REAL

Heterogeneity of multiwalled carbon nanotubes based on adsorption of simple aromatic compounds from aqueous solutions

Podkościelny, P. and Tóth, A. and Berke, B. and László, Krisztina and Nieszporek, K. (2014) Heterogeneity of multiwalled carbon nanotubes based on adsorption of simple aromatic compounds from aqueous solutions. Adsorption, 20. pp. 789-800.

[img]
Preview
Text
Adsorption_14_20_789.pdf - Accepted Version

Download (1MB) | Preview

Abstract

The surface heterogeneity of multiwalled carbon nanotubes (MWCNTs) is studied on the basis of adsorption isotherms from dilute aqueous phenol and dopamine solutions at various pH values. The generalized Langmuir-Freundlich (GLF) isotherm equation was applied to investigate the cooperative effect of the surface heterogeneity and the lateral interactions between the adsorbates. The theoretical isosteric heats of adsorption were obtained assuming that the heat of adsorption profile reveals both the energetic heterogeneity of the adsorption system and the strength of the interactions between the neighboring molecules. The adsorption energy distribution (AED) functions were calculated by using algorithm based on a regularization method. The great advantage of this method is that the regularization makes no assumption about the shape of the obtained energy distribution functions. Analysis of the isosteric heats of adsorption for MWCNTs showed that the influence of the surface heterogeneity is much stronger than the role of the lateral interactions. The most typical adsorption heat is 20-22 kJ/mol for both phenol and dopamine. After purification of nanotubes, heat value for phenol dropped to 16-17 kJ/mol. The range of the energy distribution is only slightly influenced by the surface chemistry of the nanotubes in the aqueous conditions.

Item Type: Article
Subjects: Q Science / természettudomány > QD Chemistry / kémia > QD02 Physical chemistry / fizikai kémia
Depositing User: Enikő Manek
Date Deposited: 21 Jan 2015 14:04
Last Modified: 03 Apr 2023 08:23
URI: http://real.mtak.hu/id/eprint/20723

Actions (login required)

Edit Item Edit Item