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Pulsed radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is

studied. The radiated energy and its distribution over the spatial and frequency spectra of the excited

waves are derived and analyzed as functions of the antenna and duct parameters. Numerical results

referring to the case where the frequency spectrum of the antenna current is concentrated in the

whistler range are reported. It is shown that under ionospheric conditions, the presence of an artificial

duct with enhanced density can lead to a significant increase in the energy radiated from a pulsed

loop antenna compared with the case where the same source is immersed in the surrounding uniform

magnetoplasma. The results obtained can be useful in planning active ionospheric experiments with

pulsed electromagnetic sources operated in the presence of artificial field-aligned plasma density

irregularities that are capable of guiding whistler waves. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901949]

I. INTRODUCTION

Electromagnetic radiation from monochromatic sources

embedded in homogeneous and inhomogeneous magnetized

plasmas has been studied in many publications (see, e.g.,

works1–24 and references therein). A great deal of attention

has particularly been devoted to whistler wave excitation in

laboratory and space plasmas containing magnetic-field-

aligned density irregularities.10–22 Such irregularities, com-

monly known as density ducts, can exist in the Earth’s mag-

netosphere, in which they ensure guidance of whistler-mode

waves naturally occurring under space plasma conditions.25

Of no less interest are artificial density ducts that can arise

due to various nonlinear effects near electromagnetic sources

in laboratory and space plasmas. A number of important fea-

tures of whistler wave radiation from monochromatic sources

in the presence of density ducts have been documented in

Refs. 10–20. In particular, it has been demonstrated that

under certain conditions, the presence of a duct can signifi-

cantly improve the antenna coupling into whistler-mode

waves.16–20 For example, the radiation resistance of a loop

antenna located in a duct with enhanced density can be nota-

bly greater than that in the case where such a source is

immersed in a uniform background plasma of lower den-

sity.14,16,18 This circumstance can evidently be used for many

promising applications, some of which are discussed in Refs.

16 and 19.

Over the past two decades, there has been shown a sub-

stantial degree of interest in the excitation of nonmonochro-

matic waves propagating in the whistler mode in a

magnetoplasma.26–33 This interest has been motivated by the

importance of transient phenomena for propagation of

whistler-mode waves through the magnetosphere and the

ionosphere, as well as for plasma diagnostics using pulsed

signals launched from antennas on spacecraft in the whistler

range. However, much previous theoretical work on the sub-

ject is mainly focused on studying the fields and radiation

characteristics of nonmonochromatic sources in a homogene-

ous magnetoplasma. At the same time, little is known about

the radiation characteristics of pulsed sources of even simple

geometry in the presence of density ducts.

It is the purpose of the present article to study the energy

radiation characteristics of a pulsed loop antenna located in

an enhanced-density duct that is surrounded by a uniform

cold magnetoplasma such as exists in the Earth’s ionosphere.

To solve the formulated problem, we will use a rigorous full-

wave approach throughout the article and apply this analysis

to the case where the frequency spectrum of the antenna cur-

rent is concentrated in the whistler range. Such an analysis is

topical in view of the fact that corresponding conditions are

typical of many modeling laboratory13,17 and active iono-

spheric34 experiments. Moreover, determination of the radia-

tion characteristics of a pulsed loop antenna in the presence

of an enhanced-density duct seems crucial to understanding

the influence of such a duct on the antenna radiation charac-

teristics as compared to the case of monochromatic excita-

tion. In order to elucidate the physical aspects of the

formulated problem more clearly, we confine ourselves to the

case where the loop axis is aligned with the duct axis, which

is parallel to an external dc magnetic field. Note that such ori-

entation is very suitable for many applications, and has been

used in numerous laboratory experiments aimed at modeling

the loop antenna operation in a magnetoplasma containing a

density duct.10–13,17 We will also compare the efficiency of
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whistler wave excitation by a pulsed loop antenna in the pres-

ence of a density enhancement with the corresponding results

referring to the case where such an antenna is immersed in a

homogeneous magnetoplasma, which has been analyzed in

our recent work.33

Our article is organized as follows. In Sec. II, we formu-

late the studied problem and describe our theoretical

approach. In Sec. III, the source-excited field in the presence

of a cylindrical density duct is obtained. In Sec. IV, a rigorous

representation for the total energy radiated from a pulsed loop

antenna is derived. Then, in Sec. V, we apply the derived rep-

resentation for analysis of the radiation characteristics of such

an antenna and calculate numerically the antenna radiated

energy and its distribution over the spatial and frequency

spectra of the excited waves under conditions typical of active

ionospheric experiments with loop antennas. Section VI states

our conclusions and suggestions for future work.

II. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

Consider a cylindrical density duct of radius a. The duct

is aligned with the z axis of a cylindrical coordinate system

(q, /, z). Parallel to this axis is a uniform dc magnetic field

B0 ¼ B0ẑ. The duct is surrounded by a uniform background

magnetoplasma. The electromagnetic field is excited by a

circular loop antenna placed coaxially in the duct.

Assuming that the medium inside and outside the duct is

a cold collisionless magnetoplasma, we can write its dielec-

tric tensor in the form

e ¼ �0

e �ig 0

ig e 0

0 0 g

0
@

1
A; (1)

where �0 is the permittivity of free space. For a monochro-

matic signal with a time dependence of expðixtÞ, the tensor

elements e, g, and g in the case of a two-component magne-

toplasma are written as19,35

e ¼ x2 � x2
LH

� �
x2 � x2

UH

� �
x2 � x2

c

� �
x2 � X2

c

� � ;

g ¼
x2

p xc x

x2 � x2
c

� �
x2 � X2

c

� � ;
g ¼ 1�

x2
p

x2
;

(2)

where xp is the electron plasma frequency, Xc and xc are the

ion and electron cyclotron frequencies, and xLH and xUH are

the lower and upper hybrid frequencies, respectively. Recall

that the latter two frequencies can be written, to a good

approximation, as19

xUH ¼ x2
p þ x2

c

� �1=2

; xLH ¼ xc

X2
p þ X2

c

x2
p þ x2

c

 !1=2

; (3)

where Xp is the ion plasma frequency. In this work, we con-

fine ourselves to consideration of the case where

Xc � xLH � xc � xp < xUH; (4)

which is typical of a magnetoplasma modeled upon the

Earth’s ionosphere. Under such conditions, the lower hybrid

frequency is reduced to the form xLH ¼ ðXcxcÞ1=2
and thus

becomes independent of the plasma (electron number)

density.

The plasma density is equal to ~N inside the duct, and to

Na in the ambient uniform plasma surrounding the duct.

Accordingly, the elements of tensor (1), which are functions

of the plasma density, are different in the inner and outer

regions of the duct. In what follows, the tensor elements and

the electron plasma frequency will be denoted as ~e; ~g; ~g, and

~xp for q< a and as ea, ga, ga, and xpa for q> a. We will be

considering the case of a sharp-walled uniform duct, for

which ~N ¼ const. It will be explained below that this

assumption does not lead to any loss of generality when ana-

lyzing the basic features of operation of a pulsed loop

antenna in the presence of the duct.

The density of the electric current in the antenna, which

excites the electromagnetic radiation, is specified in the form

Jðr; tÞ ¼ /̂I0dðq� bÞdðzÞvðtÞ; (5)

where I0 is the amplitude of total current, b is the antenna

radius (b< a), d is a Dirac function, and v(t) is a dimension-

less function which describes the current behavior in

time. The function v(t) has the maximum value equal to

unity and differs from zero in the time interval 0< t< s.

Here, s is the current pulse duration, which can be either fi-

nite or infinite.

In this article, we will focus on studying the radiation

from a loop antenna placed in an enhanced-density duct, for

which ~N > Na. This is motivated by the fact that the radia-

tion resistance of a time-harmonic loop antenna located in

such a duct is known to increase with increasing ratio ~N=Na

if the frequency of the antenna current lies in the whistler

range.19 Therefore, it seems important to analyze the influ-

ence of the duct on the radiation efficiency of the same

source in a pulsed regime. On the other hand, it is also

expedient to compare the radiation characteristics of the

pulsed loop antenna located in such a duct with those in the

case where the corresponding source is immersed in a ho-

mogeneous unbounded magnetoplasma.33 To this end, we

choose the temporal behavior of the antenna current in the

form coinciding with that in Ref. 33, i.e., take a pulse whose

filling comprises a few half-periods of a monochromatic

oscillation

vðtÞ ¼ ½HðtÞ � Hðt� sÞ� sinðx0tÞ: (6)

Here, H(t) is a Heaviside function, x0 is a certain frequency

corresponding to a given period T¼ 2p/x0, and the pulse du-

ration s¼ nT/2¼pn/x0, where n¼ 1, 2,…. In addition, we

will also examine the case of a single current pulse without

modulation

v tð Þ ¼ t

t0

exp � t� t0
t0

� �
: (7)

112115-2 Kudrin et al. Phys. Plasmas 21, 112115 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

82.208.100.227 On: Fri, 21 Nov 2014 15:01:22



In what follows, we will take the current pulse (7) for

t0 ¼ T=4 � p=2x0. In this case, such a pulse is similar in

shape to the pulse described by Eq. (6) for n¼ 1, which

makes it reasonable to compare the radiation characteristics

of the two sources.

Our main task is to study the efficiency of excitation of

electromagnetic waves which are emitted from the current

source (5) located in a density duct. To proceed in this way,

we should analyze the radiated energy of this source in the

presence of the duct. As is known, the total energy W radi-

ated from an electric current J(r, t) with duration s can be

obtained as

W ¼ �
ðs

0

dt

ð
V

Jðr; tÞ � Eðr; tÞdr; (8)

where integration with respect to the spatial coordinates is

performed over the volume V occupied by the antenna cur-

rent, and E(r, t) is the total electric field excited by the

antenna. It is worth mentioning that this field comprises not

only the nonradiative part, which is predominant near the

source, but also the radiative part responsible for the out-

going energy transport. To evaluate W, we need to express

E(r, t) in terms of the antenna current.

III. FIELD EXPANSION IN THE PRESENCE OF A
DENSITY DUCT

The field excited by a pulsed source can be represented

using the Laplace transform technique

E r; tð Þ
B r; tð Þ

� 	
¼ 1

2p

ð�irþ1

�ir�1

E r;xð Þ
B r;xð Þ

� 	
exp ixtð Þdx: (9)

Here, r is a real-valued positive constant and x is a

complex-valued quantity such that x¼Rex–ir. A similar

formula can be written to relate the current density J(r, t)
and its Laplace transform J(r, x).

To represent the Laplace-transformed fields E(r, x) and

B(r, x) in terms of J(r, x), we apply the formulation based

on the eigenfunction expansion of the source-excited

field.17–20 According to this approach, the quantities E(r, x)

and B(r, x), which are independent of the azimuthal coordi-

nate / because of the symmetry of the problem, are

expanded in terms of the vector eigenfunctions of the dis-

crete and continuous spectrum

Eðr;xÞ
Bðr;xÞ

" #
¼
X

n

as;nðxÞ
Es;nðq;xÞ
Bs;nðq;xÞ

" #

� exp½�ihs;nðxÞz�

þ
X

a

ð1
0

as;aðk?;xÞ
Es;aðq; k?;xÞ
Bs;aðq; k?;xÞ

" #

� exp½�ihs;aðk?;xÞz�dk?: (10)

Here, hs,n is the propagation constant of an eigenmode (dis-

crete-spectrum wave) with the radial index n (n¼ 1,2,…),

Es,n(q, x) and Bs,n(q, x) are the vector functions describing

the radial distribution of the field of this eigenmode, as,n(x)

is its excitation coefficient, k? is the transverse (with respect

to B0) wave number in the outer region, hs;aðk?;xÞ is the

longitudinal wave number for two characteristic waves of a

uniform background magnetoplasma, which are denoted

by the subscripts a¼ 1 and a¼ 2, Es;aðq; k?;xÞ and

Bs;aðq; k?;xÞ are the vector functions describing the radial

distribution of the field of a continuous-spectrum wave that

corresponds to the transverse wave number k? and the sub-

script a, as;aðk?;xÞ is the excitation coefficient of the respec-

tive wave, and the subscript s denotes the wave propagation

direction (s¼� and s¼þ designate waves propagating in

the negative and positive directions of the z axis, respec-

tively). The propagation constants hs,n obey the relationships

hþ;n � hn ¼ �h�;n, where Im hn< 0. The quantities hs,a sat-

isfy the analogous relationships hþ;a � ha ¼ �h�;a, where

h2
aðk?;xÞ is given by the expression

h2
a k?;xð Þ ¼ k2

0ea �
1

2
1þ ea

ga

� �
k2
? þ ca

� 1

4
k4
? 1� ea

ga

� �2

� k2
0k2
?

g2
a

ga

þ k4
0g2

a

" #1=2

:

(11)

Here, k0¼x/c (c is the speed of light in free space),

c1¼�c2¼ 1, and the tensor elements ea, ga, and ga are taken

at the complex frequency x and correspond to the parame-

ters of the plasma surrounding the duct. The square root in

Eq. (11) is defined so as to have the positive real part,

whereas the function ha satisfies the condition Im ha< 0.

Since the procedure of obtaining the vector wave func-

tions in expansion (10) is thoroughly described in the litera-

ture,17–20 we dwell only briefly on the main steps of the

derivation of these functions. We start from the continuous-

spectrum waves. It can be shown from Maxwell’s equations

that the vector functions Es;aðq; k?;xÞ and Bs;aðq; k?;xÞ can

be expressed in terms of their azimuthal components

E/; s;aðq; k?;xÞ and B/; s;aðq; k?;xÞ which satisfy the system

of equations19

@

@q
1

q
@

@q
q E/; s;að Þ

� 	
� h2

s;a þ k2
0

g2

e
� e

� �� 	
E/; s;a

þ ik0

g

e
hs;acB/; s;a ¼ 0; (12)

@

@q
1

q
@

@q
q B/; s;að Þ

� 	
� g

e
h2

s;a � k2
0e

� �
B/; s;a

� ik0

gg
e

hs;ac�1E/; s;a ¼ 0; (13)

into which the tensor elements corresponding to the outer or

inner region of the duct should be substituted when finding

the solutions for q> a and q< a, respectively. The solutions

should ensure the boundedness of the quantities q1=2

jEs;aðq; k?;xÞj and q1=2jBs;aðq; k?;xÞj at q!1, whence it

follows that the field components of the continuous-spectrum

waves in the outer region (q> a) are written as19
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E/; s;aðq; k?;xÞ ¼ i
X2

k¼1

CðkÞs;aH
ðkÞ
1 ðk?qÞ þ Ds;aH

ð2Þ
1 ðk?aqÞ

" #
;

(14)

B/; s;aðq; k?;xÞ ¼ �c�1

�X2

k¼1

CðkÞs;anð1Þs;a H
ðkÞ
1 ðk?qÞ

þ Ds;anð2Þs;a H
ð2Þ
1 ðk?aqÞ

	
: (15)

Here, H
ð1;2Þ
1 are Hankel functions of the first and second

kinds, C
ðkÞ
s;a and Ds,a are coefficients to be determined, k¼ 1,

2, and

n kð Þ
s;a ¼�ea k kð Þ

?a

� �2

þh2
aþk2

0

g2
a

ea
�ea

� �� 	
k0hs;agað Þ�1;

k 1ð Þ
?a¼ k?; k 2ð Þ

?a¼ k?a¼ k2
0ea�h2

a�k2
0

ga

ea
ga�

gahs;a

k0n 1ð Þ
s;a

 !" #1=2

;

(16)

where it is assumed that the quantity k?a, which can be

called the auxiliary transverse wave number in the outer

region, satisfies the inequality Im k?a < 0. With such a

choice of k?a, the presence of the second-kind Hankel func-

tions H
ð2Þ
1 ðk?aqÞ in Eqs. (14) and (15) does not contradict the

boundedness condition for the continuous-spectrum waves at

q!1. Note that in a lossless medium, the auxiliary trans-

verse wave number may be purely real for some values of

k?. In such a case, one should introduce infinitesimally small

losses, choose the proper branch of k?a according to the

adopted condition for Im k?a, and then put the losses equal

to zero.

The solution for the field in the inner region (q< a) is

written as

E/; s;aðq; k?;xÞ ¼ i
X2

k¼1

AðkÞs;aJ1ð~k
ðkÞ
?aqÞ; (17)

B/; s;aðq; k?;xÞ ¼ �c�1
X2

k¼1

AðkÞs;a ~nðkÞs;aJ1ð~k
ðkÞ
?aqÞ; (18)

where J1 is a Bessel function of the first kind, A
ðkÞ
s;a are coeffi-

cients to be determined, and

~n kð Þ
s;a ¼ �~e ~k

kð Þ
?a

� �2

þ h2
a þ k2

0

~g2

~e
� ~e

� �� 	
k0hs;a~gð Þ�1;

~k
kð Þ
?a ¼

1ffiffiffi
2
p
�

k2
0 ~e � ~g2

~e
þ ~g

� �
� ~g

~e
þ 1

� �
h2

a �
~g
~e
� 1

� �

� �1ð Þk h2
a � k2

0P2
b

~Nð Þ
h i

h2
a � k2

0P2
c

~Nð Þ
h in o1=2

�1=2

:

(19)

The quantities Pb and Pc for a homogeneous plasma of den-

sity N are determined by the expression

Pb;c Nð Þ ¼
(

e� gþ eð Þ
g2

g� eð Þ2
þ

2vb;c

g� eð Þ2

� eg2g g2 � g� eð Þ2
h in o1=2

)1=2

; (20)

where vb ¼ �vc ¼ �1. The tensor elements on the right-hand

side of (20) are taken for the indicated plasma density N.

To find the unknown coefficients A
ð1;2Þ
s;a , C

ð1;2Þ
s;a , and Ds;a

in Eqs. (14), (15), (17), and (18), we should satisfy the conti-

nuity conditions for the tangential field components at q¼ a,

which yields the system of four linear equations. This system

can be represented in matrix form

S �G ¼ Cð1Þs;a F; (21)

where the elements of the column vector G are given by the

expressions G1;2 ¼ A
ð1;2Þ
s;a , G3 ¼ C

ð2Þ
s;a ; and G4¼Ds,a. The ele-

ments of the matrix S and the components of the column vec-

tor F are expressed in an evident manner via the tangential

fields on both sides of the interface q¼ a and are not written

here for brevity. Since Eq. (21) gives four linear relationships

for five coefficients A
ð1;2Þ
s;a ; C

ð1;2Þ
s;a , and Ds,a, one of them can be

taken arbitrary. This circumstance reflects the fact that the

mode fields are defined up to an arbitrary factor independent

of the spatial coordinates. It is most convenient to put C
ð1Þ
s;a

¼ detjjSjj and then determine the remaining coefficients from

Eq. (21). The advantage of such a choice is related to the fact

that the quantities k? ¼ k?n which are zeros of the coefficient

C
ð1Þ
s;a and satisfy the condition Im k?n < 0 determine the trans-

versely localized eigenmodes (discrete-spectrum waves)

guided by the duct in some frequency ranges. Substituting the

quantities k? ¼ k?n into Es;aðq; k?;xÞ; Bs;aðq; k?;xÞ, and

haðk?;xÞ, one can obtain the fields Es;nðq;xÞ and Bs;nðq;xÞ
and the propagation constants hn(x) of the corresponding

eigenmodes.15,19 Note that the eigenmode fields comprise the

contributions with two different transverse wave numbers

both inside and outside the duct (~k
ð1Þ
?a and ~k

ð2Þ
?a for q< a, and

k?n and k?a for q> a), which correspond to the same propa-

gation constant hn. This fact is stipulated by the gyrotropic

properties of a magnetoplasma containing the duct.

Once the discrete- and continuous-spectrum waves are

found, their excitation coefficients can be determined using

the standard technique developed for open waveguides19

a6;nðxÞ
a6;aðk?;xÞ

" #
¼

N�1
n ðxÞ

N�1
a ðk?;xÞ

" #ð
V

Jðr;xÞ

�
E
ðTÞ
7;nðr;xÞ

E
ðTÞ
7;aðr; k?;xÞ

2
4

3
5 dr: (22)

Here, integration is performed over the region V occupied

by the current J, the superscript (T) denotes fields taken in a

medium described by the transposed dielectric tensor

eT; Es;nðr;xÞ ¼ Es;nðq;xÞ exp½�ihs;nðxÞz�, Es;aðr; k?;xÞ
¼ Es;aðq; k?;xÞ exp½�ihs;aðk?;xÞz�, and the normalization

quantities Nn(x) and Naðk?;xÞ for modes are given by
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Nn xð Þ ¼ 2p
l0

ð1
0

Eþ;n q;xð Þ � B Tð Þ
�;n q;xð Þ � E Tð Þ

�;n q;xð Þ � Bþ;n q;xð Þ
h i

� ẑ q dq;

Na k?;xð Þ ¼ � 16p
Z0k0

dha k?;xð Þ
dk?

� ��1

1þ g�1
a n 1ð Þ

þ;a

� �2
� 	

C 1ð Þ
þ;aC 2ð Þ

þ;a; (23)

where l0 is the permeability of free space and Z0 ¼
ðl0=�0Þ1=2

is the free-space impedance. The obtained modal

representation with the coefficients of Eq. (22) yields the rig-

orous solution for the total Laplace-transformed field at the

complex frequency x and allows one to immediately deter-

mine the individual contributions of the guided (discrete-

spectrum) waves and of the remaining part of the field, repre-

sented by integrals over unguided (continuous-spectrum)

waves, to the source-excited field.

IV. ENERGY RADIATED

The total energy W radiated from a loop antenna with

current (5) is determined only by the azimuthal electric-field

component. With allowance for the results of the preceding

section, the Laplace transform E/ðr;xÞ of this component is

given by the expression

E/ðr;xÞ ¼
X

n

as;nðxÞE/;s;nðq;xÞ exp½�ihs;nðxÞz�

þ
X

a

ð1
0

as;aðk?;xÞE/;s;aðq; k?;xÞ

� exp½�ihs;aðk?;xÞz�dk?: (24)

According to Eq. (22), the excitation coefficients in Eq. (24)

are written as

a6;nðxÞ ¼ 2pbI0vðxÞN�1
n ðxÞE

ðTÞ
/;7;nðb;xÞ;

a6;aðk?;xÞ ¼ 2pbI0 vðxÞN�1
a ðk?;xÞE

ðTÞ
/;7;aðb; k?;xÞ;

(25)

where v(x) is the Laplace transform of the function v(t)
describing the time behavior of the source current.

Substituting the inverse Laplace transform of the

quantity E/(r, x) into Eq. (8) and performing integration

with respect to the spatial coordinates and time, we obtain

W ¼ �I0b

ð�irþ1

�ir�1
dxvð�xÞE/ðr;xÞjq¼b; z¼0 : (26)

The integration path in (26) is symmetric about the imagi-

nary x axis. Hence, any two frequencies x0 and x00 which

belong to the path of integration over the frequency and are

located on this path symmetrically about the imaginary x
axis are related as x0� ¼ �x00, where the asterisk stands for

complex conjugate. Allowing for this fact, we pass to inte-

gration over the right-hand part of this path, for which Re

x> 0, and make the limiting transition r ! 0. As a result,

we arrive at the expression

W ¼ I2
0

ð1
0

wðxÞdx

¼ I2
0

ð1
0

X
n

wnðxÞ þ
X

a

ð
Qa

waðq;xÞdq

" #
dx; (27)

where

wnðxÞ ¼ �4pb2Re ½FðxÞN�1
n ðxÞE

ðTÞ
/;�s;nðb;xÞE/;s;nðb;xÞ�;

(28)

waðq;xÞ ¼ �4pk0b2Re ½FðxÞN�1
a ðk0q;xÞ

� E
ðTÞ
/;�s;aðb; k0q;xÞE/;s;aðb; k0q;xÞ�: (29)

Here, integration with respect to x is performed over the

positive real frequency semi-axis, FðxÞ ¼ vðxÞvð�xÞ;
q ¼ k?=k0, and the symbol Qa denotes the regions in the first

quadrant of the (x, q) plane (with x> 0 and q> 0), for which

the functions ha are purely real. Note that we have passed to

using the dimensionless transverse wave number q instead of

k? in Eq. (27). The allowed regions Q1 and Q2 of integration

in the (x, q) plane for evaluating W coincide with those dis-

cussed in Ref. 33. It is worth also mentioning that the results

yielded by Eqs. (28) and (29) are independent of s due to the

symmetry properties of the quantities in these formulas.

We emphasize that only the propagated eigenmodes with

purely real propagation constants hs,n and the continuous-

spectrum waves corresponding to the above-described integra-

tion regions Qa make nonzero contributions to the radiated

energy W. Other waves do not transport energy away from the

source and, hence, do not contribute to the radiation from the

antenna. Thus, it is evident that the quantities wn and wa repre-

sent the partial contributions of the propagated eigenmodes

and the continuous-spectrum waves, respectively, to the

antenna radiation at a fixed frequency, i.e., describe the distri-

bution of the radiated energy over the spatial spectrum of the

excited waves. In turn, the function w(x) characterizes the dis-

tribution of the radiated energy over the frequency spectrum.

The function F(x) in cases (6) and (7) is represented as

F xð Þ ¼
sin x� x0ð Þs=2
 �

x� x0

� �1ð Þn sin xþ x0ð Þs=2
 �

xþ x0

( ) 2

(30)

and

FðxÞ ¼ ðet0Þ2=½1þ ðxt0Þ2�2; (31)

respectively. To avoid misunderstanding, we note that for

the source with time dependence (7), the condition r < t�1
0
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is required in Eq. (26). For r ! 0, this condition, which is

necessary for the existence of the function F(x) defined by

Eq. (31), is ensured automatically. Bearing this in mind, it is

possible to check that no singularities of the integrands in

Eq. (26) are intercepted in the derivation of Eq. (26) when

passing to the limit r! 0.

V. NUMERICAL RESULTS FOR THE RADIATION
CHARACTERISTICS

The radiated energy W was evaluated numerically for

plasma parameters typical of the Earth’s ionosphere: the am-

bient plasma density Na¼ 106 cm�3 and the external static

magnetic field B0¼ 0.5 G. With these values, the electron

plasma frequency outside the duct and the electron

cyclotron frequency were equal to xpa¼ 5.6� 107 s�1 and

xc¼ 8.8� 106 s�1, respectively. Since the model of a two-

component magnetoplasma is employed in this work to

describe the properties of the ionospheric plasma, which is

actually multi-component, the quantity Xc in Eqs. (2) and (3)

has the meaning of the effective ion cyclotron frequency. This

quantity was chosen equal to Xc¼ 200 s�1, in which case the

lower-hybrid frequency xLH¼ 4.2� 104 s�1. We assumed

that the antenna radius b¼ 2.5 m, the duct radius a¼ 5 m, and

the plasma density ~N inside the duct (normalized to Na) varies

in the range 10 < ~N=Na < 30. The possibility to ensure such

duct parameters is confirmed by the results of some active

experiments on the additional ionization of the background

ionospheric plasma in a strong field of the antenna onboard

spacecraft,34 as well as by the theoretical study36 of the ioniza-

tion formation of a field-aligned plasma density irregularity in

the near-zone field of a loop antenna.

Since we are interested in the pulsed excitation of whis-

tler waves in the presence of a density duct, we considered

the case where the frequency spectrum of the current source

was concentrated in the region below the electron cyclotron

frequency. In particular, we calculated the distribution of the

radiated energy over the frequency spectrum for the current

described by Eq. (6) with moderate values of n, and by Eq.

(7) with t0¼ p/2x0, assuming that the characteristic fre-

quency x0 of the current in these two cases lies in the whis-

tler range Xc<x<xc. It has been found that under such

conditions, the dominant contribution to the radiated energy

comes from the resonant part of the whistler range, i.e., the

frequency interval

xLH < x < xc: (32)

Therefore, in what follows we will focus on the case where

the frequency x0 belongs to interval (32) and analyze in

detail the radiated energy going to this spectral region.

Under the above-mentioned conditions, it turns out that

a single axisymmetric eigenmode, which is excited by the

loop antenna with current (5) and guided by an enhanced-

density duct in frequency interval (32), gives a negligible

contribution to the radiated energy. This is explained by the

fact at most frequencies of range (32), this eigenmode is

weakly localized outside the duct37 and, hence, has a very

small excitation coefficient. As a result, the total radiated

energy is approximated with high accuracy by the expression

W ’ I2
0

ðxc

xLH

dx
ð

Q1

w1ðq;xÞdq; (33)

where use was made of the fact that in frequency interval

(32), the contribution from the a¼ 2 term to the radiated

energy is zero, because this term corresponds to the evanes-

cent ordinary wave of the background magnetoplasma, i.e.,

wave for which Re ha¼ 0 in this interval. Thus, the nonzero

contribution of the continuous-spectrum waves to the radi-

ated energy in the whistler range comes only from the a¼ 1

term corresponding to the extraordinary, or whistler-mode

wave of the background magnetoplasma. In this case, the

integration region Q1 with respect to q in Eq. (33) is semi-

infinite such that 0< q<1.

To illustrate the distribution of the radiated energy over

the spatial and frequency spectra, Fig. 1 shows the integrand

w1(q, x) of Eq. (33) as a function of the integration variables

q and x in the case where ~N=Na ¼ 30 and the temporal

behavior of the current is described by Eq. (6) for n¼ 1,

n¼ 5, and n¼ 10 at x0¼ 1.9� 105 s�1. The analogous distri-

bution of w1(q, x) for a source with pulse (7) is shown in

Fig. 2 for t0¼p/2x0 (the values of other parameters are the

same as in Fig. 1).

It is evident from Figs. 1 and 2 that the function w1(q,

x) for the current pulse described by Eq. (6) with n¼ 1 is

qualitatively similar to that for the current given by Eq. (7)

with the used value of t0. In the figures, one can clearly see

well-pronounced discrete nonoverlapping traces which cor-

respond to sharp crests of w1(q, x) with respect to the q vari-

able. The presence of such features of the distributions

w1(q, x) on the (x, q) plane, which makes them essentially

different from the analogous functions in the case of a pulsed

loop antenna in a homogeneous magnetoplasma,33 is related

to the excitation of leaky modes that are known to be guided

by enhanced-density ducts in range (32).19,37–40 The traces

corresponding to the leaky modes lie above a certain bound-

ary shown by the dashed line in each of the figures. It is also

seen in Fig. 1 for the current with time dependence (6) that

typical widths of localization of these traces with respect to

x tend to shrink at x¼x0 with increasing number n of the

current half-periods that correspond to the frequency x0.

To clarify the position of the traces and their lower

boundary in Figs. 1 and 2, we plot the normalized (to k0) lon-

gitudinal wave number p¼ ha/k0 as a function of q for the

whistler-mode wave (at a¼ 1 and x<xc/2) in a homogene-

ous background magnetoplasma with density Na (see the

lower curve in Fig. 3). This function can be plotted using Eq.

(11) and describes the refractive-index surface of the whistler-

mode wave in the background magnetoplasma. In the same

figure, we also present an upper curve which shows the behav-

ior of an analogous function, but for a homogeneous magneto-

plasma with density ~N . To plot the latter curve, one should

replace the quantities ea, ga, and ga in Eq. (11) by ~e; ~g, and ~g,

respectively. In Fig. 3, the quantities Pc ¼ PcðNaÞ; ~Pc

¼ Pcð ~NÞ; P ¼ ðea � gaÞ1=2
, and ~P ¼ ð~e � ~gÞ1=2

are indi-

cated, where P and ~P are the normalized propagation con-

stants of the whistler wave traveling strictly along the external

magnetic field in a homogeneous magnetoplasma with density

N¼Na and N ¼ ~N , respectively.
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In contrast to eigenmodes with the real-valued propaga-

tion constants satisfying the inequality hn< k0Pc,
37 leaky

modes supported by an enhanced-density duct have complex-

valued propagation constants h� ¼ k0ðp0� � ip00�Þ, where � is

the radial index of such modes (�¼ 1,2,…).37–40 In practice,

only slightly leaky modes, for which p00� � p0� , are of interest.

Generally, the leakage is weak at the frequencies x � xc.

These modes correspond to zeros k? ¼ k?� of the coefficient

C
ð2Þ
s;a such that Im k?� < 0. Therefore, the field of each slightly

leaky mode outside the duct consists of the surface-type local-

ized part, described by the second-kind Hankel function with

the argument k?aq (for which Im k?a < 0 and a¼ 1), and the

nonlocalized part, which is described by the first-kind Hankel

function with the argument k?�q. The nonlocalized part corre-

sponds to the outward-radiating wave of the quasielectrostatic

type. Figure 3 shows qualitatively the mutual location of the

quantities p0� and q0� ¼ Reðk?�=k0Þ for a leaky mode with

order �, as well as some other quantities (in particular, qP,

qmin, and qmax), the meaning of which is evident from the pre-

sented diagram. Recall that use of the first-kind Hankel func-

tion for the radiating part of leaky modes corresponds to the

radiation condition, because the phase progress in the nonlo-

calized part of such modes and their outgoing energy flow are

opposite in the radial direction.

Note that in the lower part of range (32) for a fixed ratio
~N=Na, the inequality P > ~Pc takes place, and the real parts of

the propagation constants of slightly leaky modes lie in the

interval P < p0� <
~P, whence it follows that qP < q0� < qmax.

With increasing frequency x, the quantities p0� start to be

located in the interval ~Pc < p0� <
~P, where ~Pc > P, so that

FIG. 2. The same as in Fig. 1, but for time dependence (7) with t0¼p/2x0.

FIG. 3. Diagram explaining the features of w1(q,x) in the (x,q) plane. The

upper and lower solid lines correspond to the plasma densities inside and

outside the duct, respectively (see text for discussion).

FIG. 1. Function w1(q, x), measured in J A�2 s, in the case of time depend-

ence (6) with (a) n¼ 1, (b) n¼ 5, and (c) n¼ 10 for ~N=Na ¼ 30, a¼ 5 m,

b¼ 2.5 m, x0¼ 1.9� 105 s�1, Xc¼ 200 s�1, xc¼ 8.8� 106 s�1, and

xpa¼ 5.6� 107 s�1. The dashed line shows the lower boundary q¼ qP(x) of

the region in which slightly leaky modes exist.
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qmin < q0� < qmax. Note that the diagram presented in Fig. 3

refers to the latter case. Since most of the radiated energy

goes to slightly leaky modes with the outward-radiating parts

having the dimensionless transverse wave numbers q0� , the

positions of the brightest parts of the traces in the (x, q) plane

of Figs. 1 and 2 are given by the relationship q ¼ q0�ðxÞ,
where q0� ’ ð�ga=eaÞ1=2p0� . The lower boundary of these

dependences, shown by the dashed line in these figures, is

described by q¼ qP(x).

It is interesting to compare the distributions of the radi-

ated energy over the spatial spectrum in Figs. 1 and 2 with the

available experimental results for the field structure in the

duct. It is evident that the spatial spectra of the field compo-

nents are determined by the characteristic wave numbers of

the most-efficiently excited leaky modes. To determine these

wave numbers in the inner region of the duct for, e.g., the �th

mode, we recall that its leaking part in the outer region corre-

sponds to the outward-radiating wave with the dimensionless

transverse wave number q0� , while the dimensionless propaga-

tion constant of this mode corresponds to the horizontal dotted

line p ¼ p0� in Fig. 3. This line crosses the refractive-index

surface for plasma density N ¼ ~N at two points, which deter-

mine two different transverse wave numbers for the inner

region. The smaller of these transverse wave numbers corre-

sponds to an oblique whistler-mode wave, the observations of

which inside the field-aligned enhanced-density irregularities

were reported by many authors (see, e.g., works13,17,22 and

references therein). The greater of the above-mentioned trans-

verse wave numbers corresponds to a small-scale quasielec-

trostatic whistler-mode wave in the duct. The observations of

this contribution to the field in enhanced-density regions were

documented in, e.g., Refs. 41–43. Note that special efforts are

usually needed to reveal the presence of this small-scale part

in the total field under conditions of laboratory experi-

ments.42,43 The neighborhoods of the above-mentioned trans-

verse wave numbers yield predominant contributions to the

spatial spectra of the field components inside the duct. Thus,

although the spatial spectrum of the radiated energy does not

reproduce the details of the spatial spectra of the individual

field components, it allows one to correctly predict the fea-

tures of the field structure in the duct.

It is obvious from Figs. 1 and 2 that integration with

respect to q over each trace, which corresponds to some

leaky mode, yields the individual contribution w�(x) of this

mode to the normalized (to I2
0) spectral density of the radi-

ated energy. This means that there exists an alternative way

for calculating the radiated energy in the case considered,

namely,

W ’ I2
0

ðxc

xLH

wmodðxÞdx ¼ I2
0

ðxc

xLH

X
�

w�ðxÞdx: (34)

It is important to note that in the whistler range, the individ-

ual contributions w� due to leaky modes can also be found

using the technique of isolating these modes from the contin-

uous spectrum.15,18,19 Such a method can be more preferable,

because it yields rigorous expressions for the fields of the

leaky modes and their normalization quantities N�, which

should be substituted into Eq. (28), instead of the respective

quantities for eigenmodes, in order to obtain w�(x).

Moreover, in the case p00� � p0� , the dispersion properties,

field structures, excitation coefficients, and normalization

quantities of whistler leaky modes as well as their contribu-

tions to the radiated energy can approximately be found

using even a simpler method, according to which the leaky-

mode fields outside the duct are described allowing for their

localized component and neglecting the radiating quasielec-

trostatic component (see Refs. 16 and 19 for details). For the

parameters used in this work, all the above-described meth-

ods for calculating w� yielded almost coinciding results. The

quantities w� as functions of x are shown in Fig. 4 for time

dependence (6) with n¼ 5 and the previously chosen source

and duct parameters. In this figure, the leaky-mode contribu-

tions w� to the radiated energy are shown in such a way that

their projections onto the (x, p) plane yield the dispersion

curves p ¼ p0�ðxÞ of the leaky modes. The upper and lower

red solid lines in this plane denote the boundaries p ¼ ~PðxÞ
and p ¼ ~PcðxÞ, respectively, between which the real parts of

the complex propagation constants of the slightly leaky

modes are located for the presented frequency interval.

Hereafter, the dot on the x axis designates the frequency x0.

We now discuss the normalized spectral density w(x) of

the radiated energy. This quantity was calculated using the

exact formula (27) and the approximate approach based on

Eq. (34). As an example, Figs. 5–7 show the normalized dis-

tributions of the radiated energy over the frequency spectrum

for a source with time dependence (6) if n¼ 1, n¼ 2 and

n¼ 10, respectively. In each of these figures calculated for a

duct with ~N=Na ¼ 30, the distribution corresponding to

Eq. (27) is shown by the solid blue line, while the dashed red

line represents the distribution w(x)¼wmod(x) correspond-

ing to Eq. (34). It is seen in the figures that the results yielded

by the two methods are qualitatively similar for a short cur-

rent pulse with n¼ 1, become rather close for a longer pulse

with n¼ 2, and coincide with graphical accuracy for a pulse

with n¼ 10. In fact, almost perfect coincidence of the results

given by the two calculation methods is already reached for

n	 5. We do not present the results for time dependence (7)

with t0¼ p/2x0, because they are close to those shown in

Fig. 5. It may be noted that a fairly good accuracy of the

FIG. 4. Leaky-mode contributions w�(x) to the spectral density of the radi-

ated energy for N/Na¼ 30 and time dependence (6) with n¼ 5. The upper

and lower red lines in the (x,q) plane show the boundaries p ¼ ~PðxÞ and

p ¼ ~PcðxÞ, respectively. The red dot on the x axis designates the frequency

x0. The source radius b, the frequency x0, and the duct and plasma parame-

ters a, Xc, xc, and xpa are the same as in Fig. 1.
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approximation in which the individual contributions of the

leaky modes to the radiated energy are added is explained by

the fact that the energy orthogonality takes place with high

accuracy for slightly leaky modes supported by enhanced-

density ducts in the whistler range.19

It is important to mention that the radiated energy of the

pulsed loop antenna increases with increasing plasma density

inside the duct. This can be seen in Fig. 8, in which the

results of calculation of w(x) by the exact formula (27) are

presented for a duct with ~N=Na ¼ 10 and ~N=Na ¼ 30. The

rise in the radiated energy with ~N is explained by an increase

in the efficiency of excitation of leaky modes by a loop

antenna in the whistler range with increasing plasma density

in the duct.

Results of numerical calculations of the total energy

radiated from the loop antenna are shown in Fig. 9 for differ-

ent values of ~N=Na and the previously chosen values of a, b,

x0, Xc, xc, and xpa. In the figure, the open circles indicate

the total energy radiated from a source with time dependence

(6) for various values of n¼ sx0/p. The asterisks indicate the

calculation results obtained using the approximate formula

(34). The open squares show the energy radiated from the

source having time dependence (7) with t0¼p/2x0 for the

same values of x0 and other parameters. Note that the lower

set of symbols in Fig. 9 refers to the case where the antenna

is immersed in a homogeneous magnetoplasma with back-

ground density N¼Na. It follows from Fig. 9 that the pres-

ence of a duct with enhanced density can lead to a significant

increase in the energy radiated from a pulsed loop antenna

compared with the case where the same source is embedded

in the surrounding homogeneous plasma medium, regardless

of the current pulse duration. In addition, a fairly good accu-

racy of the approximate method for evaluating W on the ba-

sis of summation of the individual leaky-mode contributions

is demonstrated by the obtained results. Another important

implication of the numerical results is that the radiated

energy in the case where the current pulse is described by

Eq. (6) obeys the relation W ¼ �Prads with good accuracy.

Here, �Prad is the time-averaged power radiated from the

source possessing a time-harmonic current with the fre-

quency x0. It is interesting that such behavior is observed for

the current containing even a few half-periods of a mono-

chromatic oscillation, when the parameter n is moderately

small, and is related to the features of excitation of whistler

FIG. 6. The same as in Fig. 5, but for n¼ 2.

FIG. 5. Function w(x) for time dependence (6) with n¼ 1. The solid blue

line and the dashed red line correspond to the exact formula and the approxi-

mation w(x)¼wmod(x), respectively. The red dot on the x axis designates

the frequency x0. The values of other parameters are the same as in Fig. 1.

FIG. 7. The same as in Fig. 5, but for n¼ 10.

FIG. 8. Function w(x) for a duct with ~N=Na ¼ 10 (curve 1) and ~N=Na ¼ 30

(curve 2) in the case of time dependence (6) with n¼ 10. The values of other

parameters are the same as in Fig. 1.
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leaky modes by the loop antenna immersed in an enhanced-

density duct. Similar behavior of W as a function of s in the

whistler range was revealed for a pulsed loop antenna in a

homogeneous magnetoplasma.33

It can be noted that in the case of a loop antenna located

inside a sharp-walled duct, the radiated energy tends to

increase with increasing antenna radius b and reaches maxi-

mum when b approaches the duct radius a. We do not pres-

ent the corresponding results since the actual structure of the

duct wall should necessarily be taken into account in the

case b
 a. However, the model of a sharp-walled duct can

be used as a reasonable approximation when the loop

antenna is located well inside the duct, which was assumed

throughout this work. It should also be mentioned that we

have neglected the ohmic loss due to collisions of charged

particles in the plasma in our analysis, because the spectrum

of the source current in this work is concentrated in the fre-

quency region for which the inequality x� �e holds with a

sufficient margin under conditions of the Earth’s ionosphere

(here, �e is the effective electron collision frequency in the

plasma). Although the case where the collisional loss

becomes noticeable can be considered within the framework

of the developed approach, the corresponding analysis falls

beyond the scope of this article.

VI. CONCLUSIONS

In this article, we have studied the whistler wave radia-

tion from a pulsed loop antenna located in an enhanced-

density duct in a magnetoplasma modeled upon the Earth’s

ionosphere. A notable increase in the energy radiated from

this source has been found to occur in the whistler range due

to the presence of such a duct. In this case, the radiated

energy is predominantly determined by the discrete contribu-

tions of the slightly leaky modes which are guided by the

duct and separated from the continuous part of the spatial

spectrum of the excited waves. Due to this circumstance, the

distribution of the radiated energy of a pulsed loop antenna

over the spatial spectrum in the presence of a duct differs

significantly from that of the same source immersed in an

unbounded homogeneous magnetoplasma, in which case the

radiated energy is relatively smoothly distributed over the

spatial spectrum. It is interesting to mention that despite an

increase in the radiated energy due to the presence of an

enhanced-density duct, the shape of the radiated-energy dis-

tribution over the frequency spectrum, which is largely deter-

mined by the corresponding spectrum of the source current,

as well as the behavior of the total radiated energy as a func-

tion of the current duration remain similar to those of the

pulsed loop antenna in a homogeneous magnetoplasma.

The results of this article can be useful in explaining the

data of experiments on the excitation of whistler-mode waves

by pulsed sources in a magnetoplasma containing cylindrical

ducts with enhanced density and planning new experiments.

Future work should concentrate on an extension of the

obtained results to the case of nonuniform ducts with varying

parameters across and along the external magnetic field.
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