(6) \qquad R(R(X, Y)U, V, W, Z) + R(U, R(X, Y)V, W, Z)$$

$$+R(U, V, R(X, Y)W, Z) + R(U, V, W, R(X, Y)Z) = 0.$$

In view of (4) and (5), for $X = U = \xi$, (6) yields

$$(f_1-f_3)[R(Y,V,W,Z)+(f_1-f_3)g(Y,W)g(V,Z)-(f_1-f_3)g(Y,Z)g(V,W)]=0.$$

Since $(f_1 - f_3) \neq 0$, we have

(7)
$$R(Y, V, W, Z) = (f_1 - f_3)g(Y, Z)g(V, W) + (f_1 - f_3)g(Y, W)g(V, Z).$$

Let $\{e_1, e_2, \ldots, e_{2n+1}\}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y = Z = e_i$ in (7) and taking summation over $i, (1 \le i \le (2n+1))$, we get

(8)
$$S(V,W) = 2n(f_1 - f_3)g(V,W).$$

Therefore, $M(f_1, f_2, f_3)$ is an Einstein manifold. Hence we state the following.

Theorem 1. Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional generalized Sasakian-space-forms. If $M(f_1, f_2, f_3)$ is semi-symmetric then $M(f_1, f_2, f_3)$ is an Einstein manifold.

Corollary 1. (g, V, λ) is Ricci soliton in semi symmetric generalized Sasakian space forms if and only if V is conformal killing vector field.

Proof. From Theorem 1 and by the definition of Ricci soliton [6], we have

$$(L_V g)(V, W) + 2S(V, W) + 2\lambda g(V, W) = 0,$$

where λ is some constant. From (8) we get

(9)
$$(L_V g)(V, W) + 4n(f_1 - f_3)g(V, W) + 2\lambda g(V, W) = 0.$$

Let $\{e_1, e_2, \ldots, e_{2n+1}\}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $V = W = e_i$ in (9) and taking summation over $i, (1 \le i \le (2n+1))$, we get

$$(L_V g)(e_i, e_i) + 4n(2n+1)(f_1 - f_3) + 2(2n+1)\lambda = 0.$$

Since $[e_i, e_j] = 0$, for all $1 \le i, j \le (2n + 1)$, we obtain

$$\lambda = -2n(f_1 - f_3).$$

Thus, Ricci soliton in semi symmetric generalized Sasakian-space forms is shrinking if $f_1 > f_3$, i.e., $\lambda < 0$, steady if $f_1 = f_3$, i.e., $\lambda = 0$, and expands if $f_1 < f_3$, i.e., $\lambda > 0$.

4. Pseudosymmetric generalized Sasakian-space-forms

Let $M(f_1, f_2, f_3)$ be a (2n+1) dimensional generalized Sasakian-space-forms. Then from (1) and (2) we have

$$(R \cdot R)(U, V, W, Z; X, Y) = L_R Q(g, R)(U, V, W, Z; X, Y),$$

$$(R(X, Y) \cdot R)(U, V, W, Z) = -L_R((X \wedge Y) \cdot R)(U, V, W, Z),$$

$$(10)$$

$$-R(R(X, Y)U, V, W, Z) - R(U, R(X, Y)V, W, Z) - R(U, V, R(X, Y)W, Z)$$

$$-R(U, V, W, R(X, Y)Z) = L_R[R((X \wedge Y)U, V, W, Z) + R(U, (X \wedge Y)V, W, Z) + R(U, V, (X \wedge Y)W, Z)]$$

In view of (4) and (5), for $X = U = \xi$, (10) yields

$$(f_1 - f_3)[R(Y, V, W, Z) + (f_1 - f_3)g(Y, W)g(V, Z) - (f_1 - f_3)g(Y, Z)g(V, W)]$$

= $-L_R[R(Y, V, W, Z) + (f_1 - f_3)g(Y, W)g(V, Z) - (f_1 - f_3)g(Y, Z)g(V, W)],$

$$[L_R + (f_1 - f_3)][R(Y, V, W, Z) + (f_1 - f_3)g(Y, W)g(V, Z) - (f_1 - f_3)g(Y, Z)g(V, W)] = 0.$$

Therefore either $L_R = -(f_1 - f_3)$ or

(11)
$$R(Y, V, W, Z) = (f_1 - f_3)g(Y, Z)g(V, W) - (f_1 - f_3)g(Y, W)g(V, Z).$$

Let $\{e_1, e_2,, e_{2n+1}\}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y = Z = e_i$ in (11) and taking summation over $i, (1 \le i \le (2n+1))$, we get

$$S(V, W) = 2n(f_1 - f_3)g(V, W).$$

Therefore, $M(f_1, f_2, f_3)$ is an Einstein manifold. Hence we state the following.

Theorem 2. Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional generalized Sasakian-space-forms. If $M(f_1, f_2, f_3)$ is pseudosymmetric then $M(f_1, f_2, f_3)$ is an Einstein manifold provided that $L_R \neq -(f_1 - f_3)$.

Corollary 2. (g, V, λ) is Ricci soliton in pseudo symmetric generalized Sasakian space forms if and only if V is conformal killing vector field provided $L_R \neq -(f_1 - f_3)$.

Proof. Proof follows from Theorem 2 and the definition of Ricci Soliton. \Box

5. Quasi conformal semi symmetric generalized Sasakian-space-forms

For a (2n+1) dimensional almost contact metric manifold the Quasi conformal curvature tensor C is given by

(12)
$$= aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX - g(X,Z)QY]$$
$$- \frac{r}{2n+1} \left[\frac{a}{2n} + 2b \right] [g(Y,Z)X - g(X,Z)Y].$$

Using equation (3) in (12) yields

$$C(X,Y)\xi = D[\eta(Y)X - \eta(X)Y],$$

(13)
$$C(\xi, X)Y = D[g(X, Y)\xi - \eta(X)Y],$$

(14)
$$C(\xi, X)\xi = D[\eta(X)\xi - X],$$

where

$$D = a(f_1 - f_3) + 2nb(f_1 - f_3) + b(2nf_1 + 3f_2 - f_3) - \frac{r}{2n+1} \left[\frac{a}{2n} + 2b \right].$$

Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional Quasi conformal semi symmetric generalized Sasakian-space-forms. Then, from (1), we have

$$(R(X,Y) \cdot C)(U,V,W,Z) = 0, \\ -C(R(X,Y)U,V,W,Z) - C(U,R(X,Y)V,W,Z) \\ -C(U,V,R(X,Y)W,Z) - C(U,V,W,R(X,Y)Z) = 0.$$

In view of (4), (5), and (13), for $X = U = \xi$, (14) yields

$$(f_1 - f_3)\{C(Y, V, W, Z) + D[g(Y, W)g(V, Z) - g(Y, Z)g(V, W)]\} = 0.$$

Since $(f_1 - f_3) \neq 0$, we have

(15)
$$C(Y, V, W, Z) = D[g(Y, Z)g(V, W) - g(Y, W)g(V, Z)].$$

Let $\{e_1, e_2, \ldots, e_{2n+1}\}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y = Z = e_i$ in (15) and taking summation over $i, (1 \le i \le (2n+1))$, using equation (12), we get

$$S(V, W) = D'g(V, W),$$

where

$$D' = \frac{2n[(a+2nb)(f_1 - f_3) + b(2nf_1 + 3f_2 - f_3)] - br}{a + b(2n+1)}.$$

Theorem 3. Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional generalized Sasakian-space-forms. If $M(f_1, f_2, f_3)$ is Quasi conformal semisymmetric then $M(f_1, f_2, f_3)$ is an Einstein manifold.

6. Quasi conformal pseudo symmetric generalized Sasakian-space-forms

Let $M(f_1, f_2, f_3)$ be a (2n+1) dimensional Quasi conformal pseudo symmetric generalized Sasakian-space-forms. Then, from (1) and (2), we have

$$(R \cdot C)(U, V, W, Z; X, Y) = L_C Q(g, C)(U, V, W, Z; X, Y),$$

$$(R(X, Y) \cdot C)(U, V, W, Z) = -L_C((X \wedge Y) \cdot R)(U, V, W, Z),$$

$$(16)$$

$$-C(R(X, Y)U, V, W, Z) - C(U, R(X, Y)V, W, Z) - C(U, V, R(X, Y)W, Z)$$

$$-C(U, V, W, R(X, Y)Z) = L_C[C((X \wedge Y)U, V, W, Z) + C(U, (X \wedge Y)V, W, Z) + C(U, V, (X \wedge Y)W, Z) + C(U, V, W, (X \wedge Y)Z)$$

In view of (4), (5), and (13), for $X = U = \xi$, (16) yields $[L_C + (f_1 - f_3)]\{C(Y, V, W, Z) + D[g(Y, W)g(V, Z) - g(Y, Z)g(V, W)]\} = 0$. Therefore, either $L_C = -(f_1 - f_3)$ or

(17)
$$C(Y, V, W, Z) = D[g(Y, Z)g(V, W) - g(Y, W)g(V, Z)].$$

Let $\{e_1, e_2, \ldots, e_{2n+1}\}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y = Z = e_i$ in (17) and taking summation over $i, (1 \le i \le (2n+1))$, using equation (12), we get

(18)
$$S(V,W) = D'g(V,W).$$

Theorem 4. Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional generalized Sasakian-space-forms. If $M(f_1, f_2, f_3)$ is Quasi conformal pseudo symmetric then $M(f_1, f_2, f_3)$ is an Einstein manifold provided that $L_C \neq -(f_1 - f_3)$.

7. Generalized Sasakian-space-forms satisfies the condition $C \cdot C = 0$

Let $M(f_1, f_2, f_3)$ be a (2n+1) dimensional generalized Sasakian-space-forms. Let $C \cdot C$ be a (0, 6)-tensor and $C \cdot C = 0$. Then

$$(C(X,Y) \cdot C)(U,V,W,Z) = 0,$$

$$-C(C(X,Y)U,V,W,Z) - C(U,C(X,Y)V,W,Z)$$

$$-C(U,V,C(X,Y)W,Z) - C(U,V,W,C(X,Y)Z) = 0.$$

In view of (13) and (14), for $X = U = \xi$, (19) yields

$$-D[C(Y, V, W, Z) + D\{g(Y, W)g(V, Z) - g(Y, Z)g(V, W)\}] = 0.$$

Since $D \neq 0$, we have

(20)
$$C(Y, V, W, Z) = D[g(Y, Z)g(V, W) - g(Y, W)g(V, Z)].$$

Let $\{e_1, e_2, \ldots, e_{2n+1}\}$ be an orthonormal basis of the tangent space at each point of the manifold. Putting $Y = Z = e_i$ in (20) and taking summation over $i, (1 \le i \le (2n+1))$, using equation (12), we get

$$S(V, W) = D'g(V, W).$$

Theorem 5. Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional generalized Sasakian-space-forms. If (0,6)-tensor $C \cdot C = 0$ holds on $M(f_1, f_2, f_3)$, then $M(f_1, f_2, f_3)$ is an Einstein manifold.

Corollary 3. Let $M(f_1, f_2, f_3)$ be a (2n + 1) dimensional Quasi conformal semi symmetric generalized Sasakian-space-forms. Then $R \cdot C = C \cdot C$ holds on $M(f_1, f_2, f_3)$.

References

- P. Alegre, D. Blair, A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 14 (2004), 157-183.
- [2] P. Alegre, A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geom. Appl., 26 (2008), 656-666.
- [3] C. S. Bagewadi, G. Ingalahalli, A study on curvature tensor of a generalized Sasakian space form, Acta Univ. Apulensis Math. Inform., 38 (2014), 81-93.
- [4] D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, Springer-Verlag, Berlin, 1976.

- [5] U. C. De, A. Sarkar, On the projective curvature tensor of generalized Sasakian-spaceforms, Quaest. Math., 33(2) (2010), 245-252.
- [6] G. Ingalahalli, C. S. Bagewadi, Ricci solitons in α-Sasakian manifolds, ISRN Geometry, 2012 (2012), no. 421384, pp. 13.
- [7] U. K. Kim, Conformally flat generalized Sasakian space forms and locally symmetric Sasakian-space-forms, Note Mat., 26 (2006), 55-67.
- [8] D. G. Prakasha, On generalized Sasakian-space-forms with Weyl-conformal curvature tensor, Lobachevskii J. Math., 33(3) (2012), 223-228.
- [9] Z. Senturk, Pseudosymmetry in semi-Riemannian manifolds, Proc. of the 48th Symposium on Finsler Geometry, 37 (2013).

Received July 09, 2017.

VIDYAVATHI K. R., DEPARTMENT OF MATHEMATICS, P.C. Jabin Science College, **Hubballi-580031** Email address: vidyarsajjan@gmail.com

Sushilabai Adigond, DEPARTMENT OF MATHEMATICS, BALLARI INSTITUTE OF TECHONOLOGY AND MANAGEMENT, **Ballari-583104** $Email\ address: {\tt smadigond@gmail.com}$

C. S. BAGEWADI, DEPARTMENT OF MATHEMATICS, KUVEMPU UNIVERSITY, Shankaraghatta-577451

Email address: prof_bagewadi@yahoo.co.in