
ar
X

iv
:1

40
9.

70
33

v1
 [

cs
.D

S]
 2

4
Se

p
20

14

Shortest Paths in Nearly Conservative Digraphs

Zoltán Király ∗

September 26, 2014

Abstract

We introduce the following notion: a digraph D = (V,A) with arc weights c : A → R is called
nearly conservative if every negative cycle consists of two arcs. Computing shortest paths in nearly
conservative digraphs is NP-hard, and even deciding whether a digraph is nearly conservative is
coNP-complete.

We show that the “All Pairs Shortest Path” problem is fixed parameter tractable with various
parameters for nearly conservative digraphs. The results also apply for the special case of conservative
mixed graphs.

1 Introduction

We are given a digraph D = (V, A), a weight (or a length) function c : A → R is called conservative
(on D) if no directed cycle with negative total weight (“negative cycle” for short) exists, and c is
called λ-nearly conservative if every negative cycle consists of at most λ arcs.

The APSP (All Pairs Shortest Paths) problem we are going to solve has two parts, first we must
decide whether c is λ-nearly conservative, next, if the answer for the previous question is Yes, then
for all (ordered) pairs s 6= t of vertices the task is to determine the length of the shortest (directed
and simple) path from s to t.

In this paper we concentrate on the case λ = 2, a 2-nearly conservative weight function c is simply
called nearly conservative in this paper. A mixed graph G = (V,E,A) on vertex set V has the set E
of undirected edges and the set A of directed edges (i.e., arcs). A weight function c : E ∪ A → R is
called conservative if no cycle with negative total weight exists. For a mixed graph we can associate
a digraph by replacing each undirected edge e having endvertices u and v by two arcs uv and vu with
weights c(uv) = c(vu) = c(e). It is an easy observation that the resulting c is nearly conservative
on the resulting digraph if and only if the original weight function was conservative on the original
mixed graph, and in this case the solution of the APSP problem remains the same.

Arkin and Papadimitriou proved in [1] that the problems of detecting negative cycles and finding
the shortest path in the absence of negative cycles are both NP-hard in mixed graphs. Consequently,
checking whether c is nearly conservative on D is coNP-complete, and solving the APSP problem in
the case c is nearly conservative on D is NP-hard. In this paper we give FPT algorithms for this
problem related to various parameters.

Though it was a surprise to the author, he could not find any algorithm for dealing with these
problems (despite the fact that many paper are written about the Chinese Postman problem on
mixed graphs). We only found two more papers that are somehow related to this topic. In [4] for the
special case of skew-symmetric graphs shortest “regular” paths are found in polynomial time if no
negative “regular” cycle exist. In [2] for the similar special case of bidirected graphs minimum mean
edge-simple cycles are found in polynomial time, this is essentially the same as finding minimum
mean “regular” cycles in skew-symmetric graphs. The class of nearly conservative graphs seems to be
not studied (and defined) in the literature, as well as we could not find any FPT result about APSP.

∗Department of Computer Science and Egerváry Research Group (MTA-ELTE), Eötvös University, Pázmány Péter
sétány 1/C, Budapest, Hungary. Research was supported by grants (no. CNK 77780 and no. K 109240) from the Na-
tional Development Agency of Hungary, based on a source from the Research and Technology Innovation Fund. E-mail:
kiraly@cs.elte.hu

1

http://arxiv.org/abs/1409.7033v1

For defining the parameters we are going to use, we first define the notion of negative trees. Given
D and c, we associate an undirected graph F = (V,E) as follows. Edge-set E consists of pairs u 6= v

of vertices for which both uv and vu are arcs in A, and c(uv) + c(vu) < 0. We can construct F in
time O(|A|), and can also check whether it is a forest. We claim that if F is not a forest, then c is not
nearly conservative on D, so our algorithm can stop with this decision. If F contains a cycle, then
it corresponds to two oppositely directed cycles of D, and the sum of the total weights of these two
cycles are negative, proving that c is not nearly conservative.

From now on we will suppose that F is a forest, and we call its nontrivial components (that have
at least one edge) the negative trees.

Our first parameter k0 is the number of negative trees, and we give an O(2k0 · n4) algorithm
for the APSP problem (where n = |V |). Later we refine this algorithm for parameter k1, which is
the maximum number of negative trees in any strongly connected component of D, and finally for
parameter k2, which is the maximum number of negative trees in any weakly 2-connected block of
any strongly connected component of D (for the definitions see the next section). Our final algorithm
also runs in time O(2k2 · n4). Consequently, if there is a constant γ such that every weakly 2-
connected block of any strongly connected component of D has at most γ negative trees, then we
have a polynomial algorithm.

The preliminary version of this paper appeared in [6] for the special case of mixed graphs. In
that paper we also gave a strongly polynomial algorithm for finding shortest exact walk (a walk with
given number of edges) in any non-conservative mixed graph.

2 Definitions

For our input digraph D we may assume it is simple. An arc from u to v is called a loose arc if there
is another arc from u to v with a smaller weight. In a shortest path between s and t (if s 6= t) neither
loops nor loose arcs can appear. Consequently, as a preprocessing, we can safely delete these (and
also keep only one copy from multiple arcs having the same weight).

However for our purposes multiple arcs will be useful, so we will use them for describing the
algorithm. We use the convention that the notation uv always refers to the shortest arc from u to v.

We call an arc uv of D special if vu is also an arc, and moreover c(uv) + c(vu) < 0. Other arcs
are called ordinary. For a special arc uv the special arc vu is called its opposite. As a part of the
preprocessing, we add some loose arcs to D. For every special arc uv we add an arc a from v to u with
weight c(a) = −c(uv). By the definition of special arcs, these are really loose arcs, as −c(uv) > c(vu).
We call these arcs added ordinary arcs, or shortly loose arcs. We call the improved digraph also D,
and its arc set is called A. Arc set A is decomposed into A = As ∪Ao, where As is the set of special
arcs, and Ao is the set of ordinary (original or added) arcs. (The main purpose of this procedure
is the following. We will sometimes work in the ordinary subdigraph Do = (V,Ao), and we need to
maintain the same reachability: if there is a path from s to t in D, then there is also a path from s

to t in Do.) Our main property remained true: if c is nearly conservative on D, then every negative
cycle consists of two oppositely directed special arcs. Remark: special arcs may have positive length,
so loose arcs may have negative length. We call a path ordinary if all its arcs are ordinary. Note that
by the assumptions |A| ≤ 2n2, where n = |V |.

Given D and c, we associate an undirected graph F = (V,E) as follows. Edge-set E consists
of unordered pairs u 6= v of vertices for which uv is a special arc in As. As we detailed in the
Introduction, if F is not a forest, then c is not nearly conservative on D. We consider this process as
the last phase of the preprocessing: we determine F , and if it is not a forest, then we stop with the
answer “Not Nearly Conservative”.

From now on we suppose that F is a forest, and we call its nontrivial components (that have at
least one edge) the negative trees. If T is a negative tree, then V(T) denotes its vertex set, and
A(T) denotes the set of special arcs that correspond to its edges. If s, t ∈ V (T) are two vertices of
T , then dT(s, t) denotes the length of unique path from s to t in A(T).

A walk from v0 to vℓ (or a v0vℓ-walk) is a sequence

W = v0, a1, v1, a2, v2, . . . , vℓ−1, aℓ, vℓ

where vi ∈ V for all i, and aj is an arc from vj−1 to vj for all j. A walk is closed if v0 = vℓ. A
closed walk is also called here a v0v0-walk. A number ℓ of arcs used by a walk W is denoted by

2

|W |. The length (or weight) c(W) of a walk W is defined as
∑ℓ

j=1 c(aj). If W1 is a s1v-walk and W2

is a vt2-walk, then their concatenation is denoted by W1 + W2. For a walk W we use the notation
W [vi, vj] for the corresponding part vi, ai+1, . . . , aj , vj if i < j.

A walk W is special-simple if no special arc is contained twice in it, moreover, if W contains
special arc uv, then it does not contain its opposite vu. A walk is a path if all the vertices v0, . . . , vℓ
are distinct. A closed walk is a cycle if all the vertices v0, . . . , vℓ are distinct, with the exception
of v0 = vℓ. If |W | = ℓ = 0, then we call the walk also an empty path (its length is 0), and in
this paper unconventionally the empty path will also be considered as an empty cycle. The distance
dD(s, t) = d(s, t) of t from s is the length of the shortest path from s to t (where s, t ∈ V).

The relation: there is a path in D from s to t and also from t to s, is obviously an equivalence
relation, its classes are called the strongly connected components of D. (Notice that a negative tree
always resides in one strongly connected component.) A weakly 2-connected block of a digraph is
a 2-connected block of the underlying undirected graph (where arcs are replaced with undirected
edges).

An algorithm is FPT for a problem with input size n and parameter k if there is an absolute
constant γ, and a function f such that the running time is f(k) · O(nγ). (Originally FPT stands for
“fixed parameter tractable”, and it is an attribute of the problem, however in the literature usually
the corresponding algorithms are also called FPT.) In this paper we give FPT algorithms for the
APSP problem for nearly conservative digraphs.

In the simplest version we assume that there is just one negative tree and it is spanning V . Next
we give an algorithm for the case where we still have only one negative tree, but it is not spanning
V . These algorithms are polynomial and simple.

Then we use various parameters: k0 is the number of negative trees in D, k1 is the maximum
number of negative trees in any strongly connected component of D, and k2 is the maximum number
of negative trees in any weakly 2-connected block of any strongly connected component of D. (Clearly
k0 ≥ k1 ≥ k2.) The main goal of this paper to give an O(2k2 · n4) algorithm for the APSP problem
for the case λ = 2, i.e., for deciding whether c is nearly conservative on D, and if it is, then for
calculating the distances dD(s, t) for each (ordered) pair of vertices s, t ∈ V .

In the next section we show some lemmas. In Section 4 we give some polynomial algorithms for
the case of one negative tree. In Section 5 we give an FPT algorithm where the parameter k0 is the
total number of negative trees in D. Next, in Section 6 we extend it to the case where k2 only bounds
the number of negative trees in any weakly 2-connected block of any strongly connected component.

Our main goal is only giving the length of the shortest paths, in Section 7 we detail how the actual
shortest paths themselves can be found.

Finally in Section 8 we conclude the results, show their consequences to mixed graphs, and pose
some open problems.

3 Lemmas

In this section we formulate some lemmas. Though each of them can be easily proved using the newly
introduced notions and the statements of the preceding lemmas, we could not find these statements
in the literature (neither in an implicit form).

We premise some unusual aspects of nearly conservative weight functions. Usually shortest path
algorithms use the following two facts about conservative weight functions. If P is a shortest sx-path
and Q is a shortest xt-path, then P + Q contains an st-path not longer than c(P) + c(Q). If P is a
shortest st-path containing vertices u and v (in this order), then P [u, v] is a shortest uv-path. These
two statements are NOT true for nearly conservative weight functions.

Remember that D = (V,As ∪ Ao) is the improved digraph with loose arcs, and the associated
graph F is a forest.

Lemma 1. Weight function c is nearly conservative on D if and only if there is no negative special-
simple closed walk.

Proof. If C is a negative cycle consisting of at least three arcs, then it is also a negative special-
simple closed walk. On the other hand, suppose that C is a negative special-simple closed walk with
a minimum number of arcs, and assume that C is not a cycle, that is there are 0 < i < j ≤ ℓ such

3

that vi = vj . Now C decomposes into two special-simple closed walks with less arcs, clearly at least
one of them has negative length, a contradiction.

Lemma 2. If c is nearly conservative on D, and s, t ∈ V , and Q is a special-simple st-walk, then we
also have an st-path P with c(P) ≤ c(Q), and P contains only arcs of Q.

Proof. Let Q be a shortest special-simple st-walk (which exists by the previous lemma and as c is
nearly conservative) having the minimum number of arcs.

By the previous lemma, if s = t, then the empty path serves well as P . So we may assume that
s 6= t and Q is not a path, i.e., there are 0 ≤ i < j ≤ ℓ such that vi = vj . Now Q decomposes to a
special-simple svi-walk Q1, a special-simple closed walk C through vi and an special-simple vjt-walk
Q2. By the previous lemma C is nonnegative, so c(Q1 +Q2) ≤ c(Q), consequently Q1 +Q2 is a not
longer special-simple st-walk with less number of arcs, a contradiction.

Suppose T is a negative tree, u, v ∈ V (T), and P is a uv-path in D′ = D − A(T). If c(P) <

−dT (v, u), then c is not nearly conservative on D because otherwise P + P T
vu would be a negative

special-simple closed walk, where P T
vu is the vu-path in A(T). Otherwise, if c(P) ≥ −dT (v, u), then

we have a uv-path P ′ in D′ consisting of loose arcs such that c(P ′) ≤ c(P). Using this train of
thought we get the following lemmas that play the central role in our algorithms.

Lemma 3. Let T be a negative tree, and assume that c is nearly conservative on D. If P is a shortest
st-path using some vertex of V (T), then let u be the first vertex of P in V (T), and let v be the last
vertex of P in V (T). Then P [u, v] uses only special arcs from A(T). Consequently, if s, t ∈ V (T),
then d(s, t) = dT (s, t).

Proof. Remember that a uv-path in A(T) may have positive length. Fortunately, by the definition
of u and v, there are no vertices of P preceding u or following v inside V (T), and this fact can be
used successfully.

Suppose P is a shortest st-path. By the observation made before the lemma, for any u′, v′ ∈ V (T),
any subpath of form P [u′, v′] that uses no arcs from A(T) can be replaced by loose arcs without
increasing the length. After we made all these replacements, we replaced P [u, v] by a special-simple
uv-walk Q′ such that Q′ contains only arcs in A(T) and loose arcs, and c(Q′) ≤ c(P [u, v]). By Lemma
2, Q′ contains a uv-path P ′ with c(P ′) ≤ c(Q′). We got P ′ by eliminating cycles, if any cycle had
positive length, then we get c(P ′) < c(Q′). Suppose now that all eliminated cycles had zero length,
meaning that each one had the form x, a, y, yx, x, where a is the loose arc from x to y and yx is
the special arc from y to x. If after deleting all these cycles P ′ still has a loose arc a from x to
y then it can be replaced safely with the special arc xy yielding again a path strictly shorter than
Q′. Thus the only possibility where we can only get a P ′ with the same length (as Q′) is that the
special-simple uv-walk Q′ consisted of the uv-path P T

uv inside A(T) and additionally some zero length
cycle described above, and moreover P ′ = P T

uv. Now we claim that in this case the path P [u, v] used
only arcs from A(T), i.e., it was also P T

uv. Otherwise there are vertices x, y ∈ V (T) such that x is on
P T
uv, y is not on it, and Q′ contains one loose arc and one special arc between x and y. However in

this case vertex x had to be included twice in path P , a contradiction.
To finish the proof observe that P [s, u] + P ′ + P [v, t] is an st-path, and in the case P [u, v] 6= P T

uv

it would be shorter than the shortest path P .

Lemma 4. Let T be a negative tree, and assume that c is nearly conservative on digraph D′ =
D − A(T) defining distance function d′. Then c is nearly conservative on D if and only if for any
pair of vertices u, v ∈ V (T) we have d′(u, v) ≥ −dT (v, u).

Proof. We showed that the condition is necessary. Suppose that C is a negative cycle in D having
at least three arcs. If it has at most one vertex in V (T), then it is also a negative cycle in D′. We
claim that we can construct a special-simple negative closed walk C′ which uses only loose arcs and
arcs in A(T). To achieve this goal, repeatedly take any subpath C[u, v], where u, v ∈ V (T), but
inner vertices of C[u, v] are in V − V (T). By the condition c(C[u, v]) ≥ −dT (v, u), which means that
changing C[u, v] to the uv-path consisting of loose arcs does not increase the length of C. We arrived
at a contradiction, as the special-simple closed walk C′ contains a negative cycle which is impossible
by the definition of loose arcs.

4

4 Polynomial algorithms for the case k0 = 1

First we give an O(n2) algorithm for the very restricted case, where we have only one negative tree
T , and moreover it spans V . We claim first that c is nearly conservative on D if and only if for each
ordinary arc uv we have c(uv) ≥ −dT (v, u). If c(uv) < −dT (v, u), then we have a negative special-
simple closed walk, so c is not nearly conservative by Lemma 1. Suppose now that c(uv) ≥ −dT (v, u)
holds for each ordinary arc uv, and C is a negative cycle in D with at least three arcs. As in the proof
of Lemma 4, replace each ordinary arc uv of C by a uv-path consisting of loose arcs, this does not
increase the length. We arrive at special-simple closed walk using only special and loose arcs that is
negative. However this contradicts to the definition of loose arcs. We also got that in this case for any
pair s, t ∈ V the length of the shortest path is dT (s, t) by Lemma 3. Consequently it is enough to give
an O(n2) algorithm for calculating distances dT (s, t). We suppose that V = {1, . . . , n} and initialize
a length-n all-zero array Du for each vertex u. Then we fill up these arrays in a top-down fashion
starting from the root vertex 1. Let P denote the subset of vertices already processed, initially it is
{1}. If a parent u of an unprocessed vertex v is already processed, we process v: for each processed
vertex x we set Dv(x) = c(vu) +Du(x), and set Dx(v) = Dx(u) + c(uv), and put v into P .

Next we give an O(n4) algorithm for the case where we have only one negative tree T , but we do
not assume it to span V .

In digraph D′ = D−A(T) = Do = (V,Ao) using the Floyd-Warshall algorithm (see in any lecture
notes, e.g., in [3]), it is easy to check whether c is conservative on D′ in time O(n3). If it is not
conservative, then we return with output “Not Nearly Conservative” (as in this case c clearly
cannot be nearly conservative on D), and if it is conservative, then this algorithm also calculates the
length d′(s, t) of all shortest paths in D′ (for s, t ∈ V). If vertex t is not reachable from vertex s,
then it gives d′(s, t) = +∞ (remember that reachability is the same in D′ as in D).

Then we calculate the distances dT (u, v) in time O(n2) as in the previous section. By Lemma 4, c
is nearly conservative on D if and only if for all pairs u, v ∈ VT we have d′(u, v) ≥ −dT (u, v), this can
be checked in time O(n2). It remains to calculate the pairwise distances. If P is a shortest st-path,
then it is either a ordinary path (having length d′(s, t)), or it has a first arc uu′ ∈ A(T) and a last
arc v′v ∈ A(T). The part P [u, v] must reside inside A(T) by Lemma 3.

Lemma 5. If c is nearly conservative on D, and T is the only negative tree, then the distance d(s, t)
is

d(s, t) = min
(

d
′(s, t), min

u,v∈VT

[d′(s, u) + d
T (u, v) + d

′(v, t)]
)

.

Proof. This is a consequence of Lemma 3. The trick used here is that a shortest su-path and a
shortest vt-path in D′ need not be arc-disjoint, this is the main purpose for which we introduced the
notion of special-simple, so for the relation LHS≤RHS we have to use Lemma 2.

These values can be easily calculated for all pairs in total time O(n4), so we are done.

5 FPT algorithm for parameter k0

In this section we suppose that there are at most k0 negative trees in D. Let T1, . . . , Tk0
be the

negative trees, remember that we defined A(Ti) as the set of special arcs that correspond to the edges
of Ti. We denote by VT the vertex set

⋃

i V (Ti).
First we compute distances dTi for all 1 ≤ i ≤ k0 in total time

∑

O(|V (Ti|
2) = O(n2). Next we

compute distances d′ in digraph D′ = D −
⋃

i A(Ti) = Do in time O(n3), or stop if c is not nearly
conservative on D′.

We use dynamic programming for the calculation remained. For all J ⊆ {1, . . . , k0} we define the
J-subproblem as follows. Solve the APSP problem in digraph DJ = D −

⋃

i∈{1,...,k0}−J

A(Ti), and let

dJ denote the corresponding distance function if c is nearly conservative on DJ (otherwise, if c is not
nearly conservative on DJ for any J , we stop). We already solved the ∅-subproblem, d∅ ≡ d′.

Lemma 6. Suppose we solved the (J − i)-subproblem for every i ∈ J and found that c is nearly
conservative on DJ−i. By Lemma 4, we can check whether c is conservative on DJ using only

5

distance functions dTi and dJ−i for one element i ∈ J. If yes, then we have

dJ(s, t) = min
(

d∅(s, t),min
i∈J

[min
u,v∈V (Ti)

(d∅(s, u) + d
Ti(u, v) + dJ−i(v, t)]

)

Proof. First we show that LHS≥RHS. Let P be a shortest path in DJ . Either P is disjoint from
⋃

j∈J V (Tj), in this case its length is d∅(s, t) in graph DJ . The other possibility is that P has some
first vertex u in

⋃

j∈J V (Tj), say u ∈ V (Ti). Let v denote the last vertex of P in V (Ti). That is,
P [s, u] goes inside D∅ and P [v, t] goes inside DJ−i, and, by Lemma 3, P [u, v] goes inside A(Ti).

To show that LHS≤RHS we only need to observe that if P1 is an su-path in D∅, P2 is a uv-path
in A(Ti), and P3 is a vt-path in DJ−i, then P1 + P2 + P3 is a special-simple st-walk.

Remember that ’solving the APSP problem’ is defined in this paper as first checking nearly
conservativeness, and if c is nearly conservative, then calculate all shortest paths. As solving one
subproblem needs O(n4) steps, we proved the following

Theorem 1. If D has k0 negative trees, then the dynamic programming algorithm given in this
section correctly solves the APSP problem in time O(2k0 · n4).

The weak blocks of a digraph refer to the 2-connected blocks of the underlying undirected graph.
It is well known that the block-tree of an undirected graph can be determined in time O(n2) by DFS.
If we have this decomposition and we also calculated APSP inside every weak block, then we can also
calculate APSP for the whole digraph in additional time O(n3). Consequently we have

Corollary 7. If every weak block of D contains at most k′
0 negative trees, then we can solve the

APSP problem in time O(2k
′
0 · n4).

6 General FPT algorithm for parameters k1 and k2

Suppose every strongly connected component of D contains at most k1 negative trees. By the previous
section we can solve the APSP problem inside each strongly connected component in total time
O(2k1 · n4). If for any of them we found that c is not nearly conservative, then we stop and report
the fact that c is not nearly conservative on D. Henceforth in this section we assume that for every
strongly connected component K of D, c is nearly conservative on K. (In this situation clearly c is
nearly conservative on D.) The distance function restricted to component K is denoted by dK . If
s, t ∈ V (K), then every st-path goes inside K, thus d(s, t) = dK(s, t). It remains to calculate APSP
in D for pairs s, t, that are in different strongly connected components.

We construct a new acyclic digraph D∗ by first substituting every strongly connected component
K by acyclic digraph D∗

K as follows. Suppose V (K) = {xK
1 , xK

2 , . . . , xK
r }, the vertex set of D∗

K

will consist of 2r vertices, {aK
1 , aK

2 , . . . , aK
r , bK1 , bK2 , . . . , bKr }. For each 1 ≤ i, j ≤ r the digraph D∗

K

contains arc aK
i bKj with length dK(xK

i , xK
j).

In order to finish the construction of D∗, for every arc xK
i xL

j of D connecting two different strongly
connected components K 6= L, digraph D∗ contains the arc bKi aL

j with length c(xK
i xL

j). It is easy
to see that D∗ is truly acyclic and has 2n vertices. As D∗ is a simple digraph, paths can be given
by only listing the sequence of its vertices. We can calculate APSP in D∗ in time O(n3) by the
method of Morávek [7] (see also in [3]) if we run this famous algorithm from all possible sources s. It
gives distance function dD∗ (where if t is not reachable from s, then we write dD∗(s, t) = +∞). The
total running time is still O(2k1 · n4). We remark that if every strongly connected component has a
spanning negative tree, then the running time is O(n3).

Theorem 2. Suppose s = x
K0

i0
∈ V (K0) and t = xKr

jr
∈ V (Kr) where K0 6= Kr are different strongly

connected components of D. Then the shortest st-path in D has length exactly dD∗(aK0

i0
, bKr

jr
).

Proof. Vertex t is not reachable from s in D if and only if bKr

jr
is not reachable from a

K0

i0
in D∗.

Otherwise, suppose that a
K0

i0
, b

K0

j0
, a

K1

i1
, b

K1

j1
, . . . , aKr

ir
, bKr

jr
is a shortest path P in D∗. For 0 ≤ ℓ ≤ r

let path Pℓ be a shortest path in D from x
Kℓ

iℓ
to x

Kℓ

jℓ
, this path obviously goes inside Kℓ. We can

construct an st-path Q in D with the same length as P has in D∗: Q = P0+x
K0

j0
x
K1

i1
+P1+x

K1

j1
x
K2

i2
+

P2 + . . .+ Pr−1 + x
Kr−1

jr−1
xKr

ir
+ Pr.

6

For the other direction, suppose that there are strongly connected components K0,K1, . . . ,Kr,
such that the shortest st-path Q in D meets these components in this order, and for all ℓ the path Q

arrives into Kℓ at vertex x
Kℓ

iℓ
and leaves Kℓ at vertex x

Kℓ

jℓ
. As Q is a shortest path it clearly contains

a path of length dKℓ
(xiℓ

Kℓ , x
Kℓ

jℓ
) inside Kℓ for each ℓ, consequently the following path has the same

length in D∗: P = a
K0

i0
, b

K0

j0
, a

K1

i1
, b

K1

j1
, . . . , aKr

ir
, bKr

jr
.

Using Corollary 7 we easily get the following more general statements.

Corollary 8. If every weak block of any strongly connected component of D contains at most k2
negative trees, then we can solve the APSP problem in time O(2k2 · n4).

Corollary 9. If there is an absolute constant γ, such that in any weak block of any strongly connected
component of D there are at most γ negative trees, then there is a polynomial time algorithm for the
APSP problem that runs in time Oγ(n

4).

7 Finding the paths

In this section we assume that c is nearly conservative on D.
We usually are not only interested in the lengths of the shortest paths, but also some (implicit)

representation of the paths themselves. The requirement for this representation is that for any given
s and t, one shortest st-path P must be computable from it in time O(ℓ) if ℓ is the number of arcs in
P .

It is well known (see e.g., in [3]) that both the algorithm of Floyd and Warshall and the algorithm
of Morávek can compute predecessor matrices Π (by increasing the running time by a constant factor
only), with the property that for each s 6= t the entry Π(s, t) points to the last-but-one vertex of
a shortest st-path. This representation clearly satisfies the requirement described in the previous
paragraph.

For a digraph H let ΠH denote the predecessor matrix of this type, and suppose that for each
strongly connected component K we computed ΠK , and we also computed ΠD∗ . Then ΠD is easily
computable as follows. Suppose that s = x

K0

i0
and t = xKr

jr
, and ΠD∗(aK0

i0
, bKr

jr
) = aKr

ir
. If ir 6= jr, then

define ΠD(s, t) = ΠKr
(xKr

ir
, xKr

jr
), otherwise let b

Kr−1

jr−1
= ΠD∗(aK0

i0
, aKr

ir
) and define ΠD(s, t) = x

Kr−1

jr−1
.

It remained to compute the predecessor matrices ΠK in the case where K is a strongly connected
component of D. In accordance with Section 5 from now on we call K as D (and forget the other
vertices of the digraph), and the matrix we are going to determine is simply Π.

If s and t are vertices of the same negative tree Ti, then the method given in the first paragraph
of Section 4 easily calculates Π(s, t) = ΠA(Ti)(s, t). Next we call the Floyd-Warshall algorithm on D′,
and it can give ΠD′ , then during the dynamic programming algorithm we determine matrices ΠDJ

for all J .
Given s and t, by Lemma 6 if the minimum is d∅(s, t), then ΠDJ

(s, t) = ΠD∅
(s, t), otherwise we

find i, u, v giving the minimum value. If v 6= t, then ΠDJ
(s, t) = ΠDJ−i

(s, t), otherwise if v = t but
u 6= v, then ΠDJ

(s, t) = ΠA(Ti)(s, t), and finally if v = t = u 6= s then ΠDJ
(s, t) = ΠD∅

(s, t).
Extending this setup for weak blocks is obvious.

8 Conclusion and open problems

We gave FPT algorithms for the NP-hard APSP problem in nearly conservative graphs regarding
with various parameters.

For mixed graphs we have the following consequence. As nonnegative undirected edges can be
replaced by two opposite arcs, we may assume that every undirected edge has negative length. Here
the negative trees are the nontrivial components made up by undirected edges, and APSP problem
is to check whether c is conservative on a mixed graph G, and if Yes, then calculate the pairwise
distances.

Remember, that for mixed graphs the APSP problem contains checking conservativeness, and if
c is conservative on the mixed graph, then all shortest paths should be calculated.

Corollary 10. If every weak block of any strongly connected component of a mixed graph contains
at most k2 negative trees, then we can solve the APSP problem in time O(2k2 · n4).

7

Finally we pose three open problems. A weight function is even-nearly conservative if every
negative cycle consist of an even number of arcs.

Question 1. Is there an FPT algorithm for shortest paths if c is 3-nearly conservative? (The
parameter should not contain the number of negative triangles.)

Question 2. Is there a polynomial or FPT algorithm for recognizing even-nearly conservative weights?
This would be interesting even if we restrict the digraph to be symmetric (i.e., every arc has its op-
posite).

Question 3. Is there an FPT algorithm for shortest paths if c is λ-nearly conservative, using some
parameter k of “inconvenient components” (should be defined accordingly) and also λ?

Acknowledgment

The author is thankful to András Frank who asked a special case of this problem, and also to Dániel
Marx who proposed the generalization to nearly conservative digraphs.

References

[1] E.M. Arkin, C.H. Papadimitriou On negative cycles in mixed graphs, Operations Research
Letters 4 (3) (1985), pp. 113–116.

[2] M.A. Babenko, A.V. Karzanov Minimum mean cycle problem in bidirected and skew-
symmetric graphs, Discrete Optimization 6 (2009), pp. 92–97.

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein Introduction to Algorithms, MIT
Press, Cambridge third edition, (2009)

[4] A.V. Goldberg, A.V. Karzanov Path problems in skew-symmetric graphs, Combinatorica
16 (3) (1996), pp. 353–382.

[5] R.M. Karp A characterization of the minimum cycle mean in a digraph, Discrete Mathematics
23 (1978), pp. 309–311.

[6] Z. Király Shortest paths in mixed graphs, Egres Technical Report TR-2012-20,
www.cs.elte.hu/egres/

[7] J. Morávek A note upon minimal path problem, Journal of Mathematical Analysis and
Applications 30 (1970), pp. 702–717.

8

