Worst case bin packing for OTN electrical layer networks dimensioning
Tamas Kiraly*, Attila Bernath*, Laszléo Végh*, Lajos Bajzik**, Erika Kovacs*, Kristof Bérczi*,
Alpar Jiittner*, Tibor Jordan*

* Dept. of Operations Research, E6tvos University, Budapest
e-mail: {tkiraly,athos,veghal, koverika,berkri,alpar, jordan}@cs.elte.hu,
and
** Nokia Siemens Networks
Budapest, Hungary
e-mail: lajos.bajzik@nsn.com

Abstract

The OTN (Optical Transport Network) standard, defined by ITU-T Recommendation G.709 and G.872, contains
a flexible digital hierarchy of ODU (Optical Data Unit) signals. The ODU hierarchy provides sub-wavelength
grooming in OTN networks, which is necessary for efficient utilization of the high bit rates of optical channels.
When dimensioning the links of a transport network consisting of ODU switches, the packing of lower order ODU
signals into higher order ODU signals needs to be taken into account. These networks are expected to be controlled
by GMPLS (Generalized MPLS), which puts specific constraints on the dimensioning. We assume that there is no
explicit label control and that the GMPLS control plane is using first-fit strategy for making reservations on a
link. With these assumptions the link dimensioning problem is defined as deciding how many higher order ODU
component links are required on an OTN GMPLS bundled link for first-fit packing of a given set of lower order
ODU demands, in any order of arrival. The paper provides strict bounds for ODU hierarchy-specific item and bin
sizes. Then, it introduces an extended variant of the dimensioning problem, when lower order ODU connections
which are not controlled by GMPLS are also present.

Keywords: OTN, maximum resource packing, GMPLS

1 Introduction

The OTN standard is described in ITU-T Recommendations G.709 and G.872 [1}12]. An OTN network can have an
electrical grooming layer on top of the optical domain, which provides transport of lower order ODU (LO-ODU)
demands. The electrical grooming layer consists of ODU switches connected by links which are provided by
optical channels. These links are bundles of component links. One component link is an OTU (Optical Transport
Unit) connection. Each OTU is mapped into one optical channel. An OTU component link of type OTUE either
wraps a higher order ODU (HO-ODU) of type ODUk which carries a multiplex of LO-ODU demands, or wraps
the signal of a single LO-ODU demand of type ODUE. The higher order and lower order ODU are relative terms,
a lower order ODUj signal is a client of a higher order ODU¥ signal, j < k. We are considering only networks
with single-stage ODU multiplexing. In this case the switching nodes multiplex or map the LO-ODU demands
directly into the HO-ODU/OTU component links, without intermediate ODU stages.

This paper contributes packing results for the following ODU types: ODUO, ODU1, ODU2, ODU2e, ODU3 and
ODU4. Beside these, the G.709 recommendation also defines the variable-sized ODUflex type. It is not covered
in the paper, because ODUflex can have any discrete size, thus only general packing approximations can be used
in this case, like the one described in (6] for SDH (Synchronous Digital Hierarchy). There are two other types,
ODU3el and ODU3e2 which are defined in [3]], but not standardized. They are not covered either.

We consider only homogeneous links which contain component links of the same ODUk/OTUE type. In the rest
of the paper we refer to this as the bin type of the link. The payload capacity of an ODUE consists of a standardized
number of Tributary Slots (TS), which will be referred to as bin size. The bin sizes of the covered bin types are
shown in second column of Table[T} A LO-ODUj occupies a specific number of TS inside a HO-ODUk. We refer
to this as the item size of the LO-ODU; demand with respect to the specific HO-ODUk. The right part of Table]|
contains the item sizes for the covered demand types. For the same demand type as the bin type we set the item
size equal to the bin size, modeling that an OTUL component link can be used for carrying a single ODUk demand.

The basic link dimensioning problem is calculating the minimum number of component links which are required
to accommodate a given set of demands routed on the link. A demand cannot be split between component links,
thus we need to solve a bin packing problem. Furthermore, it is expected that ODU layer networks are controlled
by GMPLS control plane [4]. In this case the demands are provisioned by distributed LSP (Label Switched Path)

Table 1: Bin and item sizes for the covered cases

Bin type | Bin size Item sizes per demand type

ODUO | ODUI | ODU2 | ODU2e | ODU3 | ODU4
ODU1 2 1 2 - - - -
ODU2 8 1 2 8 - - -
ODU3 32 1 2 8 9 32 -
ODU4 80 1 2 8 8 31 80

setup procedures. The GMPLS standard allows two options for finding the component link and tributary slots for
a demand on a link. In the first option, it is decided locally by the GMPLS entity which controls the link. The
second option is explicit label control, where the head-end of the LSP specifies it for each link along the LSP [5]].
In this paper we cover the case when it is decided locally, i.e. there is no explicit label control. The local entity can
follow several strategies for finding the component link to use for a new demand. We assume first-fit strategy. In
this strategy the component links have a predefined order, and the first component link having enough free space to
carry the demand is selected. Due to the distributed nature of GMPLS control plane, even if the set of demands to
be carried by a link are known in advance, it is not predictable in which order they will be set up on the link. Thus
the dimensioning needs to find the minimum number of component links which is enough for first fit-packing of
the given demands in any possible order of arrival.

With the above assumptions, the link dimensioning problem is identical to the maximum resource bin packing
problem [7]. An extension of the basic problem is when we allow demands that are not controlled by the GMPLS
control plane beside demands controlled by GMPLS. We refer to these demands as non-GMPLS demands. The
non-GMPLS demands are not packed with first-fit algorithm. They can be packed arbitrarily into the component
links before the first-fit packing of GMPLS demands.

The rest of the paper structured as follows. Section [2]examines the situation when there are only GMPLS demands
in the network (i.e. when all the demand are placed using the First Fit scheme). These results are then extended
to the case of the existence of non-GMPLS demands in Section [3] Finally, the paper is concluded by mentioning
some possible further extensions to the problems.

2 GMPLS demands

In mathematical terms, the problem is the following. Items of different sizes arrive in a certain order and are
allocated to bins of the same size b € N using a First Fit algorithm (that is, the arriving item is inserted in the first
bin with enough space). We know the sizes of the items to allocate but we do not know their order. The problem is
to find an order of the items that uses the most number of bins (i.e. a worst-case order), or just to tell the maximum
number of bins needed in the worst case. This is already a difficult problem [9]: it is already NP-compete to decide
whether the maximum number of bins is 2 or 3. The best known result compared to the best packing is that the
worst-order first fit packing has an approximation factor of 12/7 (or a multiplicative factor of 17/10 and an additive
term of 7/10) compared to the optimal packing [14]]. Fortunately, in our cases the possible item-sizes are rather
restricted, therefore we can give a much better upper bound for this maximum. But first let us see some general
claims about the worst case orders.

2.1 Upper bounds for arbitrary item and bin sizes

Let b € N be the bin size. The set of possible item-sizes is S C N, and for every size s € S the number of items
of size sisng € N. Letn = Zse g N5 be the total number of items to be packed.

The First Fit algorithm implies the following: given any order of the items, assume that the kth bin is the first that
has empty space of size at least s for some item size s € .S in the end of the algorithm. Then all the items of size
at most s are inserted in the first k bins.

Claim 1. If S = {s1, 82, ..., 8¢} are the possible item sizes and s; divides sji1 forevery j =1,2,...,t — 1, fur-

t ;.
thermore s; divides the bin-size b, then the First Fit algorithm uses the same number of bins (namely [Zlﬂ#])

for any ordering of the items.

Proof. We prove a stronger claim by induction on ¢: for any ordering, the sum of the empty spaces of the bins is

at most b — s1. This implies the claim, since it means that the number of bins is at most

t .
is strictly less than 2:1# +1.

b—: t s, Si .
Gos)H iy nay i 91)+th:1“ % which

For t = 1 the claim is obviously true since there is at most one empty space, and its size is divisible by s;. For
general t, suppose that the k-th bin is the first that has empty space, it has size s, and i is the largest index such
that s; < s. It follows that the items of size at most s; are all in the first k& bins. We are done if 7 = ¢, otherwise

consider all items that are not packed into the first k& bins. These items have sizes s;11, . . ., St, S0 by induction the
sum of the empty spaces of the bins after the k-th is at most b — s;4.1. Thus the total sum of empty spaces is at
most s + b — s;1 which is at most b — s since s;11 — s > s7. O

We will concentrate on two special kinds of first fit algorithms. The algorithm for the monotone increasing order
is called the First Fit Increasing (FFI) algorithm. It is easy to observe that after the FFI algorithm starts a new bin,
it never puts items in earlier bins. This makes it very fast, but very inefficient. However, since we are interested
in orderings that give the worst packing, we will use variants of the FFI algorithm. The efficiency of FFI packing
compared to the worst possible first fit packing has been studied by Boyar et al. [7]. They showed that the number
of bins in the worst first fit packing is at most g times the number of bins in the FFI packing. If the item sizes are
small compared to the bin size, a stronger bound can be given.

Theorem 2 ([7]]). For arbitrary item sizes, the number of bins in any first fit packing is at most % times the number

of bins given by the FFI algorithm plus 11. If every item has size at most %for some integer r, then the ratio is

r24r

asymptotically at most 37.

It follows from this result that by there is an easily computable upper bound on the number of bins needed (g X
FFI + 11) that overestimates the worst case by a multiplicative factor of at most g. Recently, Lin et al. [13]
introduced a Modified First Fit Increasing Algorithm that gave an improved multiplicative factor of ?—(1). We will
show in Sections [2.3] and [2.4] that for the item and bin sizes given in Table[I] there are easily computable upper
bounds that overestimate the number of bins needed by at most 1.

The first fit algorithm for the monotone decreasing order, called the First Fit Decreasing (FFD) algorithm, performs
much better, so we will use it for non-GMPLS demands.

If we have already packed the non-GMPLS demands then some bins have empty spaces that can be filled later
when the GMPLS demands are being packed. Therefore we have a problem where the bin size is not the same
number b for the bins, but it differs from one bin to the next. This motivates the following claims.

One of the difficulties of analyzing the first fit algorithm for arbitrary orderings is the lack of monotonicity: Graham
[LO] gave examples where increasing the size of one bin or deleting an item can actually increase the number of
bins needed; see also [12]], pages 66-67. However, this cannot happen for the FFI algorithm, as the following two
claims show (the proofs are simply by induction, the details are left to the reader.)

Claim 3. We are given a list of item sizes z1, . . . , zp, in increasing order (the same size can appear multiple times),
and we have different bin sizes: by, ..., by, (in the order of bins). We assume that the fist fit packing in that order
can pack all items. Let 1 < k < n. The first fit packing of 2y, 2k+1, - - - , 2n, uses at most as many bins as the first
fit packing of z1, ..., zn. [

Claim 4. We have different integer bin sizes: by, ..., by, (in the order of bins), and a list z1, . . . , z, of item sizes to
pack (in increasing order). We assume that the FFI algorithm can pack all items into the bins; let k be the number
of bins used. If we increase the size of a single bin by one (i.e. b, = b; + 1 for some i), then for the new bin sizes
the FFI algorithm uses at most k bins, too. O

2.2 ODU1 and ODU2

The cases of ODU1 and ODU?2 are simple by Claim[I} Since the item sizes are multiples of each other and the bin

t
size is a multiple of the largest item size, every order gives the same number of bins: (Zﬂ#]

2.3 ODU3

Here b = 32 and S = {1, 2,8,9,32}. This case is special because of the presence of items of size 9. Items of size
32s always occupy a full bin, thus we can omit them.

Consider the following ordering of the items: first come those of size 1, then those of size 2, finally two items of
size 8 followed by one item of size 9 iterated as long as this can be done when the rest of the items arrive (in any
order: these are either all the same size 8 or 9, or there is one 8 and some 9s). This is not necessarily the worst
ordering but we claim the following upper bound for the number of bins.

Claim 5. Assume that in the ordering above, first we use the First Fit algorithm until we run out of items of size
1 and 2, and when we run out of these we close the bins used so far, and put the remaining items (using the above
ordering) into new bins with the First Fit algorithm. This way we get an upper bound on the number of bins which
is almost sharp: it is at most one more than the best upper bound.

Proof. 1t is easy to see that this bound is at most one more than the number of bins needed when the First Fit
algorithm runs for the same ordering. Indeed, the difference between the two algorithms is that First Fit may put
some (at most 3) items of size 8 or 9 into the last bin that has items of size 1 or 2. If it puts 3 of them there, then
the difference is one bin. If it puts less than 3, the difference can only be less.

The non-trivial part is to prove that the algorithm gives an upper bound for the First Fit algorithm running on any
ordering. First suppose that there are no items of size 1 or 2. In this case any bin except for the last one will have
3 or 4 items, and in the latter case all four are 8s. It follows that our ordering is worst possible, because it has the
least possible number of bins with four 8s.

Now suppose that there are items of size 1 or 2. Consider a First Fit packing for an arbitrary ordering. Let g be
the empty space in the last bin. Let B; be the set of bins that only have items of size 8 or 9 in them; of the other
bins, let B, denote the set of those that contain only items of size 1,2 and 8, and let B3 be the rest. Let furthermore
41, G2, g3 denote the sum of empty spaces in the bins in By, Ba, Bs respectively, and let Bf, Bj and ¢, ¢5 denote
the corresponding bins and empty spaces in the packing given by the upper bound algorithm (B% = 0)). To prove
the claim, we have to prove that ¢; + g2 + g3 < ¢ + ¢4 + 31. We distinguish three cases.

Case 1. The last bin is in By, and it contains at least one item of size 8. In this case we can use an argument
similar to the one in the proof of Claim [I] to show that g» + g3 < 7 + |Bs|. Indeed, g» < 7 if g3 = 0, and the
presence of a 9 in a bin can increase the empty space by at most one in that bin. Thus it is enough to prove that
q1 + |Bs| < ¢} + ¢4 + 24. Since ¢ is at most 24, it suffices to prove ¢1 + | B3| — ¢ < ¢} + ¢5. Actually it is easy
to see that ¢1 + |Bs| — ¢ < ¢, if we observe that Bj is constructed in a way that maximizes the empty space per
item of size 9.

Case 2. The last bin is in By, and it does not contain items of size 8. Here ¢ is at most 23, so we can use the
above argument if g2 + g3 < 8 4 | B3|. The only situation when this is not true is the following: there is a bin in
By with empty space 1, and another with empty space 8. In this case g2 + g3 = 9 + |Bs|, so we have to prove
q1 + |Bs| — q < g} + ¢5 — 1. Since an item of size 9 generates an empty space of size strictly more than 1 in Bj,
the inequality holds if B3 # (), and it also holds if ¢4 > 0. The only remaining case is when Bz = 0 and ¢5 = 0,
but the latter means that the number of items of size 1 is even, so there cannot be a bin in By with empty space 1.

Case 3. The last bin is in By U Bs. In this case the last bin contains a 1 or a 2. If it contains a 1, the total empty
space is ¢ which is strictly less than 32, so we are done. Otherwise let k be the last bin that contains a 1. Bin k
has empty space at most one, the last bin contains empty space at most 30, and all other bins which contain empty
space (of size at most one) also contain a 9. Since the 9s generate more than one empty space in B, this implies
that g1 + g2 + g3 < 1 +¢5 + 31 O

24 ODU4

Here b = 80, and S = {1, 2,8,31,80}. Again, we can assume here that there are no 80s. Similarly to the ODU3
case, consider the following ordering and algorithm: first come the items of size one, then the items of size 2, then
the items of size 8, and all these are packed into bins using the First Fit algorithm (using [%] bins by
Claim[T). Then we close the bins used so far. Finally, the 31s are put into new bins, two items in each bin. This

will use [21£22248n87 4 [291] pumber of bins altogether.

Claim 6. This is an upper bound, and it is at most one more than the best upper bound.

Proof. As in Claim [3] it is easy to see that this gives at most one more than the First Fit algorithm for the same
ordering. Let us show that it is an upper bound for any ordering.

Consider a First Fit packing for an arbitrary ordering. Let ¢ be the empty space in the last bin. Let B; be the set of
bins that only have items of size 31 in them; of the other bins, let By denote the set of those that contain only items

of size 1,2 and 8, and let Bs be the rest. Let furthermore g1, g2, g3 denote the sum of empty spaces in the bins in
By, Bs, Bs respectively, and let By, B} and ¢, ¢4 denote the corresponding bins and empty spaces in the packing
given by the upper bound algorithm (B% = ()). To prove the claim, we have to prove that g; +q2+q3 < g} +¢5+79.
We distinguish two cases.

Case 1. The last bin is in B;. In this case we can use an argument similar to the one in the proof of Claim[I]to
show that g3 + g3 < 31 + 2|Bs|. Indeed, g2 < 31 if g3 = 0, and the presence of a 31 in a bin can increase the
empty space by at most two. Thus it is enough to prove that ¢; + 2|Bs| < ¢} + ¢4 + 48. Since ¢ is at most 49, it
suffices to prove q; +2|Bs| —q < ¢} +¢5 — 1. Actually it is easy to see that ¢; +2|Bs| — ¢ < ¢}, if we observe that
Bj is constructed in a way that maximizes the empty space per item of size 31. Equality cannot hold if B3 # 0,
because items of size 31 generate an empty space of size more than 2 in B]. On the other hand, equality is also
impossible if B3 = (), because in that case ¢; = ¢}, and obviously ¢ > 0 (since the last bin is in B;). Hence we
proved that ¢; + 2|Bs| — ¢ < ¢} — 1.

Case 2. The last bin is in By U Bs. In this case B; = (), and the last bin contains a 1, 2 or 8. If it contains a 1, the
total empty space is ¢ which is strictly less than 80, so we are done. If it contains a 2, then ¢ < 78. Furthermore,
the earlier bins contain empty space at most 1, and at most 1 + | Bs| of them contain 1. Since ¢ > |Bs|, this
implies that g1 + g2 + g3 < 79 + |Bs| < ¢ + ¢5 + 79.

If the last bin contains only 8s and possibly 31s, then ¢ < 72. Furthermore, the total sum of empty space in earlier
bins is at most 7 + 2|Bs|. Since ¢} > 2|Bs|, this implies that ¢; + g2 + g5 < ¢} + ¢4 + 79. O

3 Inclusion of non-GMPLS demands

In the case of non-GMPLS demands, the items are not packed automatically into bins using the First Fit algorithm.
Instead, they can be packed arbitrarily into the component links before the first-fit packing of GMPLS demands.

A natural approach is to try to pack the non-GMPLS demands into as few bins as possible. This corresponds to
the classical bin-packing problem with a restricted class of item sizes. By Claim|l} in case of ODU1 and ODU2
the first fit algorithm (with any order) gives the best possible packing. For ODU3 and ODU4, the first fit algorithm
with decreasing order (First Fit Decreasing) gives results very close to optimal. Even for ODUFlex, it gives at most
%OPT + g [8ll. The following example shows that FFD might not be optimal for ODU3: the optimal packing is
48 bins containing items 9,9, 8, 2, 2, 2, but FFD for this input will use 49 bins altogether.

In addition, the following claim shows that the increasing order always gives the largest number of bins if the item
sizes divide each other.

Claim 7. Let S = {s1,52,...,5:} be the item sizes, and let us assume that s; divides s;i1 for every j =
1,2,...,t— 1. We have different integer bin sizes: by, ..., b,, (in the order of bins). The the increasing order uses
the most bins amongst all the possible ordering of items.

Proof. The proof is by induction on 3" ng, s2, the details are omitted. O

Note that if the number of different item sizes is fixed (¢), then there is a polynomial algorithm by Jansen and
Solis-Oba [11] that computes a packing that uses at most 1 more bins than the optimal packing. However, the
running time of this algorithm is 0(152“22&+3 (log? n + log b)*), which is unusable in practice. In contrast, the
FFD algorithm gives close to optimal results in almost linear time.

Given a packing of the non-GMPLS demands, the problem of estimating the number of bins needed for the GMPLS
demands corresponds to maximum resource bin packing with variable bin sizes. The difficulty of this problem
depends on the ODU type of the link.

e For ODUI1 and ODU2, we can pack both the non-GMPLS and GMPLS items using first fit with arbitrary

ordering, since the number of bins used will always be (%1 by Claim This means that the sharp

bound can be very easily computed.

e For ODU3, we can use FFI if there are no ODU2e GMPLS items. In this case the item sizes are multiples
of each other, so by Claim 7] we obtain the worst possible first fit packing of GMPLS items.

If there are ODU2e GMPLS items, FFI does not necessarily give the worst packing. In this case we use
the algorithm in Section [2.3]to estimate the worst packing of GMPLS items (i.e. 1s and 2s first using the
possible partial bins, then close the partially filled bins and continue that algorithm). We note that “closing

the bins” after packing the items of size 1 and 2 is increasing the number of bins by at most 1, since only the
last closed bin may contain an empty space of size at least 8.

e For ODU4, we can use the algorithm in Section [2.4]to estimate the worst packing of GMPLS items. As in
the ODU3 case, “closing the bins” after packing the items of size 1, 2 and 8 is increasing the number of bins
by at most 1, since only the last closed bin may contain an empty space of size at least 31.

4 Concluding Remarks

We conclude our work with mentioning two possible further extensions of the model above.

Firstly, an extension could not have been discussed due to lack of space is the multiple phase version of the problem.
Assume we want to dimension a fault tolerant network, i.e. certain consecutive failure scenarios must also be taken
into account. As a result of a failure, some already allocated items may be dropped, but some others arrive (failed
LSPs are released and backup LSPs are set up). Again, we know which items are removed and what kind of new
items arrive, but we do not know the order of the insertions and removals. In case of multiple failure analysis, this
second phase may be followed by some limited number of additional ones. Using the techniques presented in the
paper, similar worst case estimations can be obtained for this case, as well.

Secondly, in this paper, we have investigated a particular (the worst possible) ordering of the items and gave a
(sharp) upper bound. In practice, however, it is very unlikely that the items arrive in this particularly bad ordering.
Instead, it would make sense to give an estimation on the number of used bins that is an upper bound with high
probability. This is an interesting subject of further work.

References

[1] ITU-T, Interfaces for the Optical Transport Network (OTN), G.709 Recommendation, December 2009.
[2] ITU-T, Architecture of optical transport networks, G.872 Recommendation, November 2001.
[3] ITU-T, Transport of IEEE 10G Base-R in Optical Transport Networks, Supplement G.Sup43, June 2010.

[4] D. Papadimitriou, Ed., Generalized Multi-Protocol Label Switching (GMPLS) Signaling Extensions for G.709
Optical Transport Networks Control, REC 4328, Jan 2006.

[5] Mannie, E., Generalized Multi-Protocol Label Switching (GMPLS) Architecture, RFC 3945, October 2004.

[6] T. Kérasz, L. Bajzik, Z. Lakatos, T. Jakab, Packing Problems in Dimensioning of GMPLS-Controlled SDH
Networks, in Proceedings of NETWORKS 2010, Warsaw, Poland, September 2010.

[7] J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wghlk, The maximum re-
source bin packing problem, Theoretical Computer Science 362 (2006), 127-139.

[8] G.Désa, The tight bound of first fit decreasing bin-packing algorithm is FFD(L) < 1glOPT(L) + g, Lecture
Notes in Computer Science 4614 (2007), 1-11.

[9] L. Gai, G. Zhang, Hardness of lazy packing and covering, Operations Research Letters 37:2 (2009), 89-92.

[10] R.L. Graham, Bounds on multiprocessing anomalies and related packing algorithms, AFIPS Joint Computer
Conferences, Proceedings of the May 16-18, 1972, spring joint computer conference, 205-217.

[11] K. Jansen, R. Solis-Oba, An OPT+1 Algorithm for the Cutting Stock Problem with Constant Number of
Object Lengths, Proceedings of IPCO 2010, LNCS 6080 (2010), 438—449.

[12] D.S. Johnson, Near-optimal bin packing algorithms, Ph.D. Dissertation, Massachusetts Institute of Technol-
ogy, 1973.

[13] M. Lin, Y. Yang, J. Xu, Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy
Bin Covering Problems, Algorithmica 57:2 (2010), 232-251.

[14] B. Xia, Z. Tan, Tighter bounds of the First Fit algorithm for the bin-packing problem, Discrete Applied
Mathematics 158 (2010), 1668—1675.

	Introduction
	GMPLS demands
	Upper bounds for arbitrary item and bin sizes
	ODU1 and ODU2
	ODU3
	ODU4

	Inclusion of non-GMPLS demands
	Concluding Remarks

