Late Pleistocene millennial scale cycles of aeolian sedimentation in the Dunaszekcső loess record, south Hungary: preliminary data and interpretations

Gábor Ujvári1, János Kovács1, György Varga2, Mihály Molnár3 and Ágnes Novothny4

1 Geodetic and Geographical Institute, MTA Research Centre for Astronomy and Earth Sciences, Csánszki E. u. 6-8, 3600 Szombathely, Hungary, Email: ujvari@geofizikus.mta.hu
2 Department of Geology and Meteorology, University of Pécs, Ifjúság u. 6, 7624 Pécs, Hungary
3 Environmental Analytical and Geoscientific Research Group, Szent István University Research Centre, University of Pécs, Ifjúság u. 20, 7624 Pécs, Hungary
4 Geographical Institute, MTA Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
5 Hertelendi Laboratory of Environmental Studies, MTA Institute of Nuclear Research, H-1117 Budapest, Hungary
6 Department of Physical Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1088 Budapest, Hungary

Millennial scale warm-cold oscillations in air temperature over Greenland and rapid sea surface temperature changes were recorded in ice cores and North Atlantic sediments for the last glacial. These events must have been associated with profound environmental changes in Europe, and indeed, millennial scale oscillations in grain size records have been found in loess deposits of Europe and Asia. Unfortunately, the timing of these events is still unresolved due to chronological uncertainties on the order of thousands of years. Major problems are the low precision of luminescence ages and the general lack of materials that can reliably be dated using 14C.

As dem onstrated by 24 OSU/IRSL ages, the Dunaszekcső loess-palaeosol sequence is an archive of climate and environmental changes of the last glacial-interglacial cycles. For the upper part of the section (<33 cal yr BP), the chronology is further refined based on charcoal and mollusc shell radiocarbon ages. Here we show that AMS 14C ages of some mollusc species having small shells (<10 mm) seem to yield reliable ages in a comparison with charcoal 14C ages. These radiocarbon ages are consistent, have low variability and define age-depth models with sufficient precision to examine the timing of paleoenvironmental changes in the context of North Atlantic climatic variations.

Bayesian age-depth modeling was performed using Bacon for a depth of 865-500 cm and a time span of 33-25 kyr based on 16 radiocarbon ages. Mean confidence ranges are 674 yr with a minimum of 416 yr at 630 cm and a maximum of 917 yr at 865 cm. Such a sub-millennial scale age model precision has formerly been unprecedented for loess profiles. Sedimentation rates calculated from the Bayesian age-depth model vary between 0.3 and 1.3 mm year⁻¹ (cm kyr⁻¹) with the maximum at 27.390±1.230 cm yr BP. Estimated bulk dust flux for the studied site and the given time span range from 493 to 1666 g m⁻² yr⁻¹, calculating with a dry density of loess of 1500