Mineralium Deposita

Stable H-C-O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: Implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions --Manuscript Draft--

Manuscript Number:	MIDE-D-14-00001R1
Full Title:	Stable H-C-O isotope and trace element geochemistry of the Cummins Range Carbonatite Complex, Kimberley region, Western Australia: Implications for hydrothermal REE mineralization, carbonatite evolution and mantle source regions
Article Type:	Regular Articles
Corresponding Author:	Peter Downes Western Australian Museum Welshpool DC, Western Australia AUSTRALIA
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	Western Australian Museum
Corresponding Author's Secondary Institution:	
First Author:	Peter Downes
First Author Secondary Information:	
Order of Authors:	Peter Downes
	Attila Demény
	György Czuppon
	A. Lynton Jaques
	Michael Verrall
	Marcus Sweetapple
	David Adams
	Neal J McNaughton
	Lachland G Gwalani
	Brendan J Griffin
Order of Authors Secondary Information:	
Abstract:	The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated in the southern Halls Creek Orogen adjacent to the Kimberley Craton in northern Western Australia. The CRCC is a composite, sub-vertical to vertical stock ~2 km across with a rim of phlogopite-diopside clinopyroxenite surrounding a plug of calcite carbonatite and dolomite carbonatite dykes and veins that contain variable proportions of apatite-phlogopite-magnetite \pm pyrochlore \pm metasomatic Na-Ca amphiboles \pm zircon. Early high-Sr calcite carbonatites (4800-6060 ppm Sr; La/YbCN = 31.6-41.5; δ 13C = -4.2 to -4.0 ‰) possibly were derived from a carbonated silicate parental magma by fractional crystallization. Associated high-Sr dolomite carbonatites (4090-6310 ppm Sr; La/YbCN = 96.5-352) and a late-stage, narrow, high-REE dolomite carbonatite dyke (La/YbCN = 2756) define a shift in the C-O stable isotope data (δ 18O = 7.5 to 12.6 ‰; δ 13C = -4.2 to -2.2 ‰) from the primary carbonatite field that may have been produced by Rayleigh fractionation with magma crystallization and cooling, or through crustal contamination via fluid infiltration. Past exploration has focussed primarily on the secondary monazite. (Ce)-rich REE and U mineralization in the oxidised zone overlying the carbonatite. However, high-grade primary hydrothermal REE mineralization also occurs in narrow (<1 m wide) shear-zone hosted lenses of apatite-monazite-(Ce) and foliated monazite-(Ce)-talc rocks (≤~25.8 wt% TREO; La/YbCN = 30085), as well as in high-REE

	dolomite carbonatite dykes (3.43 wt% TREO), where calcite, parisite-(Ce) and synchysite-(Ce) replace monazite-(Ce) after apatite. Primary magmatic carbonatites were widely hydrothermally dolomitized to produce low-Sr dolomite carbonatite (38.5-282 ppm Sr; La/YbCN = 38.4-158.4; δ 18O = 20.8 to 21.9 ‰; δ 13C = -4.3 to -3.6 ‰) that contains weak REE mineralization in replacement textures, veins and coating vugs. The relatively high δ D values (-54 to -34 ‰) of H2O derived from carbonatites from the CRCC indicate that the fluids associated with carbonate formation contained a significant amount of crustal component in accordance with the elevated δ 13C values (~ -4 ‰). The high δ D and δ 13C signature of the carbonatites may have been produced by CO2-H2O metasomatism of the mantle source during Paleoproterozoic subduction beneath the eastern margin of the Kimberley Craton.
Response to Reviewers:	See the attached file for a detailed response to reviewers comments.

1	Stable H-C-O isotope and trace element geochemistry of the
2	Cummins Range Carbonatite Complex, Kimberley region,
3	Western Australia: Implications for hydrothermal REE
4	mineralization, carbonatite evolution and mantle source regions
5	
6	Peter J. Downes ¹ , Attila Demény ² , György Czuppon ² , A. Lynton Jaques ³ , Michael Verrall ⁴ ,
7	Marcus Sweetapple ⁴ , David Adams ^{5,6} , Neal J. McNaughton ⁷ , Lalchand G. Gwalani ⁸ and
8	Brendan J. Griffin ⁵
9	
10	¹ Department of Earth and Planetary Sciences, Western Australian Museum, Locked Bag
11	49, Welshpool DC, Western Australia, Australia. Email peter.downes@museum.wa.gov.au,
12	Ph: +61 8 92123757.
13	² Institute for Geological and Geochemical Research, Hungarian Academy of Sciences,
14	Hungary;
15	³ Research School of Earth Sciences, Australian National University, Canberra, A.C.T.,
16	Australia;
17	⁴ CSIRO Earth Science and Resource Engineering, Perth, Western Australia, Australia;
18	⁵ Centre for Microscopy, Characterisation and Analysis, University of Western Australia,
19	Australia;
20	⁶ GEMOC, Department of Earth and Planetary Sciences, Macquarie University,
21	NSW, Australia;

⁷John de Laeter Centre for Isotope Research, Curtin University, Western Australia,

23 Australia;

⁸Speewah Research Project C/- King River Copper Limited, B-26/122 Mounts Bay Road,

- 25 Perth, Western Australia, Australia
- 26

27 Abstract

28

The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated in the 29 southern Halls Creek Orogen adjacent to the Kimberley Craton in northern Western 30 31 Australia. The CRCC is a composite, sub-vertical to vertical stock ~2 km across with a rim of phlogopite-diopside clinopyroxenite surrounding a plug of calcite carbonatite and 32 33 dolomite carbonatite dykes and veins that contain variable proportions of apatite-34 phlogopite-magnetite \pm pyrochlore \pm metasomatic Na-Ca amphiboles \pm zircon. Early high-Sr calcite carbonatites (4800–6060 ppm Sr; La/Yb_{CN} = 31.6–41.5; δ^{13} C = -4.2 to -4.0 ‰) 35 possibly were derived from a carbonated silicate parental magma by fractional 36 37 crystallization. Associated high-Sr dolomite carbonatites (4090–6310 ppm Sr; La/Yb_{CN} = 96.5–352) and a late-stage, narrow, high-REE dolomite carbonatite dyke (La/Yb_{CN} = 2756) 38 define a shift in the C-O stable isotope data (δ^{18} O = 7.5 to 12.6 ‰; δ^{13} C = -4.2 to -2.2 ‰) 39 40 from the primary carbonatite field that may have been produced by Rayleigh fractionation with magma crystallization and cooling, or through crustal contamination via fluid 41 infiltration. Past exploration has focussed primarily on the secondary monazite-(Ce)-rich 42 43 REE and U mineralization in the oxidised zone overlying the carbonatite. However, high-

44	grade primary hydrothermal REE mineralization also occurs in narrow (<1 m wide) shear-
45	zone hosted lenses of apatite-monazite-(Ce) and foliated monazite-(Ce)-talc rocks (≤~25.8
46	wt% TREO; La/Yb _{CN} = 30085), as well as in high-REE dolomite carbonatite dykes (3.43
47	wt% TREO), where calcite, parisite-(Ce) and synchysite-(Ce) replace monazite-(Ce) after
48	apatite. Primary magmatic carbonatites were widely hydrothermally dolomitized to produce
49	low-Sr dolomite carbonatite (38.5–282 ppm Sr; La/Yb _{CN} = 38.4–158.4; δ^{18} O = 20.8 to 21.9
50	‰; δ^{13} C = -4.3 to -3.6 ‰) that contains weak REE mineralization in replacement textures,
51	veins and coating vugs. The relatively high δD values (-54 to -34 ‰) of H ₂ O derived from
52	carbonatites from the CRCC indicate that the fluids associated with carbonate formation
53	contained a significant amount of crustal component in accordance with the elevated $\delta^{13}C$
54	values (~ -4 ‰). The high δD and $\delta^{13}C$ signature of the carbonatites may have been
55	produced by CO ₂ -H ₂ O metasomatism of the mantle source during Paleoproterozoic
56	subduction beneath the eastern margin of the Kimberley Craton.

58 Keywords

59 Carbonatite, REE mineralization, H-C-O stable isotopes, phoscorite, clinopyroxenite,

60 monazite-(Ce), Kimberley

61

62 Introduction

64	The Neoproterozoic Cummins Range Carbonatite Complex (CRCC) is situated at the
65	southern apex of the Halls Creek Orogen, close to its junction with the King Leopold
66	Orogen, adjacent to the Kimberley Craton in northern Western Australia (lat. 19°27'S, long.
67	127°10'E; Fig. 1). The CRCC is defined by a major magnetic anomaly and comprises a
68	composite, sub-vertical to vertical zoned stock in which a phlogopite-diopside
69	clinopyroxenite was intruded by calcite carbonatite and dolomite carbonatite dykes and
70	veins that contain variable proportions of apatite–phlogopite–magnetite \pm pyrochlore \pm
71	metasomatic Na-Ca amphiboles \pm zircon (Fig. 2).
72	Past company exploration has focussed on the oxidised zone above the carbonatite
73	which contains a REE ore body with an inferred resource of 4.90 Mt at 1.74% TREO,
74	11.2% P ₂ O ₅ and 145 ppm U ₃ O ₈ (Kimberley Rare Earths 2012). This monazite-(Ce)-apatite-
75	rich secondary ore largely formed through the mechanical concentration of primary
76	magmatic-hydrothermal REE mineralization within the carbonatite during weathering and
77	deflation. The ore body is the third largest REE resource in Western Australia behind the
78	Mt Weld deposit and the Hastings-Brockman trachytic tuff (Geological Survey of Western
79	Australia 2011).

In this paper we employ H-C-O stable isotope and whole-rock geochemistry to define the evolution of various phases of the Cummins Range carbonatite and associated hydrothermal–metasomatic processes involved in REE mineralization. H-C-O isotope data also provides information on the development of the mantle source regions for the CRCC where previous work has indicated the influence of subduction-related processes and the existence of a Neoarchean depleted lithospheric mantle root beneath the Halls Creek Orogen (Jaques et al. 1989a; Luguet et al. 2009; Honda et al. 2012).

88 Geological setting

89

The Paleoproterozoic Halls Creek Orogen is comprised of a NNE-trending band of 90 91 deformed and metamorphosed sedimentary, volcanic and intrusive rocks that represents a suture zone between the Kimberley Craton and the remainder of the North Australian 92 Craton to the east (Fig. 1). Amalgamation following plate collision had occurred by ~1820 93 94 Ma (Myers et al. 1996; Tyler et al. 1999; 2012; Griffin et al. 2000; Cawood and Korsch 2008; Richards 2013). The Argyle lamproite, associated lamproite dykes and the Bow Hill 95 96 ultramafic lamprophyre dykes were emplaced along a terrane boundary within the Halls Creek Orogen during the Proterozoic (Fig. 1; Jaques et al. 1986; Jaques and Milligan 2004). 97 Similarly, a deep crustal structure within the King Leopold Orogen probably provided a 98 route for lamproite magmas to reach the surface during the Miocene ($\sim 17-22$ Ma) 99 volcanism in the West Kimberley (Ellendale; Fig. 1; Jaques and Milligan 2004). The 100 Cummins Range Carbonatite Complex has been interpreted by a number of workers to be 101 102 emplaced in the proximity of the Halls Creek Fault (Fig. 1; e.g. Sanders 1999). Country rocks, including granite gneiss and chlorite schist, are interpreted to be part of the Eastern 103 zone of the Paleoproterozoic Lamboo Complex within the Halls Creek Orogen (Fig. 2; 104 105 Andrew 1990; cf. Hassan 2000). The contacts of the CRCC are largely inferred from magnetic data and no structural disruption or contact metamorphism was found on the 106 107 margins of the carbonatite complex. Neoproterozoic ages of ~854–1012 Ma (currently 108 under review) are indicated for the CRCC by dating using various methods (Pidgeon et al. 109 1986; Sun et al. 1986).

112

113 Previous detailed accounts of the geology and mineralogy of the intrusive complex may be found in Richards (1983, 1985) and Andrew (1990). The CRCC has little surface 114 expression, with the area largely being concealed by an aeolian sand sheet of varying 115 116 thickness, typical of the Great Sandy Desert. Exposure is limited to patchy outcrop of low 117 mounds of jasperoidal matrix-supported ironstone breccia, interpreted to be a residual solution collapse breccia of karst origin (Fig. 2; Richards 1983). Other regolith units noted 118 119 within, or beneath sand cover, are ferruginous laterite, silcrete and calcrete. Resistate minerals, including REE-bearing monazite-(Ce), apatite, zircon and pyrochlore are 120 121 considered to have been enriched by up to 10 times their original concentration in the 122 oxidised zone (Andrew 1990), but the nature of this enrichment is not well defined.

123 Drilling and aeromagnetic and more detailed ground magnetic surveys have shown that 124 the CRCC is a composite, sub-vertical to vertical stock some 1.8 x 1.6 km in maximum dimensions with three broadly concentric zones (Fig. 2). A central intrusive zone or plug 125 126 of calcite carbonatite and dolomite carbonatite dykes is surrounded by variably carbonated and metasomatically altered phlogopite clinopyroxenite. Adjacent to the central carbonatite 127 128 intrusive zone the clinopyroxenite was intruded by numerous steeply-dipping carbonatite 129 dykes up to ~60m thick and metasomatism of the clinopyroxenite by the carbonatite is most 130 intense in this zone, where there is a high density of carbonate veins/microveins and 131 invasion of the clinopyroxenite by carbonatite (Andrew 1990). The outer envelope

comprises less altered clinopyroxenite with a mineral assemblage that includes phlogopite, 132 133 diopside, apatite, magnetite, calcite and ilmenite, and lesser amounts of metasomatic Na-Ca amphiboles and accessory zirconolite (Table 1; Fig. 2). Sulfide \pm oxide assemblages 134 composed of pyrrhotite, pyrite, chalcopyrite, \pm sphalerite \pm galena \pm magnetite are common 135 136 to both the clinopyroxenite and various phases of the carbonatite, where they may form 137 sulfide-rich bands and lenses. Within the carbonatite, vugs up to several centimetres wide 138 commonly contain hydrothermal pyrite, marcasite and chalcopyrite (Table 1). Sulfides exhibit textures that suggest that they have formed through the replacement of carbonates 139 (calcite and dolomite), diopside (or actinolite), to a lesser extent apatite, and rarely 140 141 monazite-(Ce).

The carbonatite and clinopyroxenite are cut by vertical-sub vertical shear zones, 142 143 trending $\sim 315 - 330^\circ$, that include weakly to strongly foliated dolomite carbonatite, zones of 144 phlogopitite, and zones of high-REE apatite-monazite-(Ce) rock (Fig. 3). Some shear zones 145 have been localised along contacts between the clinopyroxenite and carbonatite and this deformation may have played a major role in producing foliated phlogopitite along the 146 margins of some clinopyroxenite bodies. This apparent K-metasomatism does not appear to 147 have been entirely related to contact metasomatism with the intrusion 148 149 of carbonatite into clinopyroxenite, because zones of phlogopitite are asymmetric in distribution. At some boundaries of the clinopyroxenite there are quite thick zones 150 of phlogopitite (≤ 10 m), but at others minimal phlogopitite is developed (cm-scale). This 151 152 suggests a correlation with zones of shearing. The shear zone trend of $\sim 315-330^{\circ}$ may also 153 be reflected in the approximate orientation of the outcrop of iron oxide collapse breccias (Fig. 2) and the orientation of the REE orebody within the oxidised zone (see Appendix 1). 154

156 Analytical methods

- 158 Scanning electron microscopy and electron microprobe microanalysis
- 159

160	Mineral identifications were assisted by detailed back-scattered electron (BSE) imaging and
161	energy-dispersive X-ray spectrometry (EDS) using a Philips XL-40 scanning-electron
162	microscope (SEM) at CSIRO Earth Science and Resource Engineering, Perth.
163	The composition of apatite was determine at the Centre for Microscopy,
164	Characterisation and Analysis at the University of Western Australia using a field emission
165	gun JEOL JXA-8530F Hyperprobe with five wavelength-dispersive spectrometers
166	operating at 20 keV, 50 nA, and a 10 μ m diameter beam to minimise fluorine diffusion. All
167	analyses were performed using the Probe for EMPA software by Probe Software, Inc. F and
168	Ca were analysed first using a Time Dependent Intensity (TDI) correction to account for
169	any anisotropic elemental diffusion during analysis. REEs were standardised using the
170	Smithsonian Institution single element orthophosphate standards. Ca and F were
171	standardised on Durango apatite; Cl was standardised on a Brazilian sodalite. Natural
172	orthoclase was used as the standard for Si and K, and San Carlos olivine was used for Fe
173	calibration. Sr was calibrated on synthetic celestine and synthetic barite was used for S.
174	Standards used for U, Th, and Pb were U metal, ThO ₂ , and crocoite respectively. All REEs,
175	Th, and U were counted for 100 seconds on peak and major elements were counted for $10 - 10^{-10}$
176	40 seconds on peak. All elemental peak overlaps were accounted for and eliminated using
177	software peak overlap correction routines. Errors on all elements are $\leq 10\%$.

180

Abundances of major and trace elements were determined at Geoscience Australia, 182 Canberra by XRF and ICP-MS for selected samples. Major and minor elements (Si, Ti, Al, 183 Fe, Mn, Mg, Ca, Na, K, P and S) were determined by wavelength-dispersive (Bruker 184 S8Tiger) XRF on fused disks using methods similar to those of Norrish and Hutton (1969). Precision for these elements is better than $\pm 1\%$ of the reported values. As, Ba, Cr, 185 186 Cu, Ni, Sc, V, Zn, Zr, F and Cl were determined by XRF on pressed pellets using methods 187 similar to those described by Norrish and Chappell (1977). Loss on Ignition (LOI) was by gravimetry after combustion at 1100°C. FeO abundances were determined by digestion and 188 189 electrochemical titration using a modified methodology based on Shapiro and Brannock 190 (1962), and Fe₂O₃ values were calculated as the difference between total Fe, determined by XRF, and FeO. Selected trace elements (Cs, Ga, Nb, Pb, Rb, Sb, Sn, Sr, Ta, Th, U, Y) and 191 192 the Rare Earth elements were analysed by ICP-MS (Agilent 7500 with reaction cell) using methods similar to those of Eggins et al. (1997), but on solutions obtained by dissolution of 193 fused glass disks (Pyke 2000). Precisions are $\pm 5\%$ and $\pm 10\%$ at low levels (<20 ppm). 194 Agreement between XRF and ICP-MS are typically within 10%. Because of problems in 195 retaining the sample in solution, the REE and F-rich fused XRF disc of sample CDD1-36 196 197 (and CDD1-34 for comparison) was also analysed by laser ablation ICP-MS at the 198 Research School of Earth Sciences, ANU, for REEs and other trace elements using an 199 Agilent Technologies 7700 ICP-MS coupled to an ANU HelEX laser-ablation system with 200 a 193 nm wavelength EXCIMER laser (110 (ArF) COMPex, Lambda Physik) following the

201 method of Jenner and O'Neill (2012). Data acquisition involved a 20 second background 202 measurement followed by 45 seconds of ablation, employing an 81 micron diameter laser 203 spot, 5 Hz repetition rate and 50-55 mJ fluence. Samples were analysed by bracketing every 5 unknowns with analyses of NIST610 and BCR2G reference glasses. Data were processed 204 205 using the Iolite software package (Paton et al. 2011). Agreement of the LA-ICP-MS and solution ICP-MS methods for sample CDD1-34, and with recommended/preferred values 206 207 for standards BCR-2G and SY-3 was within 10% for most elements at the ppm level and higher. LA-ICP-MS data for the REEs, Zr, Hf, Ta, Th and U in sample CDD1-36, and Tm, 208 209 Hf and Ta in sample CDD1-34, are therefore reported here.

210 Abundances of trace elements for 9 rock samples were determined at TSW Analytical, 211 Perth (analyst Sven Fjastad) using a combination of ICP-MS (Agilent 7700) and ICP-AES 212 (Thermo Scientific iCAP) analysis. Solutions for analysis were prepared by two methods: (a) The pulverised sample (0.3 g) was fused with lithium tetraborate (35.3%)/lithium 213 214 metaborate (64.7%) flux (0.8 g) at 1050°C for 15 minutes, then the fused material was dissolved in a citric acid solution (50 mL, 10% m/v); and (b) The pulverised sample (0.25 215 g) was digested in a mixture of nitric, perchloric and hydrofluoric acids. The digestate was 216 217 taken to incipient dryness and the residue dissolved in a mixture of nitric and hydrochloric acid then diluted with ultra-pure water to produce a final acid strength of $\sim 5\%$ v/v. The 218 resultant solutions were then diluted appropriately for ICP-AES and ICP-MS analysis. 219

The elements reported for these samples have been compiled from, and confirmed by, using both the ICP-AES and ICP-MS results from the above sample preparation techniques. The detection limits vary from element to element in the various solution matrices and instrumental technique used, however as a generalisation elements reported from the ICP- AES assay have limits of detection (2σ) of approximately 10 ppm in the pulverised sample and elements reported from the ICP-MS assay have limits of detection (2σ) of approximately 0.1 ppm in the pulverised sample.

227

228 Stable Isotopes

229

230 For carbonate samples from the CRCC the stable carbon and oxygen isotope compositions were determined by applying the carbonate-orthophosphoric acid reaction at 72°C (Spötl 231 232 and Wennemann 2003) and using an automated GASBENCH II sample preparation device 233 attached to a Thermo Finnigan Delta Plus XP mass spectrometer at the Institute for 234 Geological and Geochemical Research, Budapest, Hungary. Hydrogen isotope compositions of fluid inclusion-hosted H₂O and H₂O-contents in 235 ten carbonate samples were determined by vacuum-crushing followed by H₂O purification 236 by vacuum distillation, reaction with Zn at 480°C to produce H₂ gas and mass spectrometric 237 238 analyses of D/H ratios (see Demény 1995, Demény and Siklósy 2008, Czuppon et al. 2014) 239 using a Finnigan MAT delta S mass spectrometer at the Institute for Geological and Geochemical Research. 240 The isotope compositions are given as δD , $\delta^{13}C$ and $\delta^{18}O$ in parts per thousands (‰) 241 relative to V-PDB (δ^{13} C) and V-SMOW (δ D and δ^{18} O), according to the equation: δ = 242 (Rsample/Rstandard-1) \times 1000, where R is the D/H, ${}^{13}C/{}^{12}C$ or ${}^{18}O/{}^{16}O$ ratio in the sample 243 244 or in the international standard. The measurement precision is better than 0.15% for C and 245 O isotope data based on replicate measurements of international standards (NBS-19; NBS-

18) and in-house reference materials. Reproducibilities of H isotope analyses were about
3‰ for δD values based on duplicate analyses.

Two samples of the high-REE apatite-monazite-(Ce) rock (CDD1-31, CDD1-37A)
were examined and found not to contain fluid inclusions.

250

251 **Petrography**

252

253 Fresh rocks within the Cummins Range complex were encountered in two deep inclined 254 diamond drill holes, CDD1 and CDD2, each ~402 m long (Figs 2, 3; Appendix 1). The 255 petrographic descriptions presented here are based mostly on samples from these drill holes. Most exploration drilling has concentrated on defining the shallow REE resource 256 within the oxidised zone. Two of the samples analysed for C-O isotopes came from shallow 257 258 RC drill holes (NRC035 92–93 m, NRC058 97–98 m). We describe the various carbonatites and the high-REE apatite-monazite-(Ce) rock in detail here, but the associated 259 clinopyroxenite will be described elsewhere (Table 1). 260 261 We use the term 'phoscorite' to describe apatite-amphibole-rich rocks that also contain 262 varying proportions of phlogopite, magnetite, dolomite, \pm calcite \pm ilmenite (Table 1). No olivine-bearing rocks have been found in the CRCC. The definition of 'phoscorite' or 263 'phoscorite-series' rocks is complex, and this is discussed in detail by Krasnova et al. 264 (2004). 265

269	Multiple phases of calcite carbonatite and dolomite carbonatite dykes intruded the
270	clinopyroxenite phase of the CRCC producing a central carbonatite plug (Fig. 2). The
271	carbonatites contain variable proportions of apatite \pm phlogopite \pm magnetite \pm amphibole,
272	and with increasing content of these minerals range towards silicocarbonatites or
273	phoscorite-series rocks (Table 1; Fig. 4). Blue-green, Na-Ca amphiboles (predominantly
274	richterite) are a metasomatic phase ($\leq \sim 5$ vol.%) that overprint the magmatic carbonatite
275	rock fabric, including replacement of phlogopite and apatite (Fig. 4b, c). Contact
276	relationships between carbonatites and associated phoscorite-series rocks commonly are
277	gradational. Fresh diopside has not been observed in the carbonatites at Cummins Range,
278	however diopside may have been a primary magmatic phase that has been replaced by
279	richterite in associated apatite-amphibole-rich phoscorite.
280	The carbonatites vary from fine to coarse-grained, and from massive to foliated. The
281	foliated textures indicate ductile deformation of the carbonatite during tectonism (Fig. 4d).
282	Generally, the carbonatites are either calcite or dolomite dominant, where the carbonates
283	comprise up to ~95 vol.% of the rock. Recrystallization and hydrothermal alteration of the
284	carbonatites has produced massive, turbid, microporous dolomite or calcite in some zones.
285	In the carbonatites, apatite occurs as individual equant to elongate crystals (\leq 1.5 cm long)
286	or as radiating to divergent clusters of elongate crystals (\leq 4 cm across) generally situated at
287	calcite or dolomite grain boundaries, or in lenses of polygonal crystal cumulate (Fig. 4c).
288	Pyrochlore and zircon are characteristic minor accessory minerals. Pyrochlore (generally

290	\leq 10mm wide. It is commonly overgrown by thin rims of pyrite, and very rarely is replaced
291	by ferrocolumbite. Zircon exhibits a diverse range of textures including subhedral
292	megacrysts to ~1.5cm wide with typical igneous growth zonation (Fig. 4a; occurring in
293	CDD1 323–331 m), anhedral, metamict composite porphyroblasts intergrown with
294	dolomite in strongly foliated carbonatite (\leq 3 mm wide; Fig. 4d), and turbid brown
295	anhedral–subhedral crystals intergrown with amphibole-ilmenite-apatite-dolomite (\leq 5 mm
296	wide). Textural relationships indicate that the zircon is variably igneous to hydrothermal or
297	metasomatic in origin. The zircons have a very low U content (\leq 138 ppm; unpubl. data NJ
298	McNaughton) consistent with their carbonatite origin (cf. Belousova et al. 2002).
299	Carbonatites within the CRCC commonly contain trace-minor hydrothermal REE-
300	mineralization (generally <1 vol.%) in the form of disseminated grains of monazite-(Ce),
301	parisite-(Ce) and synchysite-(Ce) in calcite and dolomite; monazite-(Ce) rimming and
302	replacing magmatic apatite; parisite-(Ce) and synchysite-(Ce) in replacement textures,
303	veins and lining cavities in carbonatite; as well as minor nioboaeschynite-(Ce), chevkinite-
304	(Ce), fergusonite and Ca-REE-Ba-Sr carbonates (possibly burbankite or carbocernaite; Fig.

High-Sr calcite carbonatite

Calcite carbonatites may have a fine-grained, equigranular to inequigranular polygonal
mosaic texture (with straight to slightly curved grain boundaries; crystals ≤1 mm wide), but
vary to inequigranular textures where carbonate crystals (≤5 mm long) have irregular to

312	serrated boundaries. White–light grey, massive carbonatite may be intruded (and/or
313	replaced?) by dykes or irregular bodies of light pink calcite carbonatite that occurs only in
314	the drill hole CDD1 (Fig. 4a). This calcite carbonatite may contain minor subhedral to
315	anhedral, phenocrysts and crystal clusters of white dolomite ($\leq -5 \text{ mm long}$; <15 vol.%) in a
316	calcite groundmass (Fig. 4a). High-Sr calcite carbonatite near the bottom of drill hole
317	CDD2 preserves calcite-dolomite exsolution textures. Small blebs and rods of dolomite
318	($\leq \sim 20 \ \mu m \ long$) have exsolved from high-Mg calcite.

320 *High-Sr dolomite carbonatite*

321

322 White, massive, weakly-moderately fractured dolomite carbonatite is present in both drill holes (e.g. CDD1 150.45-152.26 m; CDD2 ~110-115 m). Generally, it has indistinct 323 324 contacts with surrounding calcite carbonatite, but is intruded by pink high-Sr calcite 325 carbonatite. The texture varies from zones of inequigranular, variably clear to turbid dolomite, with crystals up to ~ 2 mm wide having straight to curved or rounded boundaries, 326 grading into a more coarse-grained turbid dolomite with elongated-anhedral crystals 327 ≤ 1.25 cm long. This dolomite carbonatite contains rare parisite-(Ce), synchysite-(Ce) and 328 329 monazite-(Ce) (<1 vol.%). Minor patches and crystals of calcite exhibit microporosity and 330 contain inclusions of strontianite and Ca-REE-Ba-Sr minerals (possibly burbankite or carbocernaite; $\leq 30 \ \mu m \ long$). 331

335	Late-stage, thin, grey dolomite carbonatite dykes intrude calcite and calcite-dolomite
336	carbonatite over two intervals within the drill hole CDD2. These dykes contain relatively
337	high-grade REE mineralization (e.g. CDD2 396.9–397.64 m – 3.43 wt% TREO) and their
338	texture and mineralogy are as follows:
339	1) The grey, medium-grained dolomite carbonatite dyke intruding calcite-dolomite
340	carbonatite over the interval CDD2 225.03-225.23 m, contains turbid dolomite and
341	parisite-(Ce) (~15–20 vol.%; elongate crystals \leq 3 mm) with minor aeschynite-(Ce)
342	(crystals $\leq \sim 0.8$ mm long), monazite-(Ce) and pyrite (Fig. 5a, b). Crystals of parisite-
343	(Ce) are partially resorbed or altered and fractured, with dissolution along cleavage
344	planes. Pyrite (crystals $\leq \sim 0.6$ mm long) commonly occurs along fractures and cleavage
345	planes in crystals of parisite-(Ce).
346	2) Dolomite carbonatite dykes intrude calcite carbonatite over the interval CDD2 396.9–
347	397.18 m, 397.35–397.64 m. The REE mineralization in these dykes comprises fine-
348	grained monazite-(Ce), parisite-(Ce) and synchysite-(Ce) in irregularly-shaped patches
349	of pink calcite up to 2 cm long (Fig. 5c, d). Crystals of apatite may be partially to
350	completely replaced by this calcite-REE-rich association (Fig. 5d). These calcite-
351	monazite-(Ce) patches are not restricted to these dykes and occur in less abundance in
352	surrounding calcite carbonatite. The sequence of replacement was apatite replaced by
353	monazite-(Ce) that was later replaced by pink calcite and associated parisite-(Ce) and
354	synchysite-(Ce). Monazite-(Ce) is also rarely replaced by pyrrhotite and magnetite in

355	this carbonatite. The dolomite carbonatite contains patches and crystals of microporous
356	calcite with microinclusions (<2 μm wide) of strontianite \pm Ca-REE-Ba-Sr carbonates
357	(possibly burbankite or carbocernaite).

359 *Low-Sr dolomite carbonatite*

360

361	The low-Sr dolomite carbonatites are white-grey, massive and dominantly composed of
362	turbid recrystallised, microporous dolomite (≤ 2 cm long crystals; anhedral with irregular
363	boundaries). Boundaries with the surrounding calcite carbonatite commonly are
364	gradational. Some zones within the carbonatite dykes have a vuggy texture and are weakly
365	mineralised (e.g. 110.5–136.4 m, 303–322.2 m in CDD1; 328.3–396 m in CDD2; Fig. 5e).
366	Vugs ($\leq \sim 5$ cm wide), typically containing ≤ 1 vol.% REE-bearing minerals, are lined by
367	euhedral coarse dolomite crystals associated with crystals of pyrite-marcasite, quartz,
368	monazite-(Ce), encrustations of very fine-grained platy crystals and crystal groups of the
369	REE-fluorocarbonates parisite-(Ce) and synchysite-(Ce) (+ rare fine acicular groups of a
370	Nb-Ti mineral, probably nioboaeschynite-(Ce)) ± Mg-silicates (talc; Fig. 5f).
371	
372	High-REE apatite-monazite-(Ce) rock

Within the drill hole CDD1, the interval 261.85–275.2 m is composed of weakly–strongly
foliated rocks including carbonatite and apatite-monazite-(Ce)-amphibole-talc-rich rocks.

376	Some strongly foliated zones contain ~5–10 vol.% fine-medium grained disseminated
377	zircon (the zircon has yellow SW fluorescence; ~269–269.15 m, 272.5–273 m). This shear
378	zone was intruded by white, massive-fractured dolomite carbonatite dykes and veins, and
379	over the interval 269.2–271.1 m light grey, fine-grained high REE apatite-monazite-(Ce)
380	rocks (containing $\leq \sim 25.8$ wt% TREO) occur adjacent to these dolomite carbonatite dykes
381	(\leq 0.142 wt% TREO; Fig. 6). From historical exploration geochemistry, the interval 269–
382	271m is particularly high grade, with 8.29 wt% from 269–270m, and 5.14 wt% TREO from
383	270-271 m (Fig. 3). The apatite-monazite-(Ce) rocks comprise complex intergrowths of
384	apatite and monazite-(Ce) (that varies from thin, elongated crystals to granular in habit) that
385	are overprinted by veins of talc-amphibole-pyrrhotite-dolomite (Fig. 7). Monazite-(Ce) may
386	also occur in a talc-amphibole matrix. The thin, elongated crystals of monazite-(Ce)
387	intergrown with apatite are up to ~ 0.8 mm long, and the apatite in this association is
388	polycrystalline (variation in extinction angle), turbid and partially altered. In one sample
389	(CDD1-33), this apatite-monazite-(Ce) zone has a sharp contact with an adjacent apatite-
390	rich vein containing patchy to concentrically-zoned, elongated, crystals of apatite ($\leq 3 \text{ mm}$
391	long) aligned approximately perpendicular to the vein margins (Fig. 6).
392	Zones of foliated apatite-talc-monazite-(Ce)-amphibole rock are banded on a cm-scale
393	(e.g. CDD1 265-266 m 3.3 wt% TREO). These include weakly foliated, monazite-(Ce)-

talc-rich bands that contain ~40–50 vol.% anhedral–subhedral monazite-(Ce) crystals

395 (≤ 1.3 mm long, commonly fractured) in a talc-amphibole-pyrrhotite matrix (Fig. 7b, d).

- 396 The monazite-(Ce)-talc bands are enclosed by moderately foliated bands of apatite-
- 397 amphibole-monazite-(Ce)-talc in which the fabric is defined by crystals of green-blue
- amphibole (richterite, ≤ 1.2 mm long) intergrown with fine-grained talc and irregular

399	lenses and grains of pyrrhotite (≤ 1.3 mm long). The amphiboles enclose lenses of
400	recrystallised and altered apatite to \sim 2 mm long, and trains of equant/granular crystals of
401	monazite-(Ce) (≤ -0.7 mm long, ≤ -5 vol.%). Banding also includes more massive zones of
402	altered and recrystallised apatite that are crosscut by lenses of amphibole (~15 vol.%, \leq ~4
403	mm long) and ragged grains and lenses of pyrrhotite \pm rare chalcopyrite (≤ 0.7 mm long).
404	

405 Geochemistry

406

407 Apatite chemistry

408

Electron microprobe data acquired from two samples of the high-REE apatite-monazite-409 (Ce) rock (CDD1-29, CDD1-33) and 3 samples of carbonatite are presented in Table 2 and 410 Fig. 8. The high-REE apatite-monazite-(Ce) rock contains areas with zoned apatite crystals 411 412 (~5 vol.%). Crystal cores, to ~600 µm long, occur in areas of massive uniform apatite in a talc-rich matrix. Apatite cores are REE-rich (Y₂O₃ 0.22–0.43 wt%; TREO 4.07–10.1 wt%; 413 SrO 1.22–2.81 wt%) and apatite rims or surrounding apatite in the matrix are Sr-rich (SrO 414 1.78–11.39 wt%) and poor in REEs (TREO \leq 2.92 wt%; Y₂O₃ \leq 0.12 wt%). Notably, some 415 of these apatite cores exhibit positive Eu anomalies (Eu/Eu*~2.4-8.8; Fig. 8b). Apatite in 416 the carbonatites has distinctive Sr and REE contents, with generally ≤ 2 wt% SrO and ≤ 2.42 417 wt% TREO. Apatite analyses from the high-REE apatite-monazite-(Ce) rock may have low 418

analytical totals which could be due to the effects of hydrothermal alteration or the presence 419 of CO_3^{2-} that has not been determined (Table 2; cf. DeToledo et al. 2004). 420

421

422 Whole-rock geochemistry

423

424 Whole-rock geochemical data for the CRCC is presented in Tables 3 and 4, and Figs 3 and 425 9 (see also Appendix 1). The high-Sr calcite carbonatite contains from 4800–6060 ppm Sr, 426 from 1.41–3.2 wt% MgO, from 0.18–0.30 wt% MnO, and from 0.42–1.80 wt% P₂O₅. The 427 calcite carbonatites are weakly mineralised, containing 0.138–0.163 wt% TREO (La/Yb_{CN}) = 31.6–41.5; La/Nd_{CN} = 1.72-2.23). The pink calcite carbonatite (CDD1-24) has relatively 428 higher Zr and Hf content than other calcite carbonatite samples (Fig. 9b). 429 430 The high-Sr dolomite carbonatite contains relatively high MnO from 0.683–1.12 wt%, and MgO from 16.1–19 wt% (CDD1-34 contains 12.7 wt% MgO but this sample has a high 431 432 iron content due to sulfides). Sr content ranges from 4090–6310 ppm, and P₂O₅ from 0.1– 433 0.92 wt%. The TREO content is the lowest of all carbonatites in the complex, ranging from 0.071–0.145 wt%, but it exhibits high LREE/HREE ratios (La/Yb_{CN} = 96.5–352; La/Nd_{CN}) 434 = 2-3.14). In contrast, the low-Sr dolomite carbonatite (Sr = 38.5-282 ppm) contains lower 435 436 amounts of Fe and Mn, but higher TREO (MnO = 0.26-0.34 wt%; P₂O₅ = 0.035-0.9 wt%; TREO = 0.124-0.358 wt%). The low-Sr dolomite carbonatite has variable REE content, 437

with $La/Yb_{CN} = 38.4 - 158.4$ and $La/Nd_{CN} = 1.98 - 2.73$. 438

439 The high-REE dolomite carbonatite (2) dyke (CDD2-25A) contains 3.43 wt% TREO. 440 It has relatively high P_2O_5 (7.28 wt%) due to its apatite content and very high LREE

441	enrichment (La/Yb _{CN} = 2756; La/Nd _{CN} = 5.8). Unfortunately, insufficient sample was
442	available from the high-REE dolomite carbonatite (1) dyke to undertake whole-rock
443	geochemistry. The high-REE apatite-monazite-(Ce) rock (CDD1-36) is rich in Ca, Sr, and
444	P and is extremely enriched in REEs with ~25.8 wt% TREO, has a high La/Nd _{CN} ratio
445	(~5.4), an extremely high La/Yb _{CN} ratio (30085), and a high abundance of Y (126 ppm).
446	Notably, its chondrite-normalised REE pattern is discordant to the quasi-parallel patterns of
447	the carbonatites sampled (Fig. 9a).

448 Geochemically the primary carbonatites are high in Sr, and relatively low in Ba (\leq 509

449 ppm) and all carbonatites are low in HFSE (e.g. $Zr \le 279$ ppm, Nb ≤ 254 ppm, Hf ≤ 3.81

450 ppm, Ta \leq 7.39 ppm). The Th/U, Nb/Ta and Zr/Hf ratios of the carbonatite samples are

451 quite variable (Table 3) and probably are controlled by zircon and pyrochlore content (Fig.

452 9). In four carbonatite samples Hf content is below detection limits and two carbonatites

453 have anomalously low Zr/Hf ratios with Hf content <0.15 ppm (Table 4). The remaining

454 carbonatite samples have Zr/Hf ratios in the range 25.9–73.2 (average ~43.8), which is

455 similar to the range for the Kovdor and Turiy Mys carbonatites from the Kola Alkaline

456 Province, Russia (36–72; Ivanikov et al. 1998; Verhulst et al. 2000) and exceeds the

457 primitive mantle value (~37). The Zr/Hf ratio of the apatite-amphibole phoscorite (52.5) is

458 similar to the worldwide average of phoscorites and silicocarbonatites (57;

459 Chakhmouradian 2006). The average Zr/Nb ratio of the carbonatites is the same as the

460 worldwide carbonatite average (0.8; Chakhmouradian 2006), and much lower than the

461 Zr/Nb ratio of the phoscorite (\sim 6.39).

462 Y/Ho ratios are close to the primitive mantle value (~27) for the majority of carbonatite 463 samples (21.5–27.1), but the high-Sr calcite carbonatite (CDD2-21A) has Y/Ho = 15.1 and

464	the high-REE dolomite carbonatite dyke (2; CDD2-25A) has a low value of 2.14 and a
465	negative Eu anomaly (Eu/Eu * = 0.62). The high-REE apatite-monazite-(Ce) rock (CCD1-
466	36) also has a relatively low Y/Ho ratio of 17.9.
467	Ga/Ge ratios in a large group of calcite and dolomite carbonatites $(n = 6)$ are on
468	average 5.34 (Table 4), which is slightly above the ratio for the primitive mantle \sim 3.67.
469	Higher Ga/Ge ratios occur in samples with Al-bearing minerals, and thus a higher Ga
470	content, apart from the late-stage high-REE dolomite carbonatite (CDD2-25A). The tightly
471	constrained nature and consistency of the Ga/Ge ratios for the majority of carbonatite
472	samples suggests that this ratio may reflect the mantle source.
473	
474	H-C-O stable isotopes
475	
476	Several groupings and trends in the C-O isotope data can be defined for the CRCC samples
477	(Table 5; Fig. 10). High-Sr calcite carbonatites form a group with a range in δ^{18} O of 7.5 to
478	8.6 ‰ and δ^{13} C of -4.2 to -4.0 ‰. This group exhibits a positive δ^{13} C shift (1) at almost
479	constant δ^{18} O from a theoretical uncontaminated mantle source composition. Seven
480	samples of dominantly dolomite carbonatite (with one sample of calcite carbonatite) define
481	a weak positive trend over the ranges in $\delta^{18}O$ of 8.3 to 12.6 ‰ and $\delta^{13}C$ of -3.4 to -2.2 ‰
482	(shift 2). A group of low-Sr dolomite carbonatite samples (with vuggy textures) have $\delta^{18}O$
483	values from 20.8 to 21.9‰, with a relatively narrow range in δ^{13} C of -4.3 to -3.6 ‰ (shift 3

from the primary carbonatite field). The clinopyroxenite samples define two groups, one 484

with $\delta^{18}O$ values from 11.1 to 11.3 ‰ and $\delta^{13}C$ from -5.6 to -5.4 ‰, and another group 485

486	with δ^{18} O from 9.7 to 11.2 ‰ and δ^{13} C from -4.4 to -3.9 ‰ that includes one amphibole-
487	apatite phoscorite. One further clinopyroxenite sample contains calcite that has experienced
488	a large shift in δ^{18} O compared to the signature of other clinopyroxenites (δ^{18} O = 21.4 ‰,
489	δ^{13} C = -3.8 ‰). The results of H ₂ O-contents and stable H isotope analysis of fluid
490	inclusion-hosted H_2O , as well as bulk carbonate C and O isotope compositions for ten
491	carbonate samples from various carbonatites are presented in Table 6 and Fig. 11.
492	
493	Discussion
494	
495	Evolution of the Cummins Range carbonatites

Current evidence suggests that carbonatite magmas may have evolved from mantle-derived 497 alkali-rich carbonated silicate magmas by some form of fractional crystallization or liquid 498 499 immiscibility (e.g. Lee and Wylie 1998; Downes et al. 2005; Chakhmouradian and Zaitsev 500 2012). Alternatively, a small number of carbonatites probably were derived directly from 501 the mantle by partial melting of metasomatised peridotite (e.g. Ray et al. 2013; 502 Chakhmouradian and Zaitsev 2012). At Cummins Range, the association of the carbonatites with coeval clinopyroxenite suggests a genetic relationship between the two. 503 504 No evidence for any form of liquid immiscibilty (e.g. conjugate silicate-carbonate or 505 silicate-phosphate melts, or melt inclusion evidence of two immiscible liquids) involved in 506 the evolution of the Cummins Range carbonatites has been discovered so far, however the 507 operation of fractional crystallization processes is evident from the presence of apatite-

phlogopite-magnetite (\pm ilmenite \pm pyrochlore) rich bands within the carbonatites, and 508 509 cumulate textures in associated phoscorite and clinopyroxenite in parts of the CRCC. The 510 fractionation of REE-poor magnetite, ilmenite, phlogopite and/or diopside, along with dolomite or calcite, is thought to have played a role in the derivation of the late-stage, high-511 512 REE dolomite carbonatite dykes at Cummins Range. However, this picture is complicated 513 by the role of apatite in controlling the REE budget in these rocks. Bands of cumulatetextured apatite-amphibole-rich carbonatite are enriched in Zr, Nb, REEs, F, P and Na in 514 515 comparison to associated calcite carbonatite (compare CDD2-21A and CDD2-27). The increased REE content in the cumulate rock could be related to higher apatite content, but 516 Na-Zr-REE-bearing metasomatic-hydrothermal fluids have also altered these rocks, where 517 518 zircon and amphiboles appear to overprint the primary fabric and calcite replaces monazite-519 (Ce) after apatite. One of the cumulate-textured apatite-amphibole phoscorite units (CDD1-520 22) also is hydrothermally mineralised, with minor fluorite replacing carbonate, and this is 521 reflected in the relatively high Y, HREE and F content of this rock. Therefore, apart from one very low volume parisite-(Ce)-bearing dolomite carbonatite dyke (1), the primary 522 magmatic carbonatites do not appear to have been greatly enriched in REEs by magmatic 523 fractionation processes. Hydrothermal processes probably were of greater importance in 524 525 enriching the high-REE dolomite carbonatite dyke (2) in LREEs (see below). The HFSE chemistry of the Cummins Range carbonatites shows similarities to 526

carbonatites from the Kola Alkaline Province in Russia (e.g. Zr/Hf and Zr/Nb ratios), but is
notably different from post-orogenic carbonatites such as Eden Lake, Canada where the
Zr/Nb ratio (24.5; Chakhmouradian et al. 2008) is much higher than the worldwide
carbonatite average of 0.8 (Chakhmouradian 2006). In contrast to the low Zr and Hf content

of the Cummins Range carbonatites, the associated clinopyroxenite is extremely enriched in
these elements (Fig. 3). Therefore, if the primary high-Sr calcite carbonatite was derived
from a carbonated silicate parental magma, then the very low Nb, Ta, Zr and Hf content of
the carbonatites could be a function of the fractionation of phases such as zirconolite. The
relationship between the clinopyroxenite and the carbonatites will be explored in more
detail in subsequent work.

537 Stable C and O isotope data for the high-Sr dolomite carbonatites and one high-REE dolomite carbonatite dyke exhibits a significant shift (2; Fig. 10) from the primary 538 carbonatite field that could be indicative of either Rayleigh fractionation, an internal 539 540 fluid/magma/mineral evolution with the crystallization and cooling of a CO₂-H₂O-bearing 541 magma (see Deines 1989; Demény et al. 2004; Ray and Ramesh 1999, 2000, 2006), the 542 direct assimilation of sedimentary carbonate (e.g. Santos and Clayton 1995), or addition of external carbon by infiltrating fluids (Demény et al. 1998). Rayleigh fractionation appears 543 544 to be a more likely process in producing shift (2) than the assimilation of sedimentary 545 carbonate given the geological setting of the CRCC, which has intruded the 546 metamorphosed siliciclastic sediments of the Archean Olympio Formation and gneisses of 547 the Paleoproterozoic Lamboo Complex (Andrew 1990). The dolomite carbonatite sample (CR7) that defines the furthest extent of this trend (2) in the CRCC data ($\delta^{18}O = 12.6$ %). 548 δ^{13} C = -2.2 ‰) is composed of turbid, microporous dolomite and contains minor quartz 549 veining and weak REE mineralization associated with vugs. This suggests that the sample 550 has been hydrothermally altered, and possibly it experienced a positive shift in δ^{18} O from 551 552 its primary isotopic composition similar to other hydrothermally altered samples. The high-553 Sr dolomite carbonatites that fall along this trend (2) have relatively fractionated

554	LREE/HREE patterns (La/Yb _{CN} ~ 96.5–352), along with depletions in the HREEs and Y in
555	comparison to the high-Sr calcite carbonatites and low-Sr dolomite carbonatites (Fig. 9).
556	This includes the dolomite carbonatite dyke (CDD1-37B; $\delta^{18}O = 9.1 \%$, $\delta^{13}C = -2.9 \%$)
557	associated with the high-REE apatite-monazite-(Ce) rock in CDD1.
558	In the high-REE dolomite carbonatite (CDD2-25), the pink calcite that replaces
559	primary apatite and associated monazite-(Ce) has higher δ^{18} O than groundmass dolomite.
560	This indicates a shift in δ^{18} O at relatively constant δ^{13} C that may have been produced by
561	postmagmatic isotope exchange with a water-rich carbonatitic fluid (cf. Zaitsev et al. 2002)
562	and there is evidence for the exsolution of an aqueous fluid phase indicated by the REE
563	geochemistry of this dyke (low Y/Ho ratio and Eu anomaly; cf. Buhn et al. 2001; Buhn
564	2008). The second high-REE dolomite carbonatite (CDD2-26) has a more extreme δ^{18} O
565	value that suggests hydrothermal alteration similar to shift (3). Both of these dolomite
566	carbonatite dykes exhibit a positive shift in δ^{13} C (-3 to -3.3 ‰) in comparison to the group
567	of high-Sr calcite carbonatites with δ^{13} C ~ -4 ‰. This shift may have been produced by
568	Rayleigh fractionation processes as outlined above (shift 2), or by the addition of external
569	carbon in the form of dissolved HCO_3^- or CO_3^{2-} in the infiltrating fluid (Demény et al.
570	1998; Demény et al. 2004).

571 Stable hydrogen isotope compositions of water trapped in inclusions can provide 572 constraints on the origin of fluids as the δD values can significantly differ between primary 573 magmatic water and crustal solutions (Sheppard 1986). The present δD dataset ranges from 574 -54 to -34 ‰ (Fig. 11, Table 6), which is similar to the upper limit of the δD range 575 obtained for the Speewah complex ~330 km NNE of the CRCC (Fig. 1; Czuppon et al. 576 2014). Within this δD range no systematic change was found with the H₂O content (i.e., the

577	amount of inclusion-hosted water; Fig. 11a) of the carbonate samples, thus the degassing
578	and/or mixing processes assumed for the Speewah complex did not affect the Cummins
579	Range rocks. Both the δ^{13} C and δ^{18} O data vary independently from the δ D values (Fig. 11b,
580	c) suggesting that the evolution of the carbonatite system was not related to mixing of
581	fluids of different origins.

583 Hydrothermal processes and REE mineralization

584

The highest grade REE mineralization discovered so far beneath the oxidised zone within 585 the CRCC is the unusual apatite-monazite-(Ce) rock intersected in drill hole CDD1 over the 586 587 interval 261.85–275.2 m (Figs 6, 7). The limited intersection of this REE-rich zone and the 588 broken nature of the drill core does not allow for a comprehensive interpretation of its origin. In the CRCC, those intervals that show the complex intergrowth of fine, elongated 589 590 monazite-(Ce) crystals in apatite are cut by veins of talc-amphibole that appears to 591 preferentially replace apatite (Fig. 7). Associated foliated rocks in which monazite-(Ce) crystals occur in a talc-amphibole matrix may have developed from more apatite-rich rocks 592 in which the apatite has been replaced by talc during metasomatism/hydrothermal alteration 593 (Fig. 7). Several lines of evidence suggest a hydrothermal origin for the high-REE apatite-594 595 monazite-(Ce) rock. Firstly, the texture of the apatite vein adjacent to the apatite-monazite-596 (Ce) zone illustrated in Fig. 6 indicates hydrothermal growth. In addition, the composition 597 of apatite from the apatite-monazite-(Ce) rock is quite distinct from that of magmatic 598 apatite in associated carbonatites in terms of Sr and REE content (Fig. 8). High-Sr

hydrothermal apatite with some textural and compositional similarities to this occurs in 599 600 hydrothermal phosphate vein-type ores from the southern Central Iberian Zone, Spain 601 (Vindel et al. 2014). De Toledo et al. (2004) also described high-Sr hydrothermal apatites 602 from the Catalao I alkaline-carbonatite complex in Brazil. Positive Eu anomalies in the 603 REE-enriched cores of some zoned apatite crystals in the high-REE apatite-monazite-(Ce) rock suggest crystallization from a Eu-enriched fluid under reducing conditions (cf. Vindel 604 et al. 2014). The very large enrichment in the LREEs evident in the chondrite-normalised 605 REE pattern of the apatite-monazite-(Ce) rock also is consistent with hydrothermal 606 mineralization (Fig. 9a; cf. Ngwenya 1994; Ruberti et al. 2008). The apatite-monazite-(Ce) 607 rock exhibits shifts to higher δ^{18} O in comparison to an associated dolomite carbonatite dyke 608 609 (Fig. 10). Texturally, the dolomite in this apatite-monazite-(Ce) rock appears to be associated with talc-amphibole-pyrrhotite veining that crosscuts the apatite-monazite-(Ce) 610 fabric and this shift in δ^{18} O probably is related to hydrothermal alteration. A factor 611 612 controlling the occurrence of this high-grade apatite-monazite-(Ce) rock appears to have been the initial presence of an apatite-rich lithology within the shear zone that was subject 613 614 to subsequent hydrothermal mineralization, where monazite-(Ce) precipitated from REErich fluids, and partially replaced and overprinted apatite. The shear zone was the conduit 615 616 for hydrothermal fluid flow probably contemporaneously with carbonatite emplacement. The timing of this monazite-(Ce) mineralization is presently the subject of further 617 geochronological studies. 618

Hydrothermal alteration at decreasing temperature probably produced the significant
shift from the primary carbonatite field seen particularly in the low-Sr, weakly mineralised,
dolomite carbonatites (Fig. 10). The widespread hydrothermal dolomitization of

622	carbonatites within the CRCC and the occurrence of associated talc-rich zones within shear
623	zones suggests some similarities to a number of hydrothermal talc deposits, e.g. Ruby
624	Mountains, Montana, USA (Anderson et al. 1990; Brady et al. 1998); Puebla de Lillo,
625	Cantabrian zone, Variscan belt of Iberia, Northern Spain (Tornos and Spiro 2000); and
626	Göpfersgrün, Fichtelgebirge, Germany (Hecht et al. 1999). The talc may have precipitated
627	from Mg and Si-rich hydrothermal fluids at temperatures of approximately 250–400°C (cf.
628	Hecht et al. 1999). An indication of retrograde hydration is the widespread replacement of
629	diopside by actinolite (uralitization) in the clinopyroxenite. The source of Mg for the
630	formation of talc and dolomite is uncertain but may be the associated clinopyroxenite.
631	It appears that the most important episode of REE mineralization in the Cummins
632	Range carbonatites probably was associated with the late magmatic-hydrothermal phase of
633	carbonatite emplacement, where REEs were mobilised from primary magmatic carbonates
634	(Sr-bearing calcite) and apatite to produce monazite-(Ce) and the REE-fluorocarbonates,
635	parisite-(Ce) and synchysite-(Ce) (cf. Wall and Mariano 1996; Wall and Zaitsev 2004;
636	Chakhmouradian and Zaitsev 2012). A recent review of the transport and deposition of
637	REEs by hydrothermal fluids (Williams-Jones et al. 2012) suggested that a high chloride
638	activity was an important feature of the fluids involved. Chloride species are thought to
639	transport the REEs in most hydrothermal systems (Williams-Jones et al. 2012). At
640	Cummins Range, a possible mechanism for the deposition of the parisite-(Ce) and
641	synchysite-(Ce) could have been:

642 REECl²⁺ + HF + 2HCO₃⁻ + Ca²⁺ = REECa(CO₃)₂F + 3H⁺ + Cl⁻ (cf. Williams-Jones et 643 al. 2012). The development of vugs in the low-Sr dolomite carbonatite indicates that some
dolomite (or calcite) was dissolved probably through reaction with hydrothermal fluids.
The following reaction involving the dolomite carbonatite may have increased the HCO₃⁻
activity and raised the pH of the fluids:

648
$$2H^+ + CaMg(CO_3)_2 = Ca^{2+} + Mg^{2+} + 2HCO_3^-,$$

649 resulting in the precipitation of parisite-(Ce) and synchysite-(Ce) in solution cavities (cf. Williams-Jones et al. 2012). Reaction with host carbonatite wall rocks appears to have been 650 651 a valid mechanism for the precipitation of REE-fluorocarbonates. Monazite-(Ce) most 652 commonly occurs rimming or replacing primary apatite, whereas the REE-fluorocarbonates are generally restricted to a carbonate host. The replacement of apatite by monazite-(Ce) is 653 654 a common relationship in hydrothermal settings (see Wall and Mariano 1996; Smith et al. 655 1999), and apatite dissolution and monazite-(Ce) precipitation may have proceeded as follows: 656

657
$$Ca_5(PO_4)_3F + 4H^+ + REECl^{2+} = REEPO_4 + 5Ca^{2+} + 2H_2PO_4^- + F^- + Cl^-$$

658

659 Relationship between carbonatites and associated clinopyroxenite and phoscorite

660

The H-C-O stable isotope data provide some insight into the relationship between the carbonatites and associated clinopyroxenite and phoscorite in the CRCC. Cummins Range exhibits similarities in stable isotope patterns to some of the carbonatite-phoscorite complexes from the Kola Alkaline Province (Demény et al. 2004). Two samples of

665	clinopyroxenite and one of an amphibole-apatite phoscorite have $\delta^{13}C$ values of ~ -4 ‰
666	similar to associated high-Sr calcite carbonatite (Fig. 10). The slight positive shift in $\delta^{18}O$
667	for these samples is consistent with carbonate-silicate isotope exchange at decreasing
668	temperatures (cf. Deines 1989; Demény et al. 2004). One clinopyroxenite sample (CDD2-
669	24) shows a more extreme shift in δ^{18} O that suggests that it might have been affected by
670	hydrothermal alteration. Of particular interest are the two clinopyroxenite samples (CDD2-
671	11, CDD2-14) that have δ^{13} C values (-5.62 to -5.38 ‰) more within the range of primary
672	mantle carbonate and similar to values for the Mt Weld carbonatite in Western Australia.
673	The shift in δ^{18} O for these samples, to place them outside the range for primary igneous
674	carbonate, also could be related to carbonate-silicate isotope exchange at decreasing
675	temperatures (cf. Deines 1989; Demény et al. 2004). These samples do not show the shift in
676	δ^{13} C that distinguishes the high-Sr calcite carbonatites and some clinopyroxenite and
677	phoscorite samples (shift 1). This could mean that they are derived from a separate mantle
678	source that has been unaffected by source contamination.

The relatively high δD values from the Cummins Range carbonatites indicate that the 679 fluid associated with carbonate formation contained a significant amount of crustal 680 component in accordance with the elevated δ^{13} C values. The normal magnatic δ^{18} O values 681 (between 6 and 10 ‰) of some of the carbonates at higher-than-mantle C isotopic 682 compositions, however, suggest that the O isotope compositions in these samples were 683 buffered by a magmatic silicate reservoir at high temperature. These observations 684 collectively indicate that the carbonated silicate magma interacted with crustal fluids at 685 depth, and this interaction shifted the H and C isotope compositions due to the relatively 686 high proportion of H and C in the fluid relative to the magma. In contrast to H and C, the O 687

isotope compositions were buffered by the silicate magma from which the carbonate meltand associated fluids were separated.

690

691 Nature and evolution of mantle source regions

692

From initial work on a limited range of samples, the Cummins Range carbonatite has 693 quite primitive Sr-Nd isotope compositions suggesting that it is derived from an OIB-type 694 source within the depleted convecting mantle (87 Sr/ 86 Sr = 0.7028–0.7032; ϵ Nd = 1.6–2.4; 695 Sun et al. 1986). This source is quite distinct from the radiogenic, enriched mantle sources 696 697 of the Mesoproterozoic Argyle lamproite (Jaques et al. 1989b) and the Miocene lamproites of the West Kimberley province (McCulloch et al. 1983; Fraser et al. 1985). The high 698 starting δ^{13} C value of around -4 ‰ for the source of the Cummins Range carbonatites 699 700 therefore could mean metasomatism of the mantle source region by CO₂ released by a 701 subducted slab (Ray and Ramesh 1999; Zaitsev et al. 2002), or perhaps the removal of a ¹³C-depleted component within the mantle via isotope fractionation processes (Deines 702 703 2002).

Several authors have proposed that a period of NW-dipping subduction beneath the
Kimberley Craton occurred during the Paleoproterozoic, before the eventual collision and
amalgamation of the craton with the remainder of the North Australian Craton at
approximately 1820 Ma (Myers et al. 1996; Tyler et al. 1999; Griffin et al. 2000). This was
the last period during which subduction-related processes would have influenced the mantle
beneath the East Kimberley. The ~1800 Ma Hart Dolerite, a widespread series of tholeiitic

710 basaltic and related granophyre intrusions centered in the SE of the Kimberley Craton (Fig. 711 1), is inferred to have been sourced from subduction-modified mantle beneath the 712 Kimberley Craton, and was closely related to plate reorganization in late Paleoproterozoic 713 Australia (Sheppard et al. 2013). Other evidence of plate-margin processes are provided by 714 C isotopic and mineral inclusion studies of eclogitic diamonds from the Argyle lamproite that suggest that they probably formed in subducted oceanic crust that was accreted to the 715 base of the lithosphere in the Proterozoic (Jaques et al. 1989a). Schulze et al. (2013) 716 interpreted an association of light δ^{13} C in Argyle eclogitic diamonds with high δ^{18} O values 717 of their garnet and coesite silicate inclusions to indicate a subduction origin. A recent study 718 719 of the noble gas and C isotopic composition of eclogitic diamonds from Argyle suggests 720 that mixing had occurred between a subducted atmospheric and crustal component and mantle noble gases in their formation (Honda et al. 2012). 721

Further Sr-Nd isotopic analysis is required to examine the observed variation in δ^{13} C in some clinopyroxenite samples from the CRCC and confirm that they are derived from a separate mantle source unaffected by subduction-related CO₂ metasomatism or the removal of a ¹³C-depleted component within the mantle.

There are several processes that could explain the high δD values of the Cummins Range carbonatites. Degassing of H₂ from the mantle source would leave the residual fluid enriched in deuterium, so the source may acquire a high δD signature (e.g. see Demény et al. 2012). However, this process would not produce high $\delta^{13}C$. Alternatively, interaction with crustal fluids at crustal levels may have taken place, where the emplacement of a carbonated silicate magma may have induced a convective flow in the fluids surrounding the complex. If these fluids had a high- δD signature and the magma interacted with these 733 fluids, the magma, and later the segregated carbonate melt would have a high- δD fluid 734 component too. Mixing of magmatic fluids and waters circulating in the surrounding country rocks may well have produced a fluid with δD around -40 ‰ as observed. This is 735 possible, as we see appropriate fluid compositions regionally, for example at Speewah 736 737 (Czuppon et al. 2014), but in this case the C and O isotope compositions should show at 738 least a slight change with δD . No such correlation is evident in Fig. 11. The preservation of 739 primitive Sr and Nd isotope compositions in the Cummins Range carbonatite would also 740 argue against significant exchange with crustal fluids in this way. Finally, the subduction and devolatilization of oceanic crust may have provided D-enriched fluids that could, for 741 742 example, have metasomatised the mantle wedge (e.g. Giggenbach 1992). The release of CO₂ and H₂O from a subducting slab would produce high δD and $\delta^{13}C$ in the 743 metasomatised mantle, but the O isotope composition would be buffered by the silicate 744 745 mass. CO₂-H₂O fluids without melt may not contain significant amounts of Sr and Nd, so 746 the magma's Sr-Nd isotope compositions would remain intact. Therefore it appears that the δD signature of the Cummins Range carbonatites could be a further indication subduction-747 748 related metasomatism of the mantle source.

749

750 Summary

751

The CRCC was emplaced at the junction of the Paleoproterozoic Halls Creek and King Leopold paleo-orogenic belts at the margin of the Kimberley Craton probably during a phase of Neoproterozoic extension. Trace-element geochemistry suggests that the carbonatites have affinities to rift-related carbonatites (cf. Chakhmouradian 2009) and
generally are not greatly enriched in the REEs (Fig. 9a). The Cummins Range carbonatites 756 757 follow an intrusive sequence where early calcite carbonatite, possibly derived from a carbonated silicate parental magma by fractional crystallization, has been intruded by late-758 stage dolomite carbonatites with higher REE content (Fig. 12; cf. Wall and Mariano 1996). 759 760 The shift in C-O stable isotope data from the primary carbonatite field for the high-Sr 761 dolomite carbonatites and a high-REE dolomite carbonatite is consistent with a process of Rayleigh fractionation with magma crystallization and cooling. These dolomite carbonatites 762 763 may have been derived from the calcite carbonatites through the fractionation of phases such as dolomite and apatite. Hydrothermal and metasomatic processes, probably involving 764 765 fluids exsolved from the carbonatites, produced widespread dolomitization of the 766 carbonatites and high-grade REE mineralization in a late-stage dolomite carbonatite dyke and in shear zone-hosted apatite-monazite-(Ce) rocks. The relatively high δD values (-54 to 767 768 -34 ‰) of H₂O derived from carbonatites from the CRCC indicate that the fluids associated with carbonate formation contained a significant amount of crustal component in 769 accordance with the elevated δ^{13} C values (~ -4 ‰). The high δ D and δ^{13} C signature of the 770 carbonatites may have been produced by CO₂-H₂O metasomatism of the mantle source 771 during Paleoproterozoic subduction beneath the eastern margin of the Kimberley Craton. 772

773

774 Acknowledgements

775

We would like to thank Bernie Kirkpatrick from Navigator Resources and Geoff Collis from
Kimberley Rare Earths for providing samples and geological data from the CRCC, as well as
company illustrations and images. Geochemical analyses were funded in part by the Geological

779	Survey of Western Australia, the Hungarian Academy of Sciences and the Western Australian
780	Museum. We thank Liz Webber and Bill Pappas for the geochemical analyses undertaken at
781	Geoscience Australia and Jeremy Wykes for the LA-ICP-MS analyses done at ANU. James Tolley
782	(ANU) kindly provided a digital version of the simplified geological map. Dr Lena Hancock from
783	the GSWA provided Hylogger data and helped with discussions of the Cummins Range geology.
784	The staff of the GSWA core library provided access to and samples from the Cummins Range drill
785	core. Prof. A.E. Williams-Jones and an anonymous reviewer provided very helpful detailed reviews
786	of an earlier version of this manuscript. Dr Ben Grguric gave helpful guidance in the interpretation
787	of sulfide and replacement textures.

789 **References**

790

791	Anderson DL, Mogk DW, Childs JF (1990) Petrogenesis and timing of talc formation in
792	the Ruby Range, southwestern Montana. Economic Geology 85:585-600.
793	Andrew R (1990) Cummins Range Carbonatite. In: Hughes FE (ed) Geology of the Mineral
794	Deposits of Australia and Papua New Guinea. AusIMM, Melbourne, pp 711-713
795	Belousova EA, Griffin WL, O'Reilly SY, Fisher N (2002) Igneous zircon: trace element
796	composition as an indicator of source rock type. Contrib Mineral Petrol 143:602-622.
797	doi: 10.1007/s00410-002-0364-7
798	Brady JB, Cheney JT, Rhodes AL, Vasquez A, Green C, Duvall M, Kogut A, Kaufman L,
799	Kovaric D (1998) Isotope geochemistry of Proterozoic talc occurrences in Archean
800	marbles of the Ruby Mountains, southwest Montana, USA. Geol Mat Res 1:1–41.

801	Bühn B, Wall F, Le Bas MJ (2001) Rare-earth element systematics of carbonatitic
802	fluorapatites, and their significance for carbonatite magma evolution. Contrib Mineral
803	Petrol 141(5):572–591
804	Bühn B (2008) The role of the volatile phase for REE and Y fractionation in low-silica
805	carbonate magmas: implications from natural carbonatites, Namibia. Mineral Petrol
806	92(3-4):453-470
807	Cawood PA, Korsch RJ (2008) Assembling Australia: Proterozoic building of a continent.
808	Precamb Res 166:1–38
809	Chakhmouradian AR (2009) The geochemistry of carbonatites revisited: Two major types
810	of continental carbonatites and their trace-element signatures. EGU General
811	Assembly 2009, held 19-24 April, 2009 in Vienna, Austria http://meetings copernicus
812	org/egu2009, p 10806 11:10806
813	Chakhmouradian AR, Böhm CO, Demény A, Reguir EP, Hegner E, Creaser RA, Halden
814	NM, Yang P (2009) "Kimberlite" from Wekusko Lake, Manitoba: Actually a
815	diamond-indicator-bearing dolomite carbonatite. Lithos 112:347-357. doi:
816	10.1016/j.lithos.2009.03.039
817	Chakhmouradian AR, Mumin A, Demény A, Elliott B (2008) Postorogenic carbonatites at
818	Eden Lake, Trans-Hudson Orogen (northern Manitoba, Canada): geological setting,
819	mineralogy and geochemistry. Lithos 103:503-526
820	Chakhmouradian AR, Zaitsev AN (2012) Rare Earth Mineralization in Igneous Rocks:
821	Sources and Processes. Elements 8(5):347-353

822	Czuppon Gy, Ramsay RR, Özgenc I, Demény A, Gwalani LG, Rogers K, Eves A, Papp L,
823	Palcsu L, Berkesi M, Downes PJ (2014) Stable (H, O, C) and noble-gas (He and Ar)
824	isotopic compositions from calcite and fluorite in the Speewah Dome, Kimberley
825	Region, Western Australia: Implications for the conditions of crystallization and
826	evidence for the influence of crustal-fluid mixing. Mineral Petrol doi:
827	10.1007/s00710-014-0333-7.
828	Demény A (1995) H isotope fractionation due to hydrogen-zinc reactions and its
829	implications on D/H analysis of water samples. Chem Geol 121:19-25
830	Demény A, Ahijado A, Casillas R, Vennemann TW (1998) Crustal contamination and
831	fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain): a
832	C, O, H isotope study. Lithos 44(3-4):101–115
833	Demény A, Sitnikova MA, Karchevsky PI (2004) Stable C and O isotope compositions of
834	carbonatite complexes of the Kola alkaline province: phoscorite-carbonatite
835	relationships and source compositions. In: Wall F, Zaitsev AN (eds) Phoscorites and
836	Carbonatites from Mantle to Mine. Mineralogical Society Series 10, Mineralogical
837	Society, London, pp 407–431
838	Den (m. A. Sill(and 7 (2008) Combination of efficiency and ending and ending
	Demeny A, Sikiosy Z (2008) Combination of off-line preparation and continuous flow
839	mass spectrometry: D/H analyses of inclusion waters. Rapid Comm Mass Spect
839 840	mass spectrometry: D/H analyses of inclusion waters. Rapid Comm Mass Spect 22:1329-1334
839 840 841	 Demény A, Sikiosy Z (2008) Combination of off-line preparation and continuous flow mass spectrometry: D/H analyses of inclusion waters. Rapid Comm Mass Spect 22:1329-1334 Demény A, Harangi S, Vennemann TW, Casillas R, Horváth P, Milton AJ, Mason PRD,
839 840 841 842	 Demeny A, Siklosy Z (2008) Combination of off-line preparation and continuous flow mass spectrometry: D/H analyses of inclusion waters. Rapid Comm Mass Spect 22:1329-1334 Demény A, Harangi S, Vennemann TW, Casillas R, Horváth P, Milton AJ, Mason PRD, Ulianov A (2012) Amphiboles as indicators of mantle source contamination:

ratios. Lithos 152:141-156. doi:10.1016/j.lithos.2012.07.001

845	De Toledo M, Lenharo S, Ferrari V, Fontan F, De Parseval P, Leroy G (2004) The
846	compositional evolution of apatite in the weathering profile of the Catalão I alkaline-
847	carbonatitic complex, Goiás, Brazil. Can Mineral 42:1139–1158.
848	Downes H, Balaganskaya E, Beard AD, Liferovich RP, Demaiffe D (2005) Petrogenetic
849	processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline
850	Province: A review. Lithos 85:48–75. doi: 10.1016/j.lithos.2005.03.020
851	Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt
852	JM, Handler MR (1997) A simple method for the precise determination of \geq 40 trace
853	elements in geological samples by ICPMS using enriched isotope internal
854	standardisation. Chem Geol 134:311–326. doi: http://dx.doi.org/10.1016/S0009-
855	<u>2541(96)00100-3</u>
856	Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchell RH, Scott-Smith BH (1985) Sr, Nd and
857	Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth
858	Planet Sci Lett 76:57–70.
859	Geological Survey of Western Australia (2011) Investment opportunities-Rare Earths.
860	http://www.hastingsraremetals.com/wp-content/uploads/2012/07/2011-10-03-7_wa-
861	mines-dept-rare-earth-october-2011.pdf. Accessed 20 December 2013
862	Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems
863	along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495-
864	510

865	Graham S, Lambert D, Shee S (2004) The petrogenesis of carbonatite, melnoite and
866	kimberlite from the Eastern Goldfields Province, Yilgarn Craton. Lithos 76:519–533
867	Griffin TJ, Page RW, Sheppard S, Tyler IM (2000) Tectonic implications of
868	Palaeoproterozoic post-collisional, high-K felsic igneous rocks from the Kimberley
869	region of northwestern Australia. Precamb Res 101:1-23
870	Hassan LY (2000) Mineral occurrences and exploration potential of the East Kimberley.
871	Geological Survey of Western Australia Report 74, Department of Minerals and
872	Energy, Perth, 60 pp
873	Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element
874	and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic
875	implications for dolomite-hosted talc mineralization at Göpfersgrün (Fichtelgebirge,
876	Germany). Chem Geol 155:115–130.
877	Honda M, Phillips D, Kendrick MA, Gagan MK, Taylor WR (2012) Noble gas and carbon
878	isotope ratios in Argyle diamonds, Western Australia: Evidence for a deeply
879	subducted volatile component. Australian J Earth Sci 59(8):1135-1142
880	Jaques AL, Lewis JD, Smith CB (1986) The kimberlites and lamproites of Western
881	Australia. Geological Survey of Western Australia Bulletin 132, 268 pp
882	Jaques AL, Hall AE, Sheraton JV, Smith CB, Sun SS, Drew R, Foudoulis C, Ellingsen K
883	(1989a) Composition of crystalline inclusions and C-isotopic composition of Argyle
884	and Ellendale diamonds. In: Ross J et al. (eds) Kimberlites and Related Rocks: Their

885	Crust/Mantle Setting, Diamonds and Diamond Exploration. Geol Soc Australia Spec
886	Publ 14, vol. 2, pp 966–989
887	Jaques AL, Sun SS, Chappell BW (1989b) Geochemistry of the Argyle (AK1) lamproite
888	pipe, Western Australia. In: Ross J et al. (eds) Kimberlites and Related Rocks: Their
889	Composition, Occurrence, Origin and Emplacement. Geol Soc Australia Spec Publ
890	14, vol. 1, pp 170–188
891	Jaques AL, Milligan (2004) Patterns and controls on the distribution of diamondiferous
892	intrusions in Australia. Lithos 77(1-4):783-802
893	Jenner FE, O'Neill HS-C (2012) Major and trace analysis of basaltic glasses by laser-
894	ablation ICP-MS. Geochem. Geophys. Geosyst. 13, Q03003,
895	doi:10.1029/2011GC003890.
896	Johnson SP (2013) The birth of supercontinents and the Proterozoic assembly of Western
897	Australia. Geological Survey of Western Australia, Perth, 78pp
898	Keller J, Hoefs J (1995) Stable isotope characteristics of recent natrocarbonatites from
899	Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism: Oldoinyo Lengai
900	and the petrogenesis of natrocarbonatites. Springer Verlag, Berlin, pp 113-123
901	Kimberley Rare Earths (2012) Annual report to shareholders. Perth, Western Australia, pp
902	1–54. <u>http://anovametals.com.au/wp-</u>
903	content/uploads/2012/11/206 KRE 2012 Annual Report to Shareholders Final.pd
904	<u>f</u> . Accessed 20 December 2013

905	Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F
906	(2004) Introduction to phoscorites: occurrence, composition, nomenclature and
907	petrogenesis. In: Wall F and Zaitsev AN (eds), Phoscorites and Carbonatites from
908	Mantle to Mine: the key example of the Kola Alkaline Province. Mineralogical
909	Society Series 10, Mineralogical Society, London, pp 45-74
910	Lee W, Wyllie PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility
911	and differentiation, elucidated by model systems. J Petrol 39:2005–2013
912	Luguet A, Jaques AL, Pearson DG, Smith CB, Bulanova GP, Roffey SL, Rayner MJ,
913	Lorand JP (2009) An integrated petrological, geochemical and Re-Os isotope study
914	of peridotite xenoliths from the Argyle lamproite, Western Australia and implications
915	for cratonic diamond occurrences. Lithos 112:1096-1108
916	McCulloch MT, Jaques AL, Nelson D, Lewis JD (1983) Nd and Sr isotopes in kimberlites
917	and lamproites from Western Australia: an enriched mantle origin. Nature 302: 400-
918	403
919	Myers JS, Shaw RD, Tyler IM (1996) Tectonic evolution of Proterozoic Australia.
920	Tectonics 15:1431–1446
921	Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic
922	systematics in carbonatites and implications for the evolution of ocean-island sources.
923	Geochim Cosmochim Acta 52(1):1–18
924	Ngwenya BT (1994) Hydrothermal rare earth mineralisation in carbonatites of the Tundulu
925	complex, Malawi: Processes at the fluid/rock interface. Geochimica Cosmochim Acta
926	58(9):2061–2072

927	Norrish K, Chappell BW (1977) X-ray fluorescence spectrometry. In: Zussman J (ed)
928	Physical methods in determinative mineralogy, 2 nd edn. Academic Press, London, pp
929	201–272.
930	Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a
931	wide range of geological samples. Geochim Cosmochim Acta 33(4):431-453
932	Palme H, O'Neill HStC (2005) Cosmochemical estimates of mantle composition. In: RW
933	Carlson (ed) The Mantle and Core, Vol. 2 Treatise on Geochemistry. Elsevier-
934	Pergamon, Oxford, pp 1–38
935	Paton, C, Hellstrom, J, Bence, P, Woodhead, J, Hergt, J (2011) Iolite: Freeware for the
936	visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom.
937	26:2508-2518
938	Pidgeon RT, Smith CB, Fanning CM (1986) The ages of kimberlite and lamproite
939	emplacement in Western Australia. In: 4th International Kimberlite Conference,
940	Perth, 1986, Geol. Soc. Aust. Abstr. 16, pp 136-138
941	Pyke J (2000) Minerals laboratory staff develops new ICP-MS preparation method. Aust.
942	Geol. Survey Org. Res. Newslett. 33:12–14
943	Ray J, Ramesh R (1999) Evolution of carbonatite complexes of the Deccan flood basalt
944	province: stable carbon and oxygen isotopic constraints. J Geophys Res 104:29471-
945	29483
946	Ray J, Ramesh R (2000) Rayleigh fractionation of stable isotopes from a multicomponent
947	source. Geochim Cosmochim Acta 64:299–306

948	Ray JS, Ramesh R (2006) Stable Carbon and Oxygen Isotopic Compositions of Indian
949	Carbonatites. Internat Geol Rev 48:17-45. doi: 10.2747/0020-6814.48.1.17
950	Ray JS, Pande K, Bhutani R, Shukla AD, Rai VK, Kumar A, Awasthi N, Smitha RS, Panda
951	DK (2013) Age and geochemistry of the Newania dolomite carbonatites, India:
952	implications for the source of primary carbonatite magma. Contrib Mineral Petrol
953	166:1613–1632. doi: 10.1007/s00410-013-0945-7
954	Richards MN (1984) Annual report for 1983 on exploration licence 80/113, Cummins
955	Range, Mt. Bannerman, SE52-13, Western Australia. CRA Exploration Pty. Ltd.
956	Report to West Australian Department of Mines and Petroleum, A14632, CRAE Ref.
957	No. 12981, 40 pp
958	Richards MN (1985) Annual report for 1984 on exploration licence 80/113, Cummins
959	Range, Mt. Bannerman, SE52-13, Western Australia, Volume 1. CRA Exploration
960	Pty. Ltd. Report to West Australian Department of Mines and Petroleum, A16631,
961	CRAE Ref. No. 13612, 20 pp
962	Ruberti E, Enrich GER, Gomes CB, Comin-Chiaramonti P (2008) Hydrothermal REE
963	fluorocarbonate mineralization at Barra do Itapirapua, a multiple stockwork
964	carbonatite, southern Brazil. Can Mineral 46(4):901–914
965	Sanders TS (1999) Mineralization of the Halls Creek Orogen, east Kimberley region,
966	Western Australia. Geological Survey of Western Australia Report 66, Department of
967	Minerals and Energy, Perth, 44 pp
968	Santos R, Clayton RN (1995) Variations of oxygen and carbon isotopes in carbonatites: a

970	Schulze D, Harte B, Page FZ, Valley JW, Channer DMDeR, Jaques AL (2013)
971	Anticorrelation between low $\delta^{13}C$ of eclogitic diamonds and high $\delta^{18}O$ of their coesite
972	and garnet inclusions requires a subduction origin. Geology 41:455-458
973	Shapiro LM, Brannock WW (1962) Rapid analysis of silicate, carbonate and phosphate
974	rocks. US Geological Survey Bulletin 1144-A. US Government Printing Office.
975	Sheppard S (1986) Characterization and isotopic variations in natural waters. In: Valley
976	JW, Taylor Jr HP, O'Neil JR (eds) Reviews in Mineralogy 16, Stable isotopes in high
977	temperature geological processes. Mineral Soc Amer, pp 165-184
978	Sheppard S, Page RW, Griffin TJ, Rasmussen B, Fletcher IR, Tyler IM, Kirkland CL,
979	Wingate MTD, Hollis JA, Thorne AM (2012) Geochronological and isotopic
980	constraints on the tectonic setting of the c. 1800 Ma Hart Dolerite and the Kimberley
981	and Speewah Basins, Northern Western Australia. Geological Survey of Western
982	Australia Record 2012/7, 28pp
983	Spötl C, Vennemann TW (2003) Continuous-flow IRMS analysis of carbonate minerals.
984	Rapid Commun Mass Spectrom 17:1004-1006
985	Sun S-S, Jaques AL, McCulloch MT (1986) Isotopic evolution of the Kimberley Block,
986	Western Australia. In: 4th International Kimberlite Conference, Perth, 1986, Geol.
987	Soc. Aust. Abstr. 16, pp 346-348

988	Taylor Jr HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of
989	carbonatites from the Laacher See District, West Germany and the Alno District,
990	Sweden. Geochim Cosmochim Acta 31:407–430
991	Tornos F, Spiro BF (2000) The geology and isotope geochemistry of the talc deposits of
992	Puebla de Lillo (Cantabrian Zone, Northern Spain). Economic Geology 95:1277-
993	1296.
994	Tyler IM, Page RW, Griffin TJ (1999) Depositional age and provenance of the Marboo
995	Formation from SHRIMP U-Pb zircon geochronology: implications for the early
996	Palaeoproterozoic tectonic evolution of the Kimberley region, Western Australia.
997	Precamb Res 95:225–243
998	Wall F, Mariano AN (1996) Rare earth minerals in carbonatites: a discussion centered on
999	the Kangankunde carbonatite, Malawi. In: Jones AP, Wall F, Williams CT (eds) Rare
1000	Earth Minerals: Chemistry, Origin and Ore Deposits. Mineralogical Society Series 7,
1001	Mineralogical Society, London, pp 193-225
1002	Wall F, Zaitsev AN (2004) Rare earth minerals in Kola carbonatites. In: Wall F, Zaitsev
1003	AN (eds) Phoscorites and Carbonatites from Mantle to Mine: The Key Example of
1004	the Kola Alkaline Province. Mineralogical Society Series 10, Mineralogical Society,
1005	London, pp 341-373
1006	Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal Mobilisation of the
1007	Rare Earth Elements - a Tale of "Ceria" and "Yttria". Elements 8(5): 355-360
1008	Zaitsev AN, Demény A, Sindern S, Wall F (2002) Burbankite group minerals and their

1009	alteration in rare earth carbonatitessource of elements and fluids (evidence from CO
1010	and Sr-Nd isotopic data). Lithos 62:15-33
1011	
1012	Appendix 1: Supplementary data
1013	
1014	Exploration whole-rock geochemistry

1016	The graphic drill logs of drill holes CDD1 (Fig. 3) and CDD2 (red circles indicate the
1017	positions of late-stage, high-REE dolomite carbonatite dykes) were constructed using
1018	historical exploration whole-rock geochemical analyses undertaken in 1984 by Pilbara
1019	Laboratories in Perth, on behalf of CRA Exploration (Richards, 1985). These partial
1020	analyses were carried out by inductively-coupled plasma emission spectroscopy (ICP). Full
1021	details of the analytical procedures are described by Richards (1985). This report is
1022	available for download from the Western Australian Department of Mines and Petroleum
1023	website (http://www.dmp.wa.gov.au/launch/wamex/). The full dataset for drill holes CDD1
1024	and CDD2 is presented here. A plan illustrating a possible structural control on the
1025	orientation of the oxidised zone REE orebody in the CRCC is included (courtesy of
1026	Kimberley Rare Earths).

1027

1028 Figure Captions

1029	Fig. 1 Geological map showing the location of the Cummins Range Carbonatite Complex,
1030	Kimberley region, Western Australia (1:2500000 Geological Survey of Western Australia
1031	2014, extracted from GeoVIEW.WA on 05/06/2014. Perth, Western Australia: Department
1032	of Mines and Petroleum.)

Fig. 2 Geological map of the Cummins Range Carbonatite Complex (1:5000). Drill holes
CDD001, NRC035, NRC058: azimuth 180° (mag.), inclination 60°. CDD002: azimuth 270°
(mag.), inclination 60°. Geology modified after Richards (1985) and Andrew (1990) and
based on company drilling. Only the locations of drill holes sampled for use in this study
are shown.

1039

1040 Fig. 3 Graphic log of drill hole CDD1. Red circles indicate the position of high-REE

apatite-monazite-(Ce) rock associated with dolomite carbonatite dykes within a shear zone.

1042

Fig. 4 a Pink high-Sr calcite (cc) carbonatite containing a zircon megacryst (zrc) in an
apatite (ap)-amphibole-phlogopite-pyrochlore lamina, associated with magnetite (mt) and
dolomite (dol) (CDD1 323.9 m). b Calcite carbonatite containing large crystals of
magnetite, as well as amphibole (amp) and apatite (CDD2-4, 88.7 m). c High-Sr calcite
carbonatite containing apatite, phlogopite (phl) and magnetite overprinted by metasomatic
amphibole crystals (CDD2-21, 399.95 m). d Strongly foliated dolomite carbonatite
containing a composite zircon-dolomite porphyroblast (py – pyrite; CR5, CDD1 204.35 m).

Fig. 5 a Grey, late stage, high-REE dolomite carbonatite (par – parisite-(Ce), dol – 1051 1052 dolomite, py - pyrite; CDD2-26, 225.2 m). b Intergrown crystals of parisite-(Ce) and 1053 aeschynite-(Ce) (aesc) in dolomite carbonatite (note parisite-(Ce) overgrowths on primary crystal of parisite-(Ce); CDD2-26). c Grey, late stage, high-REE dolomite carbonatite dyke 1054 1055 intruding white high-Sr calcite carbonatite (CDD2-25, 397.35 m). Contains patches of pink calcite-monazite-(Ce) (cc-mz) replacing apatite (ap, phl – phlogopite, amp – amphibole). **d** 1056 Calcite and monazite-(Ce) (mz) replacing apatite in high-REE dolomite carbonatite 1057 (CDD2-25; SEM-BSE image). e White low-Sr dolomite carbonatite containing vugs 1058 (CDD2-8, 152 m). f Crystals of synchysite-(Ce) (syn) and dolomite lining vug in low-Sr 1059 1060 dolomite carbonatite (CDD2-18, 328.78 m).

1061

Fig. 6 Boundary between high REE apatite-monazite-(Ce) rock (ap-mz) and an adjacent
comb-textured apatite vein with a dolomite (dol) carbonatite vein at the bottom of the
image (thin section in transmitted light; CDD1, 270.33 m).

1065

1066 Fig. 7 a Texture of complex intergrowths in apatite-monazite-(Ce) rock (CDD1-33, 270.33

1067 m; ap – apatite, mz – monazite-(Ce)). **b** Crystals of monazite-(Ce) in talc-amphibole (amp)

1068 matrix (CDD1-29, 265.3 m). c BSE image showing texture of complex monazite-(Ce)-

- apatite intergrowths (CDD1-33; pyrr pyrrhotite). **d** BSE image showing texture of
- 1070 foliated monazite-(Ce)-amphibole-talc rock (CDD1-29). e Element map of complex
- 1071 monazite-(Ce)-apatite intergrowths illustrated in c. Red apatite (P); purple monazite-

1072	(Ce) (Ce); green – talc, amphibole (Si); light blue – pyrrhotite (S); black – dolomite. f BSE
1073	image illustrating further complex intergrowths of monazite-(Ce) and apatite (CDD1-33).
1074	

1075	Fig. 8 a SrO versus TREO, and b Chondrite-normalised REE patterns, for apatite from the
1076	high-REE apatite-monazite-(Ce) rock and carbonatites from the CRCC.

Fig. 9 a Chondrite-normalised REE patterns for the Cummins Range carbonatites. Average
magnesiocarbonatite from Chakhmouradian et al. (2009). b Primitive mantle-normalised
trace element diagram for the Cummins Range carbonatites (normalising data from Palme
and O'Neill (2005)).

1082

Fig. 10 Stable carbon and oxygen isotope compositions (in ‰ relative to V-PDB and VSMOW, respectively) for the Cummins Range carbonatite complex. Data for the Mt Weld
carbonatite are from Nelson et al. (1988) and Graham et al. (2004). Boxes indicate the
'primary carbonatite fields' of Taylor et al. (1967; black) and Keller and Hoefs (1995;
grey).

1088

Fig. 11 H₂O-contents (in ppm) and stable hydrogen isotope compositions of fluid inclusionhosted H₂O (in % relative to V-SMOW), as well as bulk carbonate C and O isotope compositions (in % relative to V-PDB and V-SMOW, respectively) for ten carbonate samples from the Cummins Range carbonatites. **a** δ D versus H₂O contents trapped in fluid 1094 (**b**) and δ^{18} O (**c**) values of the host carbonates.

1095

1096 Fig. 12 Schematic diagram illustrating the evolution of the CRCC.

Figure 1 Click here to download high resolution image

Figure 3 Click here to download high resolution image

Figure 9 Click here to download high resolution image

 $\delta^{18}O_{V\text{-SMOW}}$

Rock type	Texture	Mineralogy
Clinopyroxenite	Mesocumulate. Medium-	Phlogopite, diopside, apatite, magnetite,
	coarse-grained.	ilmenite, richterite, calcite, dolomite, actinolite
		(replacing diopside). Pyrrhotite, pyrite,
		chalcopyrite, galena, sphalerite. Titanite,
		zirconolite, calzirtite, perovskite (partially-
		completely replaced by ilmenite, lucasite?,
		kassite, titanite), baddeleyite, nioboaeschynite-
		(Ce), monazite-(Ce), allanite-(Ce), zircon,
		barite.
Phoscorite-	Cumulate. Medium-coarse-	Apatite, phlogopite, magnetite, richterite-
series apatite-	grained, massive to banded and	magnesioriebeckite, dolomite, calcite, ilmenite.
rich rocks	foliated metasomatised rocks.	Pyrite, chalcopyrite, pyrrhotite, sphalerite.
		Zircon, pyrochlore, nioboaeschynite-(Ce),
		barite, fluorite.
High-Sr calcite	White–light grey to pink.	Calcite (≤ 5 mm), apatite ($\leq 30\%$; ≤ 1.5 cm),
carbonatite	Massive to foliated. Bands of	magnetite (\leq 30%; \leq 3 cm), ilmenite, phlogopite
	cumulate-textured apatite-	$(\leq 1 \text{ cm})$, amphibole $(\leq 5\%; \leq 1.3 \text{ cm};$
	phlog-amph-magnetite.	metasomatic), dolomite (≤5 mm). Pyrrhotite,
		pyrite, chalcopyrite, sphalerite, galena. Zircon,
		pyrochlore (\leq 5%, generally \leq 1%; \leq 10 mm),
		nioboaeschynite-(Ce), parisite-(Ce), synchysite-
		(Ce), barite, chevkinite-(Ce), fergusonite,
		zirconolite, thorianite?
High-Sr	Massive, white, weakly-	Dolomite, calcite, strontianite, apatite ($\leq 5\%$;
dolomite	moderately fractured dolomite	$\leq 1.5 \text{ mm}; \text{ crystal clusters} \leq 1 \text{ cm}), \text{ pyrite } (\leq 1\%),$
carbonatite	carbonatite.	pyrrhotite, chalcopyrite, pyrochlore, ilmenite,
		monazite-(Ce) ($\leq 1\%$), parisite-(Ce), synchysite-
		(Ce), Ca-REE-Ba-Sr carbonates (burbankite or
		carbocernaite?)
High-REE	Massive, medium-grained grey	Dolomite, parisite-(Ce) (~15–20%; ≤ 3 mm),
dolomite	dolomite carbonatite.	pyrite (≤ 0.6 mm), monazite-(Ce), aeschynite-
carbonatite (1)		(Ce) (≤ 0.8 mm), galena.
High-REE	Massive grey dolomite	Dolomite, calcite, apatite, phlogopite,
dolomite	carbonatite. Pink calcite-	magnetite, monazite-(Ce), parisite-(Ce),
carbonatite (2)	monazite-(Ce) replacement	synchysite-(Ce), apatite, fergusonite,
	textures after apatite.	strontianite, Ca-REE-Ba-Sr carbonates
		(burbankite or carbocernaite?)
Low-Sr dolomite	White–grey foliated to massive	Dolomite (≤ 2 cm), calcite, apatite, magnetite,
carbonatite	with vugs.	phlogopite, amphibole, quartz. Pyrite, marcasite,
		chalcopyrite, sphalerite. Monazite-(Ce),
		parisite-(Ce), synchysite-(Ce), nioboaeschynite-
		(Ce), zircon, baddeleyite, pyrochlore,
Itah DEF	Complex interestory an etite	Ierrocolumbile.
High-KEE	Complex intergrown apatite-	Apaule, monazite-(Ce), talc, amphibole,
apatite-	monazite-(Ce) texture. Massive	doionnite. Pyrrnotite, pyrite, chaicopyrite ($\leq 5\%$
monazite-(Ce)	foliated managity (Ca) tala	sunde mineralization along fractures).
FUCK	rolated monazite-(Ce)-taic	
	TOCKS.	

Table 1 Mineralogy of the carbonatites and associated rocks from the Cummins Range

 Carbonatite Complex.

	Apatite-m	onazite-(Ce) rock			Carbona	tites	
Sample No.	CDD1- 33	CDD1- 33	CDD1- 33	CDD1- 33	CDD1- 29	CR3	CDD2- 25	CDD1- 27
Analysis No.	Area 3- 1 A13	Area 3- 3 A2	Area 3- 2 A8	Area 3- 2 A9	Area 4 A10	Area 1 A2	A1-4	A6
(wt%)	core	core	core	rim	matrix		core	
Na₂O	n.a.	n.a.	n.a.	n.a.	n.a.	0.22	0.17	0.23
MgO	n.a.	n.a.	n.a.	n.a.	n.a.	0.17	-	-
Al ₂ O ₃	-	-	0.08	0.01	-	-	-	-
SiO ₂	-	0.01	-	-	-	0.05	0.28	-
P_2O_5	38.96	39.00	38.94	40.18	38.21	41.00	42.22	43.31
CaO	48.54	50.08	46.32	50.80	47.00	55.18	54.32	52.19
MnO	-	-	-	0.02	0.02	-	-	-
FeO	0.03	0.05	0.02	0.03	0.15	-	-	-
SrO	2.07	1.22	2.04	5.83	11.39	0.94	0.43	1.15
Y_2O_3	0.30	0.31	0.27	0.02	-	0.02	0.02	-
La ₂ O ₃	0.20	0.38	1.90	0.05	0.01	0.14	0.13	0.23
Ce_2O_3	2.07	1.85	3.10	0.16	0.05	0.38	0.28	0.63
Pr ₂ O ₃	0.41	0.27	0.37	0.03	-	0.05	0.05	0.11
Nd ₂ O ₃	1.39	1.23	1.65	0.19	-	0.22	0.14	0.27
Sm ₂ O ₃	0.38	0.28	0.43	0.03	-	-	-	-
Eu_2O_3	0.38	0.21	0.28	0.03	0.01	-	-	-
	0.20	0.05	0.29	0.08	-	0.05	0.04	0.06
	-	0.02	-	0.01	-	-	-	-
00 ₂	0.01	0.01	-	-	-	-	-	-
SU ₃	-	-	-	0.03	0.03	-	0.04	-
	- 37/	- 3 38	- 3.61	3.02	-	- 3.65	- 1 21	-
	-1 57	-1 /13	-1 52	-1 65	-1 17	-1 5/	-1 77	-1.86
Total	97 10	96.94	97 79	99 77	08 00	100 53	100 56	100 74
Structural	l formulae	calculate	od to 26 (C		00.00	100.00	100.00	100.74
Na	n.a.	n.a.	n.a.	n.a.	n.a.	0.072	0.056	0.075
Mg	n.a.	n.a.	n.a.	n.a.	n.a.	0.043	-	-
Aľ	-	-	0.016	0.001	-	-	-	-
Si	-	0.002	-	-	-	0.008	0.047	-
Р	5.650	5.657	5.648	5.828	5.542	5.847	6.021	6.177
Ca	8.909	9.192	8.501	9.325	8.627	9.959	9.804	9.420
Mn	-	-	-	0.002	0.003	-	-	-
Fe	0.005	0.006	0.003	0.004	0.022	-	-	-
Sr	0.206	0.121	0.202	0.579	1.132	0.092	0.042	0.112
Y	0.027	0.029	0.024	0.002	-	0.002	0.002	0.000
La	0.013	0.024	0.120	0.003	0.001	0.009	0.008	0.014
Ce	0.130	0.116	0.195	0.010	0.003	0.023	0.017	0.039
Pr	0.026	0.017	0.023	0.002	-	0.003	0.003	0.007
Nd	0.085	0.075	0.101	0.012	-	0.013	0.008	0.016
Sm	0.022	0.017	0.026	0.002	-	-	-	-
EU	0.022	0.012	0.016	0.002	0.000	-	-	-
Ga Th	0.012	0.003	0.017	0.004	-	0.003	0.002	0.003
	-	0.001	-	0.000	-	-	-	-
0 c	0.000	0.000	-	-	-	-	-	-
CI		-	-	0.004	0.004 -	-	-	-
F	2 025	1 833	1 957	2 125	1 802	1 0/1	2 243	2 355
A-site	9 456	9.613	9 229	9 946	9 788	10 219	9 943	9 687
B-site	5 650	5 659	5 664	5 833	5 546	5 856	6.069	6 177
(- = below	detection	limits; n.a.	= not anal	ysed)	510 10	0.000	0.000	5

Table 2 Representative analyses of apatite from the CRCC.

Sample	CDD1-16	CDD1-22	CDD2-19	CDD2-21A	CDD2-25A	CDD2-27	CDD1-34	CDD1-36
Depth	150.82 – 151.03 m	251.13 – 251.22 m	370 – 370.15 m	399.78 – 399.95 m	397.45 – 397.59 m	400.5 – 400.68 m	263.75 – 263.85 m	269.75 m
	High-Sr	Amphibole-	Low-Sr	High-Sr	High-REE	High-Sr	High-Sr	High-REE
	dolomite	apatite	dolomite	calcite	dolomite-	carbonatite-	dolomite	apatite-
	carbonalite	phoseonie	Carbonalile	carbonalite	carbonatite	apalite- amph	carbonalite	(Ce) rock
(wt%)						cumulate		()
SiO ₂	0.023	17.79	<0.01	0.29	0.292	8.27	3.49	8.55
TiO ₂	0.012	0.975	0.008	0.136	0.305	0.131	0.013	0.049
AI_2O_3	<0.01	2.00	<0.01	0.031	<0.01	0.108	0.095	0.207
Fe ₂ O ₃	0.67	1.56	0.36	0.56	2.32	1.84	1.70	0.890
FeO	3.84	2.98	1.95	0.76	4.60	2.62	18.9	1.10
MnO	0.793	0.168	0.272	0.183	0.822	0.501	0.683	0.116
MgO	19.0	9.03	21.3	1.41	12.0	11.7	12.7	4.01
CaO	30.9	31.5	31.1	55.4	33.9	33.8	21.2	20.9
Na ₂ O	0.082	1.04	0.061	0.034	0.126	1.05	0.167	0.352
K ₂ O	0.006	1.72	0.004	0.029	0.009	0.329	0.005	0.062
P_2O_5	0.92	17.05	0.035	1.25	7.28	13.4	0.099	26.1
SrO	0.601	0.415	0.005	0.689	0.270	0.454	0.484	2.00
TREO	0.085	0.440	0.125	0.138	3.43	0.671	0.142	25.8
SO3	0.443	0.187	0.277	0.038	0.012	0.036	19.8	0.352
LOI	44.0	10.3	46.3	41.4	34.8	24.4	18.9	3.71
F	0.111	2.02	0.040	0.512	0.720	1.39	<0.01	1.22
CI (ppm)	197	37	448	173	239	65	246	59
Total	101.5	99.2	101.8	102.9	100.9	100.7	98.1	95.5

Table 3 Representative whole-rock geochemistry of carbonatites and associated apatite-rich rocks from the CRCC.

Table 4 Trace-element geochemistry of carbonatites and associated apatite-rich rocks from the CRCC (samples CDD1-22, CDD2-27, CDD1-34,CDD1-36 analysed at Geoscience Australia and ANU).

Sample No.	CDD1-15	CDD1-16	CDD1-22	CDD1-24	CDD2-3	CDD2-6	CDD2-7	CDD2-19	CDD2- 21A	CDD2- 25A	CDD2-27	CDD1-34	CDD1-36
Depth	133.7 – 133.95 m Low-Sr dol carb	150.82 – 151.03 m High-Sr dol carb	251.13 – 251.22 m Amph- apatite	288.95 – 289.2 m High-Sr calcite	82.25 – 82.4 m High-Sr calcite	113.9 – 114 m High-Sr dol carb	128.15 – 128.3 m High-Sr calcite	370 – 370.15 m Low-Sr dol carb	399.78 – 399.95 m High-Sr calcite	397.45 – 397.59 m High-REE dol-calcite	400.5 – 400.68 m High-Sr carb-	263.75 – 263.85 m High-Sr dol carb	269.75 m High- REE
(ppm)			phoseonie	Carb	Carb		Carb		Carb	Carb	amph cumulate		monazite -(Ce) rock
Li	1.35	1.35	n.a.	5.74	6.88	0.885	0.61	0.274	1.47	1.73	n.a.	n.a.	n.a.
Be	0.284	< 0.100	5.95	0.242	0.307	< 0.100	0.479	< 0.100	< 0.100	0.254	2.95	0.3	1.70
В	< 0.100	5.91	n.a.	5.34	1.24	1.79	13.2	6.84	17.7	11.9	n.a.	n.a.	n.a.
V	3.59	1.29	77.2	0.949	29.8	1.87	0.773	< 0.100	14.9	37.1	34.3	4.0	4.0
Cr	2.33	0.563	24.9	4.01	0.475	0.549	0.617	3.59	0.8	5.47	13.8	22	77
Со	8.32	4.41	12	5.73	7.7	4.8	4.45	4.36	3.86	7.14	8.18	150	22
Ni	1.1	1.31	16	7.31	2.25	< 0.100	4.93	2.05	4.73	< 0.100	12.2	20	24
Cu	37	7.76	127	56.4	10.6	1.8	2.52	< 0.100	14.4	9.58	73.9	1890	28
Zn	5.01	20.1	101	9.92	9.29	28.5	2.94	0.6	7.1	36.1	33.7	44	79
Ga	33.1	5.42	22.2	10.7	14.4	5.14	9.41	8.07	6.38	32.6	20.1	4.0	25.0
Ge	3.84	0.961	1.6	1.99	1.9	0.933	1.83	1.55	1.24	2.89	1.56	0.2	1.7
As	7.88	4.79	3.5	4.14	1.84	1.33	7.05	2.33	17.3	8.12	2.85	1.5	11.0
Se	4.94	2.31	n.a.	6.76	5.52	2.64	6.55	4.84	3.92	2.42	n.a.	n.a.	n.a.
Rb	0.182	0.127	44.6	1.03	12.7	0.133	0.132	< 0.100	0.708	0.168	2.88	0.17	2.0
Sr	282	5080	3507	6060	4800	6310	5060	38.5	5830	2280	3843	4090	16897
Y	51.4	20.7	194	90.3	70.2	19.1	84.8	67	42	7.46	124	12	126
Zr	< 0.100	0.816	4879	279	0.871	14	< 0.100	0.395	8.92	18.5	1544	1	1.6
Nb	47.9	42	764	55.2	10.4	254	2.82	41.7	34.1	67.3	1719	1.92	25
Мо	0.337	0.233	0.33	< 0.100	< 0.100	< 0.100	< 0.100	0.121	0.233	0.187	0.141	1.36	0.23
Ag	n.a.	n.a.	1.59	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0.328	1.3	0.2
Cd	< 0.100	0.355	1.50	0.339	0.186	0.793	0.25	< 0.100	0.202	0.379	0.862	0.40	0.20
In	< 0.100	0.128	n.a.	0.131	< 0.100	0.241	< 0.100	< 0.100	< 0.100	0.25	n.a.	n.a.	n.a.
Sn	0.165	0.154	3.2	< 0.100	0.289	0.208	< 0.100	0.614	0.203	0.562	3.01	1.5	0.6
Sb	< 0.100	< 0.100	0.08	< 0.100	< 0.100	< 0.100	< 0.100	0.355	< 0.100	< 0.100	0.106	1	4

Sample No.	CDD1-15	CDD1-16	CDD1-22	CDD1-24	CDD2-3	CDD2-6	CDD2-7	CDD2-19	CDD2- 21A	CDD2- 25A	CDD2-27	CDD1-34	CDD1-36
(ppm)													
Cs	< 0.100	< 0.100	1.29	< 0.100	0.279	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.019	0.03	0.2
Ва	16.3	62	490	419	397	57	325	3.32	509	28.4	73.3	44	158
La	717	152	580	239	201	117	210	195	240	9860	1216	345	75020
Ce	1490	338	1440	586	500	284	510	457	515	14200	2408	567	106220
Pr	131	31.8	216	58.7	51.6	27.6	51.7	44.7	61.5	1280	327	61	9650
Nd	508	130	895	260	227	113	230	193	209	3280	1233	213	26904
Sm	68.5	20.3	161	51.3	43.5	18.4	45.4	35.5	38.8	288	184	21	1735
Eu	13.6	4.98	42.9	13.6	11.4	4.71	11.9	8.3	9.41	53.9	45.7	4.4	276
Gd	46.8	15.5	115	40.4	32.5	13.1	34.9	28.2	31.3	244	113	9.85	571
Tb	4.29	1.62	13.25	5.03	3.95	1.42	4.44	3.38	3.78	14.3	11.3	0.96	31
Dy	16.1	6.4	55.7	22.4	16.8	5.65	19.7	14.6	17.4	43.6	41.7	3.84	78
Ho	2.32	0.926	8.82	3.81	2.75	0.835	3.35	2.47	2.78	3.49	5.78	0.48	7.03
Er	4.75	1.79	16.8	8.17	5.8	1.62	7.28	5.35	6.07	5.71	9.68	1.11	10.5
Tm	0.466	0.155	n.a.	0.811	0.545	0.145	0.718	0.535	0.746	0.508	n.a.	0.13	0.58
Yb	3.05	0.922	8.33	5.09	3.32	0.817	4.47	3.42	3.9	2.41	3.65	0.66	1.68
Lu	0.42	0.119	1.03	0.682	0.429	< 0.100	0.594	0.459	0.56	0.276	0.410	0.07	0.15
Hf	< 0.100	< 0.100	93	3.81	0.136	0.388	< 0.100	< 0.100	0.345	0.4	41.1	0.127	0.20
Та	1.74	1.44	55	4.37	1.24	1.6	0.246	7.39	3.03	5.06	11.3	0.02	0.54
W	19.4	17.5	9	13.7	42.7	26	26.7	23.9	21.4	35.3	20.4	58	32
TI	< 0.100	< 0.100	n.a.	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	n.a.	n.a.	n.a.
Pb	0.664	1.44	13.1	7.92	2.99	1.87	2.66	< 0.100	3.40	3.57	4.00	4.00	7.25
Bi	< 0.100	< 0.100	0.065	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.073	0.02	<0.02
Th	1.58	2.25	70	0.965	1.8	1.52	0.669	1.2	0.666	2.42	19.4	1.1	85
U	4.97	1.1	60	15	0.505	2.02	0.3	< 0.100	< 0.100	0.253	12.7	0.07	0.86
Sc	14	10.3	13.1	21.1	7.12	12.4	14.7	8.2	3.42	0.187	56.7	20.0	45.0
Zr/Hf	-	-	52.5	73.2	6.40	36.1	-	-	25.9	46.3	37.6	7.87	8.00
Nb/Ta	27.5	29.2	13.9	12.6	8.39	159	11.5	5.64	11.3	13.3	152	96.0	46.3
Th/U	0.318	2.05	1.17	0.064	3.56	0.752	2.23	-	-	9.57	1.53	15.7	98.8
Ga/Ge	8.62	5.64	13.6	5.38	7.58	5.51	5.14	5.21	5.15	11.3	12.9	17.4	14.7
Y/Ho	22.2	22.4	22.0	23.7	25.5	22.9	25.3	27.1	15.1	2.14	21.5	25.0	17.9
(n.a. – not	analysed)												

Table 4 Trace-element geochemistry of carbonatites and associated apatite-rich rocks from the CRCC (samples CDD1-22, CDD2-27, CDD1-34,CDD1-36 analysed at Geoscience Australia and ANU).
Table 5 Stable C and O isotope compositions (in % relative to V-PDB and V-SMOW,respectively) of carbonatites and associated rocks from the CRCC.

Sample No.	Hole No.	Depth (m)	Rock type	δ^{13} C	δ^{18} O
CR3	CDD1	151.8–151.94	High-Sr dol carb	-3.4	8.3
CR10	CDD1	324–324.1	High-Sr pink cc carb	-4.1	8.6
CR14	CDD1	401.65-401.75	High-Sr cc carb	-4.1	8.0
CDD2-3	CDD2	82.25-82.4	High-Sr cc carb	-4.1	8.3
CDD2-6	CDD2	113.9–114	High-Sr dol carb	-3.0	8.7
CDD2-7	CDD2	128.15–128.3	High-Sr cc carb	-4.1	8.8
CDD2-9	CDD2	178.05–178.15	High-Sr cc carb	-4.0	8.5
CDD2-22	CDD2	401.9–402	High-Sr cc carb	-4.2	7.5
NRC-35	NRC035	92–93	Dol carb	-3.3	9.2
NRC-58	NRC058	97–98	High-Sr cc carb	-3.0	8.6
CR7	CDD1	235.84–235.94	Dol carb	-2.2	12.6
CR12	CDD1	375–375.1	High-Sr cc carb	-4.1	16.7
CR13	CDD1	386-386.1	Low-Sr dol carb	-4.0	21.1
CDD2-1	CDD2	69.5–69.65	Low-Sr dol carb	-4.1	20.9
CDD2-10	CDD2	199–199.15	Low-Sr dol carb	-4.2	21.7
CDD2-12	CDD2	225.65–225.8	Low-Sr dol carb	-3.6	21.0
CDD2-18	CDD2	328.78-328.94	Low-Sr dol carb	-4.2	21.9
CDD2-19	CDD2	370–370.15	Low-Sr dol carb	-4.3	20.8
CDD2-25 cc	CDD2	397.35–397.45	High-REE dol carb	-3.3	11.4
CDD2-25 dol	CDD2	397.35–397.45	High-REE dol carb	-3.0	9.0
CDD2-26	CDD2	225.2	High-REE dol carb	-3.3	20.8
CDD1-31	CDD1	269.5	High-REE ap-mz rock	-3.1	15.5
CDD1-37A	CDD1	270.3	High-REE ap-mz rock	-3.5	10.5
CDD1-37B	CDD1	270.3	Dol carb	-2.9	9.1
CDD2-5	CDD2	92.9–93	Ap-phl phoscorite	-3.9	10.1
CDD2-11	CDD2	220.6–220.7	Clinopyroxenite	-5.4	11.3
CDD2-14	CDD2	250.85–251	Clinopyroxenite	-5.6	11.1
CDD2-17A	CDD2	293.6–293.79	Clinopyroxenite	-4.4	11.2
CDD2-23	CDD2	231.12–231.44	Clinopyroxenite	-4.2	9.7
CDD2-24	CDD2	309.85–310.06	Clinopyroxenite	-3.8	21.4
Mt Weld-88A			Mt Weld carbonatite	-4.2	12.9
Mt Weld-88B			Mt Weld carbonatite	-4.2	12.9
Mt Weld-1			Mt Weld carbonatite	-5.6	8.9
Mt Weld-2			Mt Weld carbonatite	-5.4	7.2
Mt Weld-87A			Mt Weld carbonatite	-5.6	6.3
Mt Weld-87B			Mt Weld carbonatite	-5.5	6.6

Table 6 H_2O -contents (" H_2O ", in ppm) and stable hydrogen isotope compositions of fluid inclusion-hosted H_2O (in ‰ relative to V-SMOW), as well as bulk carbonate C and O isotope compositions (in ‰ relative to V-PDB and V-SMOW, respectively) for ten carbonate samples from the Cummins Range carbonatites.

Sample No.	Hole No.	Depth (m)	Rock type	H₂O	δD	δ ¹³ C	δ ¹⁸ Ο
CDD2-1	CDD2	69.5–69.65	Low-Sr dol carb	2466	-38	-4.1	20.9
CDD2-3	CDD2	82.25-82.4	High-Sr cc carb	737	-41	-4.1	8.3
CDD2-6	CDD2	113.9–114	High-Sr dol carb	932	-35	-3.0	8.7
CDD2-7	CDD2	128.15–128.3	High-Sr cc carb	1749	-34	-4.1	8.8
CDD2-9	CDD2	178.05–178.15	High-Sr cc carb	1431	-40	-4.0	8.5
CDD2-10	CDD2	199–199.15	Low-Sr dol carb	1909	-54	-4.2	21.7
CDD2-12	CDD2	225.65–225.8	Low-Sr dol carb	2110	-49	-3.6	21.0
CDD2-18	CDD2	328.78-328.94	Low-Sr dol carb	1119	-47	-4.2	21.9
CDD2-19	CDD2	370–370.15	Low-Sr dol carb	907	-43	-4.3	20.8
CDD2-22	CDD2	401.9–402	High-Sr cc carb	489	-51	-4.2	7.5

Supplementary Material Click here to download Supplementary Material: Supplementary data Appendix 1.xlsx