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 2 

 

A series of 3,5-bis(arylidene)-4-piperidones (DAP compounds) are considered as synthetic 

analogs of curcumin for anticancer and anti-inflammatory properties. We performed structure-

activity relationship studies by synthesizing a number of 3,5-bis(arylidene)-4-piperidones N-

alkylated or acylated with nitroxides or their amine precursors as potent antioxidant moieties. 

Both subtituents on arylidene rings and on piperidone nitrogen (five- or six-membered, 2- or 

3- or 3,4-disubstituted, isoindoline nitroxides) were varied. The anticancer efficacy of the new 

DAP compounds was tested by measuring their cytotoxicity to cancer cell lines A2780 

(human epithelial ovarian cancer cell line) and MCF-7 (human breast cancer cell line) and to 

H9c2, a noncancerous (healthy) cardiac cell line. The results showed that all DAP compounds 

induced a significant loss of cell viability in both the human cancer cell lines tested, however 

only pyrroline appended nitroxides (5c,
1
 5e, 7, 9) showed limited toxicity toward 

noncancerous cell lines. Computer docking simulations support the biological activity tested. 

These results suggest that antioxidant-conjugated DAPs will be useful as a safe and effective 

anticancer agent for cancer therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Page 2 of 32

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 3 

Introduction 

 

Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)1,6-heptadien-3,5-dion), a natural component 

of the rhizome of curcuma longa, proved to be a powerful chemopreventive and anticancer 

agent2-5 having also anti-inflammatory6, antibacterial7 and antioxidant properties.8 However, 

the clinical use of curcumin has been limited due to its low anticancer activity and poor 

bioabsorption. In the last decade, a novel class of curcumin analogs, diarylidene piperidones 

(DAPs) has been developed by incorporating a piperidone link to the beta–diketone structure 

and fluoro-, methoxy-, hydroxyl-, chloro-, nitro-, dimethylamino substituents on the phenyl 

group.9,10 These curcumin anlogs exhibited multi-drug-resistance reverting11,12 and 

antimycobacterial13 properties as well. The idea of evaluation of these compounds as 

antineoplastoic agents is based on the assumption that these compounds may be considered as 

Mannich base of dienone and α,β-unsaturated ketones display anticancer properties via a 

mechanism of action comprising interactions with cellular thiols with little or no affinity for 

hydroxyl and amino group in nucleic acids. The 1,5-diaryl-3-oxo-1,4-pentadienyl groups 

considered to react at a primary binding site, however the bioactivity  will be influenced by 

others structural units: such as acylating piperidone nitrogen increased cytotoxic potencies 

and increasing the electron-withdrawing properties of substituents on aromatic ring has 

advantageous effect on cytotoxicity.14-18 However, dimethylenbridge between C2-C6 atoms in 

piperidone was accompanied by reduction of cytotoxic properties exerting a steric impedance 

to alignment at one or more binding sites as well as variation of hydrophobicity and hence 

membrane transportation properties.16  

In general the DAP compounds were more effective than curcumin in inhibiting the 

proliferation of a variety of cancer cell lines. EF24, with ortho-fluorinated phenyl group 

exhibited anticancer activity in vitro when tested using breast cancer, colon cancer and 

ovarian epithelial cancer.19-21 Its para-fluorinated derivative H-4073 was more potent than 
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 4 

EF24 in inducing cytotoxicity to ovarian cancer cells.21-23 DAP compounds have also been 

shown to be more readily bioavailable than the parent compound, curcumin.[Dayton A, et al, 

2010] 

A nonspecific cytotoxic compound may have side effects caused by damage to normal cells. 

Many chemotherapeutic agents act by producing free radicals, causing oxidative stress in 

normal cells.24 It is well known that nitroxides or their precursors (hydroxylamines and 

sterically-hindered amines) scavenge oxygen radicals in cells that have normal redox status 

and have beneficial effect on toxicity and/or efficiency in ROS scavenging compared to the 

original drug.25, 26 Our previous studies indicated that nitroxides or their amine precursors play 

multiple roles in elimination of ROS formed during doxorubicine metabolism without 

reducing their anticancer effect.27,28 These results inspired us to combine anticancer and 

antioxidant properties to decrease ROS-promoted damage. The DAPs were ideal candidates to 

prove the conception because of the easily variable nitrogen substituents of piperidone 

moiety. This study presents synthesis and evaluation of new DAP compounds with different 

substituents (F, CF3, OCH3) on the aromatic rings, as well as variation of nitroxides 

(saturated, unsaturated, six-membered, isoindoline etc.) attached to the piperidone nitrogen. 

The study showed that the DAPs induce preferential toxicity in cancer cells while sparing 

noncancereous cells. The results suggest that the antioxidant (nitroxide)-conjugated DAPs 

will be useful as a safe and effective anticancer agents for cancer therapy. 

 

Chemistry 

A Claisen-Schmidt condensation between 4-piperidone hydrochloride and the appropriate 

aldehyde led to the formation of 3,5-bis(arylidene)-4-piperidones. Based on earlier X-ray 

crystallography data we propose compounds 1, 6, 8, 10 possess E stereochemistry.10, 14, 15 
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 5 

The new N-acyl-3,5 bis(4- fluorobenzilydene)piperidin-4-ones were prepared by treatment of 

compound 1 with freshly prepared paramagnetic acyl chloride 2a
29

 in the presence of Et3N in 

CH2Cl2 or treatment with isocyanate 2b
30

 generated in situ by Curtius-rearrangement of acyl 

azide in THF to yield compound 3a and 3b. The N-alkyl 3,5-bis(4- 

fluorobenzilydene)piperidin-4-ones were achieved by alkylation of compound 1 with 

equivalent amount paramagnetic alkyl halides 4a,
 31

 4b,
31

 4c,
32

 4d,
33

 4e,
34 

4f,
35

 4g
36 in 

acetonitrile in the presence of K2CO3 to give compounds 5a, 5b, 5c, 5d, , 5f, 5g, 5h. 

Compound 5e was synthesized by reduction of nitroxide function of compound 5c with iron 

powder in glacial acetic acid37 (Scheme 1). 

Alkylation of 3,5-bis(2-fluorobenzylidene)piperidin-4-one 6
19

, 3,5-bis(4- 

trifluoromethylbenzylidene)piperidin-4-one 8 and with 3,5-bis(2,3,4- 

trimethoxybenzylidene)piperidin-4-one 10 with compound 4c as above yielded compounds 7, 

9, 11 respectively (Scheme 2). Compounds 8 and 10 were synthesized by condensation of 

piperidine-4-one HCl (12) salt with 4-trifluoromethyl benzaldehyde or 2,3,4-

trimethoxybenzaldehide in AcOH saturated previously with HCl gas (Scheme 3). 

 
Results and discussion  

 
The anticancer efficacy of the DAP compounds with various substituents on aromatic rings 

and on piperidone nitrogen was evaluated by measuring the cytotoxicity of the compounds to 

well-established cancer cell lines, namely A2780 (human epithelial ovarian cancer cell line) 

and MCF-7 (human breast cancer cell line) using MTT assay. The measurements were 

performed by exposing the cells to 10-µM concentration of the compound for 24 h. The 

results, in the form of percent cell viability as compared to respective control, are summarized 

in Tables 1-3. The results showed that all DAP compounds induced a significant loss of cell 

viability in both the human cancer cell lines tested. In particular 3,5-bis(arylidene)-4-
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 6 

piperidone compounds without nitroxide tag (1 ,6, 8, 10) demomstrated a substantial cytotoxic 

effect against A2780 and MCF-7 cells. The electron-withdrawing substituents (F, CF3) 

comtainig derivatives (1, 6, 8) exhibited greater cytotoxicity than 10 trimethoxy derivative 

(10) in accordance with previous findings.14,15 In all caseses the toxicity can be increased by 

modifying the 3,5-bis(arylidene)-4-piperidone compounds with nitroxides by acylation (3a, 

3b) and by alkylation (5a-h, 7, 9, 11). In particular 3a, 3b demonstrated a substantial 

cytotoxic effect against A2780 and MCF-7 cells. Comparable cytotoxic efficacies were 

observed with 5c, 5e, 5f and 9 derivatives. The results further indicated that the DAPs were 

more cytotoxic to ovarian (A2780) cancer cell when compared to breast cancer cell. 

Compounds containing 2-substituted pyrrolidine nitroxide (5a, 5b), 3,4-disubstituted 

nitroxide (5d), isoindoline-type nitroxides (5g, 5h) exhibited limited toxicity toward breast 

cancer cell lines. 

We also compared the cytotoxicity of DAPs to a noncancerous (healthy) cardiac cell line, 

namely H9c2, an undifferentiated neonatal rat cardiomyoblast. Most of the compounds 

induced a significant loss of cell viability, although to different extents (Table 1-3), the 

pyrroline-appended DAPs, 5c, 5e and 7 were significantly less toxic to the healthy cell. 

Particularly, the results of 5c seem to suggest a strikingly differential effect on cancer versus 

noncancerous cells. The compound 6, which was toxic to breast cancer cell, was toxic to 

healthy cells to the same extent. In addition, this differential effect could stem from the N-

hydroxypyrroline function. Overall the viability results seem to implicate the 

diarylidenylpiperidone group in inducing cytotoxicity and N-hydroxypyrroline group in 

protecting noncancerous cells.  

We recently reported the anticancer efficacy of four DAPs, namely 1 and 8 without NOH 

function and 5c and 9 with NOH function against a number of cancerous (breast, colon, head 

and neck, liver, lung, ovarian, and prostate cancer) and noncancerous (smooth muscle, aortic 
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 7 

endothelial, and ovarian surface epithelial cells) human cell lines.22 We observed that all four 

compounds induced significant loss of cell viability in cancer cells, while 5c and 9 showed 

significantly less cytotoxicity in noncancerous (healthy) cells. Electron paramagnetic 

resonance (EPR) measurements showed a metabolic conversion of the N-hydroxylamine 

function to nitroxide with significantly higher levels of the metabolite and superoxide radical-

scavenging (antioxidant) activity in noncancerous cells when compared to cancer cells.22  

Among the new compound synthesized compound 5c (HO-3867) exhibited the best selective 

toxicity against cancerous cell. Hence this compound was chosen as a new lead compound for 

further evaluations. Western-blot analysis showed that the DAP-induced growth arrest and 

apoptosis in cancer cells were mediated by inhibition of STAT3 phosphorylation at Tyr705 

and Ser727 residues and induction of apoptotic markers of cleaved caspase-3 and PARP 

suggesting that the antioxidant-conjugated DAPs will be useful as a safe and effective 

anticancer agent for cancer therapy.22 In a subsequent study, we further established the 

anticancer efficacy of 5c in a number of established human ovarian cancer cell lines (A2870, 

A2780cDDP, OV-4, SKOV3, PA-1 and OVCAR3), as well as in a murine xenograft tumor 

(A2780) model.1 Compound 5c (HO-3867) demonstrated a preferential toxicity towards 

ovarian cancer cells, while sparing healthy cells. It induced G2/M cell-cycle arrest in A2780 

cells by modulating cell-cycle regulatory molecules p53, p21, p27, cdk2 and cyclin, and 

promoted apoptosis by caspase-8 and caspase-3 activation. It also caused an increase in the 

expression of functional Fas/CD95 and decreases in STAT3 (Tyr705) and JAK1 

phosphorylation. There was a significant reduction in STAT3 downstream target protein 

levels including Bcl-xL, Bcl-2, survivin, and vascular endothelial growth factor (VEGF), 

suggesting that 5c exposure disrupted the JAK/STAT3-signaling pathway. In addition, 

compound 5c significantly inhibited the growth of the ovarian xenografted tumors in a 

dosage-dependent manner without any apparent toxicity. Western-blot analysis of the 
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 8 

xenograft tumor tissues showed that compound 5c inhibited pSTAT3 (Tyr705 and Ser727) 

and JAK1 and increased apoptotic markers cleaved caspase-3 and PARP. Overall, compound 

5c exhibited significant cytotoxicity towards ovarian cancer cells by inhibition of the 

JAK/STAT3-signaling pathway.1  

 

Molecular docking 

We performed theoretical modeling calculations using AutoDock (version 4.2) to elucidate 

the mode of STAT3-inhibition by these compounds using in silico docking simulations. The 

simulation results have provided additional support for the hypothesis that the mechanism of 

action of the DAP compounds is via targeting of the STAT3 pathway. The computations 

demonstrate that the DAP compounds have high docking affinity for the STAT3 dimer (PDB 

ID: 3CWG) at the DNA binding domain of the molecule (Table 4, Figure 1). This, in turn, 

would prevent the activated STAT3 molecule from binding with DNA, thereby inhibing 

transcription of downstream signaling. The N-hydroxypyrroline-bearing DAP molecules were 

found to have substantially higher binding affinity than their non-antioxidant promoting 

counterparts. Table 4 lists the tested compounds, and the 5 lowest calculated binding energies 

and the corresponding constants of inhibition (Ki, nmol). The DAP compound binding affinity 

to the STAT3 dimer determined is to be ranked as follows: HO-3867 > HO-4200 >> H-4073 

> HO-4138. The rankings also correlate well with the biological activity. Many small 

molecules identified as potential drug candidates have reported binding energies in the -7 to -

9 kcal/mol range, but few of these potential drug candidates have Ki values <50 nM. In 

addition, many STAT3 inhibitors target the SH2 binding-domain of the molecule, whereas the 

DAP compounds favor the DNA-binding region. The identification of a previously-

unreported docking site for molecular inhibition of STAT3 activity would be of significant 

benefit for future drug design. 
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Conclusions 

The present study demonstrated that the earlier known 3,5-bis(arylidene)-4-piperidones (DAP 

compounds) can be N-alkylated or acylated with nitroxides or their amine precursors as potent 

antioxidant moieties. Measurement of the cytotoxicity of the new compounds to cancer cell 

lines A2780 (human epithelial cancer cell line) and MCF-7 (human breast cancer cell line) 

and to H9c2 noncancerous (healthy) cardiac cell line has shown that the modified compounds 

are more effective as anticancer compounds, but at the same time was less toxic to 

noncancereous (healthy) cells. Computer docking simulations support the empirical data 

collected. Among the compounds tested HO-3867 (5c) was chosen as lead compound for 

further studies. These results support the earlier findings that nitroxides and their precursors 

do not comprimise the anticancer effect of the modifed molecules, but they have benefical 

effect on the original activity. 

 

Experimental Section 

Melting points were determined with a Boetius micro melting point apparatus and are 

uncorrected. Elemental analyses (C, H, N, S) were performed on Fisons EA 1110 CHNS 

elemental analyzer. Mass spectra were recorded on a Thermoquest Automass Multi and VG 

TRIO-2 instruments and in the EI mode. 1H NMR spectra were recorded with Varian 

UNITYINOVA 400 WB spectrometer. Chemical shifts are referenced to Me4Si. 

Measurements were run at 298K probe temperature in CDCl3 solution. ESR spectra were 

taken on Miniscope MS 200 in 10-4 M CHCl3
 solution and monoradicals gave triplett line. 
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 10 

Flash column chromatography was performed on Merck Kieselgel 60 (0.040-0.063 mm). 

Qualitative TLC was carried out on commercially prepared plates (20 x 20 x 0.02 cm) coated 

with Merck Kieselgel GF254. All chemicals were purchased from Aldrich, compounds 1,10 

4a,
31 

4b,
31

 4c,
32

 4d,
33

 4e,
34 

4f,
35

 4g,
36

 5c,1 619 was prepared as described earlier. 

 

3,5-Bis(4-fluorobenzylidene)-1-[(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-

yl)carbonyl]piperidin-4-one Radical (3a): 

To a solution of compound 1 HCl salt (1.73g, 5.0 mmol) and Et3N (1.0 g, 10.0 mmol) in 

CH2Cl2 (35 mL) freshly prepared 2a (1.01 g, 5.0 mmol) dissolved in CH2Cl2 (10 mL) was 

added dropwise at 0 ºC and the mixture was allowed to warm to rt. and stirred for 1h. The 

organic phase was washed with brine (20 mL), the organic phase was separated, dried 

(MgSO4), filtered and evaporated. The residue was purified by flash column chromatography 

(CHCl3/Et2O) to yield the title compound as yellow solid 1.26 g (49%), mp 168-170 °C, Rf 

0.55 (CHCl3/Et2O, 2:1). MS (EI) m/z (%): 477 (M+, 6), 463 (15), 447 (10), 310 (30), 133 

(100). Anal calcd. for C28H27F2N2O3 C 70.43, H 5.70, N 5.87, found: C 70.24, H 5.88, N 6.01.  

 

3,5-Bis(4-fluorobenzylidene)-4-oxo-N-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-

3-yl)piperidine-1-carboxamide Radical(3b): 

To a solution of compound 1 (933 mg, 3.0 mmol) in anhydr. THF (40 mL) compound 2b (627 

mg, 3.0 mmol) was added and the mixture was heated under reflux for 4h. After colling the 

THF was evaporated off under reduced pressure, the residue was partitioned between CH2Cl2 

(40 mL) and brine (10 mL), the organic phase was washed with 10% aq. K2CO3 (20 mL), 

water (10 mL), the organic phase was separated, dried (MgSO4), filtered and evaporated. The 

residue was purified by flash column chromatography (CHCl3/MeOH) to yield the title 

compound as yellow solid 915 mg (62%), mp 175-177 °C, Rf 0.43 (CHCl3/Et2O, 2:1). MS 
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 11 

(EI) m/z (%): 492 (M+, 1), 462 (1), 460 (8), 310 (22), 133 (100). Anal calcd. for 

C28H28F2N3O3 C 68.28, H 5.73, N 8.53, found: C 68.12, H 5.90, N 8.68.  

 

General procedure for N-alkylation of 3,5-Bis(arylidene)piperidin-4-one (5a, 5b, 5c, 5d, 

5f, 5g, 5h, 7, 9, 11):  

A mixture of 1 or 6 or 8 or 10 HCl salt (5.0 mmol), K2CO3 (1.38g, 10.0 mmol) in acetonitrile 

(20 mL) was stirred at rt. for 30 min., then alkyl bromide 4a-h (5.0 mmol) was added 

dissolved in acetonitrile (5 mL) and the mixture was stirred and refluxed till the consumption 

of the starting materials (~3 h). After cooling the inorganic salts were filtered off on sintered 

glass filter, washed with CHCl3 (10 mL), the filtrate was evaporated and the residue was 

partitioned between CHCl3 (20 mL) and water (10 mL). The organic phase was separated, the 

aqueus phase was washed with CHCl3 (20 mL), the combined organic phase was dried 

(MgSO4), filtered and evaporated. The residue was purified by flash column chromatography 

(Hexane/EtOAc) to give the title compounds in 35-71%.  

 

3,5-Bis(4-fluorobenzylidene)-1-[(2E)-3-(1-oxyl-2,5,5-trimethylpyrrolidin-2-yl)prop-2-

enyl]piperidin-4-one Radical (5a) mp 168-170 °C (2HCl salt), Rf 0.62 (hexane/EtOAc, 2:1). 

MS (EI) m/z (%): 477 (M+, 2), 311 (14), 282 (17), 133 (100). Anal calcd. for 

C29H34F2Cl2N2O2 C 63.16, H 6.21, N 5.08, found: C 62.99, H 6.08, N 6.15.  

 

3,5-Bis(4-fluorobenzylidene)-1-[3-(1-oxyl-2,5,5-trimethylpyrrolidin-2-yl)prop-2-

ynyl]piperidin-4-one Radical (5b) mp 132-134 °C (2HCl salt), Rf 0.62 (hexane/EtOAc, 2:1). 

MS (EI) m/z (%): 475 (M+, 1), 461 (1), 311 (12), 148 (100). Anal calcd. for C29H32F2Cl2N2O2 

C 63.39, H 5.87, N 5.10, found: C 63.28, H 6.00, N 5.05.  
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 12 

3,5-Bis(4-fluorobenzylidene)-1-[(1-oxyl-2,2,3,5,5-petramethyl-2,5-dihydro-1H-pyrrol-3-

yl)methyl]piperidin-4-one Radical (5d): mp 178-180 °C Rf 0.50 (hexane/EtOAc, 2:1). MS 

(EI) m/z (%): 477 (M+, 13), 447 (6), 404 (10), 303 (29), 133 (100). Anal calcd. for 

C29H31F2N2O2 C 72.94, H 6.54, N 5.87, found: C 72.92, H 6.65, N 5.82.  

 

 

3,5-Bis(4-fluorobenzylidene)-1-[4-(1-oxyl-2,2,6,6-tetramethyl-1,2,3,6-tetrahydro-1H-

pyridin-4yl)methyl]piperidin-4-one Radical (5f): mp 157-159 °C, Rf 0.43 (hexan/EtOAc, 

2:1). MS (EI) m/z (%): 477 (M+, 5), 447 (7), 324 (93), 133 (70), 121 (100). Anal calcd. for 

C29H31F2N2O2 C 72.94, H 6.54, N 5.87, found: C 73.00, H 6.52, N 5.83.  

 

3,5-Bis(4-fluorobenzylidene)-1-[5-(2-oxyl-1,1,3,3-tetramethyl-1,3-dihydro-2H-

isoindol)methyl]piperidin-4-one Radical (5g): mp 169-172 °C, Rf 0.46 (hexan/EtOAc, 2:1). 

MS (EI) m/z (%): 513 (M+, 24), 499 (30), 483 (11), 310 (25), 133 (100). Anal calcd. for 

C32H31F2N2O2 C 74.83, H 6.08, N 5.45, found: C 74.85, H 6.10, N 5.53.  

 

3,5-Bis(4-fluorobenzylidene)-1-[6-(2-oxyl-1,1,3,3-tetramethyl-1,3-dihydro-2H-

pyrrolo[3,4-c]pyridine)methyl]piperidin-4-one Radical (5h): mp 155-157 °C, Rf 0.11 

(hexan/EtOAc, 2:1). MS (EI) m/z (%): 514 (M+, < 1), 411 (15), 311 (12), 133 (100). Anal 

calcd. for C31H30F2N3O2 C 62.69, H 5.82, N 5.22, found: C 62.80, H 5.90, N 8.13.  

 

3,5-Bis(2-fluorobenzylidene)-1-[(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-

yl)methyl]piperidin-4-one Radical (7): mp 195-197 °C (2 HCl salt), Rf 0.75 (CHCl3/Et2O, 

2:1). MS (EI) m/z (%): 463 (M+, 6), 433 (8), 327 (37), 310 (40), 133 (100). Anal calcd. for 

C28H31Cl2F2N2O2 C 72.36, H 5.82, N 5.22, found: C 72.20, H 6.00, N 5.13.  
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3,5-Bis(4-trifluoromethylbenzylidene)-1-[(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-

pyrrol-3-yl)methyl]piperidin-4-one Radical (9): mp 188-190 °C, Rf 0.36 (CHCl3/Et2O, 

2:1). MS (EI) m/z (%): 563 (M+, 6), 533 (5), 490 (16), 424 (100), 410 (60), 107 (83). Anal 

calcd. for C30H29F6N2O2 C 63.94, H 5.19, N 4.97, found: C 63.80, H 5.11, N 4.88.  

 

 

3,5-Bis(2,3,4-trimethoxybenzylidene)-1-[(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-

pyrrol-3-yl)methyl]piperidin-4-one Radical (11): mp 186-188 °C, Rf 0.42 (CHCl3/Et2O, 

2:1). MS (EI) m/z (%): 607 (M+, 1), 577 (5), 424 (21), 191 (100). Anal calcd. for C34H43N2O8 

C 67.20, H 7.13, N 4.61, found: C 67.25, H 7.02, N 4.56.  

 

3,5-Bis(4-fluorobenzylidene)-1-[(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-

yl)methyl]piperidin-4-one (5e): To a solution of nitroxide 5c (2.31 g, 5.0 mmol) in AcOH 

(25 mL) iron powder (2.8g, 50.0 mmol) was added and the mixture was stirred at 60 ºC for 30 

min. After cooling, the reaction mixture was diluted with water (40 mL) and filtered. The 

filtrate was basified with solid K2CO3 to pH=8 (intensive foaming). The aq. phase was 

extracted with CHCl3 containing 10% MeOH (2 x 30 mL) and the combined organic phase 

was dried (MgSO4), filtered and evaporated. The residue was purified by flash column 

chromatography (CHCl3 / MeOH) to give the title compound as a yellow solid 1.25g (56%), 

mp 158-160 °C, Rf 0.31 (CHCl3/MeOH, 9:1). MS (EI) m/z (%): 448 (M+ <1), 433 (12), 324 

(13), 133 (56), 124 (100). Anal calcd. for C28H30F2N2O C 74.98, H 6.54, N 5.87, found: C 

75.01, H 6.68, N 5.70. 1H NMR (CD3OD) : 7.73 (s, 2H); 7.46 (q, J=15.4 Hz, ArH, 4H); 7.17 

(t, J = 8.7 Hz, ArH, 4H) 5.38 (s, CH, 1H); 3.82, (s, N(CH2)2, 4H); 3.18 (s, CH2, 2H); 1.12 (s, 

CH3, 6H); 0.99 (s, CH3, 6H).  
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3,5-Bis[4-(trifluoromethyl)benzylidene]piperidin-4-one (8): 

A solution of 4-(trifluoromethyl)benzaldehyde (3.48 g, 20.0 mmol) and 4-piperidone hydrate 

hydrochloride (1.53 g, 10.0 mmol) was allowed to stay in glacial acetic acid (saturated with 

HCl gas previously) for 2 days. The precipitated yellow solid was filtered, washed with Et2O 

(30 mL) and the yellow hydrochloride salt 3.30g (74%) was air-dried and used in the next step 

without further purification. For analytical characterization 300 mg of the salt was dissolved 

in water (10 mL) and basified by addition of 250 mg K2CO3 and extracted with CHCl3 (3 x 10 

mL). The combined extracts were dried (MgSO4), filtered and evaporated to give yellow solid 

mp 195-197 °C, Rf 0.40 (CHCl3/Et2O, 2:1). MS (EI) m/z (%): 411 (M+, 23), 382 (16), 284 

(69), 115 (100). Anal calcd. for C21H15F6NO C 61.32, H 3.68, N 3.41, found: C 61.22, H 3.63, 

N 3.31. 1H NMR (CD3OD) : 7.79 (s, 2H); 7.74 (d, J= 8 Hz, ArH, 4H); 7.62 (d, J= 8 Hz, ArH, 

4H), 4.12 (s, N(CH2)2, 4H).  

 

3,5-Bis(2,3,4-trimethoxybenzylidene)piperidin-4-one (10): 

A solution of 2,3,4-trimethoxybenzaldehyde (3.92 g, 20.0 mmol) and 4-piperidone hydrate 

hydrochloride (1.53 g, 10.0 mmol) was allowed to stay in glacial acetic acid (saturated with 

HCl gas previously) for 2 days. The precipitated yellow solid was filtered, washed with Et2O 

(30 mL) and the yellow hydrochloride salt 3.04g (62%), mp 211-214 °C was air-dried and 

used in the next step without further purification. For analytical characterization 300 mg of 

the salt was dissolved in water (10 mL) and basified by addition of 250 mg K2CO3 and 

extracted with CHCl3 (3 x 10 mL). The combined extracts were dried (MgSO4), filtered and 

evaporated to give yellow solid Rf 0.41 (CHCl3/MeOH, 9:1). MS (EI) m/z (%): 455 (M+, 13), 

424 (100), 191(63). 1H NMR (CD3OD) : 8.17 (s, 2H); 7.05 (d, J=8.7 Hz, ArH, 2H); 6.90 (d, 
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J=8.7 Hz, ArH, 2H) 4.47, (s, N(CH2)2, 4H); 3.91 (s, OCH3, 6H); 3.89 (s, OCH3, 6H), 3.84 (s, 

OCH3, 6H).  

 

General procedure for synthesis of hydroxylamine salts: 

To achieve the N-hydroxy compound HCl salt, nitroxide (3a-b, 5a-d, 5f-h 7, 9, 11) was 

dissolved in EtOH (20 mL, saturated with HCl gas previously) and refluxed for 30 min., then 

solvent was evaporated off and the procedure was repeated till the disappearance of the EPR 

triplet line (taken from a sample dissolved in MeOH, 10-4 M). 

 

Cell lines and cultures 

The cytotoxicity assays were performed using the following cell lines: A2780 (human 

epithelial ovarian cancer cell line), MCF-7 (human breast cancer cell line), and H9c2 

(undifferentiated neonatal rat cardiomyoblasts). The A2780 and MCF-7 cells were grown in 

RPMI 1640 medium and H9c2 cells were grown in Dulbecco's modified Eagle's medium. The 

medium was supplemented with 10% FBS, 2% sodium pyruvate, 1% penicillin and 1% 

streptomycin. Cells were grown in a 75-mm flask to 70% confluence at 37°C in an 

atmosphere of 5% CO2 and 95% air. Cells were routinely trypsinized (0.05% trypsin/EDTA) 

and counted using an automated counter (NucleoCounter, New Brunswick Scientific, Edison, 

NJ). 

Cell viability by MTT assay 

Cell viability was determined by a colorimetric assay using MTT. In the mitochondria of 

living cells, yellow MTT undergoes a reductive conversion to formazan, giving a purple 

color. Cells, grown to ~80% confluence in 75-mm flasks, were trypsinized, counted, seeded in 

96-well plates with an average population of 7,000 cells/well, incubated overnight, and then 

treated with the compounds (10 µM) for 24 hours. The dose and time of incubation were 
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determined from a set of preliminary experiments. All experiments were done using 8 

replicates and repeated at least three times. Cell viability was expressed as a percent MTT 

viability of untreated cells.  

 

In Silico Docking Simulations 

 Previously published work by our group1,22 has demonstrated that these compounds act upon 

the signal transducer and activator of transcription 3 (STAT3) pathway. This phenomenon 

was investigated in more detail through in silico molecular docking simulations using the 

freely-available program AutoDock (version 4.2).38,39 The target macromolecule used in these 

studies was a non-transformed murine STAT3 dimer downloaded from the RCSB Protein 

Data Bank (PDB ID: 3CWG).40 Energy-minimized 3D molecular topographies of the DAP 

compounds were obtained using the Dundee PRODRG2 server.41  

To identify the site on the STAT3 dimer with the highest binding affinity for the DAP 

compounds, blind docking was accomplished using 0.625 Å grid spacing with 128 points in 

each of the X, Y, and Z directions. This grid covered the majority of the previously-defined 

3CWG molecular structure, including the entire SH2, linker, and DNA-binding domains, with 

partial coverage of the coil-coil domain.40 Specific docking at the preferential site identified 

by blind docking was accomplished using 0.375 Å grid spacing with 100 points in each of the 

X, Y, and Z directions. Dockings were automatically ranked by AutoDock according to the 

lowest calculated binding energies (kcal/mol). 
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Scheme 1. Reagents and conditions: (a) Compound 2a (1.0 equiv.), Et3N (2.0 equiv.) CH2Cl2, 
0° C→ rt., 1h, 49%, or compound 2b (1.0 equiv.), THF, reflux, 4h, 62%; (b) 4a-h (1.0 
equiv.), K2CO3, (1.0 equiv.), reflux, 3h, 35-68%; (c) Fe (10.0 equiv.), AcOH, 60 ºC, 35 min., 
56%. 
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Scheme 2. Reagents and conditions: (a) Compound 4c (1.0 equiv.), K2CO3, (1.0 equiv.), 
reflux, 3h, 55-71%.  
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8 1012  
Scheme 3. Reagents and conditions: (a) 4-trifluoromethylbenzaldehyde (2.0 equiv.), AcOH 
sat. with HCl gas, 48h, rt., 74%; (b) 2,3,4-trimethoxybenzaldehyde (2.0 equiv.), AcOH sat. 
with HCl gas, 48h, rt., 62%. 
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Figure 1: Compound 5c docked to STAT3 dimer. This image generated with the free version 
of PyMol using computational data from the AutoDock simulations.
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Table 1. Biological activity of new N-Acyl -3,5-bis(4-fluorobenzylidene)piperidin-4-ones. 

 

N

O

F3C CF3

R1

3  
 

Compound R
1
 

 

A2780 

Viability (%)* 

 

 

MCF-7 

Viability (%) 

 

H9c2 

Viability (%) 

 

1 
H-4073 

H 12.40± 2.62 
 

17.14±1.98 
 

61.40±13.74 
 

3a

HO-4049 N

O

O

 

4.54±0.66 12.42± 2.70 33.29± 5.58 

3b

HO-4060 
N

O

NHC

O

 

5.90±1.57 12.64±1.41 36.70± 6.73 

*Control is 100 %. 
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Table 2. Biological activity of N-alkyl-3,5-bis(4-fluorobenzilydene)piperidin-4-ones. 

N

O

F F

R2  
5 

Compound R
2
 

 

A2780 

Viability (%) 

 

 

MCF-7 

Viability (%) 

 

H9c2 

Viability (%) 

 

5a 

HO-4151 N

O  

5.81±1.25 43.15± 6.30 51.90± 10.08 

5b 

HO-4147  
N

O  

 
5.89±1.36 

  
38.34±3.81 50.66± 8.72 

5c 

HO-3867  N

O  

 
20.48± 4.60 

  
16.56± 3.69 88.50± 13.25 

5d 

HO-4146 N

O

Me

 

 
6.75±0.64 

  
41.98± 4.59 56.79± 6.74 

5e 

HO-3868  N

H  

 
4.79±0.55 

  
28.28± 0.90 78.83± 10.47 

5f 

HO-4059 N

O  

 
6.86±1.05 

  
20.12± 4.83 51.36± 4.81 

5g 

HO-4104  
N

O  

 
9.50±3.71 

  
46.21± 5.63 26.35±4.81 

5h 

HO-4180  
N

O

N

 

 
5.26±0.86 

  
42.71± 5.60 46.57± 7.40 
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Table 3. Biological activity of N-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-3-

ylmethyl)-3,5-bis(4-arylidene)piperidin-4-ones. 

N

ArAr

O

R3

6-11  
 

Compound Ar R
3
 

 

A2780 

Viability (%) 

 

 

MCF-7 

Viability (%) 

 

H9c2 

Viability (%) 

 

6 
L-2359 o-F-Ph H 

 
12.79± 2.65 

  
34.55± 2.26 32.88± 6.22 

7 

HO-3865 
o-F-Ph N

O

 

 
12.48± 1.14 

  
53.50± 8.36 86.35± 7.82 

8 

H-4138 
p-CF3-Ph 

H  
13.10± 0.46 

  
20.19± 2.49 51.74±12.10 

9 

HO-4200 
p-CF3-Ph N

O

 

 
5.85±0.63 

  
14.23±1.71 17.06± 0.86 

10 

H-4139 
2.3.4-MeO-Ph 

H  
10.99± 1.10 

  
56.56± 6.18 32.26± 5.43 

11 

HO-4196 
2.3.4-MeO-Ph N

O

 

 
26.07± 4.43 

  
27.96± 1.94 53.13± 7.14 
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Table 4. Summary of DAP compound docking simulations with the murine STAT3 

dimer (PDB ID: 3CWG) 

 

Simulation 

Test Compound 

Lowest 5 

Binding Energies 

(kcal/mol) 

Corresponding 

Constant of Inhibition 

(Ki, nmol) 

1 

(H-4073) 

-8.76* 
-8.76* 
-8.76* 
-8.76* 
-8.75 

380.28 
379.04 
378.52 
379.50 
386.19 

8 

(H-4138) 

-7.89* 
-7.89* 
-7.88 
-7.87* 
-7.87* 

1660 
1660 
1670 
1710 
1700 

5c 

(HO-3867) 

-11.15* 
-11.15* 
-11.10 
-11.00 
-10.99 

6.75 
6.76 
7.24 
8.67 
8.80 

9 

(HO-4200) 

-10.66 
-10.62 
-10.61 
-10.59* 
-10.59* 

15.33 
16.32 
16.68 
17.22 
17.34 

* The similarity of docked structures is measured by computing the root-
mean-square deviation (rmsd) between the coordinates of the atoms and 
creating a clustering of the conformations based on these rmsd values. In 
this run, multiple binding conformation clusters were found, some with 
equivalent binding energies. 

 
 
 

Page 28 of 32

ACS Paragon Plus Environment

Journal of Medicinal Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 29 

 

  
 

 

A series of 3,5-bis(arylidene)-4-piperidones (DAP) were 
synthesized and N-alkylated or acylated with nitroxides 
or their precursors (amine and hydroxylamine). It was 
found that DAP part have cytotoxic (anti-cancer) 
activity, while the NOH moiety functioned as a tissue-
specific modulator (anti-oxidant) of cytotoxicity. 

N

O

R

X X

X: F, CF3, OCH3 R: nitroxides and  their 
precursors  
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