
Nonommutative ausality

in algebrai quantum �eld theory

Gábor Hofer-Szabó

∗

Abstrat

In the paper it will be argued that embraing nonommuting ommon auses in the ausal

explanation of quantum orrelations in algebrai quantum �eld theory has the following two

bene�ial onsequenes: it helps (i) to maintain the validity of Reihenbah's Common Causal

Priniple and (ii) to provide a loal ommon ausal explanation for a set of orrelations violating

the Bell inequality.
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1 Introdution

Algebrai quantum �eld theory (AQFT) is a mathematially transparent quantum theory with lear

oneptions of loality and ausality (see (Haag, 1992) and (Halvorson, 2007)). In this theory

observables are represened by a net of loal C∗
-algebras assoiated to bounded regions of a given

spaetime. This orrespondene is established due to the axioms of the theory suh as isotony,

miroausality and ovariane. A state φ in this theory is de�ned as a normalized positive linear

funtional on the quasiloal observable algebra A whih is the indutive limit of loal observable

algebras. The representation πφ : A → B(H) orresponding to the state φ transforms the net of

C∗
-algebras into a net of von Neumann observable algebras by losures in the weak topology.

In AQFT events are typially represented by projetions of a von Neumann algebra. Although

due to the axiom of miroausality two projetions A and B ommute if they are ontained in loal

algebras supported in spaelike separated regions, they an still be orrelating in a state φ, that is

φ(AB) 6= φ(A)φ(B) (1)

in general. In this ase the orrelation between these events is said to be superluminal. A remarkable

harateristis of Poinaré ovariant theories is that there exist �many� normal states establish-

ing superluminal orrelations (for the preise meaning of �many� see (Summers, Werner 1988) and

(Halvorson, Clifton 2000)). Sine spaelike separation exludes diret ausal in�uene, one may look

for a ausal explanation of these superluminal orrelations in terms of ommon auses.

The �rst probabilisti de�nition of the ommon ause is due to Hans Reihenbah (1956). Re-

ihenbah haraterizes the notion of the ommon ause in the following probabilisti way. Let (Σ, p)
be a lassial probability measure spae and let A and B be two positively orrelating events in Σ
that is let

p(A ∧B) > p(A) p(B). (2)
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De�nition 1. An event C ∈ Σ is said to be the ommon ause of the orrelation (A,B) if the

following onditions hold:

p(A ∧B|C) = p(A|C)p(B|C) (3)

p(A ∧B|C⊥) = p(A|C⊥)p(B|C⊥) (4)

p(A|C) > p(A|C⊥) (5)

p(B|C) > p(B|C⊥) (6)

where C⊥
denotes the orthoomplement of C and p( · | · ) is the onditional probability.

The above de�nition, however, is too spei� to be applied in AQFT sine (i) it allows only for

auses with a positive impat on their e�ets, (ii) it exludes the possibility of a set of ooperating

ommon auses, (iii) it is silent about the spatiotemporal loalization of the events and (iv) most

importantly, it is lassial. Therefore we need to generalize Reihenbah's original de�nition of the

ommon ause. For the sake of brevity, we do not repeat here all the intermediate steps of the entire

de�nitional proess (for this see (Hofer-Szabó and Vesernyés, 2012a)), but jump diretly to the most

general de�nition of the ommon ause in AQFT.

Let P(N ) be the non-distributive lattie of projetions (events) in a von Neumann algebra N
and let φ : N → C be a state on it. A set of mutually orthogonal projetions {Ck}k∈K ⊂ P(N ) is
alled a partition of the unit 1 ∈ N if

∑

k Ck = 1. Suh a partition de�nes a onditional expetation

E : N → C, A 7→ E(A) :=
∑

k∈K

CkACk, (7)

that is a unit preserving positive surjetion onto the unital C∗
-subalgebra C ⊆ N obeying the

bimodule property E(B1AB2) = B1E(A)B2;A ∈ N , B1, B2 ∈ C. We note that C ontains exatly

those elements of N that ommute with Ck, k ∈ K. Reall that φ ◦ E is also a state on N .

Now, let A,B ∈ P(N ) be two ommuting events orrelating in state φ in the sense of (1).

(We note that in ase of projetion latties we will use only algebra operations (produts, linear

ombinations) instead of lattie operations (∨,∧). In ase of ommuting projetions A,B ∈ P(N )
we have A ∧B = AB and A ∨B = A+B −AB.)

De�nition 2. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be a ommon ause system of the

orrelation (1) if

(φ ◦ E)(ABCk)

φ(Ck)
=

(φ ◦ E)(ACk)

φ(Ck)

(φ ◦ E)(BCk)

φ(Ck)
(8)

for k ∈ K with φ(Ck) 6= 0. If Ck ommutes with both A and B for all k ∈ K we all {Ck}k∈K a

ommuting ommon ause system, otherwise a nonommuting one. A ommon ause system of size

|K| = 2 is alled a ommon ause. Reihenbah's de�nition (without the inequalities (5)-(6)) is a

ommuting ommon ause in the sense of (8).

Some remarks are in plae here. First, in ase of a ommuting ommon ause system φ ◦ E an

be replaed by φ in (8) sine (φ ◦ E)(ABCk) = φ(ABCk), k ∈ K. Seond, using the deompositions

of the unit, 1 = A+A⊥ = B +B⊥
, (8) an be rewritten in an equivalent form:

(φ ◦ E)(ABCk))(φ ◦E)(A⊥B⊥Ck) = (φ ◦ E)(AB⊥Ck)(φ ◦ E)(A⊥BCk), k ∈ K. (9)

One an even allow here the ase φ(Ck) = 0 sine then both sides of (9) are zero. Third, it is

obvious from (9) that if Ck ≤ X with X = A,A⊥, B or B⊥
for all k ∈ K, then {Ck}k∈K serves

as a (ommuting) ommon ause system of the given orrelation independently of the hosen state

φ. Hene, these solutions are alled trivial ommon ause systems. If |K| = 2, triviality means that
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{Ck} = {A,A⊥} or {Ck} = {B,B⊥}. Obviously, for superluminal orrelation one looks for nontrival

ommon ausal explanations.

In AQFT one also has to speify the spaetime loalization of the ommon auses. They have

to be in the past of the orrelating events. But in whih past? One an de�ne di�erent pasts of the

bounded regions VA and VB in a given spaetime as:

weak past: wpast(VA, VB) := I−(VA) ∪ I−(VB)
ommon past: cpast(VA, VB) := I−(VA) ∩ I−(VB)
strong past: spast(VA, VB) := ∩x∈VA∪VB

I−(x)

where I−(V ) denotes the union of the bakward light ones I−(x) of every point x in V (Rédei,

Summers 2007). Clearly, wpast ⊃ cpast ⊃ spast.
With all these de�nitions in hand we an now de�ne six di�erent ommon ause systems in

loal quantum theories aording to (i) whether ommutativity is required and (ii) whether the

ommon ause system is loalized in the weak, ommon or strong past. Thus we an speak about

ommuting/nonommuting (weak/strong) ommon ause systems.

To address the EPR-Bell problem we will need one more onept. In the EPR senario the real

hallenge is to provide a ommon ausal explanation not for one single orrelating pair but for a set

of orrelations (typially three or four orrelations). Therefore, we also need to introdue the notion

of the so-alled joint

1

ommon ause system:

De�nition 3. Let {Am;m = 1, . . .M} and {Bn;n = 1, . . .N} be �nite sets of projetions in the

algebras A(VA) and A(VB), respetively, supported in spaelike separated regions VA and VB . Sup-
pose that all pair of spaelike separated projetions (Am, Bn) orrelate in a state φ of A in the

sense of (1). Then the set {(Am, Bn);m = 1, . . .M ;n = 1, . . .N} of orrelations is said to pos-

sess a ommuting/nonommuting (weak/strong) joint ommon ause system if there exists a single

ommuting/nonommuting (weak/strong) ommon ause system for all orrelations (Am, Bn).

Sine providing a joint ommon ause system for a set of orrelations is muh more demanding than

simply providing a ommon ause system for a single orrelation, therefore we keep the question

of the ommon ausal explanation separated from that of the joint ommon ausal explanation. In

Setion 2 we will investigate the possibility of a ommon ausal explanation for a single orrelation�

or in the philosophers' jargon, the status of Reihenbah's famous Common Cause Priniple in

AQFT. In Setion 3 we will address the more intriate question as to whether EPR orrelations

an be given a joint ommon ausal explanation. The ruial ommon element in both setions

will be nonommutativity. We will argue that embraing nonommuting ommon auses in our

ausal explanation helps us in both ases: (i) in the ase of ommon ausal explanation it helps to

maintain the validity of Reihenbah's Common Causal Priniple in AQFT; (ii) in the ase of joint

ommon ausal explanation it helps to provide a loal, joint ommon ausal explanation for a set of

orrelations violating the Bell inequalities. We onlude the paper in Setion 4.

2 Nonommutative Common Cause Priniples in AQFT

Reihenbah's Common Cause Priniple (CCP) is the following metaphysial laim: If there is a

orrelation between two events and there is no diret ausal (or logial) onnetion between the

orrelating events, then there exists a ommon ause of the orrelation. The preise de�nition of this

informal statement that �ts to AQFT is the following:

1

In (Hofer-Szabó and Vesernyés, 2012a, 2013a) alled ommon ommon ause system.
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De�nition 4. A loal quantum theory is said to satisfy the Commutative/Nonommutative (Weak/Strong)

CCP if for any pair A ∈ A(VA) and B ∈ A(VB) of projetions supported in spaelike separated re-

gions VA, VB and for every loally faithful state φ : A → C establishing a orrelation between A and

B in the sense of (1), there exists a nontrivial ommuting/nonommuting ommon ause system

{Ck}k∈K ⊂ A(V ) suh that the loalization region V is in the (weak/strong) ommon past of VA
and VB .

What is the status of these six di�erent CCPs in AQFT?

The question as to whether the Commutative CCPs are valid in a Poinaré ovariant loal quan-

tum theory in the von Neumann algebrai setting was �rst raised by Rédei (1997, 1998). As a positive

answer to this question, Rédei and Summers (2002, 2007) have shown that the Commutative Weak

CCP holds in algebrai quantum �eld theory with loally in�nite degrees of freedom in the following

sense: for every loally normal and faithful state and for every superluminally orrelating pair of pro-

jetions there exists a weak ommon ause, that is a ommon ause system of size 2 in the weak past

of the orrelating projetions. They have also shown that the loalization of a ommon ause annot

be restrited to wpast(VA, VB) \ I−(VA) or wpast(VA, VB) \ I−(VB) due to logial independene of

spaelike separated algebras.

Conerning the Commutative (Strong) CCP less is known. If one also admits projetions loalized

only in unbounded regions, then the Strong CCP is known to be false: von Neumann algebras

pertaining to omplementary wedges ontain orrelated projetions but the strong past of suh

wedges is empty (see (Summers and Werner, 1988) and (Summers, 1990)). In spaetimes having

horizons, e.g. those with Robertson�Walker metri, there exist states whih provide orrelations

among loal algebras orresponding to spaelike separated bounded regions suh that the ommon

past of these regions is again empty (Wald 1992). Hene, CCP is not valid there. Restriting

ourselves to loal algebras in Minkowski spaes the situation is not lear. We are of the opinion that

one annot deide on the validity of the (Strong) CCP without an expliit referene to the dynamis.

Coming bak to the proof of Rédei and Summers, the proof had a ruial premise, namely that the

algebras in question are von Neumann algebras of type III. Although these algebras are the typial

building bloks of Poinaré ovariant theories, other loal quantum theories apply von Neumann

algebras of other type. For example, theories with loally �nite degrees of freedom are based on von

Neumann algebras of type I. This raised the question as to whether the Commutative Weak CCP is

generally valid in AQFT. To address the problem Hofer-Szabó and Vesernyés (2012a) have hosen

a spei� loal quantum �eld theory, the loal quantum Ising model having loally �nite degrees of

freedom. It turned out that the Commutative Weak CCP does not hold in the loal quantum Ising

model and it annot hold either in theories with loally �nite degrees of freedom in general.

But why should we require ommutativity between the ommon ause and its e�ets at all?

Commutativity has a well-de�ned role in any quantum theories. In standard quantum mehan-

is observables should ommute to be simultaneously measurable. In AQFT the axiom of miro-

ausality ensures that observables with spaelike separated supports�roughly, events happening

`simultaneously'�ommute. But ause and e�et are typially not suh simultaneous events! If one

onsiders ordinary QM, one well sees that observables do not ommute even with their own time

translates in general. For example, the time translate x(t) := U(t)−1xU(t) of the position operator x
of the harmoni osillator in QM does not ommute with x ≡ x(0) for generi t, sine in the ground

state vetor ψ0 we have

[

x, x(t)
]

ψ0 =
−i~ sin (~ωt)

mω
ψ0 6≡ 0. (10)

Thus, if an observable A is not a onserved quantity, then the ommutator [A,A(t)] 6= 0 in general.

So why should the ommutators [A,C] and [B,C] vanish for the events A,B and for their ommon

ause C supported in their (weak/ommon/strong) past? We think that ommuting ommon auses

are only unneessary reminisense of their lassial formulation. Due to their relative spaetime
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loalization, that is due to the time delay between the orrelating events and the ommon ause, it

is also an unreasonable assumption.

Abandoning ommutativity in the de�nition of the ommon ause is therefore a desirable move.

The �rst bene�t of allowing nonommuting ommon auses is that the nonommutative version of

the result of Rédei and Summers an be regained. This result has been formulated in (Hofer-Szabó

and Vesernyés 2013a) in the following:

Proposition 1. The Nonommutative Weak CCP holds in loal UHF-type quantum theories.

Namely, if A ∈ A(VA) and B ∈ A(VB) are projetions with spaelike separated supports VA and VB
orrelating in a loally faithful state φ on A, then there exists a ommon ause {C,C⊥} loalized in

the weak past of VA and VB .

Now, let us turn to the more ompliated question as to whether a set of orrelations violating

the Bell inequality an have a joint ommon ausal explanation in AQFT. Sine our answer requires

some knowledge of the main onepts of the Bell senario in AQFT and some aquaintane with the

model in whih our results were formulated, we start the next setion with a short tutorial on these

issues (for more details see (Hofer-Szabó, Vesernyés, 2012b, 2013b).

3 Nonommutative joint ommon ausal explanation for or-

relations violating the Bell inequality

The Bell problem is treated in AQFT in a subtle mathematial way (Summers and Werner, 1987a,b,

Summers 1990); here we introdue, however, only those onepts whih are related to the problem

of ommon ausal explanation (for more on that see (Hofer-Szabó, Vesernyés, 2013b)).

Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be projetions with spaelike separated supports VA
and VB, respetively. We say that in a loally faithful state φ the Clauser�Horne-type Bell inequality

is satis�ed for A1, A2, B1 and B2 if the following inequality holds:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0 (11)

otherwise we say that the Bell inequality is violated. (Sometimes in the EPR-Bell literature another

inequality, the so-alled Clauser�Horne�Shimony�Holte-type Bell inequality is used as a onstraint

on the expetation of (not projetions but) self-adjoint ontrations. Sine these two inequalities are

equivalent, in what follows we will simply use (11) as the de�nition of the Bell inequality.)

In the literature it is a reeived view that if a set of orrelations violates the Bell inequality,

then the set annot be given a joint ommon ausal explanation. The following proposition proven

in (Hofer-Szabó and Vesernyés 2013b) shows that this view is orret only if joint ommon ausal

explanation is meant as a ommutative joint ommon ausal explanation:

Proposition 2. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four projetions loalized in spaelike

separated spaetime regions VA and VB , respetively, whih orrelate in the loally faithful state

φ. Suppose that {(Am, Bn);m,n = 1, 2} has a joint ommon ausal explanation in the sense of

De�nition 3. Then the following Bell inequality

−1 6 (φ ◦ Ec)(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (12)

holds for the state φ ◦ Ec. If the joint ommon ause is a ommuting one, then the original Bell

inequality (11) holds for the original state φ.

Proposition 2 states that in order to yield a ommuting joint ommon ausal explanation for the

set {(Am, Bn);m,n = 1, 2} the Bell inequality (11) has to be satis�ed. This result is in omplete

agreement with the usual approahes to Bell inequalities (see e.g. (Butter�eld 1989, 1995, 2007)).
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But what is the situation with nonommuting ommon ause systems? Sine�apart from (12)�

Proposition 2 is silent about the relation between a nonommuting joint ommon ausal explanation

and the Bell inequality (11), the question arises: Can a set of orrelations violating the Bell inequality

(11) have a nonommuting joint ommon ausal explanation?

In (Hofer-Szabó, Vesernyés, 2012b, 2013b) it has been shown that the answer to the above

question is positive: the violation of the Bell inequality does not exlude a joint ommon ausal

explanation if ommon auses an be nonommuting. Moreover, these ommon auses turned out

to be loalizable just in the 'right' spaetime region (see below). For this result, we applied a simple

AQFT with loally �nite degrees of freedom, the so-alled loal quantum Ising model (for more

details see (Hofer-Szabó, Vesernyés, 2012b, 2013b); for a Hopf algebrai introdution of the model

see (Szlahányi, Vesernyés, 1993), (Nill, Szlahányi, 1997), (Müller, Vesernyés)).

Consider a `disretized' version of the two dimensional Minkowski spaetime M2
overed by

minimal double ones V m
t,i of unit diameter with their enter in (t, i) for t, i ∈ Z or t, i ∈ Z+1/2 (see

Fig. 1). A non-minimal double one Vt,i;s,j in this overing an be generated by two minimal double

VV V0,0 0,10,−1

mmm

m

m m

mVm

m

V

V V0, 1/20,−1/2

1/2,−1/2V1/2,1/2

1/2,0 V1/2,1

Figure 1: The two dimensional disrete Minkowski spaetime overed by minimal double ones.

ones in the sense that Vt,i;s,j is the smallest double one ontaining both V m
t,i and V m

s,j . The set of

double ones forms a direted poset whih is left invariant by integer spae and time translations.

The `one-point' observable algebras assoiated to the minimal double ones Vm
t,i are de�ned to be

A(V m
t,i ) ≃M1(C)⊕M1(C). By introduing appropriate ommutation and antiommutation relations

between the unitary selfadjoint generators of the `one-point' observable algebras (whih relations

respet miroausality) one an generate the net of loal algebras. Sine there is an inreasing

sequene of double ones overing M2
suh that the orresponding loal algebras are isomorphi to

full matrix algebras M2n(C), the quasiloal observable algebra A is a uniformly hyper�nite (UHF)

C∗
-algebra and onsequently there exists a unique (non-degenerate) normalized trae Tr : A → C on

it.

Now, onsider the double ones VA := Vm
0,−1 ∪ V m

1

2
,− 1

2

and VB := V m
1

2
, 1
2

∪ V m
0,1 and the `two-point'

algebras A(VA) and A(VB) pertaining to them (see Fig. 2). It turns out that all the minimal

projetions in A(a) ∈ A(VA) and B(b) ∈ A(VB) an be parametrized by unit vetors a and b,

respetively in R3
. Now, onsider two projetions Am := A(am);m = 1, 2 loalized in VA, and two

other projetions Bn := B(bn);n = 1, 2 loalized in the spaelike separated double one VB .
Let the state of the system be the singlet state φs de�ned in an appropriate way (by a density

operator omposed of spei� ombinations of generators taken from various 'one-point' algebras).

It turns out that in state φs the orrelation between Am and Bn will the one familiar from the EPR

situation:

corr(Am, Bn) := φs(AmBn)− φs(Am)φs(Bn) = −1

4
〈am,bn〉 (13)
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Figure 2: Correlations between events in VA and VB .

where 〈 , 〉 is the salar produt in R3
. In other words Am and Bn will orrelate whenever a

m
and

b
n
are not orthogonal. To violate the Bell inequalitity (11) set a

m
and b

n
as follows:

a
1 = (0, 1, 0) (14)

a
2 = (1, 0, 0) (15)

b
1 =

1√
2
(1, 1, 0) (16)

b
2 =

1√
2
(−1, 1, 0) (17)

With this setting (11) will be violated at the lower bound sine

φs(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1

)

=

−1

2
− 1

4

(〈

a
1,b1

〉

+
〈

a
1,b2

〉

+
〈

a
2,b1

〉

−
〈

a
2,b2

〉)

= −1 +
√
2

2
(18)

Now, the question as to whether the four orrelations {(Am, Bn);m,n = 1, 2} violating the Bell

inequality (11) have a joint ommon ausal explanation was answered in (Hofer-Szabó, Vesernyés,

2012b) by the following

Proposition 3. Let Am := A(am) ∈ A(VA), Bn := B(bn) ∈ A(VB);m,n = 1, 2 be four projetions

parametrized by the unit vetors via (14)-(17) violating the Bell inequality in the sense of (18). Then

there exist a nonommuting join ommon ause {C,C⊥} of the orrelations {(Am, Bn);m,n = 1, 2}
loalizable in the ommon past VC := V0,− 1

2
;0, 1

2

of VA and VB (see Fig. 3).

Observe that C is loalized in the ommon past of the four orrelating events that is in the region

whih seems to be the 'physially most intuitive' loalization of the ommon ause.

Proposition 2 and 3 together show that the relation between the ommon ausal explanation and

the Bell inequality in the nonommutative ase is di�erent from that in the ommutative ase. In the

latter ase the satisfation of the Bell inquality is a neessary ondition for a set of orrelations to

have a joint ommon ausal explanation. In the nonommutative ase, however, the violation of the

Bell inequality for a given set of orrelations does not exlude the possibility of a joint ommon ausal

explanation for the set. And indeed, as Proposition 3 shows, one an �nd a ommon ause even for a

set of orrelations violating the Bell inequality. To sum it up, taking seriously the nonommutative

harater of AQFT where events are represented by not neessarily ommuting projetions, one an

provide a ommon ausal explanation in a muh wider range than simply stiking to ommutative

ommon auses.
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Figure 3: Loalization of a ommon ause for the orrelations {(Am, Bn)}.

4 Conlusions

In the paper we were arguing that embraing nonommuting ommon auses in our explanatory

framework is in line with the spirit of quantum theory and it gives us extra freedom in the searh

of ommon auses for orrelations. Spei�ally, it helps to maintain the validity of Reihenbah's

Common Causal Priniple in the ontext of AQFT and it also helps to provide a loal, joint ommon

ausal explanation for a set of orrelations even if they violate the Bell inequalities.

Using nonommuting ommon auses naively to address the basi problems of the ausal expla-

nation in quantum theory in a formal way is no use whatsoever, if it is not underpinned by a viable

ontology on whih the ausal theory an be based. This is a grandious researh projet. I onlude

here simply by posing the entral question of suh a projet:

Question. What ontology exatly is fored upon us by using nonommuting ommon auses in our

ausal explanation?
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