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Abstra
t

In the paper it will be argued that embra
ing non
ommuting 
ommon 
auses in the 
ausal

explanation of quantum 
orrelations in algebrai
 quantum �eld theory has the following two

bene�
ial 
onsequen
es: it helps (i) to maintain the validity of Rei
henba
h's Common Causal

Prin
iple and (ii) to provide a lo
al 
ommon 
ausal explanation for a set of 
orrelations violating

the Bell inequality.
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1 Introdu
tion

Algebrai
 quantum �eld theory (AQFT) is a mathemati
ally transparent quantum theory with 
lear


on
eptions of lo
ality and 
ausality (see (Haag, 1992) and (Halvorson, 2007)). In this theory

observables are represened by a net of lo
al C∗
-algebras asso
iated to bounded regions of a given

spa
etime. This 
orresponden
e is established due to the axioms of the theory su
h as isotony,

mi
ro
ausality and 
ovarian
e. A state φ in this theory is de�ned as a normalized positive linear

fun
tional on the quasilo
al observable algebra A whi
h is the indu
tive limit of lo
al observable

algebras. The representation πφ : A → B(H) 
orresponding to the state φ transforms the net of

C∗
-algebras into a net of von Neumann observable algebras by 
losures in the weak topology.

In AQFT events are typi
ally represented by proje
tions of a von Neumann algebra. Although

due to the axiom of mi
ro
ausality two proje
tions A and B 
ommute if they are 
ontained in lo
al

algebras supported in spa
elike separated regions, they 
an still be 
orrelating in a state φ, that is

φ(AB) 6= φ(A)φ(B) (1)

in general. In this 
ase the 
orrelation between these events is said to be superluminal. A remarkable


hara
teristi
s of Poin
aré 
ovariant theories is that there exist �many� normal states establish-

ing superluminal 
orrelations (for the pre
ise meaning of �many� see (Summers, Werner 1988) and

(Halvorson, Clifton 2000)). Sin
e spa
elike separation ex
ludes dire
t 
ausal in�uen
e, one may look

for a 
ausal explanation of these superluminal 
orrelations in terms of 
ommon 
auses.

The �rst probabilisti
 de�nition of the 
ommon 
ause is due to Hans Rei
henba
h (1956). Re-

i
henba
h 
hara
terizes the notion of the 
ommon 
ause in the following probabilisti
 way. Let (Σ, p)
be a 
lassi
al probability measure spa
e and let A and B be two positively 
orrelating events in Σ
that is let

p(A ∧B) > p(A) p(B). (2)
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De�nition 1. An event C ∈ Σ is said to be the 
ommon 
ause of the 
orrelation (A,B) if the

following 
onditions hold:

p(A ∧B|C) = p(A|C)p(B|C) (3)

p(A ∧B|C⊥) = p(A|C⊥)p(B|C⊥) (4)

p(A|C) > p(A|C⊥) (5)

p(B|C) > p(B|C⊥) (6)

where C⊥
denotes the ortho
omplement of C and p( · | · ) is the 
onditional probability.

The above de�nition, however, is too spe
i�
 to be applied in AQFT sin
e (i) it allows only for


auses with a positive impa
t on their e�e
ts, (ii) it ex
ludes the possibility of a set of 
ooperating


ommon 
auses, (iii) it is silent about the spatiotemporal lo
alization of the events and (iv) most

importantly, it is 
lassi
al. Therefore we need to generalize Rei
henba
h's original de�nition of the


ommon 
ause. For the sake of brevity, we do not repeat here all the intermediate steps of the entire

de�nitional pro
ess (for this see (Hofer-Szabó and Ve
sernyés, 2012a)), but jump dire
tly to the most

general de�nition of the 
ommon 
ause in AQFT.

Let P(N ) be the non-distributive latti
e of proje
tions (events) in a von Neumann algebra N
and let φ : N → C be a state on it. A set of mutually orthogonal proje
tions {Ck}k∈K ⊂ P(N ) is

alled a partition of the unit 1 ∈ N if

∑

k Ck = 1. Su
h a partition de�nes a 
onditional expe
tation

E : N → C, A 7→ E(A) :=
∑

k∈K

CkACk, (7)

that is a unit preserving positive surje
tion onto the unital C∗
-subalgebra C ⊆ N obeying the

bimodule property E(B1AB2) = B1E(A)B2;A ∈ N , B1, B2 ∈ C. We note that C 
ontains exa
tly

those elements of N that 
ommute with Ck, k ∈ K. Re
all that φ ◦ E is also a state on N .

Now, let A,B ∈ P(N ) be two 
ommuting events 
orrelating in state φ in the sense of (1).

(We note that in 
ase of proje
tion latti
es we will use only algebra operations (produ
ts, linear


ombinations) instead of latti
e operations (∨,∧). In 
ase of 
ommuting proje
tions A,B ∈ P(N )
we have A ∧B = AB and A ∨B = A+B −AB.)

De�nition 2. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be a 
ommon 
ause system of the


orrelation (1) if

(φ ◦ E)(ABCk)

φ(Ck)
=

(φ ◦ E)(ACk)

φ(Ck)

(φ ◦ E)(BCk)

φ(Ck)
(8)

for k ∈ K with φ(Ck) 6= 0. If Ck 
ommutes with both A and B for all k ∈ K we 
all {Ck}k∈K a


ommuting 
ommon 
ause system, otherwise a non
ommuting one. A 
ommon 
ause system of size

|K| = 2 is 
alled a 
ommon 
ause. Rei
henba
h's de�nition (without the inequalities (5)-(6)) is a


ommuting 
ommon 
ause in the sense of (8).

Some remarks are in pla
e here. First, in 
ase of a 
ommuting 
ommon 
ause system φ ◦ E 
an

be repla
ed by φ in (8) sin
e (φ ◦ E)(ABCk) = φ(ABCk), k ∈ K. Se
ond, using the de
ompositions

of the unit, 1 = A+A⊥ = B +B⊥
, (8) 
an be rewritten in an equivalent form:

(φ ◦ E)(ABCk))(φ ◦E)(A⊥B⊥Ck) = (φ ◦ E)(AB⊥Ck)(φ ◦ E)(A⊥BCk), k ∈ K. (9)

One 
an even allow here the 
ase φ(Ck) = 0 sin
e then both sides of (9) are zero. Third, it is

obvious from (9) that if Ck ≤ X with X = A,A⊥, B or B⊥
for all k ∈ K, then {Ck}k∈K serves

as a (
ommuting) 
ommon 
ause system of the given 
orrelation independently of the 
hosen state

φ. Hen
e, these solutions are 
alled trivial 
ommon 
ause systems. If |K| = 2, triviality means that
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{Ck} = {A,A⊥} or {Ck} = {B,B⊥}. Obviously, for superluminal 
orrelation one looks for nontrival


ommon 
ausal explanations.

In AQFT one also has to spe
ify the spa
etime lo
alization of the 
ommon 
auses. They have

to be in the past of the 
orrelating events. But in whi
h past? One 
an de�ne di�erent pasts of the

bounded regions VA and VB in a given spa
etime as:

weak past: wpast(VA, VB) := I−(VA) ∪ I−(VB)

ommon past: cpast(VA, VB) := I−(VA) ∩ I−(VB)
strong past: spast(VA, VB) := ∩x∈VA∪VB

I−(x)

where I−(V ) denotes the union of the ba
kward light 
ones I−(x) of every point x in V (Rédei,

Summers 2007). Clearly, wpast ⊃ cpast ⊃ spast.
With all these de�nitions in hand we 
an now de�ne six di�erent 
ommon 
ause systems in

lo
al quantum theories a

ording to (i) whether 
ommutativity is required and (ii) whether the


ommon 
ause system is lo
alized in the weak, 
ommon or strong past. Thus we 
an speak about


ommuting/non
ommuting (weak/strong) 
ommon 
ause systems.

To address the EPR-Bell problem we will need one more 
on
ept. In the EPR s
enario the real


hallenge is to provide a 
ommon 
ausal explanation not for one single 
orrelating pair but for a set

of 
orrelations (typi
ally three or four 
orrelations). Therefore, we also need to introdu
e the notion

of the so-
alled joint

1


ommon 
ause system:

De�nition 3. Let {Am;m = 1, . . .M} and {Bn;n = 1, . . .N} be �nite sets of proje
tions in the

algebras A(VA) and A(VB), respe
tively, supported in spa
elike separated regions VA and VB . Sup-
pose that all pair of spa
elike separated proje
tions (Am, Bn) 
orrelate in a state φ of A in the

sense of (1). Then the set {(Am, Bn);m = 1, . . .M ;n = 1, . . .N} of 
orrelations is said to pos-

sess a 
ommuting/non
ommuting (weak/strong) joint 
ommon 
ause system if there exists a single


ommuting/non
ommuting (weak/strong) 
ommon 
ause system for all 
orrelations (Am, Bn).

Sin
e providing a joint 
ommon 
ause system for a set of 
orrelations is mu
h more demanding than

simply providing a 
ommon 
ause system for a single 
orrelation, therefore we keep the question

of the 
ommon 
ausal explanation separated from that of the joint 
ommon 
ausal explanation. In

Se
tion 2 we will investigate the possibility of a 
ommon 
ausal explanation for a single 
orrelation�

or in the philosophers' jargon, the status of Rei
henba
h's famous Common Cause Prin
iple in

AQFT. In Se
tion 3 we will address the more intri
ate question as to whether EPR 
orrelations


an be given a joint 
ommon 
ausal explanation. The 
ru
ial 
ommon element in both se
tions

will be non
ommutativity. We will argue that embra
ing non
ommuting 
ommon 
auses in our


ausal explanation helps us in both 
ases: (i) in the 
ase of 
ommon 
ausal explanation it helps to

maintain the validity of Rei
henba
h's Common Causal Prin
iple in AQFT; (ii) in the 
ase of joint


ommon 
ausal explanation it helps to provide a lo
al, joint 
ommon 
ausal explanation for a set of


orrelations violating the Bell inequalities. We 
on
lude the paper in Se
tion 4.

2 Non
ommutative Common Cause Prin
iples in AQFT

Rei
henba
h's Common Cause Prin
iple (CCP) is the following metaphysi
al 
laim: If there is a


orrelation between two events and there is no dire
t 
ausal (or logi
al) 
onne
tion between the


orrelating events, then there exists a 
ommon 
ause of the 
orrelation. The pre
ise de�nition of this

informal statement that �ts to AQFT is the following:

1

In (Hofer-Szabó and Ve
sernyés, 2012a, 2013a) 
alled 
ommon 
ommon 
ause system.
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De�nition 4. A lo
al quantum theory is said to satisfy the Commutative/Non
ommutative (Weak/Strong)

CCP if for any pair A ∈ A(VA) and B ∈ A(VB) of proje
tions supported in spa
elike separated re-

gions VA, VB and for every lo
ally faithful state φ : A → C establishing a 
orrelation between A and

B in the sense of (1), there exists a nontrivial 
ommuting/non
ommuting 
ommon 
ause system

{Ck}k∈K ⊂ A(V ) su
h that the lo
alization region V is in the (weak/strong) 
ommon past of VA
and VB .

What is the status of these six di�erent CCPs in AQFT?

The question as to whether the Commutative CCPs are valid in a Poin
aré 
ovariant lo
al quan-

tum theory in the von Neumann algebrai
 setting was �rst raised by Rédei (1997, 1998). As a positive

answer to this question, Rédei and Summers (2002, 2007) have shown that the Commutative Weak

CCP holds in algebrai
 quantum �eld theory with lo
ally in�nite degrees of freedom in the following

sense: for every lo
ally normal and faithful state and for every superluminally 
orrelating pair of pro-

je
tions there exists a weak 
ommon 
ause, that is a 
ommon 
ause system of size 2 in the weak past

of the 
orrelating proje
tions. They have also shown that the lo
alization of a 
ommon 
ause 
annot

be restri
ted to wpast(VA, VB) \ I−(VA) or wpast(VA, VB) \ I−(VB) due to logi
al independen
e of

spa
elike separated algebras.

Con
erning the Commutative (Strong) CCP less is known. If one also admits proje
tions lo
alized

only in unbounded regions, then the Strong CCP is known to be false: von Neumann algebras

pertaining to 
omplementary wedges 
ontain 
orrelated proje
tions but the strong past of su
h

wedges is empty (see (Summers and Werner, 1988) and (Summers, 1990)). In spa
etimes having

horizons, e.g. those with Robertson�Walker metri
, there exist states whi
h provide 
orrelations

among lo
al algebras 
orresponding to spa
elike separated bounded regions su
h that the 
ommon

past of these regions is again empty (Wald 1992). Hen
e, CCP is not valid there. Restri
ting

ourselves to lo
al algebras in Minkowski spa
es the situation is not 
lear. We are of the opinion that

one 
annot de
ide on the validity of the (Strong) CCP without an expli
it referen
e to the dynami
s.

Coming ba
k to the proof of Rédei and Summers, the proof had a 
ru
ial premise, namely that the

algebras in question are von Neumann algebras of type III. Although these algebras are the typi
al

building blo
ks of Poin
aré 
ovariant theories, other lo
al quantum theories apply von Neumann

algebras of other type. For example, theories with lo
ally �nite degrees of freedom are based on von

Neumann algebras of type I. This raised the question as to whether the Commutative Weak CCP is

generally valid in AQFT. To address the problem Hofer-Szabó and Ve
sernyés (2012a) have 
hosen

a spe
i�
 lo
al quantum �eld theory, the lo
al quantum Ising model having lo
ally �nite degrees of

freedom. It turned out that the Commutative Weak CCP does not hold in the lo
al quantum Ising

model and it 
annot hold either in theories with lo
ally �nite degrees of freedom in general.

But why should we require 
ommutativity between the 
ommon 
ause and its e�e
ts at all?

Commutativity has a well-de�ned role in any quantum theories. In standard quantum me
han-

i
s observables should 
ommute to be simultaneously measurable. In AQFT the axiom of mi
ro-


ausality ensures that observables with spa
elike separated supports�roughly, events happening

`simultaneously'�
ommute. But 
ause and e�e
t are typi
ally not su
h simultaneous events! If one


onsiders ordinary QM, one well sees that observables do not 
ommute even with their own time

translates in general. For example, the time translate x(t) := U(t)−1xU(t) of the position operator x
of the harmoni
 os
illator in QM does not 
ommute with x ≡ x(0) for generi
 t, sin
e in the ground

state ve
tor ψ0 we have

[

x, x(t)
]

ψ0 =
−i~ sin (~ωt)

mω
ψ0 6≡ 0. (10)

Thus, if an observable A is not a 
onserved quantity, then the 
ommutator [A,A(t)] 6= 0 in general.

So why should the 
ommutators [A,C] and [B,C] vanish for the events A,B and for their 
ommon


ause C supported in their (weak/
ommon/strong) past? We think that 
ommuting 
ommon 
auses

are only unne
essary reminis
ense of their 
lassi
al formulation. Due to their relative spa
etime
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lo
alization, that is due to the time delay between the 
orrelating events and the 
ommon 
ause, it

is also an unreasonable assumption.

Abandoning 
ommutativity in the de�nition of the 
ommon 
ause is therefore a desirable move.

The �rst bene�t of allowing non
ommuting 
ommon 
auses is that the non
ommutative version of

the result of Rédei and Summers 
an be regained. This result has been formulated in (Hofer-Szabó

and Ve
sernyés 2013a) in the following:

Proposition 1. The Non
ommutative Weak CCP holds in lo
al UHF-type quantum theories.

Namely, if A ∈ A(VA) and B ∈ A(VB) are proje
tions with spa
elike separated supports VA and VB

orrelating in a lo
ally faithful state φ on A, then there exists a 
ommon 
ause {C,C⊥} lo
alized in

the weak past of VA and VB .

Now, let us turn to the more 
ompli
ated question as to whether a set of 
orrelations violating

the Bell inequality 
an have a joint 
ommon 
ausal explanation in AQFT. Sin
e our answer requires

some knowledge of the main 
on
epts of the Bell s
enario in AQFT and some a
quaintan
e with the

model in whi
h our results were formulated, we start the next se
tion with a short tutorial on these

issues (for more details see (Hofer-Szabó, Ve
sernyés, 2012b, 2013b).

3 Non
ommutative joint 
ommon 
ausal explanation for 
or-

relations violating the Bell inequality

The Bell problem is treated in AQFT in a subtle mathemati
al way (Summers and Werner, 1987a,b,

Summers 1990); here we introdu
e, however, only those 
on
epts whi
h are related to the problem

of 
ommon 
ausal explanation (for more on that see (Hofer-Szabó, Ve
sernyés, 2013b)).

Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be proje
tions with spa
elike separated supports VA
and VB, respe
tively. We say that in a lo
ally faithful state φ the Clauser�Horne-type Bell inequality

is satis�ed for A1, A2, B1 and B2 if the following inequality holds:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0 (11)

otherwise we say that the Bell inequality is violated. (Sometimes in the EPR-Bell literature another

inequality, the so-
alled Clauser�Horne�Shimony�Holte-type Bell inequality is used as a 
onstraint

on the expe
tation of (not proje
tions but) self-adjoint 
ontra
tions. Sin
e these two inequalities are

equivalent, in what follows we will simply use (11) as the de�nition of the Bell inequality.)

In the literature it is a re
eived view that if a set of 
orrelations violates the Bell inequality,

then the set 
annot be given a joint 
ommon 
ausal explanation. The following proposition proven

in (Hofer-Szabó and Ve
sernyés 2013b) shows that this view is 
orre
t only if joint 
ommon 
ausal

explanation is meant as a 
ommutative joint 
ommon 
ausal explanation:

Proposition 2. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four proje
tions lo
alized in spa
elike

separated spa
etime regions VA and VB , respe
tively, whi
h 
orrelate in the lo
ally faithful state

φ. Suppose that {(Am, Bn);m,n = 1, 2} has a joint 
ommon 
ausal explanation in the sense of

De�nition 3. Then the following Bell inequality

−1 6 (φ ◦ Ec)(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (12)

holds for the state φ ◦ Ec. If the joint 
ommon 
ause is a 
ommuting one, then the original Bell

inequality (11) holds for the original state φ.

Proposition 2 states that in order to yield a 
ommuting joint 
ommon 
ausal explanation for the

set {(Am, Bn);m,n = 1, 2} the Bell inequality (11) has to be satis�ed. This result is in 
omplete

agreement with the usual approa
hes to Bell inequalities (see e.g. (Butter�eld 1989, 1995, 2007)).

5



But what is the situation with non
ommuting 
ommon 
ause systems? Sin
e�apart from (12)�

Proposition 2 is silent about the relation between a non
ommuting joint 
ommon 
ausal explanation

and the Bell inequality (11), the question arises: Can a set of 
orrelations violating the Bell inequality

(11) have a non
ommuting joint 
ommon 
ausal explanation?

In (Hofer-Szabó, Ve
sernyés, 2012b, 2013b) it has been shown that the answer to the above

question is positive: the violation of the Bell inequality does not ex
lude a joint 
ommon 
ausal

explanation if 
ommon 
auses 
an be non
ommuting. Moreover, these 
ommon 
auses turned out

to be lo
alizable just in the 'right' spa
etime region (see below). For this result, we applied a simple

AQFT with lo
ally �nite degrees of freedom, the so-
alled lo
al quantum Ising model (for more

details see (Hofer-Szabó, Ve
sernyés, 2012b, 2013b); for a Hopf algebrai
 introdu
tion of the model

see (Szla
hányi, Ve
sernyés, 1993), (Nill, Szla
hányi, 1997), (Müller, Ve
sernyés)).

Consider a `dis
retized' version of the two dimensional Minkowski spa
etime M2

overed by

minimal double 
ones V m
t,i of unit diameter with their 
enter in (t, i) for t, i ∈ Z or t, i ∈ Z+1/2 (see

Fig. 1). A non-minimal double 
one Vt,i;s,j in this 
overing 
an be generated by two minimal double

VV V0,0 0,10,−1

mmm

m

m m

mVm

m

V

V V0, 1/20,−1/2

1/2,−1/2V1/2,1/2

1/2,0 V1/2,1

Figure 1: The two dimensional dis
rete Minkowski spa
etime 
overed by minimal double 
ones.


ones in the sense that Vt,i;s,j is the smallest double 
one 
ontaining both V m
t,i and V m

s,j . The set of

double 
ones forms a dire
ted poset whi
h is left invariant by integer spa
e and time translations.

The `one-point' observable algebras asso
iated to the minimal double 
ones Vm
t,i are de�ned to be

A(V m
t,i ) ≃M1(C)⊕M1(C). By introdu
ing appropriate 
ommutation and anti
ommutation relations

between the unitary selfadjoint generators of the `one-point' observable algebras (whi
h relations

respe
t mi
ro
ausality) one 
an generate the net of lo
al algebras. Sin
e there is an in
reasing

sequen
e of double 
ones 
overing M2
su
h that the 
orresponding lo
al algebras are isomorphi
 to

full matrix algebras M2n(C), the quasilo
al observable algebra A is a uniformly hyper�nite (UHF)

C∗
-algebra and 
onsequently there exists a unique (non-degenerate) normalized tra
e Tr : A → C on

it.

Now, 
onsider the double 
ones VA := Vm
0,−1 ∪ V m

1

2
,− 1

2

and VB := V m
1

2
, 1
2

∪ V m
0,1 and the `two-point'

algebras A(VA) and A(VB) pertaining to them (see Fig. 2). It turns out that all the minimal

proje
tions in A(a) ∈ A(VA) and B(b) ∈ A(VB) 
an be parametrized by unit ve
tors a and b,

respe
tively in R3
. Now, 
onsider two proje
tions Am := A(am);m = 1, 2 lo
alized in VA, and two

other proje
tions Bn := B(bn);n = 1, 2 lo
alized in the spa
elike separated double 
one VB .
Let the state of the system be the singlet state φs de�ned in an appropriate way (by a density

operator 
omposed of spe
i�
 
ombinations of generators taken from various 'one-point' algebras).

It turns out that in state φs the 
orrelation between Am and Bn will the one familiar from the EPR

situation:

corr(Am, Bn) := φs(AmBn)− φs(Am)φs(Bn) = −1

4
〈am,bn〉 (13)
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Figure 2: Correlations between events in VA and VB .

where 〈 , 〉 is the s
alar produ
t in R3
. In other words Am and Bn will 
orrelate whenever a

m
and

b
n
are not orthogonal. To violate the Bell inequalitity (11) set a

m
and b

n
as follows:

a
1 = (0, 1, 0) (14)

a
2 = (1, 0, 0) (15)

b
1 =

1√
2
(1, 1, 0) (16)

b
2 =

1√
2
(−1, 1, 0) (17)

With this setting (11) will be violated at the lower bound sin
e

φs(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1

)

=

−1

2
− 1

4

(〈

a
1,b1

〉

+
〈

a
1,b2

〉

+
〈

a
2,b1

〉

−
〈

a
2,b2

〉)

= −1 +
√
2

2
(18)

Now, the question as to whether the four 
orrelations {(Am, Bn);m,n = 1, 2} violating the Bell

inequality (11) have a joint 
ommon 
ausal explanation was answered in (Hofer-Szabó, Ve
sernyés,

2012b) by the following

Proposition 3. Let Am := A(am) ∈ A(VA), Bn := B(bn) ∈ A(VB);m,n = 1, 2 be four proje
tions

parametrized by the unit ve
tors via (14)-(17) violating the Bell inequality in the sense of (18). Then

there exist a non
ommuting join 
ommon 
ause {C,C⊥} of the 
orrelations {(Am, Bn);m,n = 1, 2}
lo
alizable in the 
ommon past VC := V0,− 1

2
;0, 1

2

of VA and VB (see Fig. 3).

Observe that C is lo
alized in the 
ommon past of the four 
orrelating events that is in the region

whi
h seems to be the 'physi
ally most intuitive' lo
alization of the 
ommon 
ause.

Proposition 2 and 3 together show that the relation between the 
ommon 
ausal explanation and

the Bell inequality in the non
ommutative 
ase is di�erent from that in the 
ommutative 
ase. In the

latter 
ase the satisfa
tion of the Bell inquality is a ne
essary 
ondition for a set of 
orrelations to

have a joint 
ommon 
ausal explanation. In the non
ommutative 
ase, however, the violation of the

Bell inequality for a given set of 
orrelations does not ex
lude the possibility of a joint 
ommon 
ausal

explanation for the set. And indeed, as Proposition 3 shows, one 
an �nd a 
ommon 
ause even for a

set of 
orrelations violating the Bell inequality. To sum it up, taking seriously the non
ommutative


hara
ter of AQFT where events are represented by not ne
essarily 
ommuting proje
tions, one 
an

provide a 
ommon 
ausal explanation in a mu
h wider range than simply sti
king to 
ommutative


ommon 
auses.
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Figure 3: Lo
alization of a 
ommon 
ause for the 
orrelations {(Am, Bn)}.

4 Con
lusions

In the paper we were arguing that embra
ing non
ommuting 
ommon 
auses in our explanatory

framework is in line with the spirit of quantum theory and it gives us extra freedom in the sear
h

of 
ommon 
auses for 
orrelations. Spe
i�
ally, it helps to maintain the validity of Rei
henba
h's

Common Causal Prin
iple in the 
ontext of AQFT and it also helps to provide a lo
al, joint 
ommon


ausal explanation for a set of 
orrelations even if they violate the Bell inequalities.

Using non
ommuting 
ommon 
auses naively to address the basi
 problems of the 
ausal expla-

nation in quantum theory in a formal way is no use whatsoever, if it is not underpinned by a viable

ontology on whi
h the 
ausal theory 
an be based. This is a grandious resear
h proje
t. I 
on
lude

here simply by posing the 
entral question of su
h a proje
t:

Question. What ontology exa
tly is for
ed upon us by using non
ommuting 
ommon 
auses in our


ausal explanation?
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