OTKA 48978 beszámoló

A pályázat "Kutatás munkaterve" című 2. sz. mellékletben leírt célok sorrendjében adom meg a feladat teljesítését.

1. Munkaszakasz, 2005 év

"A nanokristályok szintézise területén" a kitűzött cél az előre meghatározott morfológiájú nanokristályok nemesfémek sóiból való kontrollált előállítása volt. A "Várható eredmény" ebben a munkaszakaszban 3 dolgozat és nemzetközi konferencián való megjelenés volt.

A meghatározott morfológiával való szintézis egyik meghatározó eleme a felületvédő anyagok felderítése volt. A másik a nanorészecskék szintézisének kísérleti körülményeinek optimalizálása. Az alábbi 1 táblázat (Molnár Éva PhD disszertációja, 2007) mutatja a végrehajtott szintézisek összefoglalását.

	Koncentráció		Redukáló	A szintézis	A szintézis	Pt tartalom
Jelölés	Pt	"sapka molekula"	ágens	ideje	hőmérséklete	a hordozón (t%)
K ₂ PtCl ₄	10 ⁻⁴ M	-	H ₂	1 éjszaka	RT	0,2
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka	RT	0,1
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka	RT	0,1
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	3 nap, keverve	RT	0,1
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	3 nap, keverve	RT	0,2
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	2 nap, keverve	RT	-
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	2 nap, keverve	RT	-
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 nap, keverve	RT	-
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka	RT	0,1
SPA	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka, keverve	RT	0,1
NIPA	10 ⁻⁴ M	10 ⁻³ M	H ₂	1 éjszaka	RT	0,01, 0,05, 0,1, 0,5, 1
NIPA	10 ⁻⁴ M	10 ⁻³ M	H ₂	1 éjszaka, keverve	RT	0,1
NIPA	10 ⁻⁴ M	10 ⁻³ M	H ₂	1 éjszaka	50 °C	0,1
NIPA	10 ⁻⁴ M	10 ⁻³ M	H ₂	1 éjszaka, keverve	50 °C	-
NIPA	10 ⁻⁴ M	10 ⁻³ M	100x N ₂ H ₄	1 éjszaka	RT	-
NIPA	10 ⁻⁴ M	10 ⁻³ M	20x N ₂ H ₄	1 éjszaka	RT	0,1
NIPA	10 ⁻⁴ M	10 ⁻³ M	$2x N_2H_4$	1 éjszaka	RT	
PVP	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka	RT	0,1
PVP	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka, keverve	RT	0,1
PVP	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka	50 °C	0,1
PVP	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka, keverve	50 °C	-
PVP	10 ⁻⁴ M	10 ⁻⁴ M	<i>in situ</i> EtOH	1 éjszaka	RT	0.1
MTABr I	10 ⁻⁴ M	10 ⁻² M	H ₂	1 éjszaka	RT	0,1
MTABr II	10 ⁻⁴ M	10 ⁻² M	H ₂	1 éjszaka	RT	0,1
MTABr I	10 ⁻⁴ M	10 ⁻² M	100x N ₂ H ₄	1 éjszaka	RT	-
MTABr II	$10^{-4} \mathrm{M}$	10 ⁻² M	N ₂ H ₄	1 éjszaka	RT	0,1
AOT	10 ⁻⁴ M	10 ⁻³ M	N ₂ H ₄	1 éjszaka	RT	0,1

1. táblázat Előállított Pt szolok

DDAB	10 ⁻⁴ M	10 ⁻³ M	N_2H_4	1 éjszaka	RT	0,1
CTABr	10 ⁻⁵ M	10 ⁻⁴ M	100x N ₂ H ₄	1 éjszaka	RT	-
CTABr II	10 ⁻⁴ M	10 ⁻⁴ M	100x N ₂ H ₄	1 éjszaka	RT	-
CTABr II	10 ⁻⁴ M	10 ⁻⁴ M	H ₂	1 éjszaka	RT	0,1

A táblázat adatai arra utalnak, hogy a PVP és a NIPA az a két alkalmas felületvédő anyag, melyek jelenlétében tetraéderes, illetve köbös platina részecskék szintetizálhatók viszonylag egyszerű kísérleti körülmények között.

A 2. táblázatban a részecskék morfológiájának változása látható a szintéziselegyhez adott felületvédő anyagok függvényében.

		<i>J</i>		
Jelölés	átmérő (nm)	szórás	alak	
SPA (RT)	5,45 nm	±2,05	\bigcirc	
SPA (RT, 2xH ₂ O)	6,06 nm ¹	±1,42	$\bigcirc \square$	
SPA (RT, 2xH ₂ O, 3 nap keverés)	7,35 nm	±1,46		
SPA (RT, 3 nap gy. kev)	16,24 nm	±5,02	\bigcirc \Box	
SPA (RT, 2 nap kev.)	2,77 nm	±1,92		
SPA (RT, 1 nap kev., $2xH_2O$)	9,18 nm	±2,86	$\bigcirc \square$	
SPA (50°C, 2xH ₂ O)	7,43 nm	±1,59	\bigcirc \Box	
SPA (50°C, l. kev., 2xH ₂ O)	5,56 nm	±1,05		
NIPA (RT, 2xH ₂ O)	3,57 nm	±0,67		
NIPA (RT, l. kev., 2xH ₂ O)	2,81 nm	±0,67	$\square \cap$	
NIPA (50°C, 2xH ₂ O)	3,79 nm	±1,3		
NIPA (50°C, l. kev. 2xH ₂ O)	4,59 nm	±0,98		
NIPA (RT, $2xH_2O$, red. N_2H_4 (100x))	294,11 nm	±79,85	korall-forma aggregátumok	
NIPA (RT, $2xH_2O$, red. N_2H_4 (20x)))	361,54 nm	±71,48	korall-forma aggregátumok	
PVP (RT, 2xH ₂ O)	3,29 nm	±0,64	Δ	
PVP (RT, 1. kev., 2xH ₂ O)	3,74 nm	±0,78	$\triangle \bigcirc \bigcirc$	
PVP (50°C, 2xH ₂ O)	3,96 nm	±0,75	$\triangle \bigcirc$	
PVP (50°C, 1. kev. $2xH_2O$)	4,59 nm	±0,98		
PVP (in situ, red. EtOH)	3,14 nm ?	±0,6	nem meghat.	
MTABr I (RT, 2xH ₂ O)	4,06 nm	±1,35	\bigcirc \Box	
MTABr II (RT, 2xH ₂ O)	3,46 nm	±1,45	\bigcirc \Box	
MTABr I (RT, $2xH_2O$, red. $100xN_2H_4$, sötét)	1,04 nm	±0,15	nem meghat	
MTABr II (RT, $2xH_2O$, red. $100xN_2H_4$, végig	0 94 nm	±0.3	nem meghat	
sötét)		•,•		
AOT (RT, 1:1 $2xH_2O$:ciklohexán, red. N ₂ H ₄)	1,45 nm	$\pm 0,63$	reverz micella	
DDAB (RT, $2xH_2O$, végig sötét, red. N_2H_4)	1,26 nm	$\pm 0,51$	reverz micella	
CTABr (RT, $2xH_2O$, red. $100xN_2H_4$)	2,66 nm	$\pm 0,66$	nem meghat.	
CTABr II (RT, $2xH_2O$, red. $100xN_2H_4$)	1,84 nm	±0,79	nem meghat,	
CTABr II (RT, $2xH_2O$, red. H_2)	1,82 nm	$\pm 0,45$	nem meghat.	

2. táblázat A szintetizált Pt nanorészecskék jellemző alakja, mérete és méreteloszlása

A köbös és tetraéderes részecskéket és részecskeméret eloszlásukat mutatja az 1. és a 2. ábra. Látható, hogy a részecskék átlagos mérete 4 nm alatt van mindkét esetben. Ez abból a szempontból fontos eredmény, hogy a hordozónak kiválasztott SBA-15 szilikát pórusainak mérete ennél nagyobb, általában 5-6 nm. Tehát a részecskék mérete nem akadályozza a pórusokba való bejutást.

1. ábra. NIPA jelenlétében előállított Pt nanorészecskék TEM képe és méreteloszlása

2. ábra. PVP jelenlétében előállított Pt nanorészecskék TEM képe és méreteloszlása

A szintetizált nanorészecskék méretét, hőstabilitását TEM és XRD technikával határoztuk meg. Megállapítottuk, hogy a nanorészecskék mintegy 350 °C-ig megtartják alakjukat akkor is, ha nincsenek hordozón megkötve. Hordozóban kötve ez a hőmérséklet 500 °C is meghaladhatja.

Tanulmányoztuk ródium nanorészecskék előállítását több módszerrel:

- Normál micellákkal: C14TABr (cetiltrimetilammónium bromid) felhasználásával.
- Polimerekkel: Poliakrilamid, poliakrilsav, polivinil pirrolidon (PVP) jelenlétében és AOT/heptán/víz mikroemulzióban: AOT (Nátrium (2-ethilhexil) szulfoszukcinát) segítségével.

A részecskék TEM képét az alábbi, 3. ábra mutatja, míg a részecskeméret eloszlást a 4. ábrán láthatjuk.

3. ábra. Ródium nanorészecskék.

4. ábra. a ródium nanokristályok részecskeméret eloszlása.

Nem fém nanorészecskéket szintetizáltunk különböző reakciókhoz. Vasoxid és kobaltoxid részecskéket készítettünk irodalmi szintézismódszerek alapján. Ezeket a nanorészecskéket szén nanocsőre kívántunk deponálni.

CdS nanorészecskéket állítottunk elő trititanát nanocsövek felületén, s ezt a katalizátort heterogén fotokatalitikus tesztreakcióban próbáltuk ki.

A munkaszakasz teljesítettnek tekintjük a részletesen bemutatott eredmények és a publikációs listában szereplő dolgozatok alapján.

2. Munkaszakasz, 2006 év

A második munkaszakasz feladatai a határozott morfológiával rendelkező fém nanorészecskék hordozóra-hordozóban való deponálására vonatkozott. Az eredményekkel kapcsolatban 3 dolgozatot és konferencia bemutatást terveztünk.

Amikor a nemesfém nanorészecskék vizes közegű kolloid oldatának előállítását optimalizáltuk a feladat a katalizátorkészítés módszerének kidolgozása volt. Három lehetőséget vizsgáltunk meg, amelyeket Somorjai Gábor laboratóriumában végzett kísérleteink iniciáltak.

Az a módszer, amelyben a nemesfém kolloid oldatát belekevertük a mezopórusos szilikát – főként az SBA-15 nevű anyaggal dolgoztunk, amelynek szintézisét rutinszerűen végeztük laboratóriumunkban – szintéziselegyébe viszonylag egyszerűnek tűnt. Tapasztalataink szerint nem ülepedett ki a nemesfémrészecske a szintézis ideje alatt. Azonban sok esetben a fémrészecske nem volt hozzáférhető az adszorbens molekulák számára. Ennek oka az volt, hogy a szilikát bevonta a fémrészecskét és beágyazta a szilikát rendszerbe. Emiatt ezt a módszert nem használtuk további kísérleteinkben.

A nemesfém nanorészecskék kolloid oldatával impregnáltuk az SBA-15 szilikátot. A mezopórusos szilikátból először eltávolítottuk a szintéziséhez szükséges templátot – ezt több kísérletben tanulmányoztuk, pl. oldószeres extrakcióval, ózonos oxidációval, hidrogénperoxidos kezeléssel (lásd az alábbi 5. ábrát) és a legalkalmasabbnak bizonyult levegőben való 500 °C-on végrehajtott kalcinálással, lásd a 6. ábrát.

5. ábra. Különböző templát eltávolítási módszerek után nyert IR spektrumok (0,1 t% Pt/SBA-15, PVP, impr.)

6. ábra. Az 500 °C-on aktivált SBA-15 IR spektruma

Azt vártuk, hogy impregnálás során a templát eltávolítása által felszabaduló pórusokba a fémrészecskék bediffundálnak. A módszer eredménye olyan katalizátor prekurzor volt, amelyben/en mind a szilikát külső, mind belső felületén, azaz csatornáiban megfigyelhetők voltak a platina nanorészecskék.

7. ábra. Impregnálással és szonikálással előállított Pt/SBA-15 katalizátorok TEM felvételei (a: 0,1 t% Pt/SBA-15, SPA, 2 h impr., b: 0,1 t% Pt/SBA-15, NIPA, 10 h szonik.), c, d, e: különböző ideig szonikált 5 t% Pt (NIPA)/SBA-15 (c: 5 h, d: 10 h, e: 15 h)

Az egyszerű impregnálásnál sokkal jobb eredményt adott az ultrahangos kezelés mellet végzett impregnálás. Ezt mutatja az előző, a 7. ábra. Az is látható az ábra képein, hogy a platina-koncentráció jelentős hatással van a részecskék elhelyezkedésére. Nagy koncentrációnál a külső és a belső felületen egyaránt jelentős számú részecske található.

A következtetésünk a katalizátorok szintézisével kapcsolatban az, hogy az impregnálás során a részecskék az SBA-15 szilikát külső felületén és csatornáiban egyaránt helyet foglalnak és a külső felületen több helyezkedik el a részecskékből. Az ultrahangos kezeléssel segített impregnálásnál ugyancsak mindkét lehetséges helyzetben vannak nanorészecskék, de azok dominánsan a szilikát csatornáiban foglalnak helyet.

Az előregyártott fém és nem fém nanorészecskék katalizátorkénti felhasználásához a vasoxid és kobaltoxid nanorészecskéket szén nanocsöveken deponáltuk. A szén nanocsövek jellemző TEM képe a 8. ábrán látható.

8. ábra: A katalizátorhordozóként alkalmazott és laboratóriumunkban CCVD módszerrel szintetizált szén nanocsövek TEM képe. A katalizátorkészítéshez a szokványos impregnálásos módszert alkalmaztuk.

A CdS részecskéket a titanát nanocsövekre a következőképpen vittük fel. A titanát nanocsöveket, melyeknek a TEM képe látható a 9. ábrán, kadmiumionokkal ioncseréltük és ezt követően H_2S gázt buborékoltattunk át a szuszpenzión. A szulfidálási reakcióban képződött termék TEM képét a 10. ábrán mutatjuk be.

9. ábra. A laboratóriumunkban szintetizált és szabadalmaztatott titanát nanocsövek TEM képe

10. ábra. A titanát nanocsöveken létrehozott CdS nanorészecskék

A 2. munkaszakaszban vállalt feladatokat teljesítettnek tekintjük, a bemutatott részletes eredmények és a publikációs listában megadott dolgozatok és konferencia részvételét alapján.

3. munkaszakasz, 2007

Az előállított katalizátorok katalitikus aktivitásának tanulmányozása volt a feladat. A reakció, amelyet kiválasztottunk a ciklohexén, illetve a CO hidrogénezése. A katalitikus aktivitás és a nemesfém részecske morfológiájának összefüggését tanulmányoztuk. Az eredményekből 3 dolgozat, illetve konferencia megjelenés volt tervezve.

A katalitikus aktivitás meghatározásához infravörös spektroszkópiás cella-reaktort és egy szokványos átáramlásos csőreaktort használtunk. A cellareaktor, amelynek sematikus vázlata alább látható a 11. ábrán, alkalmas volt arra, hogy a katalizátorból készített önhordó lemezkét vákuumban, vagy bármely gázatmoszférában előkezeljünk. Előkezelés után az önhordó lemezkét el lehet mozgatni a fényútba, illetve a cella termosztát részébe. Üres fényútnál a reagáló gázok spektrumát, a fényútba helyezett pasztilla esetén az katalizátor felületén lévő adszorbátumokat lehet analizálni.

Vizsgáltuk a katalizátor készítés módszerének, a platinatartalomnak, a reakcióhőmérsékletnek, ciklohexén/hidrogén aránynak és a részecske morfológiájának a hatását.

A katalizátor előkészítés tanulmányozásának eredményei

A modell katalizátor készítéséhez az ismert módszerek közül az elvárásainkhoz legmegfelelőbbnek az egyszerű impregnálás ultrahangos kezeléssel módosított változata tűnt. Az ultrahangos kezelés optimális idejéül 5 óra adódott. Ez az idő elegendő volt arra, hogy az SBA-15-nek a templát eltávolítása után szabaddá váló pórusaiba a platina nanorészecskék döntő többsége bejusson.

Tanulmányoztuk a templát és a platinarészecskék felületét védő szerves anyag eltávolításának a lehetőségét. A szintézisből kikerült SBA-15-ből a templátot el kell távolítani, hogy az üres pórusokba a platina nanorészecskéket be lehessen juttatni. Több templáteltávolítási módszert, köztük a hidrogén-peroxiddal és az ózonnal való oxidációt, az

oldószeres extrakciót és a levegővel, illetve oxigénnel történő kiégetést is kipróbáltunk. Ez utóbbit találtuk legalkalmasabbnak. Alkalmazási körülményeinek felderítéséhez megvizsgáltuk az SBA-15 termikus stabilitását és azt tapasztaltuk, hogy a szignifikáns rendezettségcsökkenés csak 800 °C-on végzett hőkezelés után lép fel. 500 °C-on végrehajtott oxigénes reakcióval a templát maradéktalanul eltávolítható volt.

A platinatartalmú mintákból a platinán lévő felületvédő polimer eltávolításához az 500 °C-on végzett oxigénes kezelés szintén megfelelőnek bizonyult. Az eredményeinkből arra következtettünk, hogy a katalizátor előkezelést legcélszerűbb 500 °C-on 2 óráig oxigénben, majd 300 °C-on hidrogénben végezni.

A 0,01 és 1,0 t% platinatartalom között 5 különböző Pt koncentrációjú katalizátormintát készítettünk, amelyek platina tartalmát röntgenfluoreszcencia analízissel határoztuk meg.

Növekvő platinatartalom esetén a katalizátor fajlagos felületének csökkenését figyeltük meg. A csökkenés egyenletesnek látszott 0,5 t% platinatartalomig, azonban az 1,0 t% platinatartalmú mintának a fajlagos felülete az eredeti felére csökkent.

A katalizátorokat a tervek szerint infravörös cellareaktorban kívántuk tesztelni. Ezt a rendszert úgy építettük meg, hogy az önhordó lemezkén adszorpciós fázisban lévő anyagok spektruma mellett a vele érintkező reaktánsok és termékek gázfázisú spektrumát is regisztrálni tudtuk. Az önhordó pasztilla készítésekor a por alakú katalizátort alkalmas nyomással olyan szilárd, diszk alakú lemezkévé préseltük, amelynek mechanikai szilárdsága megengedte a vele való manipulációt anélkül, hogy elrepedne, vagy esetleg összetörne. Ehhez viszont tanulmányozni kellett a katalizátor összenyomással szemben mutatott stabilitását. Növekvő nyomással készítve az önhordó lemezkéket, majd összetörve őket vizsgáltuk, hogy milyen szerkezeti változásokat okoz a nyomás növelése. Kimutattuk, hogy csak kicsi 5 bar alatti nyomások esetén nem tapasztalható az (100) reflexiók intenzitásának és a fajlagos felület értékének jelentős csökkenése, valamint a pórusméret eloszlási görbe alakjának, maximum helyének, és a TEM felvételeken a szerkezet rendezettségének megváltozása.

A reakciótermékek azonosítása a ciklohexén hidrogénezés-dehidrogénezés reakcióban

A reaktánsok és a reakció termékek gazfázisú spektrumaiban kiválasztottunk olyan sávokat, amelyek nem fednek át egymással és alkalmasak a gázfázis kvalitatív és kvantitatív analízisére. Ezek a frekvenciák láthatók az alábbi táblázatban.

Vegyület	A gázfázisra jellemző sáv (cm ⁻¹)		
	2932 (v _{CH,aszim})		
Ciklohexán	2862 (v _{CH,szim})		
	1456 (δ _{CH2})		
Ciklohován	3035 (v _{сн})		
CIKIOIIEXCII	1665 (v _{C=C})		
1,3-ciklohexadién	3056 (v _{CH,aszim})		
1,4-ciklohexadién	3037 (v _{CH})		
Donzol	680 (v _{CH})		
DeliZOI	1482 (δ_{CH} és v _{C-C})		

3. táblázat A reaktánsok azonosításra kijelölt frekvencia tartományok

A mérések során úgy jártunk el, hogy a különböző reakcióidőknél felvett spektrumokban az adott reakciókomponensre jellemző sáv intenzitása alatti területet integráltuk és ezt az értéket tekintettük a mennyiséggel arányos mérőszámnak. Ezeket az integrált terület értékeket ábrázoltuk a reakcióidő függvényében. A kapott fogyás-, illetve képződés görbéket hasonlítottuk össze.

Azt tapasztaltuk, hogy az SBA-15 hordozó spektrumában lévő OH sávok az adszorbátum minőségétől függően tolódnak el. Ez látható az alábbi, 12. ábrán.

12. ábra. Az OH sávok eltolódása a különböző gázok adszorpciója során

Az eltolódás mértéke a ciklohexénnél volt a legnagyobb és a ciklohexánnál a legkisebb. Ezek az eltolódások kiegészítő információt adtak a reagáló rendszerről. Az SBA-15 szilikát OH csoportjairól az adszorbátumok leszívathatók voltak jelezvén, hogy csak fizikai adszorpcióról van szó és nem kell a fémkomponens mellett az OH-csoportokon lejátszódó másodlagos reakciókkal számolnunk.

A mért infravörös spektrumok egy-egy példáját mutatja az alábbi, 13. ábra.

13. ábra. Spektrális változások a ciklohexén szobahőmérsékéleten végzett hidrogénezése során (0,1 t% Pt (NIPA)/SBA-15)

A reakcióparaméterek hatása

A katalitikus reakciók tanulmányozása során vizsgáltuk a részecskeméret, a reakcióhőmérséklet, a platina koncentráció és a platinarészecskék morfológiájának hatását. A részecskeméret reakciót befolyásoló hatásáról azt állapítottuk meg, hogy a kisebb méretű részecskéken nagyobb átalakulási sebesség észlelhető.

A ciklohexén hidrogénezése már szobahőmérsékleten gyorsan játszódik le. A hőmérsékletfüggés tanulmányozásához az alacsonyabb hőmérsékletek felé kell vizsgálódni, amire megtettük a szükséges lépéseket.

Nagyon kis platinakoncentrációnál nagyon hamar leállt a hidrogénezési reakció. Valószínű, hogy ebben az esetben (0,01 t%) platina koncentráció esetén nagyon kevés platina részecske van a katalizátorban, amelyek nagyon hamar lemérgeződnek. 0,05-1,0 t% Pt tartalom mellett a reakció kényelmesen mérhető volt. Igazoltuk azt az ismert jelleget, hogy a platinatartalom növekedésével a hidrogénezési reakció sebessége növekszik.

A morfológia hatása

Különbséget találtunk a köbös és a tetraéderes morfológiájú részecskék katalitikus hatásában mind a hidrogénezés, mind a dehidrogénezés esetén. Azt találtuk, hogy mindkét reakcióban a köbös platinarészecskéken ment a reakció gyorsabban. Ez látható az alábbi, 14. és 15. ábrákon.

14. ábra. Ciklohexén hidrogénezés különböző morfológiájú nanorészecskéken 25 °C-on

15. ábra. Ciklohexén dehidrogénezés különböző morfológiájú nanorészecskéken 200 °Con

A reakcióhőmérsékletnek nagyon jelentős hatását tapasztaltuk. 20 °C-ról 50 °C-ra emelve a reakcióhőmérsékletet a hidrogénezésben közel azonos reakció lefutást találtunk a két különböző alakú platina nanorészecskén. Ezek a kísérletek ismét aláhúzták az alacsony hőmérsékleteken való mérések szükségességét. Mindenesetre az egykristály felületeken tapasztalt reakciósebességbeli különbségek esetünkben is kimutathatók voltak. Pontosabb összehasonlításhoz azonban további kísérletek szükségesek, melyek folyamatban vannak a tanszéken.

A fémkomponens mérete a friss és a használt katalizátorban, a szintereződés lehetősége

Érdekes kérdés a heterogén katalízisben, hogy mi a sorsa a katalitikusan aktív fémrészecskéknek. Megmaradnak-e az eredeti formájukban, vagy aggregálódnak, esetleg kivándorolnak a felületre a hordozó pórusaiból. Méréseink szerint az SBA-15 hordozóra felvitt platina részecskék mérete nem változott jelentősen a reakció előtti állapothoz képest a reakciók után. Ebből arra következtethetünk, hogy a hordozónak stabilizáló hatása lehet, különösen az ultrahangos kezeléssel készített mintáknál, amikor a részecskék döntő része a pórusokban foglal helyet.

Védő malakula	A szintézis	Részecskeméret (nm)		
veuo molekula	módja	Szintéziskor	Reakció után	
-	impregnálás	$5,5 \pm 2,79$	4,6 ± 2,03	
NIPA	impregnálás	$3,5 \pm 0,67$	3,1 ± 0,99	
NIPA	szonikálás	$3,2 \pm 0,74$	$3,1 \pm 1,44$	
PVP	impregnálás	$3,3 \pm 0,64$	$3,2 \pm 0,75$	
SPA	impregnálás	$7,4 \pm 1,59$	$7,4 \pm 2,9$	
SPA	impregnálás	$16,2 \pm 5,02$	$16,8 \pm 4,03$	

4. táblázat A részecskék méretének változása a reakció alatt

A táblázat adatai azt mutatják, hogy a platina fémrészecskék szintereződése nem játszódik le számottevő mértékben. Tehát feltételezhető, hogy az SBA-15 mezopórusos szilikátban a fémrészecskék stabilizálódnak, ami feltehetően a hasonló méreteknek köszönhető.

A 16. ábrán mutatjuk be az SBA-15 szilikáton stabilizált ródium nanorészecskék katalitikus aktivitását. A fárasztási kísérlet szerint a kis (0,01 w%) ródium koncentrációnál a katalizátor nagyon hamar elveszti aktivitását. Nem ez a helyzet a 0,1 t% ródium-tartalmú mintánál, ahol több órán keresztül működött a katalizátor jelentős aktivitás csökkenés nélkül.

16. ábra. A ródium-tartalmú katalizátorok katalitikus aktivitásának változása a reakcióidővel.

A vasoxid és kobaltoxid nanorészecskéket tartalmazó, szén nanocsöveken deponált katalizátorok katalitikus aktivitását a CO hidrogénezési reakcióban tanulmányoztuk az MTA Izotópkutató Intézettel együttműködve. Azt tapasztaltuk, hogy a kobalt katalizátoron a reakciósebesség nagyobb, mint a vaskatalizátoron.

A CdS-ot tartalmazó titanát nanocső katalizátor fotokatalitikus hatást mutatott vizes közegben, szobahőmérséklet körül, látható fény hatására. Ennek a jelenségnek további vizsgálata folyamatban van.

A szakirodalomban mén nem leírt, új szintézismódszert dolgoztunk ki mezopórusos szenek szintézisére. A szintézishez szilika nanorészecskéket használtunk templátként, s ezáltal lehetőség nyílt előre tervezetten különböző pórusméret eloszlású mezopórusos szén katalizátor hordozók, illetve adszorbensek előállítására. Egyik megoldás szerint az egységes pórusrendszerrel előállított anyag fajlagos felülete 1600 m²/g volt. Új szintézis módszert dolgoztunk ki Pt és Rh nanorészecskék szintézisére mezopórusos szén hordozón.

Ezen eredmények szolgálnak bizonyítékul a 3. munkaszakaszban vállalt feladatok teljesítéséhez.

Összefoglalva

A pályázatban leírt kutatási feladat megoldásában az alábbiakban összegezhető eredmények születtek.

- Kidolgoztunk módszereket különböző morfológiájú nemesfém nanorészecskék szintézisére vizes közegben. Több felületvédő anyagot teszteltünk, amelyek közül a PVP és a NIPA bizonyult általánosan alkalmazhatónak. Részletesen tanulmányoztuk az előregyártott nemesfém katalizátor szemcsék nanoméretben való előállítását. Kidolgoztuk, hogy hogyan célszerű ezeket a nemesfém nanorészecskéket tartalmazó általában vizes szuszpenziókból a fémkomponenst szilárd hordozó, felületére deponálni.
- 2. Kísérletekkel bizonyítottuk, hogy készíthetők katalizátorok úgy is, hogy a katalizátor hordozó anyag és a katalitikusan aktív komponens egyaránt nanométer méretűek. Bizonyítottuk, hogy a szén nanocsöveken hordozott, előregyártott vasoxid, illetve kobaltoxid nanorészecskék jó aktivitást mutatnak a CO hidrogénezési reakcióban (FT reakció). Katalitikus hidrogénezésben bizonyítottuk a titanát nanocsövekkel hordozott Pt nanorészecskék katalitikus aktivitását a ciklohexén hidrogénezésben.
- 3. A trititanát nanocsövek és nanoszálak szintézisére új módszert dolgoztunk ki és a módszerekről valamint a szintézishez használt eszközről szabadalmi bejelentést tettünk. Titanát nanocsövekre két módszerrel, közvetlen szintézissel, illetve Cd²⁺ ioncserét követő szulfidálással olyan fotokatalitikusan aktív katalizátor állítható elő, amely a látható fény tartományában működik.
- 4. A titanát nanocsövek és nanoszálak polimerkémiai hasznosításával is foglalkoztunk, amely téma nem esett közvetlenül a pályázat témakörébe, de szerettük volna a kidolgozott nanocső szintézisek eredményét a lehető legteljesebben lefedni.
- 5. A szakirodalomban mén nem leírt, új szintézismódszert dolgoztunk ki mezopórusos szenek szintézisére. A szintézishez szilika nanorészecskékket használtunk templátként, s ezáltal lehetőség nyílt előre tervezetten különböző pórusméret eloszlású mezopórusos szén katalizátor hordozók, illetve adszorbensek előállítására. Egyik megoldás szerint az egységes pórusrendszerrel előállított anyag fajlagos felülete 1600 m²/g volt.
- 6. Új szintézis módszert dolgoztunk ki Pt és Rh nanorészecskék szintézisére mezopórusos szén hordozón.