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The effect of graph structure on epidemic spread
in a class of modified cycle graphs
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Abstract. In this paper, an SIS (susceptible-infected-susceptible)-type epidemic propagation is
studied on a special class of 3-regular graphs, called modified cycle graphs. The modified cycle
graph is constructed from a cycle graph with N nodes by connecting node i to the node i + d in
a way that every node has exactly three links. Monte-Carlo simulations show that the propagation
process depends on the value of d in a non-monotone way. A new theoretical model is developed
to explain this phenomenon. This reveals a new relation between the spreading process and the
average path length in the graph.
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1. Introduction
Dynamical processes running on networks were widely studied in the last decade [1, 3, 5]. Among
many others, a few examples are epidemic spread, such as the SIR (susceptible-infected-recovered)
and SIS (susceptible-infected-susceptible) dynamics, spread of opinions through a population,
propagation of neuronal activity on a neural network. Many models are studied in monograph
[1], binary-state dynamics are investigated in [4]. The common feature of these models is that a
graph with N nodes is given, and the nodes can be in one of M states. The transitions between
these states are described by independent Poisson processes with corresponding transition rates
determined by the state of the neighbouring nodes. One of the most important mathematical ques-
tions is to establish a relation between the network structure and the dynamical behaviour of the
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system [2, 6, 8]. A direct way to tackle this problem is to carry out Monte-Carlo simulations of
the stochastic process to measure and determine quantities such as the average number of nodes
in a given state (in the epidemic context, the average number of infected nodes) as a function of
time. Simulations are relatively easy to carry out, however, these are not suitable to get analytical
insight about the relation between the network structure and the dynamical behaviour of the sys-
tem. Therefore several analytical approximating models were derived. For configuration random
graphs mean-field and pair-wise approximation models have been derived as low-dimensional ap-
proximations, see e.g. [4, 5]. In these approximating models some structural properties of the
network, such as the average degree of the nodes, the degree correlation and the clustering of the
network can be reflected by certain parameters. However, for finite, non-random networks having
a special structure, the use of the above parameters is not sufficient to specify the graph to a suffi-
cient degree of accuracy. Moreover, the applicability of mean-field and pair-wise approximations
is restricted to random networks or to higher dimensional lattices. In this paper we present the
results of our theoretical study in the case of an artificially constructed network with strong one
dimensional character, for which two requirements hold. On one hand, the structure of the graph
can be tuned by a single parameter, and on the other hand, the dynamic of the process can be deter-
mined analytically. In order to achieve this goal we introduce a class of networks, called modified
cycle graphs, the structure of which can be tuned by a single parameter d and investigate how this
parameter effects the SIS-type epidemic spread on the network. The subject of our study is the
time dependence of the average number of infected nodes. As it turns out, this number increases in
time with a rate depending in a non-trivial way on the value of d. We find that this rate is increasing
as d is varied from d = 2 to a certain value, which is of order

√
N , and then it is decreasing as d is

increased to N/2, see Figure 2 (N is the number of nodes). We derive an analytical approximate
model that can explain this behaviour. It is remarkable that the average path length of the graph
depends in the same way on d as the slope of the I(t) function, where I(t) is the expected number
of infectious nodes at time t. This phenomenon will be briefly expanded on in the Discussion
section and it will be the subject of future work.

The structure of the paper is as follows. In Section 2 we introduce the class of modified cycle
graphs and present simulation results that show the time dependence of the epidemic spread for
different values of the parameter d. In Section 3 a theoretical model is derived describing the
epidemic propagation in a subgraph of size 2d. Then the process in the whole graph is studied in
Section 4. The paper concludes with some remarks in the Discussion section.

2. SIS epidemic on modified cycle graphs
Now we define a special class of graphs that we will call ”modified cycle graphs”. These graphs
are regular, the degree of all nodes is three. A modified cycle graph is a non-random, structured
counterpart of the well-known Watts-Strogatz graph, hence a motivation of our investigation is to
derive analytical models of dynamical processes running on graphs having similar properties to the
Watts-Strogatz model. In our model the average path length can be tuned by the parameter d and
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this parameter is involved in the analytical model. Hence a possible future goal may be to involve
the average path length as a parameter in dynamical models. We note that cycle graphs with long-
range links has already been studied by several authors. Saramäki and Kaski [9] investigated the
effect of randomly varying long-range links on the spreading of an SIR epidemic. In our work
the long-range links are fixed and positioned to a well defined rule. (Moreover, in our case the
epidemic is of SIS-type.)

2.1. The construction of modified cycle graphs
Let us start from CN , the undirected cycle graph with N nodes, where the vertices are numbered
from 1 to N , namely the vertex set is V = {1, 2, . . . , N}. Now we add more edges to the graph
in a systematic way, along which the degree of each node becomes three. Let us take an integer
d ≥ 2 and connect first node 1 to node 1 + d, then node 2 to node 2 + d and finally node d to node
2d. At this stage nodes 1, 2, . . . , 2d have degree three. Now repeat this process starting from node
2d + 1. Generally, starting from the cycle graph CN , we add a link between node i and j if and
only if, deg(i) = deg(j) = 2 and j = (i + d) mod N . In order to complete this procedure at the
end point of the circle it is necessary that N is an integer multiple of 2d, that will be assumed from
now on. For simplicity, we will mostly use the values N = 2k where k is a positive integer, and
d = 2, 4, . . . , 2k−1 throughout the paper. Let GN,d denote the modified cycle graph obtained by
the procedure above, with N nodes and parameter d. For N = 16 and d = 2, 4, 8 these graphs are
shown in Figure 1.

Figure 1: G16,d graphs for d = 2, 4, 8

2.2. Simulation results and their comparison to well-known ODE approxi-
mations

Let us present first the main phenomenon that can be observed as the value of d is changed. On
a modified cycle graph an SIS type epidemic will be studied with infection rate τ and recovery
rate γ. Both infection and recovery are modelled as independent Poisson processes. This means
that in a short time interval δt, a susceptible individual with k infectious neighbours becomes
infected with probability 1 − exp(−kτδt), and an infectious individual recovers with probability
1 − exp(−γδt), independently of the state of its neighbours. This process can be investigated by
individual based discrete-time stochastic Monte-Carlo simulation with synchronous updating. To
be specific let us consider the graphs G128,d with d = 2, 4, 8, 16, 32, 64. The time dependence of

3
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the number of infected nodes obtained as the average of a suitably large number of simulations
is shown in Figure 2. We can see that the slope of the curve increases as d is varied from d = 2
to d = 16 and then decreases as d is varied from d = 16 to d = 64. Let us compare first these
simulation results to mean-field models obtained by pair and triple closure approximations. To
formulate these models let us introduce [I](t) as the expected number of infected nodes at time t,
and similarly [S](t) the expected number of susceptible nodes at time t. The following equations
are exact, but not self-contained, since the expected number of ordered SI pairs is involved.

˙[S] = γ[I]− τ [SI] (2.1)
˙[I] = τ [SI]− γ[I] (2.2)

In order to get a self-contained system we have to approximate [SI] in terms of [S] and [I]. The
simplest approximation is the pair closure that assumes statistical independence in the distribution
of S and I nodes and takes the form [SI] ≈ [S][I] n

N−1
, where n is the average degree of a node.

The above mentioned statistical independence is a good approximation when the infection reaches
a stationary level, hence in the stationary state this yields a relatively good result. In our case
n = 3, so we have the following mean-field model.

˙[S] = γ[I]− τ [S][I]
3

N − 1
(2.3)

˙[I] = τ [S][I]
3

N − 1
− γ[I] (2.4)

In fact, it is enough to use the second equation, since [S] + [I] = N .
Instead of closing equation ˙[I] = τ [SI]− γ[I] at the level of pairs, one can derive a differential

equation for the expected value [SI] and to [II] that gives the following system of ODEs.

˙[S] = γ[I]− τ [SI]
˙[I] = τ [SI]− γ[I]

˙[SI] = γ([II]− [SI]) + τ
(
[SSI]− [ISI]− [SI]

)
˙[II] = −2γ[II] + 2τ

(
[ISI] + [SI]

)
˙[SS] = 2γ[SI]− 2τ [SSI]

We note that the derivation of this system starting from the master equations was given in [11].
Here [AB] (A,B ∈ {S, I}) denotes the expected number of A−B type pairs and [ABC] (A,B,C ∈
{S, I}) denotes the expected number of edge pairs, if there is a link between A − B and B − C.
In order to get a self-contained system we close the equations at the level of triples by using the
approximation

[ABC] ≈ n− 1

n

[AB][BC]

[B]
,

that will be referred to as triple closure.
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Now we compare the pair and triple closure approximations to simulation results. These ap-
proximations use only the average degree of the network that is the same for all values of d, hence
obviously the d-dependence of the curves cannot be explained by these models. Moreover, the
mean-field models assume the randomness of the network, therefore they are not expected to per-
form well for our graphs. Having these drawbacks in mind it is not surprising what Figure 2 shows
for the graphs G128,d with d = 2, 4, 8, 16, 32, 64. The figure shows I(t) curves obtained from sim-
ulation starting from I(0) = 1, that is there is only one infected node at the initial instant. We can
see that neither the pair closure nor the triple closure approximation gives a good result.
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Figure 2: The value of I(t) for an SIS epidemic on G128,d graphs for different values of d and
the pair and triple closure approximations. The computations are started with initial condition
I(0) = 1, the values of the parameters are τ = 5, γ = 1.

If I(0) is higher, e.g. the I(0) = N/10, i.e. 10% of the population is infected at the initial
instant, then the curves getting closer to each other as it is shown in Figure 3.

We can see that the effect of graph structure on the dynamical process can only be observed
with a low number of initially infected nodes, hence from now on we will consider only the case
when I(0) = 1. Our aim is to derive an analytical model that exhibits the above observed property.

One way to compute the probability that node i is infected at time t is to solve the master
equations that form a system of 2N ordinary differential equations for the probabilities of all pos-
sible states of the graph. However, for typical graph sizes this system is too large for numerical
computations. We note that using the automorphisms of the graph this system can be considerably
reduced for graphs with special structure, see [10]. In our case, however, the automorphism group
of the graph is not large enough to yield a useful reduction, hence we will derive a new analytic
approximation that is tailored especially to the modified cycle graph.

The key observation in our approximation is that our graph GN,d consists of N/2d subgraphs
of size 2d that are lying along a circle, see e.g. G24,4 in Figure 4. More precisely, let G̃d denote the
subgraph that contains nodes from 1 to 2d. In the next section we develop a model that describes
the epidemic propagation in a subgraph. These results will be applied in Section 4 to model the
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Figure 3: The value of I(t) for an SIS epidemic on G128,d graphs for different values of d and
the pair and triple closure approximations. The computations are started with initial condition
I(0) = N/10, the values of the parameters are τ = 5, γ = 1.

process in the whole graph GN,d.

Figure 4: G24,4 and a G̃4 subgraph denoted by bold lines and nodes

3. Modeling the epidemic process in a subgraph

Let us consider now the G̃d subgraph defined above. We use the numbering 1, . . . , 2d for the nodes
and assume that the infection reaches the subgraph at node 1, that is at the initial instant node 1
is infected and the other nodes 2, . . . , 2d are susceptible. Let us investigate now how the infection
spreads in this G̃d subgraph. Our first observation is that there is a shortest path for the infection
to pass through the subgraph that is shown in Figure 5.

The second observation is that once the nodes shown in Figure 5 are infected then the infectious
process runs in three separate arcs in the left, middle and right part of the subgraph as it is shown
in Figure 6.
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Figure 5: G̃8 subgraph and the shortest path along which the infection pass this subgraph.

i

p q

l

Figure 6: The infected arcs as the infectious process evolves in a G̃d subgraph. Infected nodes are
black, susceptible ones are white. The end points of the infected arcs are denoted by i, p, q, l.

These arcs will be referred to infected arcs. We note that this approach works only in the case
when d is large enough, since for small d values there is not enough space in the subgraph for these
arcs to establish. As the epidemic process evolves these arcs will finally merge and the whole
subgraph will be infected. Hence we will divide the infectious process into two stages. In the first
stage the infected arcs are separated from each other, and in the second stage the process reaches
its steady state and the number of infected nodes becomes stationary. The two stages can be clearly
seen in Figure 7, where the time dependence of the expected number of infected nodes is shown
for G̃d subgraphs with different d values. (The curves were obtained as the average of several
simulations.) We can see that in the first stage the curves are linear and their slope do not depend
on d. This fact is explained by the evolution of the infected arcs that obviously does not depend on
the size of the subgraph. The size of the subgraph plays a role in determining the stationary value
of the infection.

Therefore in approximating the curves shown in Figure 7 we use a linear function for the
increasing part and a constant function for the stationary part. Hence let us introduce the approxi-
mating function Istd(t) as the following piecewise linear function.

Istd(t) =

{
at if, 0 ≤ t ≤ tstat
c if, tstat ≤ t

where a and c are positive constants to be determined below and the time tstat is determined simply
by the intersection point of the two lines. The function Istd(t) will be called the standard infection
function. Thus in order to give an analytic approximation of the expected number of infected nodes
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Figure 7: The expected number of infected nodes in G̃d as a function of time, for d = 32, 64, 128.
The parameter values are τ = 5, γ = 1. The circles represent simulation results, the continuous
lines are given by the theoretical approximation Istd(t).

in a G̃d subgraph we have to give analytic formulas for the constants a and c. This will be carried
out in the next two subsections.

3.1. Determination of the stationary level
In the second stage of the process the recovery of infected nodes and the reinfection of susceptible
nodes are in steady state, yielding that τ [SI] = γ[I], where [SI] is the average number of SI
edges inside the subgraph. Since the recovery of infected nodes happens randomly we can assume
that the distribution of infected and susceptible nodes is statistically independent, hence [SI] can
be approximated in terms of [I] as [SI] = 3[I][S]/2d. This formula is explained by the simple
fact that an S node has 3 neighbours and the proportion of infected nodes among its neighbours is
the same as the proportion of infected nodes in the whole graph, which is [I]/2d. Then equation
τ [SI] = γ[I] yields

[I](t) = 2d
(
1− γ

3τ

)
,

that is the proportion of infected nodes in the steady state is α = 1− γ
3τ

. Thus the value of c in the
formula of Istd(t) is

c = 2dα = 2d
(
1− γ

3τ

)
.

We note that in the case 3τ < γ the epidemic process will stop with all nodes becoming susceptible,
i.e. the epidemic will not spread, hence only the case 3τ > γ is studied here.
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3.2. Determination of the slope in the increasing stage
As it can be seen in Figure 6, in the increasing stage of the process there are three infected arcs
separated by susceptible arcs. We note that this holds only in the case 8 ≤ d < N

2
. For d = N

2

there are only two infected arcs (the left and right arcs are merged), but this case can be treated
together with the case 8 ≤ d < N

2
. The cases d = 2 and d = 4 will be studied separately. First,

we have to note that inside the infected arcs some nodes become susceptible randomly, and then
they are reinfected again. Following our approach developed in [7], the process will be modeled
statistically as follows. The recovery of infected nodes and the reinfection of susceptible nodes is
considered to be in steady state inside the infected arc, hence we assume that the expected number
of infected nodes is proportional to the length of the infected arc, that is there is a constant α, such
that

[I](t) = αm(t) (3.1)

where m(t) is the total length of the infected arcs. Because of the above steady state assumption
inside the infected arcs the value of α is the same as in the stationary state, i.e. α = 1 − γ

3τ
, as it

was determined above.
The slope to be determined is ˙[I](t) = αṁ(t). Therefore we have to estimate how the total

length of the infected arcs changes in time. The length of the arcs changes at their four end points
by infection and by recovery, depending on the number of SI type edges starting from these end
points. Hence we can approximate ṁ(t) as

ṁ(t) = eSIτ − 4γ, (3.2)

where eSI denotes the average total number of SI edges, the I nodes of which are at the four end
points or the S nodes of which are neighbours of the four end points. The −4γ term is simply
explained by the fact that the total length of the arcs can decrease if one of the four end points
recovers. Thus it remains to determine (in fact, to approximate) eSI .

This number depends on the mutual position of the infected arcs. In order to determine eSI
let us denote the end points of the arcs by i, p, q, l. (The nodes of the subgraph are numbered as
1, 2, . . . , 2d.) Numerical simulation and simple probabilistic arguments show that q is close to i+d
and l is close to p+ d. This can be explained as follows. Node i is connected to node i+ d, hence
once node i is infected then it may infect node i + d, and similarly for p and p + d. The number
of SI edges depends on the mutual position of i, q and that of p, l. In our calculation the following
cases will be taken into account, see Figure 8, where the notations k = i+ d and j = l− d are also
used.

A q = i+ d, l = p+ d,

B q = i+ d+ 1, l = p+ d,

C q = i+ d+ 1, l = p+ d+ 1,

D q = i+ d+ 2, l = p+ d,

E q = i+ d+ 2, l = p+ d+ 1,
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F q = i+ d+ 2, l = p+ d+ 2.

We note that the cases like q = i + d + 1, l = p + d + 2 are omitted by symmetry reasons (it can
be identified with the case q = i + d + 2, l = p + d + 1), and further cases like q = i + d + 3,
l = p+ d are neglected because they have pure chance, i.e. occur rarely according to simulations.
The number of SI edges can be easily determined in each case as shown in Table 1 by using Figure
8.

A B C D E F
Number of SI edges 4 5 6 6 7 8

Table 1: Number of SI type edges at different configurations.

In order to determine the average number of SI edges we have to compute the weighted average
of the above number of SI type edges with the probabilities of the configurations as weights. We
assume that as the process evolves the probabilities of these configurations are in equilibrium,
in the sense that the system jumps from one of these to another and this process is in steady
state. Therefore let us consider these configurations as the states of a discrete time Markov chain
and let us determine the transition probabilities by considering only the infection (the recovery is
taken into account separately by using the −4γ term). From configuration A the system jumps to
configuration B with probability 1, since one of the end points infect a neighbour. In configuration
B there are five infecting SI edges. If node i infects node i + 1 or node k + 1 infects node
i + 1, then the system jumps to configuration A, hence this transition happens with probability
2/5 (two out of five cases). If node j infects node j − 1 or node l infects node l − 1, then the
system jumps to configuration C, hence this transition happens with probability 2/5 (two out of
five cases). Finally, if node k + 1 infects node k + 2, then the system jumps to configuration D,
hence this transition happens with probability 1/5 (one out of five cases). This way we get the
transition probabilities from configuration B as they are shown in Figure 9. In a similar way one
can easily determine the transition probabilities from other configurations. It is important to note
that when considering configurations D, E and F, then there may happen transitions that take the
system to new configurations that are not listed in our state space. For example, from configuration
D the system can go to configuration q = i+d+3, l = p+d with probability 1/6. Then instead of
introducing the new configuration q = i+d+3, l = p+d we increase the probability of transition
D → E by 1/6, because the configuration q = i+ d+ 3, l = p+ d is similar to configuration E in
the sense that in both of them there are 7 SI edges.

Computing the transition probabilities in the above specified way we get the following transi-
tion matrix.

A =


0 1 0 0 0 0
2
5

0 2
5

1
5

0 0
0 2

3
0 1

3
0 0

0 1
3

0 0 2
3

0
0 0 2

7
2
7

0 3
7

0 0 0 0 1
2

1
2
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Figure 8: Evolution of infected arcs. The six different mutual positions of the arcs. The red dotted
lines are the SI edges.

Figure 9: Transition probabilities of the Markov chain describing the evolution of infected arcs.

The probabilities of the different configurations in the steady state are given by the left eigen-
vector of this matrix corresponding to the eigenvalue 1, i.e. by the eigenvector x satisfying xA = x.
Solving this system for x (under the assumption that

∑
xi = 1) we get the average number of SI

edges as the weighted average

eSI = 4x1 + 5x2 + 6x3 + 6x4 + 7x5 + 8x6 = 6.0256.

Thus based on equations (3.1) and (3.2) we get that the slope of the I(t) function in the first stage
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is
(6.025τ − 4γ)

(
1− γ

3τ

)
.

Hence for 8 ≤ d ≤ N
2

we have a formula for standard infection function namely,

Istd(t) =

{
(6.0256τ − 4γ)

(
1− γ

3τ

)
t if, 0 ≤ t ≤ tstat

2d
(
1− γ

3τ

)
if, tstat ≤ t

where tstat is given by the intersection of the two lines.
Finally, let us consider the case when d is small. Since we are mainly interested in the cases

when d is a power of 2, we consider the cases d = 2 and d = 4. In these cases the above
approach using the infected arcs cannot be applied because there isn’t enough space between the
separated infected sets. We do not develop the theory in these cases, instead we determine the
parameters from simulations. We found that the I(t) curves can be approximated by a piecewise
linear function. The steady state can be approximated in the same way as for large d values. For
the slope in the first stage we got from simulation aτ − γ with a = 1.5 if d = 2 and a = 2.5 if
d = 4. Thus in the cases d = 2 and d = 4 we have the following formula for standard function.

Istd(t) =

{
(aτ − γ)t if, 0 ≤ t ≤ tstat
2d

(
1− γ

3τ

)
if, tstat ≤ t

,

where tstat is given by the intersection of the two lines and a = 1.5 if d = 2 and a = 2.5 if d = 4.
We can see in Figure 7 that our theoretical approximation Istd(t) yields a good approximation

of the simulation results, that are shown by circles in that Figure.

3.3. Analytic approximation of the passing time
In order to model the epidemic spread in the whole graph we will need the passing time that is
defined as the average time needed for the infection to spread through a 2d size subgraph and
infect the next subgraph’s terminal node. Let R denote this passing time. In other words, suppose
that in the subgraph G̃d the terminal node 1 is infected and the other nodes are susceptible. Then
R denotes the average time that is needed for node 1+2d (the terminal node of the next subgraph)
to be infected. That is R is the time that the infection must spend in a subgraph before reaches the
next subgraph. Our aim now is to approximate the passing time R.

As it was shown in Figure 5 there is a shortest path, along which the infection passes the
subgraph. Hence the passing time can be approximated by the time that is needed to pass a line
graph. Let us denote by Lm the line graph containing m nodes, i.e. node i is connected to nodes
i − 1 and i + 1, if 1 < i < m and the terminal node 1 is connected to node to 2 and node m
is connected to node m − 1. Let us denote by Td the passing time for a subgraph G̃d. Similarly
TL,4 and TL,5 denotes the passing times for the line graphs L4 and L5. The following table shows
simulation results for passing times of different graphs and for different values of τ .
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A. Szabó-Solticzky et al. The effect of graph structure on epidemic spread

T2 T4 T8 T32 T64 T128 TL,4 TL,5

τ = 5, γ = 1 0.47 0.65 0.81 0.84 0.84 0.84 0.71 0.93
τ = 7, γ = 1 0.34 0.45 0.55 0.58 0.58 0.57 0.45 0.65
τ = 10, γ = 1 0.23 0.32 0.37 0.39 0.39 0.39 0.32 0.43

Table 2: Passing times for different graphs obtained as the average of 10000 simulations.

We can see that for 8 ≤ d the passing times are approximately the same for every subgraph and

TL,4 < T8 ≈ T32 ≈ T64 ≈ T128 < TL,5

This confirms the idea that the infection passes a subgraph along the path shown in Figure 5, hence
the passing time does not depend on d (until it is not too small). Moreover, one can observe that

T8 ≈ T32 ≈ T64 ≈ T128 ≈
TL,4 + TL,5

2

and
T4 ≈ TL,4.

Therefore if we are able to compute the passing times T2, TL,4 and TL,5, then we can approximate
the others too. The main advantage of this simplification is that the graphs G̃2, L4 and L5 are small
enough to calculate the average passing times theoretically without any approximation.

Now we show how to compute the passing time for the line graph L4. Assume that at the
initial instant node 1 is infected and assume that this node cannot recover. (If we allow this node
to recover, then it will be reinfected by the terminal node of the preceding subgraph, however,
we do not want to extend our model with another node.) Thus we start our process from state
ISSS. For simplicity, we explain the process through a discrete time approximation. After time
dt the second node will be infected with probability τdt, hence the system will be in state IISS.
From this state the system can go to state IIIS (infection) with probability τdt or go back to
state ISSS (recovery) with probability γdt. From state IIIS the system can go to state IIII
(infection) with probability τdt or go back to state IISS (recovery) with probability γdt or go to
state ISIS (recovery) with probability γdt. Finally, from state ISIS the system can go to state
ISII (infection) with probability τdt or go back to state IIIS (infection) with probability 2τdt
or go to state ISSS (recovery) with probability γdt. The states and the transition probabilities
are shown in Figure 10. The continuous time Markov chain has the same states, its relation to the
discrete time process is dealt with in the Appendix.

Our goal is to determine the average time that the infection needs to pass the graph L4, i.e.
the average time that is needed to arrive to states IIII or to ISII starting from state ISSS. This
time is called the mean first passage time. It can be obtained by solving the master equations of
the continuous time Markov chain, as it is shown in the Appendix. However, as it is explained
also there, it is significantly simpler to obtain the mean first passage time from a discrete time
approximation of the Markov chain. That is let us assume first that the process evolves in discrete
time steps of length ∆t. Let us denote by NISSS the average number of steps needed to infect the
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Figure 10: The state space for the line graph L4 and the transition probabilities.

last node, i.e. to arrive to states IIII or to ISII starting from state ISSS, and introduce similarly
NIISS , NIIIS and NISIS for the average number of steps needed to arrive to states IIII or to
ISII starting from the different states. The advantage of using the discrete time counterpart is
that a linear system of equations can be derived for the variables NISSS , NIISS , NIIIS and NISIS

directly from the transition probabilities without solving the master equations. Based on Theorem
3.2.2. in [12] this linear system is the following.

NISSS = 1 +NIISSτ∆t+NISSS(1− τ∆t)

NIISS = 1 +NIIISτ∆t+NISSSγ∆t+NIISS(1− (τ + γ)∆t)

NIIIS = 1 + (NIISS +NISIS)γ∆t+NIIIS(1− (τ + 2γ)∆t)

NISIS = 1 + 2NIIISτ∆t+NISSSγ∆t+NISIS(1− (3τ + γ)∆t)

The derivation of the equations can heuristically be explained as follows. Let us consider first the
state ISSS. From this state we can move to state IISS with probability τ∆t or we can stay in that
state with probability 1− τ∆t. Hence after one time step applying the law of total probability we
get the first equation. The other equations can be derived similarly based on the transitions given
in Figure 10.

Let us return now to the continuous time process and introduce the variables t1 = NISSS∆t,
t2 = NIISS∆t, t3 = NIIIS∆t, t4 = NISIS∆t. Then t1 is the average time (in the continuous
time case) that the infection needs to pass the graph L4 that we are looking for, i.e. the mean first
passage time in the continuous time system. For these variables we get the system

τ −τ 0 0
−γ τ + γ −τ 0
0 −γ τ + 2γ −γ
−γ 0 −2τ 3τ + γ



t1
t2
t3
t4

 =


1
1
1
1
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Solving this system we get the passing time for the graph L4

R4 := t1 =
(9τ 3 + 12γτ 2 + 8γ2τ + 2γ3)

τ 3(3τ + 2γ)
.

This formula gives exactly the same values as those in the 7th column of the above table obtained
from simulation. In the Appendix it is shown in the simpler case of the line graph L3 that this
discrete time counterpart gives the same formula for the mean first passage time as that obtained
by solving the master equation of the continuous time system, moreover, the formula obtained by
the discrete time system is independent from the choice of ∆t.

This approach can be applied to the line graph L5 in a similar way, however, now there are
more states in the state spaces and the system of equations consists of 8 equations. Solving this
system for NISSSS we get the passing time for the line graph L5 as R5 = NISSSS∆t, hence

R5 =
216τ 7 + 774γτ 6 + 1313γ2τ 5 + 1422γ3τ 4 + 1071γ4τ 3 + 552γ5τ 2 + 172γ6τ + 24γ7

τ 4(54τ 4 + 153γτ 3 + 167τ 2γ2 + 80τγ3 + 14γ4)
.

Finally, let us consider the case of the graph G̃2. (We note that the method can be applied
in principle for any graph, but the size of the system is increasing exponentially with size of the
graph.) We number the nodes of G̃2 by 1, 2, 3, 4 and we join to node 4 an extra node 5, since the
passing time is defined as the time when the infection reaches the first node of the next subgraph.
The extra node 5 represents the first node of the next subgraph. We start from state ISSSS and
calculate the time when node 5 becomes infected. Similarly to the above cases, we introduce
NIABCD as the average number of steps that are needed starting from state IABCD until node 5
become infected. At the beginning we are in state (I, S, S, S, S) and we could step to (I, I, S, S, S)
or (I, S, I, S, S) with probability τ∆t, so we get

NISSSS = 1 + τ∆t(NIISSS +NISISS) + (1− 2τ∆t)NISSSS

where (NIISSS + 1 + NISISS + 1) means we have to take one step to (I, I, S, S, S) plus the time
NIISSS (and similarly for the state (I, S, I, S, S)). The term (NISSSS +1) represents the situation,
when we are stuck in the state (I, S, S, S, S) for one step. If we are in (I, I, S, S, S) we can go
to (I, I, I, S, S) with probability 2τ∆t because the third node has two infected neighbours, or we
can go back to (I, S, S, S, S) with probability γ∆t or to (I, I, S, I, S) with probability τ∆t, so the
equation takes the form

NIISSS = 1 + τ∆t(2NIIISS +NIISIS) + (1− (3τ + γ)∆t)NIISSS + γ∆tNISSSS.

Similarly, we can formulate the equations for all states, altogether there will be 8 equations. Solv-
ing that system we get NISSSS , the average number of steps needed to infect the fifth node. Then
multiplying this with ∆t we get the passing time for the graph G̃2 as

R2 := NISSSS∆t =
(260τ 5 + 420γτ 4 + 316γ2τ 3 + 153τ 2γ3 + 6γ5 + 45τγ4)

6τ 3(20τ 3 + 25τ 2γ + 12τγ2 + 2γ3)
.
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Summarizing, we have the following values for the passing times. Using the observations made
based on Table 2 in the case d = 2 the passing time is R2, in the case d = 4 the passing time is R4

and in the case d ≥ 8 the passing time is (R4 +R5)/2.

4. Theoretical model for the epidemic propagation in the whole
modified cycle graph

The aim now is to derive a new approximating model that involves the parameter d and exhibits
the non-monotone dependence of the slope on d. As it was mentioned above, our graph GN,d

consists of N/2d subgraphs of size 2d that are lying along a circle. More precisely, let G̃d denote
the subgraph that contains nodes from 1 to 2d. The whole graph GN,d consists of M = N

2d
copies

of G̃d that are situated at nodes {2d(k − 1) + 1, . . . , 2dk} for k = 1, 2, . . . ,M . These subgraphs
will be denoted by G̃k

d.
Let Ik(t) denote the expected number of infected nodes in the k-th subgraph for k = 1, 2, . . . ,M .

Then the total number of infected nodes in the whole graph is

I(t) =
M∑
k=1

Ik(t). (4.1)

Since all the subgraphs are the same, the Ik(t) functions differ only in a shift of time, that is

Ik(t) = Istd(t− tk),

where the function Istd(t) gives the number of infected nodes in a subgraph after time t measured
from the instant when the infection reached the subgraph, and tk is the time when the infection
reaches the k-th subgraph. Hence our derivation consists of the following two steps.

• Describing the infection in a subgraph, i.e. deriving a formula for Istd(t).

• Determining the time tk when the infection reaches the k-th subgraph.

The standard infection function Istd(t) was determined in Subsection 3.2.. The reaching time
tk will be computed based on the passing time as follows. Let us determine the passing time
through a subgraph G̃k

d as it was described in the previous subsection and denote it simply by R.
The modified cyclic graph is a ring of G̃k

d subgraphs. If the infection starts inside a subgraph,
then it reaches one of the two end points of the subgraph in a relatively short time and then the
infection starts to spread in the next subgraph concurrently. Hence for sake of simplicity, we
assume that the first infected node is the end point of the subgraph, let this node be node 1. Hence
the epidemic starts to spread in the subgraphs G̃1

d and G̃M
d . Then it reaches the subgraphs G̃2

d and

G̃M−1
d and it spreads in four subgraphs concurrently, see Figure 11. The process then evolves in a
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similar way and after some time it reaches its steady state in the subgraphs G̃1
d and G̃M

d and in the
other subgraphs as well. The spread of the epidemic is symmetric in the left and right part of the
graph, hence we will consider the process in subgraphs numbered 1, 2, . . . ,M/2 (we assume for
simplicity that the number of subgraphs, M is an even number). Thus instead of equation (4.1) we
write

I(t) = 2

M/2∑
k=1

Ik(t), (4.2)

where Ik(t) denotes the number of infected nodes in the k-th subgraph. Assuming that initially
node 1 is infected we have that the reaching time of the k-th subgraph is tk = R(k − 1), because
the infection has to pass k−1 subgraphs before arriving to the k-th subgraph. Therefore the number
of infected nodes in the k-th subgraph can be given as

Ik(t) = H(t−R(k − 1))Istd(t− (k − 1)R),

where H is the Heaviside function whose value is zero for negative arguments and one for positive
arguments. This expression means that Ik is the same as the standard infection function Istd when
t > tk = R(k − 1), i.e. when the infection reaches the k-th subgraph. Substituting this expression
into (4.2) we get the total number of infected nodes as

I(t) = 2

M/2∑
k=1

H(t−R(k − 1))Istd(t− (k − 1)R). (4.3)

For given values of N , d, τ and γ this formula gives an analytical approximation of I(t). As
a conclusion to this theoretical section we can summarize how to apply this formula for a given
set of the parameters. First, the function Istd(t) has to be determined as it is given in Section 3.2..
Then the passing time should be computed as it is explained in the last paragraph of Section 3.3.
Namely, in the case d = 2 the passing time is R2, in the case d = 4 the passing time is R4 and in
the case d ≥ 8 the passing time is (R4+R5)/2 (these numbers are defined in Section 3.3). Finally,
Istd(t) and R are substituted into (4.3) to get the theoretical value of I(t). The results are shown in
Figure 12 for a graph with N = 1024 nodes and for different values of d.

5. Discussion
In the paper we introduced a class of regular networks, called modified cycle graphs, the structure
of which can be tuned by a single parameter d, and it was investigated how this parameter effects
the SIS-type epidemic spread on the network. First we showed by simulation that the number of
infected nodes increases in time at a rate depending in a non-monotone way on the value of d. We
found that this rate is increasing as d is varied from d = 2 to a certain value, which is of order√
N , and then it is decreasing as d is increased to N/2, see Figure 12. We derived an analytical

approximating model that can explain this behaviour. The construction of the theoretical model
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Figure 11: The modified cycle graph is a ring of G̃k
d subgraphs. The infection starts at node 1,

hence first the epidemic spreads in the subgraphs G̃1
d and G̃M

d and then in G̃2
d and in G̃M−1

d .
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Figure 12: The I(t) curves for a graph with N = 1024 nodes and for d = 2, 4, 8, 16, 32, 64, 512,
τ = 5, γ = 1. The continuous curves are obtained by the theoretical formula (4.3), the circles
correspond to the average of 1000 simulations (the value of d is identified by the colors).

is based on the fact that our graph GN,d consists of N/2d subgraphs of size 2d that are lying
along a circle, as it was shown in Figure 4. Then the derivation was based on the following two
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observations. First, we note that a shortest path for the infection’s passage through a subgraph
exists as shown in Figure 5. The second observation is that once the nodes shown in Figure 5 are
infected then the infectious process runs in three separate arcs along the cycle, in the left, middle
and right part of the subgraph as it is shown in Figure 6. Based on these ideas, the theoretical
model yields an explicit formula for the number of infected nodes, this is given in (4.3).

The theoretical prevalence curves (i.e. I(t)) are compared to simulation results for a graph with
N = 1024 nodes and for different values of d in Figure 12. We can see that our theoretical model
gives a good approximation for different d values. The model performs well for other values of
the parameters τ and γ as well, until the the value of τ becomes too small to maintain a reasonable
epidemic. We note that the performance of the theory for d = 2 could be amended if a more
accurate value of the parameter a in the formula of Istd(t) was derived. This could be achieved by
extending the Markov-chain approach, presented in Section 3.2., to the case of d = 2.

It is remarkable that the average path length of the graph depends in the same way on d as the
slope of the I(t) function. In Table 3 the value of the average path length is given for several values
of d for a graph having N = 1024 nodes. We can see that the average path length is decreasing with
d when 2 ≤ d ≤ 32 and then it is increasing for 32 ≤ d ≤ 512. The slope of the I(t) curve is also
given in the table. It is increasing when 2 ≤ d ≤ 64 and it is decreasing for 64 ≤ d ≤ 512. The
similarity in their behaviour can be explained qualitatively by the simple observation that smaller
average path lengths lead to faster epidemics which in relatively few generations percolate through
a large part of the graph. The quantitative relation between the slope of the prevalence curve and
the average path length merits further attention, and will be extended to graphs with more complex
but regular structure in future work.

d 2 4 8 16 32 64 128 256 512
slope 14,9 22.3 36.5 66.5 112.3 135.5 89.8 48.6 23.8

avg path length 192.2 128.6 66.8 38.8 30.5 37.1 59.1 97.3 128.6

Table 3: The slope of the I(t) curve and the average path length of the graph for different values
of d, for τ = 5 and γ = 1.

Appendix
The goal of this Appendix is twofold. On one hand we show how the mean first passage time
can be computed in a continuous time Markov chain, on the other hand we show that the same
formula for this time can be derived from the discrete time counter part, and also show that this
latter computation is much shorter and simpler.

Consider a continuous time Markov chain with three states: ISS, IIS and III and with tran-
sition rates given in Figure 5.. This models the infection in a line graph L3 with three nodes, where
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the first node is fixed to be infected and the third node cannot recover. Our aim is to determine the
mean first passage time, i.e. the average time that is needed for the infection to reach the third node
starting from the first one. (That is the reason why the third node is assumed not to recover, since
once it is infected we can stop the process.) First, we will show how the mean first passage time
can be computed from the continuous time model, then it will be shown that the same formula for
this time can be derived from a discrete time process that is basically the time ∆t discretisation
of the continuous time one. It is remarkable that the same formula will be obtained independently
from the choice of the discretisation time ∆t. The same computation can be carried out for line
graphs with more nodes, however, the computation is more tedious then, this is why we chose this
simple model to illustrate our claim.

Figure 13: The state space for the line graph L3 in continuous time and the transition probabilities.
III is an absorbing state

5.1. Continuous time system
Let us denote by x1(t) the probability that the system is in state ISS at time t. Similarly, x2(t) and
x3(t) are the probabilities of the states IIS and III . The master equations for these probabilities
are

ẋ1 = γx2 − τx1

ẋ2 = τx1 − (τ + γ)x2

ẋ3 = τx2

This system can be written in the form ẋ = Ax with

A =

−τ γ 0
τ −τ − γ 0
0 τ 0

 .

The eigenvalues of A are λ1, λ2, 0, where λ2
i + λi(2τ + γ) + τ 2 = 0. Computing the eigenvectors

of A and using the initial condition x1(0) = 1, x2(0) = 0, x3(0) = 0 (expressing that we start the
process from state ISS), we get the solution of the system. Its third coordinate is

x3(t) =
λ2

λ1 − λ2

eλ1t +
λ1

λ2 − λ1

eλ2t + 1.
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The transition probability p13(t), that is the probability that system, starting from state 1, is in state
3 at time t is p13(t) = x3(t). It is known that the mean first passage time is (see page 170 in [12])

T13 =

∫ ∞

0

1− p13(t)dt.

This yields

T13 =

∫ ∞

0

1− x3(t)dt =
2τ + γ

τ 2
.

5.2. Discrete time system
Fix now a positive number ∆t and introduce the discrete time system by Xi(n) = xi(n∆t). The
states of the discrete time Markov chain are the same as those of the continuous time one and the
transition probabilities are given in Figure 5.2..

Figure 14: The state space for the line graph L3 in discrete time and the transition probabilities.
III is an absorbing state

The master equations can be written as follows.

X1(n+ 1) = γ∆tX2(n) + (1− τ∆t)X1(n)

X2(n+ 1) = τ∆tX1(n) +
(
1− (τ + γ)∆t

)
X2(n)

X3(n+ 1) = τ∆tX2(n)

The mean first passage time can be determined again by solving the master equations. However, in
the discrete time case a system of linear equations can be directly given for the mean first passage
times N13 and N23 that denote the average number of steps that are needed to arrive to state 3
starting from state 1 and from state 2. This linear system is given in Theorem 3.2.2. in [12] as
follows

N13 = 1 +N23τ∆t+N13(1− τ∆t)

N23 = 1 +N13γ∆t+N23

(
1− (τ + γ)∆t

)
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Eliminating N23 from the linear system we get

τ∆tN13 =
τ

τ + γ
(N13γ∆t+ 1) + 1

yielding

N13 =
2τ + γ

τ 2∆t
.

Hence by using the relation t = n∆t, the mean first passage time in the continuous time system
is

N13∆t =
2τ + γ

τ 2

that is the same as T13 independently from the discretisation time ∆t.
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