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make these ideas more accessible to a broader group of applied researchers. The main result of the paper
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1. Introduction

Complex networks occur in a large variety of real-world systems ranging from ecology and epidemiol-
ogy to neuroscience (2; 8; 18). In most applications networks provide the backbone on which various
dynamical processes unfold. For example, infectious diseases transmit on intricate social networks,
while neurons interact on non-trivial weighted and dynamical graphs. This underpinned the rapid de-
velopment of research that seeks to understand how the structure/topology of the network impacts on
the behaviour of different dynamics on networks (2; 8). The analysis of even the simplest dynamics
on networks can be challenging mathematically, and often, results are mainly simulation-based. As a
result, research in this direction is fragmented into more theoretical work that explores the rigorous link
between exact stochastic models and their ODE-based mean-field approximations (4; 10; 11; 12), and
work that mainly relies on simulation. While simulations can be straightforward to implement, the often
large number of parameters makes the exploration of the possible behaviours difficult and generalisa-
tion of simulation results is rarely possible. In an effort to increase tractability and depart from a purely
simulation-based approach, various simple differential equation models have been proposed. These
are all different from simple mean-filed models, which operate on the homogenous random mixing
assumption, in that they capture non-trivial network features such as network heterogeneity, cluster-
ing or can accommodate dynamically evolving networks. These models range from pairwise models
(7; 15; 16; 19; 20) and ODE-based heterogeneous mixing models (9; 14) to probability function (PGF)
formalism (21; 22). However, in almost all cases the performance of these more sophisticated models
are only tested by comparing ODE–based results to pure simulation. Thus, the goodness of fit is mostly
performed by numerical and/or visual inspection without rigorous mathematical arguments. The major
obstacle that precludes a theoretical formalism for comparison is either due to not being able to derive
the Kolmogorov equations or, in the case where this is possible, these are intractable due to their sheer
number.

The problem of rigourously linking exact stochastic models to mean-field approximations goes back
to the early work of Kurtz (10; 11). Kurtz studied pure-jump density dependent Markov processes where
apart from providing a method for the derivation of the mean-field model also used solid mathematical
arguments to prove the stochastic convergence of the exact to the mean-field model. His earlier results
(10; 11) relied on Trotter type approximation theorems for operator semigroups. Later on, the results
were embedded in a more general context of Martingale Theory (4). These results have been cited
and extensively used by modellers in areas such as ecology and epidemiology to justify the validity
of heuristically formulated mean-field models. The existence of several approximation models, often
derived based on different modelling intuitions and approaches, has recently highlighted the need to try
and unify these and test their performance against the exact stochastic models (5). Some steps in this
directions have been made (1; 13), where authors clearly state the link between exact and mean-field
models.

The present paper, in the case of a simple SIS model and a suitable class of networks, including
completely connected and regular random graphs, proposes a unifying framework that incorporates and
discusses the details of two existing proofs and proposes a new ODE-based proof. This complements
and offers an alternative to the existing ones which are purely based on Stochastic Theory and PDE
arguments. The paper is organised as follows. In Section 2, the model is formulated and we present the
main result in general terms and discuss the three different approaches used to prove the convergence
of the exact stochastic to the mean-field model. In Section 3, we give the detailed proof based on PDE
arguments, while in Section 4 the proof based on stochastic theory arguments is presented. Section 5
contains the new ODE-based approach, with pluses and minuses of the three different models included
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in the final Section.

2. Model

Let us consider the simple SIS type dynamics on a graph with N nodes and assume that the structure
of the network allows us to determine NSI , the number of SI pairs, once the number of infected nodes
NI is known. The simplest graph satisfying this assumption is the complete graph, for which NSI(k) =
k(N− k) if NI = k. In the case of an n-regular random graph the widely used approximation for the
number of SI pairs is NSI(k) = k(N− k)n/N, if NI = k. Once the NSI(k) function is defined, then the
epidemic propagation on the graph can be described by a Markov chain with state space {0,1,2, . . . ,N}.
Denoting by xk(t) the probability of finding k infectious nodes, the Kolmogorov equation (or master
equation) takes the form

ẋk = ak−1xk−1−bkxk + ck+1xk+1, k = 0,1, . . . ,N, (2..1)

where

ak = τNSI(k), ck = γk, bk = ak + ck, a−1 = 0 = cN+1. (2..2)

In the case of a complete graph it is known that the mean-filed approximation is available only if
τ scales with 1/N, hence τ = β/N is used, yielding ak = βk(N− k)/N. In the case of an n-regular
random graph ak = nτk(N− k)/N and this can be written in the same form as for the complete graph
with β = nτ . Therefore in the following we assume that the master equation takes the form (2..1) and

ak = βk(N− k)/N, ck = γk, bk = ak + ck, a−1 = 0 = cN+1. (2..3)

Let us assume that initially the number of infected nodes is k0. Thus the initial condition to (2..1) is

xk0(0) = 1, xk(0) = 0 for k 6= k0, (2..4)

with the expected value of the number of infected nodes given by

[I](t) =
N

∑
k=0

kxk(t). (2..5)

Differentiating [I] with respect to time and using the Kolmogorov equations for xk one can derive
the following differential equation for [I],

˙[I] =
β

N
[SI]− γ[I], (2..6)

where [SI] is the expected value of the number of SI type edges. Equation (2..6) cannot be used to deter-
mine the expected value [I], since [SI] cannot be expressed in terms of [I]. However, the approximation

[SI]≈ NSI([I])

yields a self-contained differential equation the solution of which approximates [I]. In the case of a
complete graph this approximation takes the form [SI]≈ [S][I], and for a homogeneous random graph it
is [SI]≈ [S][I]n/N. Substituting this approximation into equation (2..6) and dividing by N, we introduce
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the variable i(t) instead of [I](t)/N. Then for i the following simple differential equation holds (for both
cases, but with different meaning of β )

i̇ = β i(1− i)− γi. (2..7)

This equation is known as the mean-field approximation of the original Kolmogorov equation (2..1). It
is well-known that i(t) is a good approximation of [I](t)/N, in the following sense.

THEOREM 2..1 If i(0) = [I](0)/N, then for any t > 0 we have

lim
N→∞

[I](t)
N

= i(t).

In fact, the statement of the Theorem is not rigorous in this form since the type of the convergence
is not specified and this will depend on the method of proof. There are basically two different methods
of proof and these yield different types of limits. The two main approaches use (a) first order PDE and
(b) martingale and semigroup theory arguments.

The first order PDE approach yields that [I](t)/N tends to i(t) for any fixed t. This is the most
intuitive approach since it is based on the idea that for large N the discrete distribution xk(t) can be
approximated by a continuous density function. The exact statement that can be proved by using this
method is presented in Theorem 3..1. The main steps of the proof can be found in the Appendix of (3),
however not all details of the rigorous mathematical proof are presented there. In (17) a rigorous proof
is given and for sake of completeness we briefly summarise this in Section 3.

The stochastic approach yields that the stochastic variable I(t)/N (not the expected value) tends
stochastically to i(t). This implies that the expected value [I](t)/N also tends to i(t). The statement
is formulated in exact terms in Theorem 4..1. The Theorem is proved in several different ways in
(4; 10; 11). The first proof was based on a Trotter type approximation theorem for semigroups followed
by a proof based on martingale theory. The proof in (4), which is valid in a general context, reduces the
problem to the study of Poisson processes by using the previously developed semigroup and martingale
techniques. In Section 4, we present the main steps of the proof in (4) applied to our special setting. This
enables the reader to follow the main ideas of the stochastic proof without going into and understanding
the technical details of the original proof in (4).

The main purpose of this paper is to show a new, ODE-based approach. We will call this an elemen-
tary approach, since a self-contained proof of the Theorem will be shown without using a combination
of highly specialist mathematical tools from different areas, the availability of which is beyond the op-
portunities of the average scientist working in mathematical ecology, epidemiology or other applied
research areas. Moreover, this elementary proof may lead to future work where proving similar results
for more complex networks can be attempted. According to our knowledge the above Theorem has not
been generalised to more complicated networks by using the two more sophisticated approaches.

Our elementary, ODE-based approach, presented in Section 5, yields that [I](t)/N tends uniformly
on bounded time intervals to i(t). Moreover, we also give an upper estimate for the difference in terms of
network size N, and we prove that i(t) is an upper approximation of [I](t)/N. According to our knowl-
edge, this has not been previously verified and it does not follow from the previous two approaches.

3. First order PDE approach

In this Section, the first proof of Theorem 2..1 is given. The main idea of the proof is based on the
observation that for large N the discrete distribution xk(t) can be approximated by a continuous density
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function ρ(t,z). The rigorous version of Theorem 2..1 in this context reads as follows.

THEOREM 3..1 If i(0) = [I](0)/N, then for any t > 0 we have

lim
N→∞
|i(t)− [I](t)

N
|= 0.

Let us introduce a continuous, time dependent density function ρ(t,z) instead of the discrete distri-
bution xk(t), with the following formal relation, z = k/N. Following this, ẋk, xk(t), xk−1(t) and xk+1(t)
in (2..1) can be formally change to ∂tρ(t,z), ρ(t,z), ρ(t,z−1/N) and ρ(t,z+1/N), respectively. This
leads to the following partial differential equation,

∂tρ(t,z) = (Nz+1)γρ(t,z+1/N)+(Nz−1)(N−Nz+1)ρ(t,z−1/N)β/N−

(Nz(N−Nz)β/N +Nzγ)ρ(t,z).

Now using the approximations

ρ(t,z+1/N) = ρ(t,z)+∂zρ(t,z)/N, ρ(t,z−1/N) = ρ(t,z)−∂zρ(t,z)/N,

neglecting the 1/N and 1/N2 terms and writing ρ instead of ρ(t,z), after some algebra, the following
first order partial differential equation for ρ is obtained

∂tρ = zγ∂zρ +(2z−1)βρ− z(1− z)β∂zρ + γρ.

Introducing the function g(z) = γz−β z(1− z), the equation for ρ becomes

∂tρ = ∂z(gρ). (3..1)

This first order partial differential equation needs an initial condition of the following type

ρ(0,z) = ρ0(z). (3..2)

Since the formal relation between the variables is z = k/N, the initial condition (2..4) yields

ρ0(z) = 1 for
k0

N
< z <

k0 +1
N

and ρ0(z) = 0 otherwise.

Finally, the expected value of the infected nodes from the first order PDE needs to be determined. Thus,
we have to find the function corresponding to [iN ](t) = [I](t)/N in (2..5). Using z = k/N and changing
the term xk(t) to ρ(t,z), we note that the sums in (2..5) correspond to an integral. Namely, [iN ](t)
corresponds to

N
N

∑
k=0

k
N

ρ(t,
k
N
)

1
N
,

and this sum is an approximation of the integral

N
∫ 1

0
zρ(t,z)dz.
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Noticing that
∫ 1

0 ρ0(z)dz = 1/N, we can introduce i∗(t) as a function corresponding to [iN ](t) as follows

i∗(t) =
∫ 1

0 zρ(t,z)dz∫ 1
0 ρ0(z)dz

. (3..3)

The mean-field equation (2..7) can be solved explicitly and the solution is given by

i(t) =
B(t)i0

β − γ−A(t)i0
,

where i0 = i(0) is the initial condition and

A(t) = β −β exp((β − γ)t), B(t) = (β − γ)exp((β − γ)t).

The first order PDE (3..1) can also be solved explicitly, and then (3..3) yields

i∗(t) =
B(t)
A(t)

[
−1+

N(β − γ)

A(t)
log
(

1+
2A(t)

2N(β − γ−A(t)i0)−A

)]
.

Having these explicit formulas for i∗(t) and i(t), it is easy to see that i∗ is not a solution of the mean-field
equation (2..7) but it can be proved that as N→∞ it tends to the solution of (2..7). Namely, we have the
following Lemma.

LEMMA 3..1 Let ρ be the solution of the system (3..1)-(3..2). Let i∗(t) be defined by (3..3). Let i(t) be
the solution of the scaled mean-field equation given by (2..7) with initial condition i(0) = k0/N. Then
for any t > 0 we have

lim
N→∞
|i(t)− i∗(t)|= 0.

The Lemma can be proved by using the explicit formulas for i∗(t) and i(t).
Now the proof of Theorem 3..1 can be concluded as follows. We want to prove that the scaled

expected value [iN ](t) tends to the solution i(t) of the scaled mean-field equation as N→ ∞. In order to
prove this, we introduced a first order PDE that can be considered the limit of (2..1) as N → ∞. Using
this PDE, we defined the function i∗(t) that corresponds to [iN ](t). According to Lemma 3..1, i∗(t) is
close to i(t) for large N. Hence, we only have to show finally that [iN ](t) is close to i∗(t). Thus the proof
of Theorem 3..1 will be complete if the following Lemma is verified.

LEMMA 3..2 Let xk be the solution of (2..1) satisfying the initial condition given by (2..4), and let ρ be
the solution of (3..1) with initial condition given by (3..2). Let [iN ](t) = [I](t)/N and let [I](t) and i∗(t)
be defined by (2..5) and (3..3). Then for any t > 0 we have

lim
N→∞
|[iN ](t)− i∗(t)|= 0.

The proof of the Lemma is based on the fact that system (2..1) can be considered as the discretisation
of the first order PDE (3..1) in the variable z. It is known even for more general PDEs, see e.g. Chapters
3 and 4 in (6), that the solution of the discretised system tends to that of the PDE as the step size of the
discretisation goes to zero, that is in our case N tends to infinity.
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4. Stochastic proof of Theorem 1

Let us denote by (I(t))t>0 the stochastic process that determines the number of infected nodes at time t.
In this Section, we will prove that I(t)/N converges stochastically to i(t) as N→ ∞, this is formulated
in the following Theorem.

THEOREM 4..1 If i(0) = [I](0)/N, then for any T > 0 there exist K > 0, such that for any δ > 0 we
have

P(|i(t)− I(t)
N
|> δ )6

K
Nδ 2 , for all t ∈ [0,T ].

It is important to note that this theorem is stronger than Theorem 2..1 since it implies that the ex-
pected value of I(t) converges to i(t).

Before going into the details of the proof we note that this approach can be generalised to so-called
density dependent Markov chains. In our case, this means that there exist two continuous functions
A,C : R→ R, such that the transition coefficients in the Kolmogorov equation (2..1) can expressed as,

ak

N
= A(

k
N
),

ck

N
=C(

k
N
).

From (2..3), these functions are

A(z) = β z(1− z), C(z) = γz.

Following Kurtz (10), we introduce F(z) = A(z)−C(z). This is motivated by being relatively easy to
derive the following equation,

E(I(t)) = E(I(0))+
t∫

0

E(F(I(s)))ds,

where E stands for the expected value (hence E(I(t)) = [I](t)). Therefore, if F and E commute (i.e.
E(F(I)) = F(E(I))), the expected value of [I] satisfies the following mean-field equation,

˙[I] = F([I]). (4..1)

At this stage, it is worth noting that for certain scenarios, simple arguments can be used to derive the
mean-field equations without further precise mathematical arguments. Namely, when the Kolmogorov
equations are numerically tractable, the precise evolution of the probability distribution over time can
be computed. If this distribution proves to be unimodal and highly picked, then F and E commute at
least approximately and then (4..1) follows immediately.

The main step of this approach is to prove that I(t) can be expressed as follows.

I(t) = I(0)+Y1

 t∫
0

β I(s)
S(s)
N

ds

−Y2

 t∫
0

γI(s) ds

 , (4..2)

where Y1 and Y2 are standard Poisson processes (with λ = 1). The equation in this form can be found
in (12) and in Section 2 of Chapter 11 in (4). The derivation is based on Martingale and Semigroup
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theory and it can be found in (4). The choice of this equation as a starting point is also motivated by
its ease of intuitive interpretation. The Poisson process Y1 counts the number of infections in the time
interval [0, t] the intensity of which can be expressed by the integral in the argument of Y1. Similarly,
the Poisson process Y2 counts the number of recoveries in the time interval [0, t] the intensity of which
can be expressed by the integral in the argument of Y2.

We note that the earlier approach of Kurtz in (10; 11) does not use Martingale theory. In these two
papers a self-contained proof can be found and can be followed without understanding the notations and
most of the preliminary work presented in Chapters 3 and 4 of the book (4).

Let us introduce

iN(t) =
I(t)
N

(4..3)

and Ỹi(τ) = Yi(τ)− τ , which is a Poisson process centered at its expectation, that is E(Ỹi(τ)) = 0 for all
τ .

Dividing (4..2) by N, after some simple calculations, we get

iN(t) = iN(0)+
t∫

0

F(iN(s))ds+
1
N

Ỹ1

 t∫
0

β I(s)
S(s)
N

ds

− 1
N

Ỹ2

 t∫
0

γI(s) ds

 . (4..4)

If t ∈ [0,T ] then the value of the integral in Ỹ1 is bounded by 0 and βNT , and the value of the integral
in Ỹ2 is bounded by 0 and γNT . Hence the following inequalities hold true

sup
t∈[0,T ]

∣∣∣∣∣∣Ỹ1

 t∫
0

β I(s)
S(s)
N

ds

∣∣∣∣∣∣6 Ỹ1(βNT ), sup
t∈[0,T ]

∣∣∣∣∣∣Ỹ2

 t∫
0

γI(s) ds

∣∣∣∣∣∣6 Ỹ2(γNT ). (4..5)

The proof is now based on the following Proposition, a Law of Large Numbers type statement, and
can be proved by using Chebyshev’s inequality like the LLN.

PROPOSITION 4..1 Let X(t) be a standard Poisson process (with λ = 1). Let Y (t) = X(t)− t and c > 0
be a positive number. Then for any ε > 0 and for any n ∈ N , the following inequality holds

P
(

1
n
|Y (cn)|> ε

)
6

c
nε2 .

PROOF:
It follows easily that E(Y (t)) = 0 and that the variance D2(Y (t)) = t for all t. Let us define Zn =

Y (cn)/n. Then, E(Zn) = 0 and D2(Zn) = c/n for all n. Now applying Chebyshev’s inequality to Zn we
get the desired statement. 2

Using this Proposition, an upper estimate for

yN(t) =
1
N

Ỹ1

 t∫
0

β I(s)
S(s)
N

ds

− 1
N

Ỹ2

 t∫
0

γI(s) ds

 (4..6)

can be derived as follows. From (4..5) we obtain

sup
t∈[0,T ]

|yN(t)|6
1
N

Ỹ1(βNT )+
1
N

Ỹ2(γNT ). (4..7)
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Thus, if
sup

t∈[0,T ]
|yN(t)|> ε

then at least one of the inequalities

1
N

Ỹ1(βNT )>
ε

2
or

1
N

Ỹ2(γNT )>
ε

2

holds. Hence, P( sup
t∈[0,T ]

|yN(t)| > ε) can be estimated by the probability of the larger. Therefore, it can

be obviously estimated by the sum of the two probabilities

P( sup
t∈[0,T ]

|yN(t)|> ε)6 P(
1
N

Ỹ1(βNT )>
ε

2
)+P(

1
N

Ỹ2(γNT )>
ε

2
). (4..8)

Thus, using Proposition 4..1 we obtain

P( sup
t∈[0,T ]

|yN(t)|> ε)6
4(β + γ)T

Nε2 . (4..9)

Now the difference of iN(t) and i(t) can be estimated (the latter is defined by (2..7)).

PROPOSITION 4..1 Let i(t) be the solution of (2..7) and let iN(t) be given by (4..3). Let us denote by M
the Lipschitz constant of F on [0,1]. If iN(0) = i(0), then for all t > 0 the following inequality holds

|iN(t)− i(t)|6 |yN(t)|eMt .

PROOF:
The functions iN and i satisfy

iN(t) = iN(0)+
t∫

0

F(iN(s))ds+ yN(t)

and

i(t) = i(0)+
t∫

0

F(i(s))ds.

Subtracting the two equations, using the initial conditions and the Lipschitz constant of F we obtain

|iN(t)− i(t)|6 |yn(t)|+
t∫

0

M|iN(s)− i(s)|ds.

Using Gronwall’s lemma the statement follows easily. 2
Thus, if

sup
t∈[0,T ]

|iN(t)− i(t)|> δ
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then
sup

t∈[0,T ]
|yN(t)|> δe−MT .

Hence,
P( sup

t∈[0,T ]
|iN(t)− i(t)|> δ )6 P( sup

t∈[0,T ]
|yN(t)|> δe−MT ).

Finally, we can use the estimate in (4..9) to get

P( sup
t∈[0,T ]

|iN(t)− i(t)|> δ )6
4(β + γ)T e2MT

Nδ 2 ,

and this proves Theorem 4..1.

5. ODE based proof of Theorem 1

In this Section, the main result of the paper is formulated and proved. This is an ODE-based proof where
the evolution equations of the moments of the distribution form a countable system of ODEs. The proof
only uses ODE techniques and a perturbation theorem for the infinite system is presented.

THEOREM 5..1 Let i be the solution of (2..7) with initial condition i(0) = [I](0)/N, and let [I] be given
by (2..5) through the master equation (2..1). Then for any T > 0 there exist K > 0, such that

|i(t)− [I](t)
N
|6 K

N
, for all t ∈ [0,T ].

In fact, we have 0 6 i(t)− [I](t)
N 6 K

N for t ∈ [0,T ], that is i(t) is an upper approximation of [I](t)/N.

The approximation (2..7) of equation (2..6) is based on the moment closure technique. Thus, to keep
an exact system, all higher order moments must be considered and this leads to a countable (infinite)
system of ODEs.

5.1. Moment equations and their approximations

Let us introduce the j-th moment of the probability distribution xk(t) (i.e. the probability of finding
states with k infectious nodes, where k = 0,1, . . . ,N)

y j(t) =
N

∑
k=0

(
k
N

) j

xk(t). (5..1)

To derive differential equations for the moments, the following Proposition is given.

PROPOSITION 5..1 Let rk (k = 0,1,2, . . .) be a sequence and let r(t) = ∑
N
k=0 rkxk(t), where xk(t) is given

by (2..1). Then

ṙ(t) =
N

∑
k=0

(ak(rk+1− rk)+ ck(rk−1− rk))xk(t).
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PROOF: From (2..1) we obtain

ṙ(t) =
N

∑
k=0

rkẋk(t) =
N

∑
k=1

rkak−1xk−1(t)−
N

∑
k=0

rkbkxk(t)+
N−1

∑
k=0

rkck+1xk+1(t) =

N−1

∑
k=0

rk+1akxk(t)−
N

∑
k=0

rkbkxk(t)+
N

∑
k=1

rk−1ckxk(t).

Using that aN = 0, c0 = 0 and bk = ak + ck we get

ṙ(t) =
N

∑
k=0

(rk+1ak− rk(ak + ck)+ rk−1ck)xk(t) =
N

∑
k=0

(ak(rk+1− rk)+ ck(rk−1− rk))xk(t).

2

Before applying Proposition 5..1 with rk = (k/N) j, it is useful to define the following two new
expressions

Rk, j =
(k+1) j− k j− jk j−1

N j−1 , Qk, j =
(k−1) j− k j + jk j−1

N j−1 .

Combining these with Proposition 5..1 leads to

ẏ j(t) =
N

∑
k=0

(
ak

N

(
j

k j−1

N j−1 +Rk, j

)
+

ck

N

(
− j

k j−1

N j−1 +Qk, j

))
xk(t).

From (2..3) we get that
ak

N
− ck

N
= (β − γ)

k
N
−β

k2

N2 ,

and therefore

ẏ j(t) =
N

∑
k=0

(
j(β − γ)

k j

N j − jβ
k j+1

N j+1

)
xk(t)+

N

∑
k=0

(ak

N
Rk, j +

ck

N
Qk, j

)
xk(t).

Hence
ẏ j(t) = j(β − γ)y j(t)− jβy j+1(t)+

1
N

d j(t), (5..2)

where

d j(t) =
N

∑
k=0

(akRk, j + ckQk, j)xk(t). (5..3)

Using the binomial theorem Rk, j and Qk, j can be expressed in terms of the powers of k, hence d j can
be expressed as d j(t) = ∑

j
l=1 d jlyl(t) with some coefficients d jl . Therefore system (5..2) is an infinite

homogeneous linear system for the moments y j. This homogeneous linear system is not written in the
usual matrix form because it is useful to separate the O( 1

N ) terms in order to handle the large N limit.
The d j terms contain N, hence to use the 1/N→ 0 limit it has to be shown that d j remains bounded as
N goes to infinity. This is proved in the next Proposition.

PROPOSITION 5..2 For the functions d j the following estimates hold.

0 6 d j(t)6
j( j−1)

2
(β + γ) for all t > 0.
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PROOF: Taylor’s theorem, with second degree remainder in Lagrange form, states that

f (x) = f (x0)+ f ′(x0)(x− x0)+ f ′′(ξ )
(x− x0)

2

2
,

where ξ is between x0 and x. This simple result can be used to find estimates for both Rk, j and Qk, j. In
particular, applying the above result when f (x) = x j, x = k+1 and x0 = k gives

Rk, j =
j( j−1)

2
ξ j−2

N j−1

with some ξ ∈ [k,k+1]. Similarly, when x = k−1 and x0 = k, we obtain

Qk, j =
j( j−1)

2
η j−2

N j−1

with some η ∈ [k,k+ 1]. Hence, Rk, j and Qk, j are non-negative yielding that d j(t) > 0. On the other
hand, using (2..3) and that ξ/N 6 1 and η/N 6 1 leads to the inequality given below

akRk, j + ckQk, j 6
j( j−1)

2

(ak

N
+

ck

N

)
6

j( j−1)
2

(β + γ).

Hence, the statement follows immediately from (5..3) and using that ∑
N
k=0 xk(t) = 1. 2

The exact equations for the moments (5..2) are now setup such that the limit of N → ∞ can be
considered. This leads to the following system,

ż j(t) = j(β − γ)z j(t)− jβ z j+1(t) (5..4)

with the same initial condition as for y j, that is z j(0) = k j
0/N j. It is worth noting that a solution of

system (5..4) can be obtained in the form z j = z j. Substituting this expression for z j in (5..4) we get the
following equation for z

ż = (β − γ)z−β z2

with initial condition z(0) = k0/N. This differential equation is the same as (2..7) for i. Hence, the
approximating equations for the moments (5..4) are not only more tractable but they allow to recover
the mean-field equations. However, y1(t) = [I](t)/N and z are not identical. The former comes from
the exact system, while z is based on the approximating equations obtained from the exact system in the
limit of N→ ∞. Therefore, the relation between the two needs to be formally established, see Theorem
5..2. The following two statements prove that indeed z1 = z = i is the only uniformly bounded solution
of equation (5..4) and that z1 is a good approximation to y1 for t ∈ [0,T ] and for N large. The Lemma
and Theorem given below play a crucial role in completing the proof of Theorem 5..1. To increase the
clarity and transparency of the proof a diagram linking all propositions, lemmas and theorems is given
in Fig. 1.

LEMMA 5..1 System (5..4) subject to the initial condition z j(0) = k j
0/N j has a unique uniformly

bounded solution, where uniform boundedness means that there exists M such that |z j(t)| 6 M for
all j. This solution can be given as z j = z j

1 and z1(t) = i(t).
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THEOREM 5..2 Let us assume that the solutions of systems (5..2) and (5..4) satisfy the same initial
condition y j(0) = k j

0/N j = z j(0). Then for any T > 0 there exist K > 0, such that

0 6 z1(t)− y1(t)6
K
N

for t ∈ [0,T ].

The rather technical proof of the Lemma is postponed to the Appendix.

5.2. Proof of Theorem 5..2

In this Subsection we prove Theorem 5..2. This together with with Lemma 5..1 yields our main result
formulated in Theorem 5..1. Throughout this Section let y j be given by (5..1), and let z j be the unique
solution of (5..4) subject to the initial condition z j(0) = k j

0/N j. Then the following Proposition verifies
the left inequality in the statement of Theorem 5..2.

PROPOSITION 5..3 Under the above conditions we have that y1(t)6 z1(t) for all t > 0.

PROOF:
Since the variance (y2− y2

1) is non-negative it follows that y2
1(t) 6 y2(t) for all t. Since d1 = 0, the

first equation of system (5..2) now reads as

ẏ1 = (β − γ)y1−βy2.

Hence, ẏ1 6 (β − γ)y1−βy2
1. If there exists t2 > 0 such that y1(t2)> z1(t2), then there exists t1 < t2, for

which y1(t1) = z1(t1) and y1(t) > z1(t) for all t ∈ (t1, t2]. Let v(t) = y1(t)− z1(t) for t ∈ [t1, t2]. Then
using the function F(x) = (β − γ)x−βx2 gives

v̇ = ẏ1− ż1 6 f (y1)− f (z1)6 M(y1− z1) = Mv

where M is the Lipschitz constant of F on the interval [0,1]. Applying Gronwall’s lemma to v we get
v(t)6 0 for all t ∈ [t1, t2], which is a contradiction.

2

In the next two Lemmas it will be proved that if j is large enough then z j 6 y j. This result will be
heavily used in the proof of Lemma 5..4.

LEMMA 5..2 There exist j0 ∈ N and δ > 0, such that

z j(t)6 y j(t), for all j > j0, t ∈ [0,δ ].

PROOF:
In order to derive an upper estimate for z j we exploit the fact that using z2 = z2

1 the function z1
can be explicitly determined from the first equation of system (5..4), ż1 = (β − γ)z1−β z2

1. Introducing
q = k0/N = z1(0) and α = β − γ gives

z1(t) =
αq

(α−βq)exp(−αt)+βq
.

To estimate this expression, two different cases need to be considered.
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CASE 1. If α−βq < 0 then z1 is decreasing.
In this case let us choose a number t ′ > 0 and α ′ < α such that

exp(−αt)6 1−α
′t, for all t ∈ [0, t ′].

Then for all t ∈ [0, t ′]

z1(t)6
αq

(α−βq)(1−α ′t)+βq
=

q
1+ ct

,

where c =−α ′(α−βq)/α > 0. Hence

z j(t)6
q j

(1+ ct) j , for all t ∈ [0, t ′]. (5..5)

A trivial lower estimate for y j is y j(t)> (k0/N) jxk0(t). In order to get a lower estimate for xk0(t) let us
multiply (2..1) by ebkt and integrate from 0 to t. This gives

xk(t)ebkt = xk(0)+ak−1

∫ t

0
xk−1(s)ebksds+ ck+1

∫ t

0
xk+1(s)ebksds. (5..6)

In the case when k = k0 and upon using the initial condition (xk0(0) = 1) it follows that xk0(t)> e−bk0 t

for all t > 0. From e−bk0 t > 1−bk0t it follows that

y j(t)> q j(1−bk0t) for all t > 0. (5..7)

Proposition 7..1, stated and proved in the Appendix, can now be applied when d = bk0 . For an arbitrary
t0 < 1/bk0 , the index j0 is chosen according to the Proposition. Let δ = min{t ′, t0}. Then for all j > j0
and t ∈ [0,δ ], from (5..5) and (5..7) it follows that

z j(t)6
q j

(1+ ct) j 6 q j(1−bk0t)6 y j(t).

CASE 2. If α−βq > 0 then z1 is non-decreasing.
The proof is similar hence it is presented only briefly.
The upper estimate for z1(t) in the interval [0,1/α] is

z j(t)6
q j

(1− ct) j , (5..8)

where c = α−βq.
The lower estimate for y j is based on the observation that y j(t)> (k0/N) jxk0(t)+((k0+1)/N) jxk0+1(t).

Deriving lower estimates for xk0(t) and for xk0+1(t) it follows that there exists j1 ∈ N and t ′ > 0, such
that

y j(t)> q j(1+d jt), for all t ∈ [0, t ′], j > j1, (5..9)

where d ∈ (1,1+1/Nq).
Then applying Proposition 7..2, which is stated and proved in the Appendix, we get the desired

statement. 2
The next Proposition is needed in the proof of Lemma 5..3.
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PROPOSITION 5..4 For all k ∈ {0,1, . . . ,N} and for all t > 0 we have xk(t)> 0.

PROOF:
In the case k = k0 and upon using the initial condition (xk0(0) = 1), from (5..6) it follows that

xk0(t) > e−bk0 t > 0 for all t > 0. The statement for k > k0 can be proved by induction. Assuming that
xk−1(t)> 0, (5..6) gives

xk(t)> ak−1e−bkt
∫ t

0
xk−1(s)ebksds > 0.

Using a similar argument the statement for k < k0 follows easily. 2

LEMMA 5..3 For any T > 0 there exists j1 ∈ N, such that

z j(t)6 y j(t), for all j > j1, t ∈ [0,T ].

PROOF:
Using that z j = i j, an upper bound for z j can be derived. It follows easily from (2..7) that if i(0) >

1− γ/β then i is a decreasing function. If the opposite inequality holds, then i is an increasing function.
Hence, q = max{k0/N,1− γ/β} is an upper bound for i, that is i(t)6 q for all t > 0. Therefore,

z j(t)6 q j for all t > 0. (5..10)

A lower bound on y j can now be derived. Let us start by choosing k ∈ {0,1, . . . ,N} such that k/N > q
holds and introduce j0 and δ according to Lemma 5..2. Let r be given by

r = min{xk(t) : t ∈ [δ ,T ]}> 0.

The positivity of r is guaranteed by Proposition 5..4. Finally, let us choose j1 > j0 in such a way that
r(k/N) j > q j for all j > j1. Then for all t ∈ [δ ,T ] the following inequality holds

y j(t)>
(

k
N

) j

xk(t)>
(

k
N

) j

r > q j > z j(t).

On the other hand, from Lemma 5..2 it follows that z j(t)6 y j(t) for t ∈ [0,δ ], since j > j1 > j0. 2
To formulate our final Lemma, a new variable is introduced together with its corresponding evolution

equation. For all j ∈ N and j > 1, u j is defined by

u j = y j− z j.

Subtracting equations (5..2) and (5..4) gives

u̇ j(t) = j(β − γ)u j(t)− jβu j+1(t)+
1
N

d j(t), (5..11)

where the initial condition is u j(0) = 0.
Our next and final Lemma gives bounds on um(t) and yields the basis of the proof of Theorem 5..2.

LEMMA 5..4 For any T > 0 there exist m ∈ N and Km > 0, such that

|um(t)|6
Km

N
for all t ∈ [0,T ].
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PROOF:
According to Lemma 5..3 we can find m ∈ N, such that um(t)> 0 and um+1(t)> 0 for all t ∈ [0,T ].

Now let us consider (5..11) with j = m. Multiplying this equation by exp(−m(β − γ)t) and integrating
from 0 to t gives,

um(t)e−m(β−γ)t =−βm
∫ t

0
um+1(s)e−m(β−γ)sds+

1
N

∫ t

0
dm(s)e−m(β−γ)sds.

Combining that um+1(t)> 0 with the upper bound for dm given in Proposition 5..2 results in the follow-
ing inequality,

0 6 um(t)6
1
N
(m−1)(β + γ)

2(β − γ)
em(β−γ)t .

Thus, the statement holds with Km = (m−1)(β+γ)
2(β−γ) em(β−γ)T . 2

Now we are in the position to complete the proof of Theorem 5..2.
PROOF OF THEOREM 5..2:

Let us choose m and Km according to Lemma 5..4. We prove by induction that for any j =
1,2, . . . ,m−1 there exists K j, for which

|u j(t)|6
K j

N
for all t ∈ [0,T ].

For j = 1, this together with Proposition 5..3 is exactly the statement of Theorem 5..2.
Let us assume that the statement is true for u j+1 and prove it for u j. Multiplying equation (5..11) by

exp(− j(β − γ)t) and integrating from 0 to t gives,

u j(t)e− j(β−γ)t =−β j
∫ t

0
u j+1(s)e− j(β−γ)sds+

1
N

∫ t

0
d j(s)e− j(β−γ)sds.

Combining that |u j+1(t)|6 K j+1/N with the upper bound for d j given in Proposition 5..2 results in the
following inequality

|u j(t)|6 K j/N with K j =
2βK j+1 +( j−1)(β + γ)

2(β − γ)
e j(β−γ)T .

2

6. Discussion

Understanding the link between exact stochastic and mean-field approximation models is a challeng-
ing problem that arise often in applied research, and when formulated rigorously can lead to difficult
theoretical questions. Identifying the theoretical link between different modelling paradigms, such as
stochastic versus ODE- or PDE-based models, requires the concurrent use of a number of different
mathematical techniques. For example, Theorem 3..1 combines PDE elements with the discretisation
Theorem for PDEs which is mainly used in Numerical Analysis. At the same time, Theorem 4..1, uses
Martingale (see equation (4..2)) and/or Semigroup theory. The concurrent use of different mathematical
tools may limit the applicability of these results or can make it non-trivial to check if the assumptions
of the theoretical results hold.
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This paper makes two main contributions. First, it provides a unifying framework for the existing
proofs and discusses the exact way in which convergence of the exact to the mean-field model holds.
On the the other hand, we propose a novel proof which only relies on ODE-techniques and thus increase
the transparency of our results and makes it more accessible to applied researchers. The main idea of
our proof is the use of all moments of the distribution. This enabled us to keep the system exact and
formulate convergence results to an approximation model based on the simplest form of moment clo-
sures. Our results rely on perturbation methods for infinite ODE systems and allowed us to theoretically
identify the link between the exact model and moment closure models often derived based on heuristic
arguments.

It is worth noting that the simplest method, the PDE-based approach, leads to the point-wise conver-
gence of the expected value, while the stochastic method yields the stronger convergence in the sense
that convergence also holds for the distribution. Our main result proves the uniform convergence of the
expected value which in some sense lies between the two existing approaches. The technique presented
in this paper could lead to further developments on several different fronts. For example, the most nat-
ural extension could be to generalise the link between exact stochastic and approximation models for
networks other than fully connected or to check the validity of existing moment closure techniques that
so far have only been tested via numerical simulations. At the same time the results presented in the
paper could also be extended for general dynamics and in the context of applied areas other than ecology
and epidemiology.
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7. Appendix

First, we prove Lemma 5..1. This together with Theorem 5..2 yields the proof of Theorem 5..1.
PROOF OF LEMMA 5..1:

Since system (5..4) is linear and homogeneous it is enough to prove that the only solution with zero
initial condition is the constant zero function.

The system is autonomous hence it is enough to prove that the statement is true on a time interval
of length T , that is z j(t0) = 0 for all j implies z j is constant zero on [t0, t0 +T ]. This result can then be
extended using induction to show that z j is constant zero on the intervals [kT,(k+ 1)T ] for all k ∈ N.
Thus, it is sufficient to prove that there exists T > 0, such that z j(0) = 0 for all j implies that z j is
constant zero on [0,T ].

Multiplying equation (5..4) by exp(− j(β − γ)t), introducing v j(t) = z j(t)exp(− j(β − γ)t) and de-
noting β − γ by α leads to the following differential equation for v j,

v̇ j(t) =− jβv j+1(t)eαt . (7..1)

It is useful to show now that conditions v j(0) = 0 and v j(t)6 M for all j imply that there exists T > 0,
such that v j(t) = 0 on the time interval [0,T ].
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Integrating (7..1) and using the initial condition v j(0) = 0 gives

v j(t) =− jβ
∫ t

0
v j+1(s)eαsds. (7..2)

This equation can be used iteratively and v1 can be expressed in terms of v j+1 as

v1(t) = (−1) j j
β j

α j−1

∫ t

0
v j+1(s)eαs (eαt − eαs) j−1 ds. (7..3)

This statement can be proved by induction using (7..2). Let us now choose a number T such that
β (exp(αT )− 1)/α < 1. Then, for all t 6 T and for all s ∈ [0, t], the following inequality holds,
β (exp(αt)−exp(αs))/α < 1. Therefore the right hand side of (7..3) can be estimated by jq j ·constant,
where q = β (exp(αT )− 1)/α < 1, since v j is uniformly bounded. Thus the right hand side tends to
zero when taking the limit j→ ∞. Hence, v1(t) = 0 for all t ∈ [0,T ].

Using (7..1) with j = 1 gives that v2(t) = 0 also holds for all t ∈ [0,T ]. Similarly, by induction it
follows that v j(t) = 0 for all t ∈ [0,T ] and for all j ∈ N. This completes the proof. 2

Now we prove two Propositions that were used in the proof of Lemma 5..2.

PROPOSITION 7..1 For any positive numbers c and d and for all t0 ∈ (0,1/d) there exists j0 ∈ N such
that for all j > j0 and t ∈ [0, t0] the inequality (1+ ct)− j 6 1−dt holds.

PROOF:
Let f (t) = 1/(1− dt) and g(t) = (1+ ct) j. We will prove that there exists j0 ∈ N such that for all

j > j0 and t ∈ [0, t0] the inequality f (t)6 g(t) holds. Since f (0) = 1 = g(0), it is enough to prove that
f ′(t)6 g′(t) for all t ∈ [0, t0]. We have that

f ′(t) =
d

(1−dt)2 6
d

(1−dt0)2

and
g′(t) = jc(1+ ct) j−1 > jc.

Hence, choosing a number j0 to satisfy

d
(1−dt0)2 6 j0c

it follows that for all j > j0 and t ∈ [0, t0]

f ′(t)6
d

(1−dt0)2 6 j0c 6 jc 6 g′(t).

2

PROPOSITION 7..2 Let c > 0 and d > 1. Then for all t0 ∈ (0,(d−1)/dc) there exists j0 ∈ N such that
for all j > j0 and t ∈ [0, t0] the inequality (1− ct)− j 6 1+d jt holds.

PROOF:
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Let f (t) = (1− ct)− j and g(t) = 1+ d jt. We will prove that there exists j0 ∈ N such that for all
j > j0 and t ∈ [0, t0] the inequality f (t)6 g(t) holds. Since f (0) = 1 = g(0), it is enough to prove that
f ′(t)6 g′(t) for all t ∈ [0, t0]. We have that

f ′(t) = jc(1− ct)− j−1 6 jc(1− ct0)− j−1

and
g′(t) = d j.

The assumption t0 ∈ (0,(d−1)/dc) implies d(1− ct0)> 1, hence there exists a number j0 for which

j
c

1− ct0
6 d j(1− ct0) j for all j > j0.

Thus we get that for all j > j0 and t ∈ [0, t0]

f ′(t)6
jc

(1− ct0) j+1 6 d j = g′(t)

holds. 2
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FIG. 1. The flow of the proof of Theorem 4.


