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Abstract

In the paper it will be argued that embracing noncommuting common causes in the causal
explanation of quantum correlations in algebraic quantum field theory has the following two
beneficial consequences: it helps (i) to maintain the validity of Reichenbach’s Common Causal
Principle and (ii) to provide a local common causal explanation for a set of correlations violating
the Bell inequality.
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1 Introduction

Algebraic quantum field theory (AQFT) is a mathematically transparent quantum theory with clear
conceptions of locality and causality (see (Haag, 1992) and (Halvorson, 2007)). In this theory
observables are represened by a net of local C'*-algebras associated to bounded regions of a given
spacetime. This correspondence is established due to the axioms of the theory such as isotony,
microcausality and covariance. A state ¢ in this theory is defined as a normalized positive linear
functional on the quasilocal observable algebra A which is the inductive limit of local observable
algebras. The representation 74: A — B(H) corresponding to the state ¢ transforms the net of
C*-algebras into a net of von Neumann observable algebras by closures in the weak topology.

In AQFT events are typically represented by projections of a von Neumann algebra. Although
due to the axiom of microcausality two projections A and B commute if they are contained in local
algebras supported in spacelike separated regions, they can still be correlating in a state ¢, that is

P(AB) # ¢(A)p(B) (1)

in general. In this case the correlation between these events is said to be superluminal. A remarkable
characteristics of Poincaré covariant theories is that there exist “many” normal states establish-
ing superluminal correlations (for the precise meaning of "many” see (Summers, Werner 1988) and
(Halvorson, Clifton 2000)). Since spacelike separation excludes direct causal influence, one may look
for a causal explanation of these superluminal correlations in terms of common causes.

The first probabilistic definition of the common cause is due to Hans Reichenbach (1956). Re-
ichenbach characterizes the notion of the common cause in the following probabilistic way. Let (X, p)
be a classical probability measure space and let A and B be two positively correlating events in 3
that is let

p(AA B) > p(A) p(B). (2)
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Definition 1. An event C' € ¥ is said to be the common cause of the correlation (A, B) if the
following conditions hold:

p(AAB|C) = p(A[C)p(B|C) (3)
p(AAB|CY) = p(A|CH)p(B|CH) (4)
p(AIC) > p(A|CH) ()
p(BIC) > p(B|CY) (6)

where C+ denotes the orthocomplement of C' and p(-|-) is the conditional probability.

The above definition, however, is too specific to be applied in AQFT since (i) it allows only for
causes with a positive impact on their effects, (ii) it excludes the possibility of a set of cooperating
common causes, (iii) it is silent about the spatiotemporal localization of the events and (iv) most
importantly, it is classical. Therefore we need to generalize Reichenbach’s original definition of the
common cause. For the sake of brevity, we do not repeat here all the intermediate steps of the entire
definitional process (for this see (Hofer-Szabé and Vecsernyés, 2012a)), but jump directly to the most
general definition of the common cause in AQFT.

Let P(N) be the non-distributive lattice of projections (events) in a von Neumann algebra A
and let ¢: N — C be a state on it. A set of mutually orthogonal projections {Cy}, o C P(N) is
called a partition of the unit 1 € N if 3, Cj, = 1. Such a partition defines a conditional expectation

E:N —=C, A E(A) =Y CLAC}, (7)

keK

that is a unit preserving positive surjection onto the unital C*-subalgebra C C N obeying the
bimodule property E(By1ABs) = B1E(A)By; A € N, By, By € C. We note that C contains exactly
those elements of N that commute with Ci, k € K. Recall that ¢ o E is also a state on N.

Now, let A,B € P(N) be two commuting events correlating in state ¢ in the sense of (1).
(We note that in case of projection lattices we will use only algebra operations (products, linear
combinations) instead of lattice operations (V,A). In case of commuting projections A, B € P(N)
we have AANB=AB and AVB=A+B - AB.)

Definition 2. A partition of the unit {Cy}, o, C P(N) is said to be a common cause system of the
correlation (1) if

(¢ o E)(ABCy) _ (¢p o E)(ACY) (¢ o E)(BCY)
d(Cr) #(Cr) #(Cr)

for k € K with ¢(Cy) # 0. If C), commutes with both A and B for all k € K we call {Cr},cx a
commuting common cause system, otherwise a noncommuting one. A common cause system of size
|K| = 2 is called a common cause. Reichenbach’s definition (without the inequalities (5)-(6)) is a
commuting common cause in the sense of (8).

(8)

Some remarks are in place here. First, in case of a commuting common cause system ¢ o F can
be replaced by ¢ in (8) since (¢ o E)(ABCy) = ¢(ABCY), k € K. Second, using the decompositions
of the unit, 1 = A+ A+ = B+ B*, (8) can be rewritten in an equivalent form:

(¢ 0 E)Y(ABCy))(¢ 0 E)(ALB+Cy) = (¢ 0 E)(AB+Cy)(¢ 0 E)(ALBCY), k € K. (9)

One can even allow here the case ¢(Cy) = 0 since then both sides of (9) are zero. Third, it is
obvious from (9) that if Cy, < X with X = A, A+, B or B+ for all k € K, then {Ci}, o) serves
as a (commuting) common cause system of the given correlation independently of the chosen state
¢. Hence, these solutions are called trivial common cause systems. If |K| = 2, triviality means that



{Cr} = {A, AL} or {Cr} = {B, B+}. Obviously, for superluminal correlation one looks for nontrival
common causal explanations.

In AQFT one also has to specify the spacetime localization of the common causes. They have
to be in the past of the correlating events. But in which past? One can define different pasts of the
bounded regions V4 and Vg in a given spacetime as:

weak past: wpast(Va,Ve) :=I_(V4)UI_(Vp)
common past: epast(Va,Vp) :=1_(Vx)NI1_(Vp)
strong past: spast(Va, Vi) := Mzevauves I-(x)

where I_(V) denotes the union of the backward light cones I_(z) of every point z in V (Rédei,
Summers 2007). Clearly, wpast D cpast D spast.

With all these definitions in hand we can now define six different common cause systems in
local quantum theories according to (i) whether commutativity is required and (ii) whether the
common cause system is localized in the weak, common or strong past. Thus we can speak about
commuting/noncommuting (weak/strong) common cause systems.

To address the EPR-Bell problem we will need one more concept. In the EPR scenario the real
challenge is to provide a common causal explanation not for one single correlating pair but for a set
of correlations (typically three or four correlations). Therefore, we also need to introduce the notion
of the so-called joint! common cause system:

Definition 3. Let {A,,;;m = 1,...M} and {B,;n = 1,... N} be finite sets of projections in the
algebras A(V4) and A(Vp), respectively, supported in spacelike separated regions V4 and Vg. Sup-
pose that all pair of spacelike separated projections (A,,, B,) correlate in a state ¢ of A in the
sense of (1). Then the set {(An, Bn);m = 1,...M;n = 1,...N} of correlations is said to pos-
sess a commuting /noncommuting (weak/strong) joint common cause system if there exists a single
commuting/noncommuting (weak/strong) common cause system for all correlations (A, By).

Since providing a joint common cause system for a set of correlations is much more demanding than
simply providing a common cause system for a single correlation, therefore we keep the question
of the common causal explanation separated from that of the joint common causal explanation. In
Section 2 we will investigate the possibility of a common causal explanation for a single correlation—
or in the philosophers’ jargon, the status of Reichenbach’s famous Common Cause Principle in
AQFT. In Section 3 we will address the more intricate question as to whether EPR correlations
can be given a joint common causal explanation. The crucial common element in both sections
will be noncommutativity. We will argue that embracing noncommauting common causes in our
causal explanation helps us in both cases: (i) in the case of common causal explanation it helps to
maintain the validity of Reichenbach’s Common Causal Principle in AQFT; (ii) in the case of joint
common causal explanation it helps to provide a local, joint common causal explanation for a set of
correlations violating the Bell inequalities. We conclude the paper in Section 4.

2 Noncommutative Common Cause Principles in AQFT

Reichenbach’s Common Cause Principle (CCP) is the following metaphysical claim: If there is a
correlation between two events and there is no direct causal (or logical) connection between the
correlating events, then there exists a common cause of the correlation. The precise definition of this
informal statement that fits to AQFT is the following:

'In (Hofer-Szab6 and Vecsernyés, 2012a, 2013a) called common common cause system.



Definition 4. A local quantum theory is said to satisfy the Commutative/Noncommutative (Weak/Strong)
CCP if for any pair A € A(V4) and B € A(Vp) of projections supported in spacelike separated re-
gions V4, Vg and for every locally faithful state ¢: A — C establishing a correlation between A and

B in the sense of (1), there exists a nontrivial commuting/noncommuting common cause system
{Ck}rerx C A(V) such that the localization region V is in the (weak/strong) common past of Vy

and VB.

What is the status of these six different CCPs in AQFT?

The question as to whether the Commutative CCPs are valid in a Poincaré covariant local quan-
tum theory in the von Neumann algebraic setting was first raised by Rédei (1997, 1998). As a positive
answer to this question, Rédei and Summers (2002, 2007) have shown that the Commutative Weak
CCP holds in algebraic quantum field theory with locally infinite degrees of freedom in the following
sense: for every locally normal and faithful state and for every superluminally correlating pair of pro-
jections there exists a weak common cause, that is a common cause system of size 2 in the weak past
of the correlating projections. They have also shown that the localization of a common cause cannot
be restricted to wpast(Va, Vg) \ I-(Va) or wpast(Va,Vp) \ I-(Vp) due to logical independence of
spacelike separated algebras.

Concerning the Commutative (Strong) CCP less is known. If one also admits projections localized
only in unbounded regions, then the Strong CCP is known to be false: von Neumann algebras
pertaining to complementary wedges contain correlated projections but the strong past of such
wedges is empty (see (Summers and Werner, 1988) and (Summers, 1990)). In spacetimes having
horizons, e.g. those with Robertson—Walker metric, there exist states which provide correlations
among local algebras corresponding to spacelike separated bounded regions such that the common
past of these regions is again empty (Wald 1992). Hence, CCP is not valid there. Restricting
ourselves to local algebras in Minkowski spaces the situation is not clear. We are of the opinion that
one cannot decide on the validity of the (Strong) CCP without an explicit reference to the dynamics.

Coming back to the proof of Rédei and Summers, the proof had a crucial premise, namely that the
algebras in question are von Neumann algebras of type I1I. Although these algebras are the typical
building blocks of Poincaré covariant theories, other local quantum theories apply von Neumann
algebras of other type. For example, theories with locally finite degrees of freedom are based on von
Neumann algebras of type 1. This raised the question as to whether the Commutative Weak CCP is
generally valid in AQFT. To address the problem Hofer-Szab6 and Vecsernyés (2012a) have chosen
a specific local quantum field theory, the local quantum Ising model having locally finite degrees of
freedom. It turned out that the Commutative Weak CCP does not hold in the local quantum Ising
model and it cannot hold either in theories with locally finite degrees of freedom in general.

But why should we require commutativity between the common cause and its effects at all?

Commutativity has a well-defined role in any quantum theories. In standard quantum mechan-
ics observables should commute to be simultaneously measurable. In AQFT the axiom of micro-
causality ensures that observables with spacelike separated supports—roughly, events happening
‘simultaneously’—commute. But cause and effect are typically not such simultaneous events! If one
considers ordinary QM, one well sees that observables do not commute even with their own time
translates in general. For example, the time translate z(t) := U(t)"*2U(t) of the position operator x
of the harmonic oscillator in QM does not commute with = = x(0) for generic ¢, since in the ground
state vector 1y we have

—ihsin (fuwt)
mw

[z, 2(t)] Yo = Yo # 0. (10)
Thus, if an observable A is not a conserved quantity, then the commutator [A, A(t)] # 0 in general.
So why should the commutators [A4, C| and [B, C] vanish for the events A, B and for their common
cause C supported in their (weak/common/strong) past? We think that commuting common causes
are only unnecessary reminiscense of their classical formulation. Due to their relative spacetime



localization, that is due to the time delay between the correlating events and the common cause, it
is also an unreasonable assumption.

Abandoning commutativity in the definition of the common cause is therefore a desirable move.
The first benefit of allowing noncommuting common causes is that the noncommutative version of
the result of Rédei and Summers can be regained. This result has been formulated in (Hofer-Szabo
and Vecsernyés 2013a) in the following:

Proposition 1. The Noncommutative Weak CCP holds in local UHF-type quantum theories.
Namely, if A € A(V4) and B € A(Vp) are projections with spacelike separated supports V4 and Vg
correlating in a locally faithful state ¢ on A, then there exists a common cause {C, C*} localized in
the weak past of V4 and V3.

Now, let us turn to the more complicated question as to whether a set of correlations violating
the Bell inequality can have a joint common causal explanation in AQFT. Since our answer requires
some knowledge of the main concepts of the Bell scenario in AQFT and some acquaintance with the
model in which our results were formulated, we start the next section with a short tutorial on these
issues (for more details see (Hofer-Szabo, Vecsernyés, 2012b, 2013b).

3 Noncommutative joint common causal explanation for cor-
relations violating the Bell inequality

The Bell problem is treated in AQFT in a subtle mathematical way (Summers and Werner, 1987a,b,
Summers 1990); here we introduce, however, only those concepts which are related to the problem
of common causal explanation (for more on that see (Hofer-Szabo, Vecsernyés, 2013b)).

Let A1, As € A(Vy) and By, By € A(Vg) be projections with spacelike separated supports Vs
and Vg, respectively. We say that in a locally faithful state ¢ the Clauser—Horne-type Bell inequality
is satisfied for Ay, Ao, By and By if the following inequality holds:

-1 < ¢(A131 + Ale + A2Bl - A2B2 - Al - Bl) < 0 (11)

otherwise we say that the Bell inequality is violated. (Sometimes in the EPR-Bell literature another
inequality, the so-called Clauser—Horne-Shimony—Holte-type Bell inequality is used as a constraint
on the expectation of (not projections but) self-adjoint contractions. Since these two inequalities are
equivalent, in what follows we will simply use (11) as the definition of the Bell inequality.)

In the literature it is a received view that if a set of correlations violates the Bell inequality,
then the set cannot be given a joint common causal explanation. The following proposition proven
in (Hofer-Szabé and Vecsernyés 2013b) shows that this view is correct only if joint common causal
explanation is meant as a commutative joint common causal explanation:

Proposition 2. Let A1, Ay € A(Vy) and By, By € A(Vg) be four projections localized in spacelike
separated spacetime regions V4 and Vg, respectively, which correlate in the locally faithful state
¢. Suppose that {(Am, Bn);m,n = 1,2} has a joint common causal explanation in the sense of
Definition 3. Then the following Bell inequality

1< (¢oE.)(Ai1B1 + A1Ba+ Ay By — AyBy — Ay — By) <0. (12)

holds for the state ¢ o E.. If the joint common cause is a commuting one, then the original Bell
inequality (11) holds for the original state ¢.

Proposition 2 states that in order to yield a commuting joint common causal explanation for the
set {(Am, Bn);m,n = 1,2} the Bell inequality (11) has to be satisfied. This result is in complete
agreement with the usual approaches to Bell inequalities (see e.g. (Butterfield 1989, 1995, 2007)).



But what is the situation with noncommuting common cause systems? Since—apart from (12)—
Proposition 2 is silent about the relation between a noncommuting joint common causal explanation
and the Bell inequality (11), the question arises: Can a set of correlations violating the Bell inequality
(11) have a noncommuting joint common causal explanation?

n (Hofer-Szabo, Vecsernyés, 2012b, 2013b) it has been shown that the answer to the above
question is positive: the violation of the Bell inequality does not exclude a joint common causal
explanation if common causes can be noncommuting. Moreover, these common causes turned out
to be localizable just in the ’right’ spacetime region (see below). For this result, we applied a simple
AQFT with locally finite degrees of freedom, the so-called local quantum Ising model (for more
details see (Hofer-Szabo, Vecsernyés, 2012b, 2013b); for a Hopf algebraic introduction of the model
see (Szlachéanyi, Vecsernyés, 1993), (Nill, Szlachanyi, 1997), (Miiller, Vecsernyés)).

Consider a ‘discretized’ version of the two dimensional Minkowski spacetime M? covered by
minimal double cones V;"} of unit diameter with their center in (¢,4) for ¢,i € Z or t,i € Z+1/2 (see
Fig. 1). A non-minimal double cone Vi,iss,5 in this covering can be generated by two minimal double

Figure 1: The two dimensional discrete Minkowski spacetime covered by minimal double cones.

cones in the sense that V; ;.5 ; is the smallest double cone containing both Vm and V"; The set of
double cones forms a directed poset which is left invariant by integer space and time translations.

The ‘one-point’ observable algebras associated to the minimal double cones V;"} are defined to be
A(Vi) =~ M;(C) @ My (C). By introducing appropriate commutation and anticommutation relations
between the unitary selfadjoint generators of the ‘one-point’ observable algebras (which relations
respect microcausality) one can generate the net of local algebras. Since there is an increasing
sequence of double cones covering M? such that the corresponding local algebras are isomorphic to
full matrix algebras Man(C), the quasilocal observable algebra A is a uniformly hyperfinite (UHF)
C*-algebra and consequently there exists a unique (non-degenerate) normalized trace Tr: .4 — C on
it.

Now, consider the double cones V4 := Vg™ ; U V1 1 and Vp 1= V1 1 U Vi and the ‘two-point’
algebras A(Vy4) and A(Vp) pertaining to them (see Flg 2). It turns out that all the minimal
projections in A(a) € A(V4) and B(b) € A(Vg) can be parametrized by unit vectors a and b,
respectively in R3. Now, consider two projections A, := A(a™);m = 1,2 localized in V4, and two
other projections B, := B(b™);n = 1,2 localized in the spacelike separated double cone V.

Let the state of the system be the singlet state ¢° defined in an appropriate way (by a density
operator composed of specific combinations of generators taken from various ’'one-point’ algebras).
It turns out that in state ¢° the correlation between A,, and B,, will the one familiar from the EPR
situation:

corr(Ap, B) := ¢°(AmBy) — ¢°(Am) ¢°(Bn) = — ™ b") (13)



Figure 2: Correlations between events in V4 and V.

where ( , ) is the scalar product in R3. In other words A, and B,, will correlate whenever a™ and
b"™ are not orthogonal. To violate the Bell inequalitity (11) set a™ and b™ as follows:

al = (0,1,0) (14)
a? = (1,0,0) (15)
b = %(1,1,0) (16)
b? = i(—l,l,o) (17)

V2

With this setting (11) will be violated at the lower bound since
¢S(A131 + A1By + AsBy — Ao By — Ay — Bl) =

() (ot 7)) — 7)) = 22

1 1
—_———= 18
Now, the question as to whether the four correlations {(A,,, B,); m,n = 1,2} violating the Bell
inequality (11) have a joint common causal explanation was answered in (Hofer-Szabé, Vecsernyés,

2012b) by the following

Proposition 3. Let A, := A(a™) € A(Va), By, := B(b™) € A(Vg);m,n = 1,2 be four projections
parametrized by the unit vectors via (14)-(17) violating the Bell inequality in the sense of (18). Then
there exist a noncommuting join common cause {C, C+} of the correlations {(A,,, B,);m,n = 1,2}
localizable in the common past Vo :=V; 1,91 of Va and Vg (see Fig. 3).

Observe that C is localized in the common past of the four correlating events that is in the region
which seems to be the 'physically most intuitive’ localization of the common cause.

Proposition 2 and 3 together show that the relation between the common causal explanation and
the Bell inequality in the noncommutative case is different from that in the commutative case. In the
latter case the satisfaction of the Bell inquality is a necessary condition for a set of correlations to
have a joint common causal explanation. In the noncommutative case, however, the violation of the
Bell inequality for a given set of correlations does not exclude the possibility of a joint common causal
explanation for the set. And indeed, as Proposition 3 shows, one can find a common cause even for a
set of correlations violating the Bell inequality. To sum it up, taking seriously the noncommutative
character of AQFT where events are represented by not necessarily commuting projections, one can
provide a common causal explanation in a much wider range than simply sticking to commutative
common causes.



Figure 3: Localization of a common cause for the correlations {(A,,, B,)}-

4 Conclusions

In the paper we were arguing that embracing noncommuting common causes in our explanatory
framework is in line with the spirit of quantum theory and it gives us extra freedom in the search
of common causes for correlations. Specifically, it helps to maintain the validity of Reichenbach’s
Common Causal Principle in the context of AQFT and it also helps to provide a local, joint common
causal explanation for a set of correlations even if they violate the Bell inequalities.

Using noncommuting common causes naively to address the basic problems of the causal expla-
nation in quantum theory in a formal way is no use whatsoever, if it is not underpinned by a viable
ontology on which the causal theory can be based. This is a grandious research project. I conclude
here simply by posing the central question of such a project:

Question. What ontology exactly is forced upon us by using noncommuting common causes in our

causal explanation?
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