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Degree bounded forest covering

Tamas Kiraly* and Lap Chi Lau™

Abstract

We prove that for an undirected graph with arboricity at most k + e, its
edges can be decomposed into k forests and a subgraph with maximum degree
[%} The problem is solved by a linear programming based approach: we
first prove that there exists a fractional solution to the problem, and then use
a result on the degree bounded matroid problem by Kiraly, Lau and Singh [5]

to get an integral solution.

1 Introduction

Let G = (V, E) be an undirected graph without loops. The set of edges induced by a
node set X C V is denoted by E[X]. The arboricity of G is defined as

[EX]]

xcvix|>2 | X|—1"°

A well-known result of Nash-Williams [§] states that a graph G can be covered by k
forests if and only if its arboricity is at most k. If G has arboricity k + ¢ for some
0 < € < 1, then this implies that it can be covered by k + 1 forests, but not by k
forests. It is natural to ask whether, if € is small, then G can “almost” be covered by
k forests in some sense. Recently, Montassier et al. [6] proposed a conjecture of that
flavor, where “almost” means that the remaining edges form a forest of low maximum
degree.

Conjecture 1.1 ([6]). If the arboricity of G is at most k+¢ for some 0 < e < 1, then

G decomposes into k + 1 forests, one of which has maximum degree at most [%-‘
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Section 2. Relation to Degree Bounded Matroids 2

This conjecture is best possible as shown by examples in [6]. Partial results are
obtained by combinatorial method [0, 4] and by topological method [3], and related
results are known for planar graphs [I, 2]. In this paper we are interested in a weaker
form of the conjecture, where the bounded degree subgraph is not required to be a
forest.

Conjecture 1.2. If the arboricity of G is at most k + € for some 0 < € < 1, then G
contains k forests such that the edges not covered by any of them form a subgraph of
mazimum degree at most {%W

This weaker conjecture is also of interest by itself, and it has applications in bound-
ing the game chromatic number [7]. Partial results towards this weaker conjecture
are obtained in [7], [T, [6]. Recently, for ¢ > %, Conjecture was shown to be true
by Kim et al. [4], but the case € < 3 remains open (there are some special values for
which it is known, see [4]). Our main result is the following theorem which almost

proves Conjecture [1.2]

Theorem 1.3. Let G be a graph with arboricity at most k + €, where k is a positive
integer and 0 < € < % Then G contains k forests such that the edges not covered by

1—e 1—e

any of them form a subgraph of mazimum degree at most [(“1)6-‘ +1= (@w

Unlike previous approaches, we use a linear programming based approach to tackle
this problem. We first prove a fractional version of Conjecture (see Theorem ,
and then show that Theorem [1.3|follows from a result of the degree bounded matroid
problem [5]. A consequence of this approach is that the forests satisfying Theorem
can be constructed in polynomial time.

2 Relation to Degree Bounded Matroids

In the degree lower-bounded matroid independent set problem, we are given a matroid
M = (V,Z), a hypergraph H = (V, E), and lower bounds f(e) for each hyperedge
e € F(H). The task is to find an independent set I with |[I Ne| > f(e) for each
hyperedge e € E(H). The forest covering problem can be reduced to a degree lower-
bounded independent set problem: It is a well-known consequence of the matroid
union theorem that for any graph G and positive integer k there is a matroid My
with ground set E whose independent sets are the edge sets that can be covered by &
forests. Given an undirected graph G = (V, E') and the forest covering problem with
parameter k and A where A is the target maximum degree of the remaining graph,
we set the matroid to be My and define the hypergraph H with V(H) = E(G) and
E(H) ={d(v) : v € V(G)} where §(v) is the set of edges with exactly one endpoint in
v, and set the lower bound for each hyperedge to be dg(v) — A where dg(v) = |6(v)]
is the degree of v in G. Then it can be seen that the degree bounded matroid problem
in this setting is equivalent to the forest covering problem.

The result in [5] states that if there is a feasible solution to a linear programming
relaxation of the degree bounded matroid problem, then there is an integral solution to
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Section 3. Proof of the Fractional Conjecture 3

the problem which violates the degree constraints by at most ond] The corresponding
linear programming relaxation for the forest covering problem with parameter £ is the
following, where the objective is to minimize the maximum degree of the remaining
graph. In the following let d(v) denote the degree of node v in G, and for x € RE let

dI(U) = ZuveE Lyy-

min A (1)
st. x(E[X]) <k(X|-1) forevery 0 £ X CV (2)
0<z. <1 for every e € £ (3)
d,(v) > dg(v) — A for every v e V (4)

The associated matroid polyhedron of My, is described by ([2) and . The requirement
that dg(v) — d,(v) < % for every v € V' can be written as a degree lower bound

for x by setting A = %:
k+1
d.(v) > dg(v) — % for every v € V. (5)
—€

The result in [5] states that if the system ,, has a solution, then the matroid
has an independent set I’ which almost satisfies the degree bounds:

(k+1)e

dr(0) 2 doto) - |

This would imply Theorem [1.3|if the system ,, was always feasible when the
graph has arboricity at most k+¢. We prove that this fractional version of Conjecture
is true.

—‘ -1 for every v € V. (6)

Theorem 2.1. Let G be a graph with arboricity at most k + €, where k is a positive
integer and 0 < € < % Then the system @,(@,@ has a feasible solution.

We remark that this fractional version is also true if % < e < 1, and it is in fact
easier to prove. However, this is less interesting because in this case Conjecture [1.2
itself has been proved in [4], so we only sketch the proof at the end of Section .

An additional consequence of the method in [5] is that if we are given a cost function
c¢: F — Ry, and the minimum cost of a solution of ,, is zpp, then there are
k forests with total cost at most zpp that satisfy the condition of Theorem [1.3] and
these can be found in polynomial time.

3 Proof of the Fractional Conjecture

Instead of trying to describe an optimal solution to the linear program described by
,,, we will give an upper bound for the objective value of the dual linear

More precisely the result in [5] applies to the degree bounded matroid basis problem where the
returned solution is required to be a basis of the matroid, but it is easy to reduce the degree bounded
matroid independent set problem to that problem by adding dummy variables and we omit the
details here.
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Section 3. Proof of the Fractional Conjecture 4

program of (I)-([) (when the arboricity of the graph is at most k + ¢), which is the

following.
max ng(v)m - Z k(| X —1px — Zpe

veV P£XCV eckE

s.t. m, +m, — Z Wtz — puw <0 for every uv € E
ZweE(Z]

Zwvgl

veV

T>0
n>0
p=>0

In an optimal dual solution we have py, = max{m, + Ty — >_ 7 ,.cpz: 0} By writing
Y vev da(V)my = > cp(mu + ™) and eliminating the variables p, we get a simpler
equivalent form.

max Y min{ w4, > pzg— Y k(X| - Dy (7)

w€EE ZwweE[Z) 0£XCV

s.t. Zm <1 (8)
veV
>0 (9)
w>0 (10)

Let (m,p) be an optimal dual solution. By duality, the following is equivalent to
Theorem 2.11

Theorem 3.1. Let G be a graph with arboricity at most k + €, where k is a positive
integer and 0 < € < % Then

Smind w3 prf- 3 kX e < BEDC

wWEE ZweE|Z] 0AXCV

We will prove Theorem [3.1|in the rest of this section. Let L={0 # X CV : ux >
0}. By a standard uncrossing technique, we can simplify the optimal solution (7, )
so that £ is laminar, i.e. if X and Y in £ are not disjoint, then X CY or Y C X.

Claim 3.2. We may assume that L is laminar.

Proof. Suppose that X and Y in £ are not disjoint. It is easy to verify that if we
decrease px and py by min{uy, py }, and increase pxny and pxuy by min{pux, gy},
then we obtain a feasible dual solution whose objective value is at least as large,
since min{my + v, 3 7 ez #2} would not decrease for any uv € E and the second
summation remains the same. O
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Section 3. Proof of the Fractional Conjecture )

The overall plan of the proof is as follows. We give an upper bound for the first
term on the left hand side of in form of definite integrals in Claim and give
lower bounds of the same form for the second term on the left hand side and also for
the right hand side of . We then show in Lemma that the required inequality
holds for the integrands for any value of the variable, by using the assumption that
the graph is of arboricity at most k + .

Let us introduce some notation. For X € £, let ax = )~ pz. Let o = max{ax :
X € L}. Forany 0 <t < q, let -

£t:{X€£2ath, ay<tVY2X}.

Note that the sets in L; are disjoint because £ is laminar. For any 0 < ¢ < « and
X € Ly, let Xy = {ve X: m >t} Finally, given two node sets X and Y, let
d(X,Y) denote the number of edges with at least one endnode in both X and Y.

The first step of the proof is to give an upper bound for the first term of that
will turn out to be easier to estimate.

Claim 3.3.
S min{moim, Y uz
wek ZweE (7]
1—2e
/ > (—|E[Xt]\+d(xt,X\Xt) [X\Xt]\) dt
0 XeL:

Proof. The integral on the right hand side is in fact a finite sum, so it is well-defined.
To prove the inequality, we show that the contribution of each edge to the right hand
side is at least its contribution to the left side. Let e = uv € E be an arbitrary edge,
and let us assume 7, > 7,. Let X be the smallest set in £ that contains both u and
vy thus }° . cpiz Hz = ax. For any t € [0, ax], there is exactly one set Z € £; with
u,v € Z since L is laminar and thus the sets in £; are disjoint. We distinguish three
cases.

1. m, > ax. In this case the contribution of e to the left hand side is equal to
ay, and we will show that its contribution to the right hand side is at least ax.
When t € [0, min{ay,7,}], edge e is counted with weight = in the right hand
side because both u and v are in Z;. If m, > ax then we are done. Otherwise e
is counted with weight 1 when t € [r,, ax| because u € Z; but v ¢ Z;. Therefore
the total contribution of e is at least ax.

2. m, < ax < m, +m. In this case the contribution of e to the left hand side is
equal to ay. In the right hand side, the edge e is counted with weight ﬁ if
t € [0,m,] when both uw,v € Z;, with weight 1 if ¢ € [r,, 7,] when u € Z; and
v & Zy, and with weight 1= if ¢ € [m,, ax] when both u,v ¢ Z;. Thus the total

contribution of e to the right hand side is equal to
1 y >+1—2e( )_1—26 n € n €
T T A T el

Since 7, + m, > ax by assumption, this is at least ax as desired.
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Section 3. Proof of the Fractional Conjecture 6

3. m, + m < ax. In this case the contribution of e to the left hand side is equal

to Ty + m,. The contribution of e to the right hand side is the same as above:

L ift € [0,m), 1if t € [m, 7], and =2 if ¢ € [m,, ax], and thus the total
contrlbutlon is equal to

1 ny )+1—2€
—, Ty — Ty
1—c¢ 1—¢

(ax — ).

— + % = 2, the contribution of e to the right hand
side is at least 27w, + (7, — m,) = m, + 7, as desired (note that here we use the
assumption that € < 7).

Since ax — m, > m, and 11

]

We reformulate the second term on the left side of as an integral on the interval

0, al:
Sk |X|—1MX_/ S k(X] - 1) dt

XCV 0 xer,

The next step is to lower bound the constant on the right hand side of by an
integral with the same limits. Let us use the notation 7(X) =) _\ 7,. By (§) we

have
1> 7(V) > Y min{r, 3 iz} = / S X dr,

veV ZweZ XeL

where the equality follows because the contribution of v to the right hand side is equal
to min{m,, Y ,.c, pz}. Thus

(k+1)e (k+1)e

Xy dt.

1—€ /0 Z ’ !
XeLy

After these formulations, to prove Theorem [3.1] it suffices to show that

>

XeL

1—2¢

(—\E[th (X, X\ X)) + X\ th) "

De
/0 = ( |Xt|+k<|X\—1)> dt. (12)

We show that the inequality holds for the integrands for any value of ¢ between 0 and
@, so it holds for the integrals as well. The assumption that G is of arboricity at most
k + € is only used in the following lemma.

Lemma 3.4. For any 0 <t < a and X € L;, the following inequalily holds:

L2 ) < k() - 1)+ B

1
T IBIX| + d(X X\ X + Xl

1
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Section 3. Proof of the Fractional Conjecture 7

Proof. The idea is to identify the high degree structures Y in X \ X, and then use
the arboricity to bound |E(X; UY)|, while the number of remaining edges can be
bounded by k| X \ (Y U X;)|. Let Cy,...,C; be the components of G[X \ X;], and let
Y be the union of the components where the average degree in G of the nodes is at
least k41, i.e.

Y = G 2E[C])| + d(Ci, Xi) > (k + 1)|Ci[}.
Claim 3.5. The following two inequalities hold for this set Y :

2|B[Y][ +d(Y, X¢) > (k+ Y], (13)
d(X \ (Y UX,), X) <KX\ (YUX,)| (14)

Proof. Inequality follows easily from the definition, since it holds for all compo-
nents of G[Y]. To show inequality (14)), observe that if C; N'Y = 0, then 2|E[C;]| +
d(Cy, Xy) < E|C;| + (|C;] — 1). This implies, using that |E[C;]| > |C;| — 1 because of
its connectedness, that |E[C;]| + d(C;, X;) < k|C;|. By summing over all components
not in Y, we obtain that

AX\(YUX),X)= Y (B[] +d(Ci, Xp)) < kX \ (Y UX,)].
i:C;NY =0

]

First let us analyze the case when X; UY = (). Since all components have average
degree less than k + 1, we have |E[X]| < £:[X| — 1 A simple case analysis shows
(using the fact that G has no loops) that this implies |F[X]| < k(| X| — 1), so the
Lemma is true in this case.

We may thus assume that X; UY # (). Since the arboricity of G is at most k + €,
we know that |E[X; UY]| < (k+¢)(|X: UY]| —1), so

T (BL + A6, Y) + EIY]) = 1 |EIX U Y] <

k+e
1—e¢

(X, UY|—1).

If we subtract = times the inequality from this, we get that

1— 2¢

iw[xt]\ +d(X,,Y) + T E[Y]
< ’sz(muw 1) - (kltle)elYl
oty
= k(X UY|-1)+ (k+1)€<|Xt|_1)'

1—¢€
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Next we add inequality :

LB a6 X0 X + S B+ B (v U X)
< k0% Uy - 1+ EE )  px ru )
= k) -0+ B )

This implies the inequality in the Lemma because

B X

B+ BIX\ (YU X)) 2 1

]

By Lemma , inequality is true, since the inequality holds for the integrands
for any value ¢ € [0, a]. This concludes the proof of Theorem [3.1] hence also the proof
of Theorem 2.1} Using the degree bounded matroid result described in Section [2], we
obtain Theorem [L3l

Remark. As we have already mentioned, Theorems and are true also for
% < e < 1. We now sketch the proof. The overall structure of the proof is similar, but
we remove the term +=2¢|E[X \ X,]| from the bound in Claim . Therefore Lemma
should be modified: the inequality

L|E[Xt]| Fd(X, X\ X)) < k(X|—1)+ (k+1)e

X,
1—¢ 1—e¢ | t|

should hold for any 0 < t < a and X € L£;. The proof of this is simpler than the
proof of Lemma : instead of considering the components of X \ X;, we define
Y as the set of nodes of X \ X; for which d(v,X;) > k + 1. Using the fact that
|E[X;UY]| < (k+¢€)(|X; UY]|—1) and the fact that d(v, X;) < k for any v ¢ X, UY,
we obtain the desired bound.

Acknowledgement

We thank Hehui Wu for telling us this problem and their result [4].

References

[1] O.V. Borodin, A.V. Kostochka, N.N. Sheikh, G.Yu, Decomposing a planar graph
with girth 9 into a forest and a matching, European J. Combin. 29 (2008), 1235-
1241.

[2] D. Goncalves, Covering planar graphs with forests, one having bounded mazimum
degree, J. Combin. Theory Ser. B, 99, (2009), 314-322.

EGRES Technical Report No. 2010-08



References 9

[3]

T. Kaiser, M. Montassier, A. Raspaud, Covering a graph by forests and a matching,
arXiv:1007.0316v1, 2010.

S.-J. Kim, A.V. Kostochka, D.B. West, H. Wu, and X. Zhu, Decomposition of
sparse graphs into forests and a graph with bounded degree, submitted (2010).

T. Kiraly, L.C. Lau, and M. Singh, Degree bounded matroids and submodular flows,
Proceedings of 13th International Conference IPCO 2008, LNCS 5035 (2008), 259-
272.

M. Montassier, P. Ossona de Mendez, A. Raspaud, and X. Zhu, Decomposing a
graph into forests, Manuscript (2010).

M. Montassier, A. Pecher, A. Raspaud, D.B. West, X. Zhu, Decomposition of

sparse graphs, with application to game coloring number, Discrete Mathematics,
310, (2010), 1520-1523.

C.St.J.A. Nash-Williams, Decomposition of finite graphs into forests, J. London
Math. Soc. 39 (1964), 12.

EGRES Technical Report No. 2010-08



	Introduction
	Relation to Degree Bounded Matroids
	Proof of the Fractional Conjecture

