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Abstract

The planform geometry of the Tisza, the trunk river of the subsiding Great Hungarian Plain is studied by reconstruction of the

last pre-regulation river course. The thalweg sinuosity has been computed for the main alluvial section of the river. Remarkable

sinuosity changes have been found to correlate with discharge and sediment load changes at the inflow of tributaries, as well as with

active deformation areas, like differential subsidence and wrench fault zones.

Analysing the change of the river pattern, a new discrimination line has been derived, which separates the meandering zone on the

classic slope vs. discharge diagram into two subzones. The first subzone (lower slope values) corresponds to a range of true, self-

organized meandering. The second subzone (higher slope values) corresponds to a range of ‘unorganized meandering’. This is a

range where river sinuosity decreases although the channel slope increases. In the case of the Tisza River, this subzone equals to the

wandering river pattern.

r 2003 Elsevier Science Ltd. All rights reserved.
1. Introduction

The Great Hungarian Plain (GHP), the central part of
the Pannonian Basin, surrounded by the arc of the
Carpathian Mts. (Fig. 1), is one of the world’s most
regularly developed floodplains. As a result of the stress-
induced, thermal- and compaction-induced subsidence
in the Quaternary (e.g. Horv!ath, 1993; Horv!ath and
Cloetingh, 1996; Bada, 1999) the area is very flat; the
relief undulations remain under 100 m on the GHP. This
subsidence lasts up to now, although its rate shows
differences in the area (Jo !o, 1992). In addition, the
subsidence was equalized by river activity and fluvial
sedimentation (K!azm!er, 1990). The pre-Tertiary base-
ment and the sedimentary fill of the GHP have been
investigated by drilling campaigns (for a summary see
R !onai, 1985) and seismic surveys (e.g. L +orincz et al.,
2002). The results show elongated SW–NE directed
tectonic units in the basement rocks. One of the
most important structures of the GHP is the Mid-
Hungarian Shear Zone (Pog!ac!sas et al., 1989; Csontos
et al., 1992), a sinistral strike-slip fault system whose
s: timar@ludens.elte.hu (G. Tim!ar).
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present activity was suggested by Bada et al. (1999)
and Horv!ath and Bada (2001) using modelling of
the stress field evolution of the Pannonian Basin. Using
the data set presented by Mike (1975), Schumm et al.
(2000) suggest that the westward shift of the Tisza
River at the Late Pleistocene can be explained in
terms of reactivation of the Mid-Hungarian Shear Zone
and a change from an extensional to a compressive
stress field.

An interesting question for the geology of the GHP is
to what extent there are neotectonically active fault zones
in the area. On industrial (e.g. hydrocarbon exploration)
seismic sections the youngest reflectors are usually not
imaged, therefore their use for neotectonic studies are
very limited. Accordingly, interpretation of earthquake
data, the riverine seismic surveys and the river planform
analysis offer a good tool for neotectonic studies.
As a result of the subsidence, in the historical times
the GHP was mainly a large swamp, sparsely populated
with only a few permanent buildings. Thus the small,
or even the moderate earthquake events were not
necessarily recorded (T !oth et al., 1995). The number of
recorded earthquakes from the last 100 years is simply
not enough for drawing a reliable conclusion. As
erved.
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Fig. 1. Shaded relief map of the Pannonian Basin. Dash-dotted line indicates national frontiers, the boundary of the Great Hungarian Plain is shown

by dotted line. MHSZ indicates the Mid Hungarian Shear Zone. The map is based on GTOPO30 global digital elevation data (GLOBE Task Team,

1999). The study section of the Tisza River is between the cities of Tokaj and Szeged.
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presented in this paper, riverine seismic profiling and
river planform analysis can be a useful tool to answer the
questions of neotectonic activity and landform evolu-
tion.

The Tisza, the trunk river of the GHP, drains
157,000 km2, and its catchment area covers the eastern
part of the Pannonian Basin. It originates in the
Ukrainian part of the Carpathian Mts. and leaves its
narrow valley at Sighet (on the Romanian–Ukrainian
frontier) changing from a bedrock to an alluvial river.
Its real braided section ends up at Korolevo where the
river reaches the GHP (Fig. 1). From this point (the so
called ‘Korolevo Gate’) till the estuary the Tisza is a
river without any bedrock control.

The section from Korolevo to Tiszabecs represents
the alluvial fan, therefore the main fraction of the
river sediment is gravel and the river pattern is a
transition from braided to meandering, which is
called wandering type (Miall, 1977, 1996). The
river starts the real meandering pattern at Tiszabecs
and it lasts till the estuary, along the whole GHP.
On the plain the longitudinal profile of the river
has only minor slope changes (L!aszl !offy, 1982)
and due to the flatness of the plain, the channel
slope is less than 10 cm/km everywhere downstream of
Tokaj.

The annual mean discharge of the river at Szeged is
about 800 m3/s. Floods can occur in the spring season
due to the snowmelt on the mountains of the catchment
area. The Tisza flows to the Danube and the local
erosional base of the whole Pannonian Basin is the Iron
Gate where the Danube crosses the Southern Car-
pathian Mts. (Fig. 1).

The course of the river Tisza changed signi-
ficantly during the late Quaternary (G!abris, 1998).
The river pattern was alternating between braiding
and meandering as a response to the climatic
changes during the Pleistocene (Vandenberghe, 1995;
G!abris, 1998). During the Holocene period the mean-
dering pattern has been dominant everywhere down-
stream of the alluvial fan section of the Tisza River
(G!abris, 1987).
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Fig. 2. Important characteristics of the Tisza River between the cities of Tokaj and Szeged (see Fig. 1). (a) Confluence of the tributaries. The size of

the circles refers to the discharge of the tributary, in m3/s units under the circles. The percent data shows the discharge ratio of the tributary and the

Tisza River at the confluence. (b) Thalweg sinuosity of the Tisza River. Italic numbers and vertical dashed lines indicate the subsections (see text).

Capital letters show the discussed sinuosity anomalies. (c) Depth to the base of Quaternary strata (Frany !o, 1992), and a zone of tectonic deformation

derived from the seismic data of T !oth et al. (1997).
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Riverine seismic surveys were taken in 1997 along the
major part of the Tisza River, between the cities of
Tokaj and Szeged. This was selected as a study section
for river planform analysis. It is located between 250
and 840 km from the estuary, measured along the
longer, pre-regulation channel. As there is only minor
variance of the valley slope along the study section, the
river planform is primarily controlled by the water and
sediment discharge of the tributaries. Fortunately, a
long part of the study section is free of major
confluences (Fig. 2a) which offers excellent conditions
for the analysis.

The goal of this study is to find a correlation be-
tween the known geological features (e.g. subsidence
centres, and other seismically detected deformation
features) and river planform changes and to show the
applicability of river pattern analysis for neotectonic
studies.
2. Method and results

As the study section of the Tisza River has been
meandering throughout the entire Holocene, the mor-
phometric parameters of meandering rivers can be used
for planform analysis. For numerical and quantitative
approaches, Schumm (1963) suggested to define the
sinuosity of a section of a meandering river as a ratio of
the channel length and the geometrical distance between
its endpoints. The dependence of the channel sinuosity
on the slope angle was studied by Schumm and Khan
(1972) using flume experiments. Setting a given dis-
charge with constant sediment load, and increasing the
slope of the flume the flow was straight at low slope
values and when a critical dip was reached, it started
meandering. The sinuosity of the thalweg increased with
increasing slope to a point where it was maximum,
beyond this maximum the sinuosity quickly fell and the
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Fig. 3. Subsections and sinuosity of the Tisza River prior to the river

regulations (at about 1840). Different grey shadings indicate the

average thalweg sinuosity of the subsections (see text) as follows:

1=high sinuosity (above 3); 2=intermediate sinuosity (2.5–3);

3=normal sinuosity (1.5–2.5); 4=low sinuosity (below 1.5). Contour

lines with numbers show the thickness of the Quaternary strata

(Frany !o, 1992) in meters. Small numbers along the river refer to the

subsections.
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mechanism of braiding started. This behaviour of the
sinuosity as a slope variance indicator, is the starting
point of tectonic studies based on river analyses (e.g.
Miall, 1996; Pinter, 1996).

Ouchi (1985) showed, also by flume model experi-
ments, that a meandering flow crossing a region of uplift
changes its sinuosity. Naturally, the sinuosity decreases
upstream of the uplift axis and increases downstram.
This model result was verified in studies of North
American rivers (Adams, 1980; Burnett and Schumm,
1983; Marple and Talwani, 1993, 2000).

The present course of the Tisza River is a result of
drastic river regulation and flood control works carried
out between 1846 and 1910. Its total length was reduced
about to the 60% of the original one, while the channel
slope increased from around 4 to 6.5 cm/km at the study
section (L!aszl !offy, 1982). The sinuosity of the present-
day channel is far from the original. For the planform
analysis, the sinuosity data of the original, pre-regula-
tion channel has been derived from the reconstructed
river course. Therefore, topographic map sheets in a
scale of 1:28.800 of the 2nd military survey of the
Austro-Hungarian Empire (produced by the Institute of
Military Geography, Vienna; reprints are available at
the Hungarian Archive of Military History, Budapest)
were used to reconstruct the last undisturbed river
course. These sheets were surveyed between 1850 and
1863, using the Cassini-Soldner projection and the
Vienna1806 datum. The maps were fitted to the
Hungarian national grid and the HD72 datum by
rectification, using the ER Mappers GIS software (for
details of the mentioned geodetical and cartographical
references, see Mugnier, 1999). The transformation
error was below 40 m and not a systematic one. The
centreline of the channel was digitized manually, and,
subsequently, the distance of the vertices was set to
250 m along the river thalweg.

The sinuosity was computed in two different ways:

1. For each vertice of the digitized river course a 50 km
long section (‘window’) was assigned from 25 km (100
vertices) upstream of it to the same distance down-
stream, along the course. Getting the Cartesian
distance (D) between the endpoints of this selected
section, the sinuosity (S) at the given vertex, with a
window-size of W (here W ¼ 50 km) is:

S ¼
W

D
:

The resulted thalweg sinuosity of the study section of
the Tisza River is shown in Fig. 2b. As this function is
too detailed for showing on a map, the sinuosity was
computed also by another, more simple way.

2. Seventeen subsections of the study section of the river
were selected based on the morphometry of indivi-
dual meander curves by Mike (1991). The sinuosity of
each subsection was calculated by dividing the
thalweg length of the given section by the Cartesian
distance between the endpoints of it (Fig. 3). Note
that the sinuosity computed this way can differ
remarkably from the results of the first method only
in the case of a subsection shorter than the used
window-size of 50 km.

Along with the sinuosity, the thickness of the
Quaternary sediments (Frany !o, 1992) is shown in
Fig. 2c, and as a map background also in Fig. 3.
Concerning the reliability of this data set it has to be
underlined, that the definition of the Pliocene–Quatern-
ary boundary in terrestrial environments is still a matter
of debate (Partridge, 1997). However, the main pattern
of the Quaternary thickness map in the Great Hungar-
ian Plain is quite reliable because good magnetostrati-
graphic constraints are available (R !onai, 1985). Recent
vertical movement data derived from repeated precise
levellings (Jo !o, 1992) was considered but not used
because it shows severe human impact due to compac-
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Fig. 4. Courses of the Tisza River around the subsection 11, plotted on a digital elevation model (derived from 1:10,000 scale topographic maps of

Hungary). Numbers indicate the following river courses: 1=present, regulated channel (black); 2=the last natural channel just before the river

regulation (continuous white); 3=a paleochannel (dash-dotted white), of about 5 kyr ago. Note the remarkable change of sinuosity between the

paleochannel (3) and the last natural channel (2).
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tion induced by fluid extraction from the beginning of
the 20th century (Tim!ar and R!acz, 2002).
3. Discussion

According to the results of Ouchi (1985), high to low
and low to high sinuosity changes indicate that the
river crosses subsidence or uplift axes, respectively. In
case of an area subsiding as a whole like the GHP, the
terms ‘subsidence’ and ‘uplift’ mean not absolute
vertical movements but differential displacements rela-
tive to the upstream and downstream sections of the
rivers.

In the study section of the Tisza River the most
evident sinuosity changes are as follows (Fig. 2b):
(A)
 The rise and fall of the sinuosity in the subsection
16, at 805 and 775 km, respectively.
(B)
 The rise and fall of the sinuosity in the subsection
12, at 560 and 545 km, respectively.
(C)
 The fall of sinuosity in the subsection 11 at 525 km.

(D)
 The rise and fall of the sinuosity at the two

endpoints of subsection 8 at 460 and 435 km,
respectively.
(E)
 The high sinuosity anomaly in the subsection 6,
between 395 and 360 km.
There is a good correlation between the thickness of
Quaternary sediments as a subsidence indicator and the
sinuosity (see Fig. 2). The anomalies B and D follow the
local minima of the Quaternary thickness (and hence,
the subsidence), and even the anomalies A and E
correlate with a smaller local minimum in the thickness.
However, it can be seen that the fall of the sinuosity at
the anomalies A and E also correlates with the
confluence of the Saj !o and K .or .os Rivers, which
increases the water discharge and the sediment load at
those places (L!aszl !offy, 1982). Other sinuosity falls in
the study section may be interpreted as consequences of
the rivers self-organization to the energy balance (see
Langbein and Leopold, 1966). One example can be seen
in Fig. 4, which shows the subsection 11, anomaly C,
where the highly sinuous mid-Holocene paleochannel
has changed for an almost straight recent channel
without any apparent tectonic reasons.

Concerning the results of the high-resolution riverine
seismic survey (T !oth et al., 1997), the vast majority of
the study sections do not exhibit any tectonic deforma-
tion. However, a clear flower structure (Fig. 5b),
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Fig. 5. Correlation of a sharp sinuosity change and a fault zone at the

boundary of the subsections 8 and 9. (a) A map showing the pre-

regulation and the present courses of the Tisza River and the location

of the seismic section below. (b) The seismic section (after T !oth et al.,

1997) measured on the river and showing the young wrench fault

associated with the Mid-Hungarian Shear Zone.
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associated with the Mid-Hungarian Shear Zone
(L +orincz et al., 2002), has been imaged right at the
boundary of subsections 8 and 9. This has been
interpreted (Bada, 1999; Horv!ath and Bada, 2001) as a
sinistral strike-slip fault with a small normal faulting
component. This feature correlates with the most
dramatic planform change along the study section: the
rising sinuosity at anomaly D, exactly at the border of
subsections 8 and 9. Moreover, the normal faulting
component of the fault explains well the zone of larger
Quaternary thickness and therefore the higher subsi-
dence and the direction of the sinuosity change as well.
This is a clear evidence of the ongoing tectonic activity
of the Mid-Hungarian Shear Zone.
4. Interpretation in terms of river dynamics

According to the flume model results of Schumm and
Khan (1972), at a given discharge the sinuosity of
meandering rivers increases with the valley slope
only to a critical dip. If the slope further increases
then the meandering river starts to straighten. It is
obvious that our analysis is valid only in the slope
interval below this critical value. The specific question
emerges where this critical dip value is located along the
Tisza River. It will be seen that in our attempt to
answering this specific question we arrive at a more
general result on the controlling factors of river plan-
form changes.

Let us use the original graph of Schumm and Khan
(1972); the ‘vertical’ plane on Fig. 6, which gives the
sinuosity vs. slope relationship, together with the
discrimination lines between straight, meandering and
braided patterns. The same discrimination lines
were presented on the graphs of Leopold and Wolman
(1957) and Ackers and Charlton (1971) in a co-ordinate
system of bankfull discharge and channel slope. As
the two graphs have different meanings of ‘slope’
(valley and channel), the one of Schumm and Khan
(1972) was recalculated in order to have the channel
slope as a horizontal axis. This makes it possible to
combine the two graphs and arrive at a three-dimen-
sional chart, showing the sinuosity as function of the
channel slope and bankfull discharge (Fig. 6). To
construct this chart, it is assumed that the relationship
of Schumm and Khan (1972) is basically valid for
different values of discharge, therefore similar graphs
can be drawn between the two discrimination lines of
Leopold and Wolman (1957) and Ackers and Charlton
(1971) at any discharge (Fig. 6). This enables to project
the maximum sinuosity value onto the slope vs.
discharge plane, and thus define a new discrimination
line (dashed line in Fig. 6).

This line divides the meandering zone into two parts:
the zone of self-organizing meandering (sensu Turcotte,
1992; St^lum, 1996) and the zone of ‘unorganized
meandering’ because here the sinuosity decreases with
the increasing slope.

Plotting the slope and discharge data pairs along the
alluvial section of the Tisza River, a trajectory is
received (the short-dashed line in Fig. 7). It can be
seen from Fig. 7 that the study section plots completely
in the zone of self-organizing meandering, which means
that our analysis on the tectonic influence on the
channel sinuosity is justified. Furthermore, it shows
that in case of the Tisza River the braided to mean-
dering transition (sensu Leopold and Wolman, 1957)
refers to the border of the true braided zone, while the
classic self-organizing meandering occurs only beneath
the maximum sinuosity line. The section in-between is
the range of ‘unorganized meandering’, and interestingly
enough, in the case of the Tisza River this section
coincides with the zone of intermediate streams (sensu

Lane, 1957) and the wandering flow pattern (sensu

Miall, 1977).
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Fig. 7. Discharge vs. channel slope discrimination diagram (after Leopold and Wolman, 1957; Ackers and Charlton, 1971), and the plot of the

alluvial section of the Tisza River, showing the river planform change from braided, via wandering to meandering. For the determination of the line

of maximum sinuosity (dashed), see Fig. 6 (see text for discussion).

Fig. 6. Derivation of the line (dashed) showing the slope resulting the maximum sinuosity at any discharge by the combination of the channel slope

vs. bankfull discharge diagram (Leopold and Wolman, 1957; Ackers and Charlton, 1971) with the chart of sinuosity vs. slope (after Schumm and

Khan, 1972). The vertical axis has no units because of the qualitative approach of the combination.
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5. Conclusions

The analysis of the pre-regulation planform geometry
of the study section of the Tisza River shows that the
sinuosity of the river is strongly correlated with the
position of faults and subsidence anomalies. From a
tectonic point of view this implies that the Mid-
Hungarian Shear Zone should be considered an active
tectonic feature.

As a more general result, by combination of classical
river dynamic charts we deduced a new discrimination
line separating the so far single range of meandering into
two subunits:

* the self-organizing meandering, and
* the unorganized meandering.

This latter one corresponds to conditions when the
channel sinuosity decreases, albeit the channel slope
increases. On the example of the Tisza, a representative
alluvial river, the zone of unorganized meandering
equals to the wandering river pattern of Miall (1977).
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