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Abstract. We extrapolate from the exact master equations of epidemic dynamics on fully con-
nected graphs to non-fully connected by keeping the size of the state space N + 1, where N is the
number of nodes in the graph. This gives rise to a system of approximate ODEs (ordinary differen-
tial equations) where the challenge is to compute/approximate analytically the transmission rates.
We show that this is possible for graphs with arbitrary degree distributions built according to the
configuration model. Numerical tests confirm that: (a) the agreement of the approximate ODEs
system with simulation is excellent and (b) that the approach remains valid for clustered graphs
with the analytical calculations of the transmission rates still pending. The marked reduction in
state space gives good results, and where the transmission rates can be analytically approximated,
the model provides a strong alternative approximate model that agrees well with simulation. Given
that the transmission rates encompass information both about the dynamics and graph properties,
the specific shape of the curve, defined by the transmission rate versus the number of infected
nodes, can provide a new and different measure of network structure, and the model could serve as
a link between inferring network structure from prevalence or incidence data.
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1. Introduction
Concerted efforts on the analysis of different ODE (ordinary differential equation) models of var-
ious dynamics on networks has led to a better understanding of how these models relate to each
other [7, 15, 16], what the assumptions that these rely on are, and whether these models can serve
as the limiting case of stochastic or exact models in some well defined limit [1, 3, 14]. The specific
limits may typically depend on the size and type of the network or the time horizon over which
agreement is sought. The main candidate models include the pairwise [8], edge-based compart-
mental models [12], as well as effective-degree type models [10, 11] which have mainly originated
from epidemic models such as the SIS and SIR (S - susceptible, I - infected and infectious and
R - recovered or removed). For all these models, the primary test of their performance, is in terms
of the agreement between the time evolution of some expected quantity (e.g. the expected num-
ber of infectious nodes/vertices as a function of time) from the exact model or simulation and the
equivalent quantity based on the ODE model.

It is well known that the derivation of such models poses less of a challenge when attempted for
the SIR model. This is due to the SIR dynamics avoiding the problem of having to account for
stronger dependence of nodes on their neighbourhood, where accounting for repeated re-infections
amongst neighbouring nodes cascades into complicated and intractable descriptions. However, the
SIS dynamics still remains attractive due to its simplicity, where for a fully connected network
with N nodes, the reduced exact system consists of N + 1 equations given as

ẋk(t) = ak−1xk−1(t)− (ak + ck)xk(t) + ck+1xk+1(t), (1.1)

where xk(t) is the probability of observing k infectious nodes at time t, ak = τk(N − k), ck = γk
for k = 0, 1, . . . , N and a−1 = cN+1 = 0. Furthermore, it is assumed that each node is either
susceptible (S) or infected (I), and that susceptible nodes become infected at rate τ across any
link to an infectious node, while infected nodes recover at rate γ and become susceptible again.
All possible events are modelled as independent Poisson processes. It is known that, in this case,
the 2N -dimensional system of master equations can be lumped to the (N + 1)-dimensional system
above. This extreme reduction is possible due to the symmetry of the network where all nodes are
topologically equivalent and thus the process is driven by the number of infected nodes without
knowing their precise location. This leads to being able to simply write ak = τk(N − k) which
effectively means that, in the presence of k infected nodes, the number of potentially disease
transmitting edges/links, (SI), is k(N − k) = ak/τ .

Given that the SIS dynamics on an arbitrary network leads to a state space with 2N equations,
the reduced system above raises the question whether the lumping or collapsing of the state space
can be extended to networks other than fully connected, even if the reduced system may not be
exact. This problem breaks down into two important sub-questions. First, is it possible to count
or approximate the expected number of (SI) edges in the presence of k infected nodes, and the
second, whether the master equation above (1.1) with the expected rates can give a reasonable
agreement with the full system or simulation? The counting procedure is non-trivial since the rate
of infection in the presence of k infected nodes has to take into account the special placement of
these as determined by the epidemic transmission process and implicitly influenced by the struc-
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ture of the network. Even if this first step is successful, there is no guarantee that the reduced
system will give good agreement with the exact model. In this paper, we will explore the viabil-
ity of collapsing the full state space with 2N elements to a state space with N + 1 elements, i.e.
{0, 1, . . . , N}, for graphs other than fully connected. In particular we will explore the potential
of systems such as the one given above to approximate results from full, exact systems or their
counterpart based on simulation. The focus of the paper will be on networks of classic type such
as, regular random, Erdős-Rényi, bimodal and Barabási-Albert graphs with heterogenous degree
distribution. For a fuller exploration, clustered networks generated based on the so called “Big-V”
[5, 6] rewiring will be also considered, but only numerically. The main idea and challenge of the
paper is based around estimating the infection rate ak, where ak/τ can be interpreted as the ex-
pected number of (SI) edges in the presence of k infected nodes. The approach that we propose
revolves around various semi-heuristic and combinatorial arguments to determine these values.

The paper is structured as follows. First, we introduce our approximate master equations and
show that if these are used with the transmission rates determined from simulations then the agree-
ment with simulation results is excellent, i.e. the feasibility of the model is shown. In Section
3 we present our combinatorial method to determine the number of II edges when recovery is
neglected (i.e. for high values of τ ). This method can predict the average number of II edges
for configuration random graphs. Based on this, the average number of SI edges is determined in
Section 4 together with an extension for small values of τ based on semi-heuristic arguments using
the classic pairwise model. The steps of our method are summarized in Section 5, where as an il-
lustration of the applicability of our method a case study is presented. For a regular random graph,
the coefficients of our master equation are determined analytically and the results are compared to
simulations.

2. Model formulation: feasibility and transmission rates
In this paper a simplified Markov chain model for SIS epidemic propagation on a network is formu-
lated and studied. The main idea of simplification is to use the reduced state space {0, 1, . . . , N},
denoting the number of infected nodes in the network, and to introduce xk(t) as the probability
that the system is in state k at time t (with a given initial state that is not specified at the moment).
Assuming that starting from state k the system can move to either state k − 1 (an infected node
recovers) or to state k + 1 (a susceptible node becomes infected), the ‘master’ equations of the
Markov chain take the form (1.1).

2.1. Models feasibility
As we noted above, this state space is too small to describe the system exactly, since the full
state space contains 2N elements. The key finding of this paper is that the epidemic process on
a class of networks can be approximated with high accuracy by using this much simpler state
space. To support our statement, in Fig. 1 we plot the time evolution of the expected prevalence
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from simulation and from the master equations (1.1) with ak taken as an average from simulation,
namely ak = τe[SI](k), where e[SI](k) is the expected number of (SI) pairs in the presence of
k infected nodes. The excellent agreement for graphs with heterogenous degree distributions,
and even for networks exhibiting clustering, shows that if the transmission rates can be computed,
based on some analytic or semi-analytic approaches, then the reduced system can produce excellent
agreement with simulation. All graphs, except the clustered ones, have been generated using the
configuration model [2].

Thus, the main challenge is to specify the infection rates ak. These will of course depend
on the parameters of the model, i.e. τ and γ, as well as the topology of the graph. The most
straightforward way of doing this is to recover these from simulation, as it is shown in Fig. 1. This
amounts to recording the exact number of SI-type links whenever infection is present and use that
ak = τe[SI](k), where we ignore that ak itself is a random variable with some distribution and
use simply its expected value. For a fixed value of k, the count of the SI-type links, and thus ak,
will take different values as different arrangements of k infectious nodes on the graph, as given by
the process, will generate different counts. If the process is simulated based on a Gillespie-type
approach then recording and the counting of ak involves a weighting by the time that the system
spends in a given state. If synchronous updating is used, a change during each iteration is not
guaranteed and thus some configurations will have a higher recording frequency. This will not be
the case if the simulation is of Gillespie type, as in this case, a change is always guaranteed. Thus
the synchronous updating naturally captures the longer or shorter time spent in a given state, and
this is the simulation approach that we adopt, but always making sure that the simulation step δt is
always small enough to guarantee not more than one single update per iteration step.

2.2. Determining the transmission rates
The most frequently used theoretical approximation for ak is

ak = τnk
N − k

N − 1
,

where n denotes the average degree of the nodes. This approximation ignores the natural correla-
tions that will develop and operates on the assumption of random mixing. This means that although
the natural disease transmission process will lead to different arrangements of k infectious indi-
viduals on the network, and thus different counts for the various pair types, the model above takes
an average over all configurations and assumes that Ss and Is are randomly distributed on the net-
work. The performance of this approximation is shown in Fig. 2 where this is compared to values
computed from simulations on regular and bimodal random graphs, on a clustered graph and on a
Barabási-Albert graph. One can observe that heterogeneity shifts the maximum point of the curve
to left and up, since highly connected infected nodes cause an increase in the number of SI edges.
On the other hand, clustering shifts the maximum point of the curve to right and down, since I
nodes are more likely to connect to I nodes making the number of SI edges smaller.

The poor accuracy of the theoretical approximation motivated our research to derive improved
approximations that reflect the graph structure better and can lead to more accurate approximations.
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Figure 1: Time evolution of the expected prevalence from simulation (◦ markers) and from master
equations (1.1) with ak taken as an average from simulation (continuous curve) for (A) regular
random graph, (B) Erdős-Rényi random graph, (C) bimodal random graph (half of the nodes have
degree 3 and the other half has degree 9), (D) negative binomial random graph, (E) Barabási-Albert
graph, (F) clustered random graph with clustering coefficient 0.4. The parameters are N = 1000,
τ = 2, γ = 1, average degree 6, number of initially infected nodes 10. The simulation results were
obtained as the average of 250 simulations.
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It is important to note that the above approximation gives the same ak values for any graphs with
average nodal degree n. The improved approximation can be achieved by deriving the transmission
rates ak (k = 0, 1, . . . , N ), be it based on some combinatorial or random walk argument, in a way
in which ak captures and conserves at least some of the natural features of the true dynamics on
graphs. The theory that we develop is based on a combinatorial derivation of the number of II
edges when the number of infected nodes is given. This derivation is presented in the next section.
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Figure 2: The ak/τ = e[SI](k) values from simulations on a regular random graph (◦), a bimodal
random graph (half of the nodes have degree 3 and the other half has degree 9) (◃), a clustered
random graph with clustering coefficient 0.4 (▹) and a Barabási-Albert graph (⋄) and the theoretical
value ak/τ = nkN−k

N−1
(dash-dotted line) with N = 1000, τ = 2, γ = 1, n = 6.

3. Theoretical approximation of the number of II edges
In this section we neglect the effect of recovery (assume that the value of τ is large) and derive
a recursive formula for eII(j) which denotes the average number of II pairs when the number
of infected nodes is j. Our derivation is valid for a graph with arbitrary degree distribution and
constructed by using the configuration model [2]. In the first subsection, the derivation is presented
for the simplest case, i.e. for a regular random graph where all nodes have degree n. Then, in
the second subsection, the derivation is generalised to graphs with arbitrary degree distribution.
Although the first, simpler derivation is a special case of the second, we use it to convey our ideas
and arguments in a clearer and more concise way.
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3.1. The case of regular random graphs
Let us consider a regular random graph in which every node has degree n. Further, we assume
that there are j infected nodes and eII(j) denotes the number of II pairs (i.e. if nodes p and q are
infected, then both the pair (p, q) and the pair (q, p) are of type II). The derivation is based on
determining an explicit formula for the average number of new II edges that are created when a
new infection happens, i.e. we derive a formula for eII(j + 1)− eII(j). The approach that we use
is based on constructing the graph concurrently with the disease transmission.

If there are j infected nodes then these have m := nj − eII(j) free stubs that can become
connected to the free stubs of susceptible nodes, the number of which is M := n(N − j), since
there are N − j susceptible nodes and each of these has n stubs. Due to the networks being
generated based on the configuration model, and effectively uncorrelated, it is straightforward to
work out the degree of a potential neigbour of a newly infected node. Namely, choose m stubs
randomly out of the M free stubs of the susceptible nodes, and connect these to the m free stubs
of the infected nodes. By construction, a susceptible node with multiple available stubs can and
will connect to a number of infected nodes and this needs to be captured. Let us denote by pk the
proportion of susceptible nodes that connect to k distinct infected nodes, k = 0, 1, . . . , n. (Here,
we ignore that multiple links between the same susceptible and infected nodes are possible.) First,
we determine the probability pk by noting that, for the ease of calculation, this can be interpreted
in an equivalent but, more convenient way as follows. pk can be thought of being the probability
that a given susceptible node has k links to infected nodes. This interpretation implies that pk has
hypergeometric distribution with the following parameters. We choose m stubs out of M stubs,
and n of them belongs to the given (fixed) node. pk is the probability that k of the chosen m stubs
belong to the given node. Hence we have

pk =

(
n
k

)(
M−n
m−k

)(
M
m

) , k = 0, 1, . . . , n.

Thus the average number of susceptible nodes having k infected links is (N − j)pk. We note that
using that the expected value of the hypergeometric distribution is nm

M
, we get that the total number

of newly created SI links is

(N − j)
n∑

k=0

kpk = (N − j)
nm

M
= (N − j)

nm

n(N − j)
= m

that is exactly the number of free stubs of the infected nodes. However, in our calculation we wish
to consider the newly gained II links upon the birth of a single additional infected node. Thus, we
require to identify which of the newly created SI links will lead to one additional infected node.
Let us now associate a number to each SI edge as follows. To an edge we associate the number k if
it is connected to a susceptible node that has k infected neighbours. This means that a susceptible
node with k infected neighbours will have each of its individual edges to infected nodes labeled
with k. Then the number of edges to which the number k is associated is k(N − j)pk, since the
average number of susceptible nodes having k infectious links is (N − j)pk and each of them has
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k SI type edges. Hence, if we choose an SI edge randomly (along which the next infection will
happen), then the probability that there will be k new II edges, after this specific infection happens,
is the probability that we choose an edge to which the number k is associated. This probability is

qk =
k(N − j)pk

m
, k = 1, 2, . . . , n.

Thus the average number of new II connections that are created when the next infection happens
is the expected value

∑
kqk, and since a new I − I connection creates two II pairs, we get that

eII(j + 1)− eII(j) = 2
n∑

k=1

kqk = 2
n∑

k=1

k2(N − j)pk
m

= 2
N − j

m

n∑
k=1

k2pk.

This sum can be obtained from the variance V and the expected value nm
M

as

n∑
k=1

k2pk = V +
(nm
M

)2

.

The variance of the hypergeometric distribution (using our parameters M , n, m) is

V =
nm

M

M − n

M

M −m

M − 1
.

Hence
n∑

k=1

k2pk =
nm

M

M − n

M

M −m

M − 1
+
(nm
M

)2

,

yielding

eII(j + 1)− eII(j) = 2
N − j

m

nm

M

(
M − n

M

M −m

M − 1
+

nm

M

)
= 2

M −m− n+mn

M − 1
,

where M = n(N − j) was used.
Recalling m = nj−eII(j) and using M = n(N−j) again we get the value of eII(j) recursively

starting from eII(1) = 0 by using that

eII(j + 1)− eII(j) = 2
n(N − j) + (n− 1)(nj − eII(j))− n

n(N − j)− 1
, j = 1, 2, . . . , N − 1. (3.1)

In Fig. 3 this theoretical value of eII(j) is compared to the eII(j) values obtained from simula-
tion. This figure highlights the excellent agreement between the recursion and results obtained
from simulation. This motivates us to extend our combinatorial argument to networks with het-
erogeneous degree distributions. This more complete recursion for networks with arbitrary degree
distributions is presented in the next subsection.
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Figure 3: The eII(j) values from simulation (◦) on a regular random graph and their theoretical
value obtained from recursion (3.1) (continuous curve) with N = 1000, n = 6, τ = 10, γ = 1.
250 simulations, started with 10 infected nodes, were averaged.

3.2. The case of configuration random graphs with arbitrary degree distri-
bution

Consider a random graph with a given degree distribution {dl : l = 1, 2, . . . , L}. We denote by Nl

the number of nodes of degree nl, hence dl = Nl/N and N1 +N2 + . . .+NL = N . We will need
an approximation for the number of infected nodes of degree nl when the total number of infected
nodes is given. Let this number be j and denote by Il(j) the expected value of infected nodes of
degree nl. Then we obviously have

L∑
l=1

Il(j) = j.

First, we derive a recursive relation for Il(j). Assume that the value of Il(j) is known for a given
j and for all l = 1, 2, . . . , L. Then the probability that the next infected node is of degree nl is
denoted by Pl(j). Since the next infected node has degree nl with probability Pl(j) the expected
value of degree nl infected nodes will be

Il(j + 1) = Il(j) + Pl(j).

The probability Pl(j) will be determined later, now we determine a formula for the average number
of new II edges that are created when the next infection happens.

To get a formula for eII(j + 1) − eII(j), we have to notice that the average number of new
II edges depends on the degree of the (j + 1)-th new infected node. Thus we compute first the
conditional expected value of eII(j + 1) − eII(j) given that the new infected node has degree nl

and then the law of total probability is applied to get eII(j + 1)− eII(j).
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The derivation will be analogous to that in the previous section. Suppose that there are j
infected nodes, then these have

m =
L∑
l=1

nlIl(j)− eII(j) (3.2)

free stubs, and the
∑L

l=1(Nl − Il(j)) susceptible nodes have

M =
L∑
l=1

nl(Nl − Il(j)) (3.3)

stubs. Supposing that the next infected node has degree nl let plk denote the probability that an
arbitrary susceptible node with degree nl has k links to infected nodes, k = 0, 1, . . . , nl. Thus plk
has hypergeometric distribution

plk =

(
nl

k

)(
M−nl

m−k

)(
M
m

) , k = 0, 1, . . . , nl.

We get that the average number of susceptible nodes with degree nl having k infected neighbours
is (Nl − Il(j))p

l
k. Using the expected value of the hypergeometric distribution, the total number of

SI links from the susceptible nodes having degree nl is

(Nl − Il(j))
n∑

k=0

kplk = (Nl − Il(j))
nlm

M
.

Similarly to the previous subsection, let us associate a number to each SI edge as follows. To
an edge we associate the number k if it is connected to a susceptible node that has k infected
neighbours. This means that a susceptible node with k infected neighbours will have each of its
individual edges to infected nodes labeled with k. Then the number of edges to which the number k
is associated is k(Nl− Il(j))p

l
k, since the average number of susceptible nodes having k infectious

links is (Nl − Il(j))p
l
k and each of them has k SI type edges. Hence, if we choose an SI edge

randomly (along which the next infection will happen), then the probability that there will be k
new II edges, after this specific infection happens, is the probability that we choose an edge to
which the number k is associated. This probability is

qlk =
k(Nl − Il(j))p

l
k

(Nl − Il(j))
nlm
M

=
M

nlm
kplk, k = 1, 2, . . . , nl.

Thus the average number of new II edges that are created when the next infection happens (given
that the degree of the newly infected node is nl) is the conditional expected value

El(j) =

nl∑
k=1

kqlk =
M

nlm

nl∑
k=1

k2plk =
M − nl

M

M −m

M − 1
+

nlm

M
,
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where we used from the previous subsection that

nl∑
k=1

k2plk =
nlm

M

M − nl

M

M −m

M − 1
+
(nlm

M

)2

.

Let us now turn to the derivation of Pl(j). This can be simply given as the ratio of the number of
SI links starting from S nodes of degree nl and the total number of SI links. That is

Pl(j) =
(Nl − Il(j))

nlm
M∑L

l=1(Nl − Il(j))
nlm
M

.

Finally, the recursion for eII(j) can be obtained by applying the law of total probability

eII(j + 1)− eII(j) = 2
L∑
l=1

Pl(j)El(j), (3.4)

where m and M are given by (3.2) and (3.3). As an application we determine eII(j) for a bimodal
random graph, in which half of the nodes have degree 3 and the other half has degree 9, i.e. L = 2,
n1 = 3, n2 = 9, d1 = 1

2
= d2. Then the (3.4) determines eII(j) that we compared to eII(j)

values obtained from simulation. Fig. 4 shows that the theory and the simulation are in excellent
agreement.
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Figure 4: The eII(j) values from simulation (◦) on a bimodal random graph and their theoretical
value obtained from the recursion (continuous curve) with N = 1000, N3 = 500, N9 = 500,
τ = 10, γ = 1. 250 simulations, started with 10 infected nodes, were averaged.
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4. Theoretical approximation of the number of SI edges
In this section we derive a formula for eSI , the average number of SI edges, based on the ap-
proximation of the number of II edges. Simulations show that the points (j, eSI(j)) (for j =
0, 1, . . . , N ) lie on a parabola-like curve, see Fig. 5. The shape of the parabola (for simplicity we
call it parabola) depends on the structure of the graph, while the value of the parabola’s maximum
depends on τ . As the value of τ increases, the maximum value decreases. For large values of
τ the parabola-like curve converges to a limiting curve that will be denoted by e∞SI(j), since it
corresponds to the case τ → ∞. This phenomenon is shown in Fig. 5.
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Figure 5: The (j, eSI(j)) curves in the case of a regular random graph for different values of τ
from simulation (τ = 1 (⋄), τ = 2 (◃), τ = 10 (◦)).

To account for this special features of the (j, eSI(j)) parabola, our theoretical model is built up
in two steps. First, we derive a formula for the shape of the limiting curve e∞SI(j). In this step we
assume that τ is large, hence neglect recovery. Then, we investigate the effect of τ on the value of
the maximum of the (j, eSI(j)) parabola.

The first step can be simply reduced to the result of the previous section by observing that the
total number of SI and II edges is equal to the number of stubs starting from infected edges.
Hence we have

e∞SI(j) =
L∑
l=1

nlIl(j)− eII(j),

where the degrees of the nodes are denoted by nl for l = 1, 2, . . . , L. In the case of a regular
random graph, when the degree of every node is n, this takes the simple form

e∞SI(j) = nj − eII(j).

12



N. Nagy et al. Approximate master equations for dynamical processes on graphs

Thus the recursion for eII(j) in the previous section gives a theoretical value for e∞SI(j) directly.
We note that the superscript ∞ was not used in the case of eII(j), because these numbers were
introduced only for large τ , while eSI(j) will be computed also for small values of τ .

The recursion for eII(j) can be easily converted to a recursion for e∞SI(j). The recursions
obviously do not give an explicit formula for e∞SI(j) or for eII(j) in terms of j. An approximate
explicit formula can be derived for large N by transforming the difference equation given by the
recursive relation into a differential equation. This will be presented in the next subsection in the
case of a regular random graph.

4.1. Explicit formula for e∞SI(j) in the large N limit
In this subsection we assume that the graph is regular, the degree of each node is n. Based on
e∞SI(j) = nj − eII(j) the recursion for e∞SI(j) takes the form

n− (e∞SI(j + 1)− e∞SI(j)) = eII(j + 1)− eII(j). (4.1)

Let us introduce x = j
N

∈ [0, 1] as a continuous variable corresponding to j, and let f : [0, 1] → R
be a differentiable function, for which f( j

N
) = e∞SI(j) holds. Then

e∞SI(j + 1)− e∞SI(j) = f(
j + 1

N
)− f(

j

N
) ≈ 1

N
f ′(

j

N
),

by using the definition of the derivative. Hence the recursion (3.1) and (4.1) lead to the differential
equation

n− 1

N
f ′(x) = 2

nN(1− x) + (n− 1)f(x)− n

nN(1− x)− 1
,

by using m = nj − eII(j) = f(x) and n(N − j) = nN(1− x). Rearranging the equation it takes
the form

1

N
f ′(x) + 2f(x)

n− 1

nN(1− x)− 1
=

(n− 2)nN(1− x) + n

nN(1− x)− 1
, (4.2)

showing that this is a linear differential equation for f the general solution of which can be easily
derived. Using the standard method of solving linear ODEs, first the homogeneous equation is
solved then applying the method of variation of constants the solution can be given in the form

f(x) = (nN(1− x)− 1)2−2/n K(x)

with an unknown function K. Substituting this form into the differential equation (4.2), the func-
tion K has to satisfy the following equation

− 1

N
K ′(x) = (2− n) (nN(1− x)− 1)2/n−2 − (2n− 2) (nN(1− x)− 1)2/n−3 .

Integrating this equation and after some algebra we obtain

K(x) = (nN(1− x)− 1)2/n−1 + (nN(1− x)− 1)2/n−2 + c

13
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with a constant c. Thus the function f takes the form

f(x) = nN(1− x) + c (nN(1− x)− 1)2−2/n .

The constant c can be determined from the initial condition f( 1
N
) = n. This is equivalent to

e∞SI(1) = n (expressing the simple fact that if there is a single infected node, then the number of
SI edges is n). Hence we get

f(x) = nN(1− x)− n(N − 2)

(
nN(1− x)− 1

n(N − 1)− 1

)2−2/n

. (4.3)

This yields an explicit expression for e∞SI(j) as e∞SI(j) = f( j
N
). In Fig. 6 this approximation is

compared to the result of recursion (3.1) and e∞SI(j) = nj − eII(j).
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Figure 6: The (j, eSI(j)) curve obtained from simulation (◦), from recursion (3.1) via e∞SI(j) =
nj − eII(j) (continuous curve) and given by e∞SI(j) = f( j

N
) (▹) in case of a regular random graph

with N = 1000, τ = 10, γ = 1, n = 6.

4.2. The dependence of the maximum number of SI edges on τ

Now we show an analytic method to derive the eSI(j) values based on the known values of e∞SI(j).
As it is shown in Fig. 5, the value of τ effects the maximum value of the parabola-like curves.
Hence we will derive a formula yielding this maximum value. The main idea is to use the pairwise
equations, from which this maximum value, [SI]max, can be obtained in terms of the location of
the maximum, [I]max. For a network with a given degree distribution the heterogeneous pairwise

14
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model is given in [4]. For ease of calculation we present the derivation for a regular random graph
when the pairwise equations take the form

˙[I] = τ [SI]− γ[I],
˙[SI] = γ([II]− [SI]) + τ([SSI]− [ISI]− [SI]),
˙[II] = −2γ[II] + 2τ([ISI] + [SI]),
˙[SS] = 2γ[SI]− 2τ [SSI],

where [II] and [SS] denote the expected values of II and SS pairs, [SSI] and [ISI] denote the
expected values of these types of triples. This system is closed by the moment closure [9]

[SSI] ≃ n− 1

n

[SS][SI]

[S]
, [ISI] ≃ n− 1

n

[SI]2

[S]
.

The number of SI edges is maximal when ˙[SI] = 0, that is when

γ([II]− [SI]) = τ([SI] + [ISI]− [SSI]).

Using the closure relations and the formulas

[II] + [SI] = n[I], [SS] + [SI] = n[S]

this equation leads to

γn[S](n[I]− 2[SI]) = τ [SI] (n[S] + (n− 1)[SI]− (n− 1)(n[S]− [SI])) .

Since [S] = N − [I], we get the following quadratic equation for the maximal value of SI edges

2τ(n− 1)[SI]2 + n(N − [I])(2τ − nτ + 2γ)[SI]− n2γ(N − [I])[I] = 0. (4.4)

The positive solution of this equation for [SI] is the maximal value of SI that will be denoted
by [SI]max. Here the value [I] denotes the location of the maximum of the e∞SI(j) curve that can
be obtained as follows. First, the maximum of e∞SI(j) has to be determined. Let us denote that
by [SI]∞max. This maximum is achieved at a certain value of j denoted by jmax, then [I]max =
jmax. We note that a more accurate value of [I]max can be obtained if a differentiable function
f : [0, 1] → R can be given, for which f( j

N
) = e∞SI(j) holds, as it was done in the previous

subsection. Then determining the maximum of f that is taken at xmax, we get [I]max = Nxmax.
This way we get [SI]max from (4.4) in terms of τ . Finally, the average number of SI edges for the
given value of τ can be expressed in the form

eSI(j) = e∞SI(j)
[SI]max

[SI]∞max

. (4.5)

The result of this derivation is compared to simulation in Fig. 7 for a regular random graph.
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Figure 7: The (j, eSI(j)) curve obtained from simulation (◦) and from recursion (4.5) (continuous
curve) in the case of a regular random graph with N = 1000, τ = 2, γ = 1, n = 6.

5. Summary of results
Here, we summarise our findings by comparing simulation results with results based on Eq. (1.1)
with the transmission rate given by the recurrence relations in Eq. (3.4) and equation (4.5). For all
networks considered, the agreement is excellent and this highlights that the heavily reduced state
space and the resulting equations can capture the most significant components of the dynamics.

The main steps of our analytic method are summarised below. We start from a configuration
random graph with given degree distribution, and from given values of τ and γ. Our method allows
us to determine the coefficients ak and ck in equation (1.1). It is obvious that ck = γk. Hence, only
the steps needed to determine ak are presented.

1. Based on the degree distribution we determine the average number of II edges, eII(j) by
using the recurrence relation (3.4), see Section 3.. (We note that this quantity, at this stage,
is independent of τ , since it corresponds to the large τ limit.)

2. The average number of SI edges (belonging to the case of large τ ) can be given as e∞SI(j) =∑K
k=1 kIk(j)− eII(j), see Section 4..

3. The average number of SI edges belonging to the given finite value of τ is determined from
(4.5), see Section 4.2.. Then the desired coefficients can be obtained as ak = τeSI(k),
k = 0, 1, . . . , N .

4. Using the theoretically derived values of ak and ck equation (1.1) is solved numerically and

the prevalence I(t) =
N∑
k=0

kxk(t) is compared to the prevalence obtained from simulation.
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As an illustration of the performance of the method we implemented the above algorithm for a
regular random graph with n = 6. The comparison of the prevalence curves obtained from theory
and simulation is shown in Fig. 8.
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Figure 8: The time dependence of prevalence for a regular random graph with parameters
N = 1000, n = 6, τ = 2, γ = 1 from theory (continuous curve) and from simulation (◦).
250 simulations, started with 10 infected nodes, were averaged.

6. Discussion
In this paper we have formulated a new type of approximate ODE model for simple SIS dy-
namics on graphs with arbitrary degree distributions connected up according to the configuration
model. This new model is inspired by the reduced, exact master equations corresponding to a
fully connected graph with N nodes and N + 1 equations. It turns out that reducing the state
space in the spirit of the fully connected graph leads to a viable approach to derive an approximate
system provided that the transmission rates can be computed or approximated based on some ana-
lytic/combinatorial arguments. While in the paper, the analytical calculations are for configuration
graphs, numerical results confirm that our approach is extendable to clustered (see Fig. 1) and cor-
related networks provided that analytical calculations for the transmission rates can be completed.

The results are somehow surprising as the transmission rates themselves are in fact random
variables with some distribution since k infected nodes on a graph corresponding to different re-
alisations of the simulation model will lead to a distribution of values in the number of SI edges.
Thus, the model could be further improved by considering a set of ODEs with transmission rates
specified by random variables (instead of using their expected value) with some specified distri-
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bution. However, such a system will lead to further complications due to the correlation between
these random variables, where current values of the transition rates depend on previous and influ-
ence future transition rates.

The approach here can potentially be extended to clustered networks and this is a direction that
we will explore in future work. More importantly, given the very specific shape of the transmission
rates curve, we can ask the question whether it is possible to infer important network characteris-
tics, such as the degree distribution, from it. The transmission rates (i.e. transmission rates versus
number of infected nodes) is a signature or footprint of the combined properties of epidemic and
graph properties. While data on this quantity may be difficult or impossible to collect, it is still
possible to use prevalence or incidence data from a real epidemic. Such data could be fitted with
the proposed ODE model and then, the numerically inferred transmission rates could be compared
to a class of typical parabolas describing the most common network types, see Fig. 2. Thus, the
proposed model, could serve as a link between prevalence data and the process of inferring the
underlying network structure.

In Subsection 4.1. we derived a functional form that relates the average number of SI edges
to the average number of infected nodes, see equation (4.3). The most common functional form,
based on the assumption of random mixing is [SI] = n[I]N−[I]

N−1
, where n denotes the average de-

gree of the nodes. In the formalism of Subsection 4.1. (where x = [I]/N ), this approximation
corresponds to the functional form f(x) = nN2

N−1
x(1 − x). This approximation ignores the natu-

ral correlations that develop during the process, hence it was generalised to f(x) = kxp(1 − x)q

with some phenomenological parameters k, p and q in [13]. Our functional form yields an alter-
native to that with the advantage that it can be derived theoretically. The two functional forms are
numerically close to each other, and their theoretical relation can be the subject of future work.
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