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Combinatorial Conditions for the Unique

Completability of Low Rank Matrices

Bill Jackson⋆, Tibor Jordán⋆⋆, and Shin-ichi Tanigawa⋆ ⋆ ⋆

Abstract

We consider the problems of completing a low-rank positive semidefinite
square matrix M or a low-rank rectangular matrix N from a given subset of
their entries. Following the approach initiated by Singer and Cucuringu [20]
we study the local and global uniqueness of such completions by analysing the
structure of the graphs determined by the positions of the known entries of M
or N .

We present combinatorial characterizations of local and global (unique) com-
pletability for special families of graphs. We characterize local and global com-
pletability in all dimensions for cluster graphs, i.e. graphs which can be obtained
from disjoint complete graphs by adding a set of independent edges. These re-
sults correspond to theorems for body-bar frameworks in rigidity theory. We
also provide a characterization of two-dimensional local completability of pla-
nar bipartite graphs, which leads to a characterization of two-dimensional local
completability in the rectangular matrix model when the underlying bipartite
graph is planar. These results are based on new observations that certain graph
operations preserve local or global completability, as well as on a further con-
nection between rigidity and completability.

We also prove that a rank condition on the completability stress matrix
of a graph is a sufficient condition for global completability. This verifies a
conjecture of Singer and Cucuringu [20].

1 Introduction

In matrix completion problems a partially filled matrix is given and the goal is to
determine the missing entries so that the resulting matrix belongs to a certain class
of matrices. Such problems arise in several practical problems where one has to deal
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1.1 Local and global completability 2

with incomplete data sets. Here we consider the completion of low-rank positive
semidefinite matrices.
A square matrix M of size n is called a Gram matrix if M = P⊤P for some d× n

matrix P with real entries. Thus a Grammatrix is symmetric and positive semidefinite
with rank at most d. Conversely, any symmetric positive semidefinite matrix can be
expressed in the form P⊤P for some matrix P .
A related problem is to decide whether such a completion is unique. Singer and

Cucuringu [20] investigated the uniqueness of the Gram matrix completion problem
and pointed out that several concepts and techniques from rigidity theory can be
adapted to the matrix completion setting. In this paper we explore these connections
further to obtain new results on uniquely completable matrices.

1.1 Local and global completability

The (two levels of) the uniqueness of the completion can be defined by using notions
which are similar to (the two levels of) the rigidity of bar-and-joint frameworks.
For a given Gram matrix P⊤P , each column of P may be regarded as a point

in Rd, and hence an n × n Gram matrix can be defined by specifying n points in
Rd. Let V = {1, . . . , n}. Then p : i ∈ V 7→ pi ∈ Rd determines a Gram matrix
M = P (p)⊤P (p), where P (p) is the matrix whose i’th column is pi. Note that the
entry M [i, j] is equal to the scalar product 〈pi, pj〉.
Suppose that we are given a subset of the entries of some Gram matrix M =

P (p)⊤P (p). The given entries define an undirected graph G = (V,E) on V in which
two vertices i, j are adjacent if and only ifM [i, j] is given. Note that G is semi-simple,
that is, it contains no parallel edges but it may contain loops. A d-dimensional
framework (or simply a framework) is a pair (G,p), where G = (V,E) is a semi-
simple graph and p : V → Rd is a map. Thus each partially filled Gram matrix has
an underlying framework and each framework defines a partially filled Gram matrix
M in which M [i, j] = 〈pi, pj〉. We consider the situation where we only have an
incomplete Gram matrix in our hand and do not have p and investigate under which
circumstances we can decide if it has a unique completion.
We say that (G, q) is equivalent to (G,p) if

〈pi, pj〉 = 〈qi, qj〉 (ij ∈ E) (1)

and they are congruent if (1) holds for every pair i, j in V (including i, j with i = j).
This is equivalent to saying that qi = Api for all i ∈ V for some fixed orthogonal
matrix A.
We say that a d-dimensional framework (G,p) is globally completable in Rd if for

every d-dimensional framework (G, q) which is equivalent to (G,p) we have that (G, q)
and (G,p) are congruent. Similarly, (G,p) is called locally completable in Rd if there
exists an open neighborhood N(p) of p in Rd|V | such that for any q ∈ N(p) the
equivalence of (G, q) to (G,p) implies that the two frameworks are congruent1.

1It can be seen that, as in the case of rigidity, the local completability of (G,p) is equivalent to
the fact that every continuous motion of the vertices of (G,p) in Rd which preserves equivalence
must also preserve congruence.
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1.1 Local and global completability 3

One may also define the infinitesimal version of local completability. A map ṗ :
V → Rd is called an infinitesimal c-motion of (G,p) if

〈pi, ṗj〉+ 〈pj, ṗi〉 = 0 (ij ∈ E) (2)

The |E| × d|V |-matrix representing this system of linear equations with variables ṗ is
the completability matrix of (G,p), denoted by C(G,p). (Thus the entries of C(G,p)
in the d-tuples of positions i and j of row e = ij are pj and pi, respectively, and all
other entries are zeros.) For example, if G is a graph with V (G) = {1, 2, 3, 4} and
E(G) = {11, 12, 23, 24}, the completability matrix becomes as follows







1 2 3 4

11 2p1 0 0 0
12 p2 p1 0 0
23 0 p3 p2 0
24 0 p4 0 p2






.

As observed by Singer and Cucuringu [20], for any d× d skew-symmetric matrix S,
the map ṗ : V → Rd defined by ṗi = Spi for i ∈ V is an infinitesimal c-motion. (The
infinitesimal c-motions of this kind are called trivial.) Therefore, if |V | ≥ d, then

rankC(G,p) ≤ dn−

(
d

2

)

. (3)

Clearly the rank of C(G,p) is also bounded above by the number of edges in the
complete semi-simple graph on n vertices. A framework (G,p) is said to be infinites-
imally completable if rankC(G,p) = dn −

(
d

2

)
when n ≥ d or rankC(G,p) =

(
n+1
2

)

when n ≤ d. It is c-independent if rankC(G,p) = |E|. A map p : V → Rd is called
generic if the set of coordinates of p is algebraically independent over the rational field.
Thus the rank of C(G,p) will be the same for all generic realizations of G. Singer
and Cucuringu [20] showed that infinitesimally completability is a sufficient condition
for local completability, and that the two properties are equivalent when (G,p) is
generic. Hence we say that the graph G is locally completable or c-independent in Rd

if some (or equivalently, every) generic realization of G in Rd is locally completable
or c-independent. It follows that in the generic case, the local uniqueness of a com-
pletion of a partial Gram matrix depends only on the underlying graph G, which is
determined by the positions of the known entries. This is similar to the well-studied
property of generic rigidity of bar-and-joint frameworks, where the rigidity of a frame-
work depends only on the underlying graph if the positions of the joints are generic.
Unlike in the case of global rigidity, it is not yet known whether the global uniqueness
of a completion of a partial rank d Gram matrix depends only on the positions of its
known entries when d ≥ 2. We say that a graph G is globally completable in Rd if
every generic realization of G in Rd is globally completable.
The d-dimensional completability matroid Cd(G) of G is the matroid on E in which

a set of edges is independent if and only if the corresponding set of rows in C(G,p)
is linearly independent, for some generic p : V → Rd. We shall see that the complete
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Figure 1: This graph G satisfies the necessary conditions of Lemma 1 for d = 2 but
it is not c-independent in R2. To see this consider the graph G + uv obtained by
adding an edge between the vertices u, v in the unique 2-vertex cut of G. Let B be a
base of C2(G + uv) which contains uv. The fact that K3,3 is dependent implies that
|B| ≤ 1 + 7 + 7 = 15. Hence the rank of C2(G) is at most 15 which is less than |E|.

semi-simple graph K◦
n on n vertices is locally completable in Rd. (For a loopless graph

G we use G◦ to denote the graph obtained from G by adding a loop incident with
each vertex.) Hence it has rank dn−

(
d

2

)
, when n ≥ d (resp.

(
n+1
2

)
, when n ≤ d) and

its bases are the (edge sets of the) minimally locally completable graphs on n vertices.
As mentioned above the map ṗ defined by ṗ(i) = Sp(i) for some skew-symmetric

matrix S is an infinitesimal c-motion of (G,p). Singer and Cucuringu [20] also noticed
that if G is bipartite with vertex bipartition {V1, V2}, then the map ṗ defined by
ṗ(i) = Ap(i) for i ∈ V1 and ṗ(j) = −AT p(j) for j ∈ V2 is also an infinitesimal
c-motion of (G,p) for any d× d matrix A. Therefore,

rankC(G, p) ≤ dn− d2 (4)

if G is bipartite with |Vi| ≥ d, i = 1, 2. The inequalities (3) and (4) imply the following
necessary condition for c-independence. We shall use i(X) to denote the number of
edges induced by some vertex set X ⊆ V in a graph G = (V,E).

Lemma 1. Let G = (V,E) be c-independent in Rd. Then
(i) i(X) ≤ d|X| −

(
d

2

)
for all X ⊆ V with |X| ≥ d, and

(ii) for each bipartite subgraph H = (V1, V2;F ) on vertex set X = V1∪V2 with |Vi| ≥ d,
i = 1, 2 we have i(X) ≤ d|X| − d2.

1.2 Previous work

Singer and Cucuringu [20, Proposition 5.3] showed that for d = 1 the pair of necessary
conditions of c-independence in Lemma 1 is also sufficient. For d = 2 this is not
the case (see Figure 1) and it remains a challanging open problem to characterize
c-independence in Rd, for d ≥ 2.
They also characterized global 1-completability [20, Proposition 5.4] by showing

that G is globally completable when d = 1 if and only if it contains a connected c-
independent subgraph with |V | edges. The characterization of global d-completability
for d ≥ 2 is also open.
Local and global completability of frameworks correspond to local and global rigid-

ity of bar-and-joint frameworks, which are analogously defined by replacing the in-
ner product in (1) with the Euclidean distance between the two points. Singer and
Cucuringu [20] pointed out that rigidity and completability are equivalent when G
contains a loop at every vertex (i.e., all the diagonal entries of the Gram matrix are
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1.3 The rectangular matrix model 5

known). We will return to this in section 2.3 below. Laurent and Varvitsiotis [14]
also worked on the link between rigidity and completability, where they discussed
the relation between universal completability and universal rigidity in terms of SDP
formulations, again assuming that G contains a loop at every vertex.

1.3 The rectangular matrix model

Singer and Cucuringu [20] also considered the unique completability of low rank rect-
angular matrices, i.e. rectangular matrices of the form P⊤Q for some d × n matrix
P and d × m matrix Q. In this case the known entries of the rectangular matrix
define a bipartite graph G = (V, U ;E) in which the colour classes are of size n and
m, respectively, and an edge ij corresponds to the known scalar product of row i in
P⊤ and column j in Q. The definition of local and global completability for partially
filled rectangular matrices is analogous to that for Gram matrices.
The low rank rectangular matrix model may appear more general than the Gram

matrix model, but it is actually equivalent to the Gram matrix completion model
restricted to bipartite underlying graphs. As we saw above, dim ker C(G, p) ≥ d2 if G
is bipartite. Hence we say that a bipartite graph G is locally completable in the (rank
d) rectangular matrix model if rank C(G, p) = d|V (G)| − d2.
We note that Király et al. [12] also considered the uniqueness of the matrix com-

pletion in the rectangular matrix model in the complex field. They discussed combi-
natorial characterizations of 1-dimensional completability and corank-1-dimensional
completability, a sufficient condition for global completability, and completability of
random graphs.

1.4 New results

In this paper we first present combinatorial characterizations of local and global com-
pletability of special families of graphs. We characterize local and global completabil-
ity in all dimensions for cluster graphs, i.e. graphs which can be obtained from
disjoint complete semi-simple graphs by adding a set of independent edges. These
results correspond to theorems of Tay [21], and Connelly, Jordán, and Whiteley [3],
for ‘body-bar frameworks’ in rigidity theory. We also provide a characterization of
two-dimensional local completability of planar bipartite graphs, which leads to a char-
acterization of two-dimensional local completability in the rectangular matrix model
when the underlying bipartite graph is planar2.
These results are based on new observations stating that some (old or new) graph

operations preserve local or global completability, as well as on a further connection
between rigidity and completability.
We also prove that a certain rank condition on the completability stress matrix (de-

fined later) is a sufficient condition for global completability. This verifies a conjecture
of Singer and Cucuringu [20].

2The latter result has been obtained independently by Kalai, Nevo, and Novak [11] in a different
context.
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2 Preliminaries

We have seen that the concepts of global and local completability correspond to global
and local rigidity, respectively, in the theory of bar-and-joint frameworks. We first
give a brief summary of the relevant results from rigidity theory. We then adapt an in-
ductive technique for rigidity to completability. We close this section by describing the
above mentioned equivalence of rigidity with completability of a graph with a loop at
each vertex and use it to deduce necessary connectivity conditions for completability.

2.1 Rigidity of frameworks

Deciding whether a given framework is globally (or locally) rigid in Rd is NP-hard for
d ≥ 1 (resp. d ≥ 2), see [19]. The first order approximation of local rigidity and the
generic (local or global) rigidity behaviour of graphs is better understood.
Let (G,p) be a d-dimensional framework, where G is a simple undirected graph (no

parallel edges, no loops). We say that a map ṗ : i ∈ V 7→ ṗi ∈ Rd is an infinitesimal
motion of (G,p) if

〈pi − pj, ṗi − ṗj〉 = 0 for all ij ∈ E. (5)

An infinitesimal motion ṗ is called trivial if ṗi = Spi + t holds for all i ∈ V for some
skew-symmetric matrix S and some t ∈ Rd. We say that (G,p) is infinitesimally rigid
if every infinitesimal motion of (G,p) is trivial.
The rigidity matrix of (G,p) is a matrix R(G,p) of size |E| × d|V | representing

the system of linear equations (5) with variables ṗ. Hence the rows are indexed
by E and sets of d consecutive columns are indexed by V , and the entries in the
row of e = ij and in the d columns of i and j contain the d coordinates of pi − pj
and pj − pi, respectively, and the remaining entries are zeros. By definition, ṗ is an
infinitesimal motion of (G,p) if and only if ṗ is in the kernel of R(G,p). Since the
set of trivial infinitesimal motions forms a

(
d+1
2

)
-dimensional linear space, (G,p) is

infinitesimally rigid if and only if either |V | ≤ d and rank R(G,p) =
(
n

2

)
or |V | ≥ d

and rank R(G,p) = d|V | −
(
d+1
2

)
.

Since the rank of R(G,p) is maximized for all generic p, (G,p) is infinitesimally
rigid for some generic p if and only if (G,p) is infinitesimally rigid for all generic
p. Moreover, if p is generic then (G,p) is infinitesimally rigid if and only if (G,p)
is rigid. We can define the d-dimensional rigidity matroid Rd(G) on the edge set of
G by linear independence in R(G,p), for some generic p. Thus, assuming that p is
generic, the rigidity of (G,p) (or more generally, the rank of E in Rd(G)) depends
only on G. Motivated by this fact, we say that a graph G is rigid in Rd if (G,p)
is rigid for some generic p : V → Rd, or equivalently, if either G is a complete
graph on at most d vertices or |V | ≥ d and rank R(G,p) = d|V | −

(
d+1
2

)
. It is

not hard to see that R1(G) is isomorphic to the circuit matroid of G and that G
is rigid in R1 if and only if G is connected. In R2 the following celebrated result of
Laman [13] characterizes independence inR2(G) and hence also the rigidity of G. The
corresponding characterization for d ≥ 3 is a major open problem in combinatorial
rigidity.
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2.2 Inductive constructions 7

Theorem 2 (Laman). Let G = (V,E) be a graph. Then E is independent in R2(G)
if and only if iG(X) ≤ 2|X| − 3 for all X ⊆ V with |X| ≥ 2.

Theorem 3 below implies that global rigidity in Rd is also a generic property for all
d ≥ 1 i.e. the global rigidity of a generic framework depends only on its underlying
graph.
We say that ω : E → R is a self-stress of (G,p) if R(G,p)⊤ω = 0. The stress

matrix Ω associated with ω is a |V | × |V | symmetric matrix whose columns and rows
are associated with vertices V = {1, . . . , n} and each entry is given by

Ω[i, j] =







∑

k∈NG(i) ω(ik) if i = j

−ω(ij) if ij ∈ E

0 otherwise

Theorem 3 (Connelly [2], Gortler, Healy, and Thurston [5]). Let (G,p) be a d-
dimensional generic framework. Then (G,p) is globally rigid in Rd if and only if
there is a self-stress ω of (G,p) for which the associated stress matrix Ω has rank
n− d− 1.

Thus we say that G is globally rigid in Rd if (G, p) is globally rigid for some (or
equvalently, for all) generic p : V → Rd. As in the case of rigidity, global rigidity is
well-characterized up to dimension two. A graph is globally rigid in R1 if and only if
it is 2-connected. By a theorem of Jackson and Jordán [7] a graph G is globally rigid
in R2 if and only if it is 3-connected and G− e is rigid for all e ∈ E(G). The higher
dimensional cases remain difficult open problems.

2.2 Inductive constructions

Inductive constructions of graphs provide a powerful technique for analyzing local
and global rigidity [25]. In this section we recall some well-known operations that we
shall further develop in subsequent sections and make some preliminary observations.
Perhaps the best known operations are the so-called Henneberg operations (also called
vertex addition and edge splitting). We shall call them 0-extension and 1-extension,
which are also frequently used in the literature.
Let G = (V,E) be a semi-simple graph. The (d-dimensional) 0-extension operation

adds a new vertex v to G and d new edges vu1, . . . , vud for distinct vertices u1, . . . , ud ∈
V + v. The 1-extension operation removes an existing non-loop edge u1u2 ∈ E, adds
a new vertex v to G and d + 1 new edges vu1, vu2, vu3, . . . vud+1 for distinct vertices
u3, . . . , ud+1 ∈ (V + v) \ {u1, u2}. See Figure 2. Note that we allow one of the new
edges to be a loop in both 0- and 1-extensions by taking ui = v. If necessary, we
will specify whether or not a loop is added by referring to the operation as a looped
extension or a simple extension.
It is known that simple 0-extension and simple 1-extension both preserve the rigidity

of graphs in Rd. It is also known that simple 1-extension preserves global rigidity in
Rd. (Note that the simple 0-extension operation cannot preserve global rigidity since
(d+ 1)-connectivity is a necessary condition for global rigidity in Rd.)
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2.2 Inductive constructions 8

Figure 2: 1-extension in R2.

One can easily check that the 0-extension operation preserves c-independence (and
hence local completability) in Rd.

Lemma 4. Let (G,p) and (G′,p′) be d-dimensional frameworks and suppose that G
is obtained from G′ by a 0-extension operation which adds a new vertex v and new
edges vu1, . . . , vud, and p′ is the restriction of p to G′. Suppose further that (G′,p′)
is c-independent and that the points 0, p(u1), . . . , p(ud) are in general position in Rd.
Then (G,p) is c-independent.

Proof. It is easy to check that rankC(G,p) = rankC(G′,p′) + d.

It is easy to see that the ‘partial 0-extension operation’ i.e. the operation which
adds at most d new edges will also preserve c-independence. Since the complete semi-
simple graph K◦

n can be obtained from K◦
1 by a sequence of partial 0-extensions and

edge additions, Lemma 4 implies that

Corollary 5. Suppose (K◦
n,p) is a d-dimensional framework and the points {0}∪p(V )

are in general position in Rd. Then (K◦
n,p) is infinitesimally locally completable.

We shall prove later (Theorem 26) that the simple 0-extension operation also pre-
serves global completability in Rd.
On the other hand, 1-extension does not always preserve local completability. This

follows by observing that C4 can be obtained from C3 by a 1-extension in R1. We
can deduce from this observation that 1-extension does not always preserve global
completability either. Thus the behaviour of the extension operations in rigidity and
completability are quite different.
We shall introduce a new operation, called double-1-extension, and prove that this

operation preserves local completability. As an application of this result, we shall
obtain a new proof of the combinatorial characterization of locally completable graphs
in R1.
Another key operation used in rigidity theory is vertex-splitting. Let G = (V,E)

be a graph, let v ∈ V be a vertex, and let {U1, U
∗, U2} be a partition of N(v) for

which |U∗| = d − 1 (and such that U1 or U2 may be empty). The vertex-splitting
operation at v (with respect to {U1, U

∗, U2}) in Rd removes v from G and inserts two
new vertices v1 and v2 and new edges viu for u ∈ U∗ for i = 1, 2, viu for u ∈ Ui for
i = 1, 2, and v1v2. Whiteley [24] showed that vertex-splitting preserves rigidity. The
corresponding statement for global rigidity (in the case when U1 and U2 are both non-
empty) is known to hold in R2 [10] and is conjectured to hold in higher dimensions
[4].
We shall also introduce a more general version of the vertex-splitting operation

mentioned above and prove that it preserves local completability. This result will be
the key step in the proof of our result on bipartite planar graphs.

EGRES Technical Report No. 2014-01



2.3 Completability, rigidity, and coning 9

2.3 Completability, rigidity, and coning

We use G ∗ {v} to denote the cone graph of G, that is, the graph obtained by adding
a new vertex v and connecting each vertex of G to v by a new edge. For a framework
(G,p), let p∗ be the extension of p to V (G)∪{v} by p∗(v) = 0. The following property
was observed by Singer and Cucuringu [20].

Proposition 6. Let G = (V,E) be a simple graph and let (G,p) be a d-dimensional
framework with p(v) 6= 0 for all v ∈ V . Then (G◦,p) is infinitesimally (resp. globally)
completable in Rd if and only if (G ∗ {v},p∗) is infinitesimally (resp. globally) rigid
in Rd.

Whiteley [23] showed that a graph G is rigid in Rd−1 if and only if G ∗ {v} is rigid
in Rd. This fact and Proposition 6 imply the following. (A direct proof will be given
in Section 7.)

Corollary 7. Let G be a simple graph. Then G◦ is locally completable in Rd if and
only if G is rigid in Rd−1.

Connelly and Whiteley [4] proved that a graph G is globally rigid in Rd−1 if and
only if G ∗ {v} is globally rigid in Rd. Thus we have:

Corollary 8. Let G be a simple graph. Then G◦ is globally completable in Rd if and
only if G is globally rigid in Rd−1.

This implies that global completability of frameworks whose underlying graph has
a loop at each vertex is a generic property. It is not known whether this holds for all
graphs.
Corollaries 7 and 8 also imply the following necessary conditions for completability.

Corollary 9. (a) If G is locally completable in Rd then either G is (d− 1)-connected
or G is a complete semi-simple graph on at most d− 1 vertices.
(b) If G is globally completable in Rd then either G is d-connected or G is a complete
semi-simple graph on at most d vertices.

This corollary can also be proved directly by considering a rotation about a (d−2)-
dimensional subspace which contains the vertices in a (d − 2) cutset in (a) and a
reflection in a (d− 1) dimensional subspace which contains the vertices in a (d− 1)-
cutset in (b).
We close this section by obtaining an analogue to Whiteley’s above mentioned result

which linked coning and rigidity.
Let G = (V,E) be a semi-simple graph. The looped cone extension G ◦ v of G is

obtained by adding a new vertex v and all edges uv for u ∈ V + v.

Lemma 10. Let G = (V,E) be a graph and G ◦ v be its looped cone extension. Then
G is locally completable in Rd if and only if G ◦ v is locally completable in Rd+1.
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Section 3. Cluster graphs 10

Figure 3: A partially filled matrix with a cluster structure.

Proof. We use the fact that a framework is infinitesimally locally completable if and
only if every infinitesimal c-motion is a rotation which fixes the origin. Choose a
generic framework (G ◦ v,p) in Rd+1. By applying a suitable rotation, we may trans-
form (G ◦ v,p) to a framework (G ◦ v, q) with q(v) = (t, 0, 0, . . . , 0) for some t ∈ R

and is such that (G ◦ v,p) is infinitesimally completable if and only if (G ◦ v, q) is
infinitesimally completable. Let q̇ be an infinitesimal c-motion of (G ◦ v, q). Since
G ◦ v has a loop at v, we may assume that q̇(v) = (0, 0, . . . , 0) (by composing q̇ with
a suitable infinitesimal rotation of Rd+1 which fixes the origin). The facts that q̇ is an
infinitesimal c-motion of (G ◦ v, q) and uv is an edge of G ◦ v for all u ∈ V now tell us
that the first component of q̇(u) is zero for all u ∈ V . This in turn implies that the
projection of q̇ onto its last d coordinates is an infinitesimal c-motion of the frame-
work (G, q̄) obtained from (G, q) by projecting each q(u) onto its last d coordinates.
Conversely any infinitesimal c-motion of (G, q̄) can be extended to an infinitesimal
c-motion of (G, q) which fixes v by putting the first component of the infinitesimal
velocity of each vertex u ∈ V equal to zero. This gives us a bijection between the
infinitesimal c-motions of (G, q) which fix v and the the infinitesimal c-motions of
(G, q̄).

3 Cluster graphs

Let H = (V,E) be a loopless multigraph. The cluster graph induced by H , denoted
by G◦

H , is the graph obtained from H by replacing each vertex v ∈ V by K◦
d(v),

that is a complete graph on d(v) vertices in which a loop is added to each vertex
(we call this subgraph the cluster Cv associated with v), and replacing each edge
st ∈ E by an edge between the clusters Cs and Ct in such a way that the edges of G◦

H

connecting distinct clusters are pairwise disjoint. A graph obtained in this manner is
called a cluster graph. In this section we consider the characterization of local and
global completability of cluster graphs. The pattern of known entries in a matrix
corresponding to a cluster graph is illustrated in Figure 3.

3.1 Local completability

Tay [21] gave a combinatorial characterization for the rigidity of body-bar graphs, i.e.
cluster graphs with all loops deleted. By combining Tay’s theorem and Corollary 7

EGRES Technical Report No. 2014-01



3.1 Local completability 11

one can derive a combinatorial characterization of locally completable cluster graphs
in each dimension. Here we shall present a simpler direct proof.
Let H = (V,E) be a multigraph. For a partition P of V let EH(P) denote the set,

and eH(P) the number of edges of H connecting distinct members of P. We say that
H is m-tree-connected if

eH(P) ≥ m(t− 1) (6)

for all partitions P = {X1, X2, ..., Xt} of V . Note that a theorem of Nash-Williams
[16] and Tutte [22] implies thatH satisfies (6) if and only ifH containsm edge-disjoint
spanning trees.

Lemma 11. Let H = (V,E) be a multigraph and suppose that the cluster graph G◦
H

induced by H is locally completable in Rd. Then H is
(
d

2

)
-tree-connected.

Proof. If G◦
H has less than d vertices then it must be a complete semi-simple graph.

This implies that |V | = 1 and the lemma is trivially true. Hence we may assume that
G◦

H has at least d vertices.
For a contradiction suppose that eH(P) ≤

(
d

2

)
(t − 1) − 1 for a partition P =

{X1, X2, ..., Xt} of V with t ≥ 2. Let Yi = ∪{V (Cv) : v ∈ Xi}, for 1 ≤ i ≤ t,
and let Q = {Y1, Y2, ..., Yt} be the corresponding partition of V (G◦

H). Observe that
eGH

(Q) = eH(P) holds.
Let S ⊆ E(G◦

H) be a maximal set of independent edges in G◦
H , i.e. a base in the

d-dimensional generic completability matroid of G◦
H . Since G

◦
H is locally completable

and has at least d vertices, we have |S| = d|V (G◦
H)|−

(
d

2

)
. Thus, by using the fact that

each vertex in a locally completable semi-simple graph on at least d vertices has degree
at least d (which follows from Lemma 1) we obtain that each subset Y ⊆ V (G◦

H) has
|Y | ≥ d− 1 and hence it induces at most d|Y | −

(
d

2

)
edges of S (again by Lemma 1).

Thus we obtain

d|V (G◦
H)| −

(
d

2

)

= |S| ≤
t∑

1

(d|Yi| −

(
d

2

)

) + eG◦

H
(Q) =

d|V (G◦
H)| −

(
d

2

)

t+ eH(P) ≤ d|V (G◦
H)| −

(
d

2

)

− 1,

a contradiction. Thus H satisfies (6) with m =
(
d

2

)
and the lemma follows.

Before the proof of the next theorem recall the correspondence between the trivial
infinitesimal c-motions of a d-dimensional framework (G,p) with n ≥ d and the skew-
symmetric matrices of size d× d.

Theorem 12. Let H be a multigraph. Then the cluster graph G◦
H induced by H is

locally completable in Rd if and only if H is
(
d

2

)
-tree-connected .

Proof. Necessity follows from Lemma 11. We prove sufficiency by showing that G◦
H

has a d-dimensional realization (G◦
H ,p) which is infinitesimally completable.

We shall assign coordinates to the vertices of G◦
H so that each vertex is located on

some of the coordinate axes at unit distance from the origin. It will also follow that
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3.2 Global completability 12

the points corresponding to the vertices of some cluster contain such points from at
least d−1 different axes, and hence each cluster gives rise to an infinitesimally locally
completable subframework (this follows from Corollary 5).
Let us fix

(
d

2

)
edge-disjoint spanning trees Ti,j , 1 ≤ i < j ≤ d as well as a root vertex

r in H and then orient the trees away from r, so that they become out-arborescences
rooted at r.
Consider an edge st of tree Ti,j (for some 1 ≤ i < j ≤ d) and suppose that it

is oriented from s to t. This edge corresponds to an edge uv of G◦
H connecting the

clusters Cs and Ct (with u ∈ Cs, v ∈ Ct, say). Define the location of vertices u, v by

p(u) = ei, p(v) = ej ,

where el is the unit vector (0, 0, ..., 0, 1, 0, ..., 0) on the l’th coordinate axis. This
completes the definition of p.
Now consider an infinitesimal c-motion m of (G◦

H ,p). Since the clusters are in-
finitesimally locally completable, each cluster Cw has a d× d skew-symmetric matrix
Aw for which m(x) = Awp(x) for all vertices x in V (Cw). The fact that m is an
infinitesimal c-motion, the definition of p, and the skew-symmetry of the matrices
imply that

0 = 〈m(u), p(v)〉+ 〈m(v), p(u)〉 = 〈Asp(u), p(v)〉+ 〈Atp(v), p(u)〉 =

= As[j, i] + At[i, j] = At[i, j]− As[i, j],

which gives As[i, j] = At[i, j]. This argument, applied to all edges of the trees, implies
that Aw = Ar for all w ∈ V (H) and hence m(x) = Arp(x) for all vertices x of
G◦

H . Thus m is a trivial infinitesimal c-motion and (G◦
H ,p) is infinitesimally locally

completable. It follows that G◦
H is locally completable in Rd, as claimed.

3.2 Global completability

The charaterization of globally rigid generic body-bar frameworks is also known. Let
H = (V,E) be a multigraph. We say that H is highly m-tree-connected if H − e is
m-tree-connected for all e ∈ E.

Theorem 13. [3] Let H = (V,E) be a multigraph with |V | ≥ 2 and |E| ≥ 2 and let
GH be the body-bar graph induced by H. Let d ≥ 1 be an integer. Then the following
are equivalent:
(a) GH is generically globally rigid in Rd,
(b) H is highly

(
d+1
2

)
-tree-connected.

Thus we can deduce, by using Corollary 8, that:

Theorem 14. Let H = (V,E) be a multigraph with |V | ≥ 2 and |E| ≥ 2 and let G◦
H

be the cluster graph induced by H. Let d ≥ 1 be an integer. Then the following are
equivalent:
(a) G◦

H is generically globally completable in Rd,
(b) H is highly

(
d

2

)
-tree-connected.
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Section 4. Operations preserving c-independence 13

Figure 4: 2-dimensional double-1-extension.

Theorem 14 shows that global completability implies redundant local completability
for cluster graphs. This implication does not hold in general (see Section 6.2 for more
details).

4 Operations preserving c-independence

In this section we introduce some new graph operations and prove that they preserve
c-independence in Rd.

4.1 Double-1-extension

Let G = (V,E) be a semi-simple graph. The (d-dimensional) double 1-extension
operation removes an existing edge e = ab from G and inserts two new vertices v1 and
v2 with new edges av1, v1v2, v2b and v1u

1
1, v1u

2
1, . . . , v1u

d−1
1 and v2u

1
2, v2u

2
2, . . . , v2u

d−1
2 ,

where {u11, u
2
1, . . . , u

d−1
1 } and {u12, u

2
2, . . . , u

d−1
2 } are d−1 distinct vertices in (V + v1) \

{a} and (V +v2)\{b}, respectively. We allow the possibility that e is a loop (in which
case a = b). See Figure 4 for an example.

Lemma 15. Let G = (V,E) be a graph and G′ = (V ′, E ′) be the graph obtained from
G by a double 1-extension. If G is c-independent in Rd then G′ is also c-independent
in Rd.

Proof. Suppose that the double 1-extension removes the edge ab ∈ E. We use the
notation given above to denote the vertices involved in the operation.
Since G is c-independent, there is a generic p : V → Rd such that C(G,p) is row

independent. We define p′ : V ′ → Rd by

p′(u) =







p(b) (if u = v1)

p(a) (if u = v2)

p(u) (otherwise)

(u ∈ V ′).

We show that C(G′, p′) is row independent.
We first assume that a 6= b. Consider the rows of C(G′,p′) associated with

av1, v1v2, v2b:
v1 v2 a b V ′ \ {v1, v2, a, b}

av1 pa 0 pb 0 0
v2b 0 pb 0 pa 0
v1v2 pa pb 0 0 0
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4.2 Vertex-splitting 14

The sum of the rows of av1 and v2b minus the row of v1v2 is equal to

v1 v2 a b V ′ \ {v1, v2, a, b}
0 0 pb pa 0

which is equal to the row of ab in R(G, q). Therefore, by using row operations,
C(G′,p′) can be transformed to

v1 v2
av1 pa 0 ∗

v1u
1
1

...
v1u

d−1
1

pu1

1

...
pud−1

1

0 ∗

v2b 0 pb ∗

v2u
1
2

...
v2u

d−1
2

0

pu1

2

...
pud−1

2

∗

0 0 C(G,p)

This implies the row independence of C(G′,p′).
An almost identical argument holds when a = b.

Lemmas 4 and 15 imply the following characterization of local completability in
R1. The equivalence of (i) and (ii) was verified by Singer and Cucuringu [20], using a
different approach.

Theorem 16. The following statements are equivalent for a graph G = (V,E):

(i) G is minimally locally completable in R1;

(ii) Each connected component of G contains exactly one cycle, which is odd;

(iii) G can be constructed from a graph with one vertex with one loop by a sequence
of one-dimensional 0-extensions and double-1-extensions.

4.2 Vertex-splitting

Let G = (V,E) be a semi-simple graph. The d-dimensional vertex-splitting (or simply
vertex-d-splitting) operation (at vertex v with some fixed partition {U1, U

∗, U2} of
N(v) with d− 1 ≤ |U∗| ≤ d) consists of the following steps:

• It removes v and inserts two new vertices v1 and v2 with new edges viu for
u ∈ Ui ∪ U

∗ for i = 1, 2.

• If v is incident with a loop in G, then it further adds a new edge v1v2.

• If |U∗| = d− 1, then it further adds a loop incident with v1.
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4.2 Vertex-splitting 15

Figure 5: 3-dimensional vertex splitting (with |U∗| = 3).

See Figure 5 for an example.

Lemma 17. Let G = (V,E) be a graph and G′ = (V ′, E ′) be the graph obtained from
G by a vertex-d-splitting at vertex v. If G is c-independent in Rd then G′ is also
c-independent in Rd.

Proof. Let {U1, U
∗, U2} be the partition of the neighbors of v used by the vertex-d-

splitting operation.

(a) Let us first consider the case when |U∗| = d and v is not incident to a loop.
Since G is c-independent, there is a generic p : V → Rd such that C(G,p) is row

independent. We define p′ : V ′ → Rd by

p′(u) =

{

p(v) (if u = v1 or u = v2)

p(u) (otherwise)
(u ∈ V ′).

We show that C(G′,p′) is row independent.
For u ∈ U∗, consider the rows of C(G′,p′) associated with v1u and v2u:

v1 v2 u V (G′) \ {u, v1, v2}
v1u pu 0 pv 0
v2u 0 pu pv 0

We first add the column of v1 to that of v2. Notice that if we then subtract the row
of v2u from that of v1u, we obtain

v1 v2 u V ′ \ {u, v1, v2}
v1u pu 0 0 0
v2u 0 pu pv 0

where the resulting row of v2u is equal to the row of vu in C(G,p). It follows that, if
we subtract the row of v2u from that of v1u for all u ∈ U∗, then, by identifying the
columns of v2 in C(G′,p′) with that of v in C(G,p), and rearranging the rows, the
resulting matrix C(G′,p′) can be written as

v1 V ′ \ {v1}
v1u1
...

v1ud

pu1

...
pud

0

E ′ \ {v1u1, . . . , v1ud} ∗ C(G,p)
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Section 5. Local completability of planar graphs in R2 16

where U∗ = {u1, u2, . . . , ud}. Since the top-left d×d-block is row independent (by the
genericity of p) and C(G,p) is row independent, C(G′,p′) is row independent. This
completes the proof for the case when |U∗| = d and v is not incident to a loop.

(b) Next consider the case when |U∗| = d and v is incident to a loop ℓ. Then ℓ is
replaced by a new edge v1v2 in the vertex-d-splitting operation. By using the map p′

defined above, the row of v1v2 in C(G′,p′) can be written as

v1 v2 V ′ \ {v1, v2}
v1v2 pv pv 0

Notice that the restriction of this row to the columns associated with V ′\{v1} coincides
with the row of ℓ in C(G,p). This means that, by the same column and row operations,
C(G′,p′) can be converted to exactly the same form as above.

(c) Finally, suppose that |U∗| = d − 1. In this case the same argument can be
adapted, by observing that in the transformed matrix C(G′,p′) the top-left d × d-
matrix consists of the row of the loop together with the rows of the d − 1 edges v1u,
for u ∈ U∗.

5 Local completability of planar graphs in R2

In this section we consider the local completability problem of semi-simple planar
graphs in R2, in both the Gram matrix and rectangular matrix models.
Lemma 1 implies that if a graph G = (V,E) is c-independent in R2, then i(X) ≤

2|X|−1 for all non-empty X ⊆ V and |E(H)| ≤ 2|V (H)|−4 for all bipartite subgraphs
H with at least three vertices. Note that in a planar graph the latter sparsity condition
is guarenteed by Euler’s formula and hence every bipartite planar graph will satisfy
both necessary conditions.
We shall prove that all planar bipartite graphs are c-independent.

5.1 Planar bipartite graphs

Consider a planar bipartite graph G = (V,E). We may suppose that G is a maximal
planar bipartite graph (a planar quadrangulation). The c-independence of G follows
by induction on the number of vertices by using the fact that every planar quadran-
gulation can be obtained from a pair of incident edges by repeated applications of the
vertex splitting operation (with |U∗| = 2 = d) introduced in Section 4, see [1]. Hence
Lemma 17 implies the following.

Theorem 18. All planar bipartite graphs are c-independent in R2.

This implies the following characterization of locally completable planar bipartite
graphs in the rectangular matrix model.

Theorem 19. A planar bipartite graph is locally completable in the rectangular matrix
model in R2 if and only if it is a quadrangulation.
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5.2 Planar graphs 17

(a) (b)

Figure 6: (a) Looped wheel W ′
5. (b) A 3-connected (2, 1)-sparse simple planar graph

which is not c-independent in R2. This graph G can be obtained from two copies of
W ′

5 by identifying four edges (including the loop) and then removing the loop. By the
circuit elimination axiom, the edge set of G contains a circuit of the 2-dimensional
completability matroid.

5.2 Planar graphs

Let G = (V,E) be a semi-simple graph. We say that G is (2, 1)-sparse if i(X) ≤
2|X| − 1 holds for all non-empty subsets X ⊆ V . Lemma 1 says that (2, 1)-sparsity
is a necessary condition for c-independence. Since planarity forces c-independence for
bipartite graphs in R2, it is natural to ask whether (2, 1)-sparsity characterizes the
c-independence of general planar graphs. We give a negative answer to this question
by constructing (2, 1)-sparse planar graphs which are not c-independent in R2.
The looped wheel W ′

n with n vertices is the wheel Wn on n vertices with one loop
attached at the center vertex (see Figure 6(a)). Theorem 16 and Lemma 10 imply that
W ′

n is c-independent in R2 if and only if n is even. Hence W ′
n is a (2, 1)-sparse planar

graph which is not c-independent for all odd n. We can construct simple examples
by replacing the loop in W ′

2m+1 by any simple planar minimally locally completable
graph (so that the central vertex ofW ′

2m+1 becomes a cut-vertex). Simple 3-connected
examples can also be constructed, see Figure 6(b).

6 Sufficient conditions for global completability

In this section we consider the global completability of graphs. Recall that a graph
G is globally completable in Rd if (G,p) is globally completable for all d-dimensional
generic configurations p.

6.1 Completability stress and global completability

Let G = (V,E) be a semi-simple graph. We define the completability function fG :
Rd|V | → R|E| by

fG(p) =
(
. . . , 〈pu, pv〉, . . .

)
(p ∈ RdV ).

Then fG is smooth. Notice also that the completion matrix C(G, p) is the Jacobian
of fG at p.
Following [20] we say that ω : e ∈ E 7→ ωe ∈ R is a completability stress of (G, p) if

EGRES Technical Report No. 2014-01



6.1 Completability stress and global completability 18

C(G, p)⊤ω = 0, that is, for each u ∈ V

∑

v∈NG(u)

ωuvpv = 0. (7)

The stress matrix associated to ω is the |V | × |V |-matrix Ω, where each column
and each row are associated with a vertex in V and each entry is given by

Ω[u, v] = ωuv. (8)

The following was observed in [20].

Proposition 20. Let G = (V,E) be a graph and (G,p) be a d-dimensional framework
such that p(V ) linearly spans Rd. Then for any completability stress ω : E → R of
(G,p),

P (p)Ω = 0. (9)

In particular, the rank of Ω is at most n− d.

Singer and Cucuringu [20] conjectured that having a maximum rank stress matrix
implies global completability. Our next result verifies their conjecture.

Theorem 21. Let G be a finite graph and let p : V → Rd be generic. Then G is
globally completable if there is a completability stress ω of (G,p) with rank Ω = n−d.

Our proof of Theorem 21 is an adaptation of the proof by Connelly [2] for the
sufficiency of Theorem 3.
We say that (G, q) (or q) is a linear image of (G,p) (or p) if there is a d×d-matrix

A such that qv = Apv for all v ∈ V .

Proposition 22. Let G = (V,E) be a graph, (G,p) be a d-dimensional framework
such that p(V ) linearly spans Rd, and ω be a completability stress of (G,p). If
rank Ω = n− d, then any other configuration q for which ω is a completability stress
of (G, q) is a linear image of p.

Proof. By Proposition 20, P (p)Ω = 0 and P (q)Ω = 0. Since p(V ) linearly spans Rd,
rank P (p) = d. Since the kernel of Ω has dimension d, the row vectors of P (q) are
spanned by those of P (p), which implies that there is a d × d-matrix A such that
P (q) = AP (p). In other words, qv = Apv holds for all v ∈ V .

We say that p : V → Rd lies on a conic at infinity if there is a non-zero symmetric
d× d-matrix B satisfying

p⊤uBpv = 0 for uv ∈ E. (10)

Proposition 23. Let (G,p) be a d-dimensional framework, and suppose that p does
not lie on a conic at infinity. Then, if (G, q) is a linear image of (G,p) and is
equivalent to (G,p), then (G, q) is congruent to (G,p).
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6.2 Operations Preserving Global Completability 19

Proof. By assumption there exists a d × d matrix A such that qv = Apv for v ∈ V .
Since the inner product is preserved for each uv ∈ E, we have

0 = 〈qu, qv〉 − 〈pu, pv〉 = p⊤u (A
⊤A− Id)pv.

However, since p does not lie on a conic at infinity, A⊤A − Id = 0 holds. In other
words, A is an orthogonal matrix and (G, q) is congruent to (G,p).

Proposition 24. Let (G,p) be a d-dimensional framework such that each vertex is
incident with at least d edges. If p is generic, then p does not lie on a conic at infinity.

Proof. We proceed by induction on d. The claim is clear if d = 1 so may assume that
d ≥ 2.
Take any symmetric matrix B = (bij) of size d × d. Note that condition (10)

is a system of |E| linear equations for bij , where each coefficient is a polynomial of
coordinates of p. Hence, if there exists a map q : V → Rd that does not lie on a conic
at infinity, then any generic p will not lie on a conic at infinity.
Let v be a vertex, and take q such that q(v) = (0, . . . , 0, 1)⊤ and q restricted to

V \ {v} is generic. Let bd be the d-th row vector of B. For any u ∈ NG(v), condition
(10) implies that 0 = q⊤v Bqu = 〈bd, qu〉. Since {qu | u ∈ NG(v)} linearly spans Rd, we
get bd = 0. (We take v ∈ NG(v) if there is a loop at v.)
Define q̂ : V \{v} → Rd−1 such that q̂(u) is the (d−1)-dimensional vector obtained

from q(u) by removing the last coordinate, and let B′ be a (d−1)× (d−1) symmetric
matrix obtained from B by removing its last row and column. Since bd = 0, we have
0 = q⊤uBqw = q̂⊤uB

′q̂w for any edge uw in G− v. Hence by induction we get B′ = 0,
which in turn implies B = 0.

We also need one more claim from [2].

Proposition 25 (Connelly [2]). Let fi : R
a → R be a polynomial with integer coeffi-

cients for 1 ≤ i ≤ b, f : Ra → Rb be f = (f1, . . . , fb), p ∈ Ra be generic over Q, and
q ∈ f−1(f(p)). Then there are open neighborhoods Np of p and Nq of q in Ra and a
diffeomorphism g : Nq → Np with g(q) = p such that for all x ∈ Nq, f(g(x)) = f(x).

Proof of Theorem 21. Since (G,p) has a non-zero completability stress, the minimum
degree of G is at least d. Let (G, q) be a framework equivalent to (G,p). Then
q ∈ f−1

G (fG(p)), and Proposition 25 implies that there are open neighborhoods Np

of p and Nq of q in RdV and a diffeomorphism g : Nq → Np with g(q) = p and
fG(g(x)) = fG(x) for x ∈ Nq. By taking differentials, we get C(G,p)A = C(G, q),
where A is the Jacobian of g at q. Therefore ω⊤C(G, q) = ω⊤C(G,p)A = 0. In other
words ω is a completion stress of (G, q). Since rank Ω = n−d, Proposition 22 implies
that (G, q) is a linear image of (G,p). Since p does not lie on a conic at infinity by
Proposition 24, (G, q) is congruent to (G,p) by Proposition 23.

6.2 Operations Preserving Global Completability

Theorem 3 tells us that having a maximum rank (rigidity) stress matrix is both
necessary and sufficient for global rigidity of graphs. The analogous result does not
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hold for global completability since, as pointed out by Singer and Cucuringu [20], the
converse of Theorem 21 does not hold in general. The following result can be used to
construct an infinite family of counterexamples for any d.

Theorem 26. Let G be a generically globally completable graph in Rd, and let G′

be a graph obtained from G by a simple 0-extension. Then G′ is generically globally
completable in Rd.

Proof. Take a generic p : V (G) → Rd such that (G,p) is globally completable in Rd,
and let p′ : V (G′) → Rd be a generic configuration obtained by extending p. We show
that (G′,p′) is globally completable.
To see this take any q′ : V (G′) → Rd such that (G′, q′) is equivalent to (G′,p′).

Since (G,p) is globally completable, we may assume q′u = pu = p′u for any u ∈ V (G).
Let v be the new vertex. Then for u ∈ NG′(v) we have 〈p′u, p

′
v〉 = 〈q′u, q

′
v〉, which

means 〈pu, p
′
v − q′v〉 = 0 for all u ∈ NG′(v). Since {pu | u ∈ NG′(v)} linearly spans Rd,

we get p′v − q′v = 0, which in turn implies p′ = q′.

We next investigate the double 1-extension operation. Lemma 15 tells us that the
double 1-extension operation preserves local completability. In the proof we gave a
special configuration p that achieves the maximum rank of the completability matrix,
which in turn implies the generic local completability of the underlying graph G.
On the other hand, in the case of global completability, even if the rank of a stress

matrix of (G,p) is maximum for a non-generic configuration p, G may not be globally
completable. Theorem 27 below allows us to avoid this problem by showing that, if we
add the hypothesis that (G,p) is locally completable, then there does exist a generic
q so that (G, q) has a maximum rank stress matrix. We can then use Theorem 21 to
deduce that G is globally completable.
Theorem 27 can be proved by using a very similar technique to that used by Con-

nelly and Whiteley [4] to obtain an analogous result for global rigidity.

Theorem 27. Let (G,p) be a d-dimensional framework with a completability stress
ω, and suppose that (G,p) is locally completable and Ω has rank |V (G)| − d. Then
there is a generic q and a completability stress ω′ of (G, q) such that Ω′ has rank
|V (G)| − d.

A stress ω is called nowhere zero if ω(e) 6= 0 for all e ∈ E(G). We also need the
following.

Lemma 28. Let (G,p) be a generic d-dimensional framework with a completability
stress ω. Suppose that the rank of Ω is |V | − d. Then there is a nowhere zero
completability stress ω′ of (G,p) such that the rank of Ω′ is |V | − d.

Proof. Let e ∈ E(G) such that ω(e) = 0. Then ω (restricted to E(G) − e) is a
completability stress of (G − e,p) such that the rank of Ω is equal to |V (G)| − d.
By Theorem 21 (G − e,p) is globally completable, and hence is locally completable.
This in particular implies that the completability matrix of (G−e,p) is full rank, and
hence there is a completability stress ω′ of (G,p) for which ω′(e) 6= 0. Since the rank

EGRES Technical Report No. 2014-01



6.2 Operations Preserving Global Completability 21

of Ω is |V (G)|−d, the rank of the stress matrix of ω+ǫω′ is |V (G)|−d for sufficiently
small ǫ. Applying the same argument for all e ∈ E(G), the desired completability
stress can be obtained.

Theorem 29. Let G′ be a graph obtained from a graph G by a double 1-extension.
Suppose that there is a generic p : V (G) → Rd and a completability stress ω : E(G) →
R of (G,p) such that the rank of Ω is |V (G)|−d. Then there is a generic p∗ : V (G′) →
Rd and a completability stress ω∗ : E(G′) → R of (G′,p∗) such that the rank of Ω∗ is
|V (G′)| − d. In particular, G′ is globally completable.

Proof. Suppose that the double 1-extension is performed along edge ab by adding new
vertices v1 and v2 and new edges v1u

1
1, . . . , v1u

d−1
1 and v2u

1
2, . . . , v2u

d−1
2 . We define a

configuration p′ : |V (G′)| → Rd as given in the proof of Lemma 15 i.e., p′(v1) = p(b),
p′(v2) = p(a), and p′(u) = p(u) for u ∈ V (G).
By Lemma 28 we may assume that ωab 6= 0. Based on ω, we define a completability

stress ω′ : E(G) → R by

ω′
e =







ωab if e = av1 or bv2

−ωab if e = v1v2

ωe if e ∈ E(G) \ {ab}

0 otherwise.

Due to the special configuration p′, one can easily check that ω′ is a completability
stress of (G′,p′). Now the stress matrix Ω′ is

V (G) \ {a, b} a b v1 v2
V (G) \ {a, b} 0 0

a ∗ ωab 0
b 0 ωab

v1 0 ωab 0 0 −ωab

v2 0 0 ωab −ωab 0

If we add the column of v1 to that of b and add the column of v2 to that of a, the
matrix is changed to

V (G) \ {a, b} a b v1 v2
V (G) \ {a, b} 0 0

a Ω ωab 0
b 0 ωab

v1 0 0 0 0 −ωab

v2 0 0 0 −ωab 0

where the top left block turns out to be Ω. Since ωab 6= 0, rank Ω′ = |V (G)|−d+2 =
|V (G′)| − d.
In the proof of Lemma 15, we showed that (G′,p′) is also locally completable.

Hence, by Theorem 27, there is a generic p∗ and a completability stress ω∗ of (G′,p∗)
such that the rank of Ω∗ is |V (G′)|−d. By Theorem 21, G′ is globally completable.
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Singer and Cucuingu [20] obtained the following combinatorial characterization of
global completability of graphs in R1. (They proved the equivalence between (i) and
(ii). The equivalence between (ii) and (iii) is straightforward.)

Theorem 30. The following statements are equivalent for a graph G:

(i) G is globally 1-completable;

(ii) G is connected and contains an odd cycle;

(iii) G can be constructed from the graph consisting of one vertex with one loop by a
sequence of (1-dimensional) simple 0-extensions, double-1-extensions, and edge
additions.

Note that Theorem 30 does not follow from Theorems 26 and 29, asGmay not have
a nowhere zero completability stress. On the other hand, Theorem 30 implies that
the double-1-extension operation preserves global rigidity in R1. We have examples
showing that this is not the case in R2.

7 More links between completability and rigidity

We first show that we may focus on frameworks whose vertices lie on the unit sphere
Sd−1 = {x ∈ Rd | 〈x, x〉 = 1} when considering infinitesimal completability in Rd.
For a configuration p : V → Rd \ {0}, the central projection of p onto Sd−1 is a
configuration q : V → Sd−1 with qi = pi/|pi| for i ∈ V . We say that (G, q) is the
central projection of (G,p) onto Sd−1.

Lemma 31. Let (G,p) be a framework in Rd with p : V → Rd \ {0}. Then (G,p) is
infinitesimally completable in Rd if and only if the central projection (G, q) of (G,p)
onto Sd−1 is infinitesimally completable in Rd.

Proof. Let s : (Rd)|V | → (Rd)|V | be a linear map defined by, for ṗ : V → Rd and
i ∈ V , s ◦ ṗi = ṗi/|pi|. Then, for any ṗ : V → Rd and i, j ∈ V × V ,

〈pi, ṗj〉+ 〈pj, ṗi〉 = |pi||pj|(〈qi, s ◦ ṗj〉+ 〈qj, s ◦ ṗi〉).

So 〈pi, ṗj〉+ 〈pj, ṗi〉 = 0 if and only if 〈qi, s◦ ṗj〉+ 〈qj , s◦ ṗi〉 = 0 and s induces a linear
bijection between the spaces of infinitesimal c-motions of (G,p) and (G, q).

7.1 The Pogorelov map

In this subsection we give a brief description of a method used by Pogorelov [17] to
transform a framework on the upper hemisphere Sd−1

+ = {x ∈ Rd | 〈x, x〉 = 1, 〈e, x〉 >
0} to a framework on its tangent space Ed−1 = {x ∈ Rd | 〈e, x〉 = 1} at the point
e = (0, 0, . . . , 0, 1) ∈ Rd, in such a way that the dimension of the space of infinitesimal
motions is preserved. The reader is referred to Saliola and Whiteley [18] and Ismestiev
[6] for more details.
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Given a point x ∈ Sd−1
+ , let Tx = {y ∈ Rd | 〈y, x〉 = 0} be the tangent space of Sd−1

+

at x. Following Pogorelov [17], see also [18], we define an infinitesimal motion of a
framework (G,p) on Sd−1

+ to be a map t : i ∈ V 7→ ti ∈ Tpi satisfying

〈pi, tj〉+ 〈pj , ti〉 = 0 (ij ∈ E). (11)

Thus an infinitesimal motion of (G,p) on Sd−1
+ is an infinitesimal c-motion in Rd which

satisfies the additional constraint that the infinitesimal velocity of each point pi lies
in the tangent hyperplane at pi.
On the other hand, an infinitesimal motion of a framework (G, q) on Ed−1 is a map

m : V → M = {y ∈ Rd | 〈e, y〉 = 0} satisfying

〈pi − pj, mi −mj〉 = 0 (ij ∈ E). (12)

Thus an infinitesimal motion of (G, q) on Ed−1 is an infinitesimal motion in Rd which
preserves the edge lengths and the fact that the points lie on Ed−1.
We can transform a framework (G,p) on Sd−1

+ to a framework on Ed−1 using the
map φ : Sd−1

+ → Ed−1 defined by

φ : x 7→
x

〈e, x〉
.

Note that φ is bijective and its inverse is given by φ−1(x) = x/|x|.
We next define a map between the spaces of infinitesimal motions of (G,p) and

(G, φ ◦ p). For x ∈ Sd−1
+ , define ψx : Tx → M by

ψx : t 7→
t− 〈t, e〉e

〈e, x〉
. (13)

It is easy to check that ψx is a linear isomorphism whose inverse is given by

ψ−1
x : m 7→ 〈e, x〉m− 〈m, x〉e. (14)

Given an infinitesimal motion t of (G,p) we can now define an infinitesimal motion
ψ(t) of (G, φ ◦ p) by putting ψ(ti) = ψpi(ti) for all i ∈ V . Then ψ is a linear bijection
between the spaces of infinitesimal motions of (G,p) in Sd−1

+ and (G, φ ◦ p) in Ed−1.

7.2 An application to completability

We will use the Pogorelov map to obtain another relationship between completability
in Rd and rigidity in Rd−1. As an application we obtain a sufficient condition for
completability in R2 which extends Corollary 7.
Let (G,p) be a framework in Rd whose vertices lie on Sd−1

+ . Since Rd = T⊥
pi
⊕ Tpi

for each i ∈ V , a map ṗ : V 7→ Rd can be decomposed into the direct sum of two
maps s : i ∈ V 7→ si ∈ R and t : i ∈ V 7→ ti ∈ Tpi, such that

ṗi = sipi + ti (i ∈ V ). (15)
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Let L ⊆ E be the set of loops of G. We may substitute equation (15) into (2) to
obtain

0 = 〈pi, ṗj〉+ 〈pj, ṗi〉 = (si + sj)〈pi, pj〉+ 〈pi, tj〉+ 〈pj, ti〉 (ij ∈ E \ L)

0 = 〈pi, ṗi〉 = si|pi|
2 = si (ii ∈ L)

(16)

On the other hand, a calculation (from [18]) shows that

〈φ(pi)− φ(pj), ψpi(ti)− ψpj(tj)〉 =
〈pi, ti〉

〈e, pi〉2
−

〈pi, tj〉+ 〈pj, ti〉

〈e, pi〉〈e, pj〉
+

〈pj, tj〉

〈e, pj〉2

= −
〈pi, tj〉+ 〈pj , ti〉

〈e, pi〉〈e, pj〉

where the last equation follows from the facts that ti ∈ Tpi and tj ∈ Tpj . Putting
q̄i = φ(pi) ∈ Ed−1 and ūi = ψpi(ti) ∈M , we obtain

〈pi, ṗj〉+ 〈pj, ṗi〉 = (si + sj)〈pi, pj〉 − 〈e, pi〉〈e, pj〉〈φ(pi)− φ(pj), ψ(ti)− ψ(tj)〉

=
1

|q̄i||q̄j|
[(si + sj)〈q̄i, q̄j〉 − 〈e, q̄i〉〈e, q̄j〉〈q̄i − q̄j , ūi − ūj〉]. (17)

Since ψx is a linear bijection between Tx andM , it induces a linear bijection ψ between
{ṗ ∈ (Rd)|V | | ṗ : i ∈ V 7→ ṗi ∈ R⊕Tpi} and {(s, ū) | s : V → R, ū : V → M}. It now
follows from (2), (16), and (17) that the space of infinitesimal c-motions ṗ of (G,p)
is linearly isomorphic to the space of solutions (s, ū) to the system of equations

〈q̄i − q̄j, ūi − ūj〉 −
〈q̄i, q̄j〉

〈e, q̄i〉〈e, q̄j〉
(si + sj) = 0 (ij ∈ E \ L)

si = 0 (ii ∈ L)

(18)

associated to the framework (G, q̄) on Ed−1, where q̄ = φ ◦ p.
By taking the natural projection of Ed−1 onto Rd−1, we can transform (18) into a

system of equations associated to a framework (G, q) in Rd−1. Let q,u : V → Rd−1

be such that

(
qi
1

)

= q̄i and

(
ui
0

)

= ūi for all i ∈ V . Then (18) becomes

〈qi − qj , ui − uj〉 − (〈qi, qj〉+ 1)(si + sj) = 0 (ij ∈ E \ L)

si = 0 (ii ∈ L)
(19)

Let R′(G, q) be the |E| × d|V |-matrix representing this linear system of equations.
Then

R′(G, q) = [R(G, q) −S(G, q)] (20)

where R(G, q) is the rigidity matrix of (G, q) and S(G, q) is the |E| × |V |-matrix in
which the row associated with each ij ∈ E is

i
︷ ︸︸ ︷

j
︷ ︸︸ ︷

0 . . . 0 〈qi, qj〉+ 1 0 . . . 0 〈qi, qj〉+ 1 0 . . . 0.

The equivalence of (2) and (20) gives us the following result.
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Proposition 32. Let (G,p) be the framework on Sd
+ and let (G, q) be the framework

in Rd−1 with φ(pi) =

(
qi
1

)

for i ∈ V . Then rank C(G,p) = rank R′(G, q).

Note that it is easy to deduce Corollary 7 from Lemma 31 and Proposition 32.
Lemma 31 and Proposition 32 tell us that the infinitesimal completability of a

framework (G,p) in the half-plane {x ∈ Rd | 〈x, e〉 > 0} is determined by the rank of
an |E| × d|V | matrix whose first (d− 1)|V | columns are given by the rigidity matrix
of an associated framework (G, q) in Rd−1. We can use this to obtain the following
sufficient condition for generic local completability in R2.

Lemma 33. Let G = (V,E) be a graph. If there exists a partition {V1, V2, . . . , Vt} of
V such that G[Vi] is locally completable in R1 for all 1 ≤ i ≤ t, and G−

⋃t

i=1E(G[Vi])
is connected, then G is locally completable in R2.

Proof. Let G1 = (V,E −
⋃t

i=1E(G[Vi])) and G2 = (V,
⋃t

i=1E(G[Vi])). By Proposi-
tion 32 it suffices to show that there is q : V → R such that the rank of R′(G, q) is
2n − 1. Take any t distinct numbers a1, . . . , at. By using the partition {V1, . . . , Vt},
we shall define q by qi = aj for i ∈ Vj. Then by definition R′(G, q) can be written as
follows.

E(G1) I(
−→
G 1) ∗

E(G2) 0 I(G2)

where I(
−→
G 1) is the incidence matrix of an arbitrarily oriented G1 and I(G2) is the

edge-vertex incidence matrix of G2. Since G1 is connected, the rank of I(
−→
G 1) is

equal to n − 1. On the other hand, the rank of I(G2) is equal to n if and only if
each connected component of G2 contains an odd cycle, equivalently G2 is locally
completeble in R1 by Theorem 16.

The special case of Corollary 7 when d = 2 follows from Lemma 33 by considering
the partition of the vertex set into single vertices. This suggests that Lemma 33 may
extend to all dimensions if we replace the connectivity condition of G−

⋃t

i=1E(G[Vi])
by the condition that G−

⋃t

i=1E(G[Vi]) is rigid in Rd−1.

8 Concluding Remarks

A complete characterization of locally completable semi-simple graphs in R2 remains
open. One possible approach is to strengthen the necessary condition for c-independ-
ence of a graph G = (V,E) given in Lemma 1 by considering families of subgraphs
of G which cover E. Such covers have played an important role in various rigidity
problems, see for example the formula for the rank function of the 2-dimensional
rigidity matroid given by Lovász and Yemini in [15], or the necessary conditions for
independence in the 3-dimensional rigidity matroid given in [8, 9].
Let H = (V,E) be a non-trivial bipartite graph i.e. H has bipartition (A,B) with

|A|, |B| ≥ 2. A cover of F = {X1, X2, . . . , Xs} is a family of subsets of V with
|Xi ∩A|, |Xi ∩B| ≥ 2 for all 1 ≤ i ≤ s and each edge of H induced by at least one set
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in F . We say that F is 2-thin if |Xi ∩Xj ∩A|, |Xi∩Xj ∩B| ≤ 1 for all 1 ≤ i < j ≤ s.
A hinge of F is a pair of vertices {x, y} with Xi ∩ Xj = {x, y} for some i 6= j. Let
H(F) be the set of all hinges of F . The hinge graph of F is the bipartite graph with
bipartition (F , H(F)) in which Xi and h are incident if h is contained in Xi. The
degree deg(h) of a hinge h is given by its degree in the hinge graph of F . The value
of F is defined as

val(F) =

s∑

i=1

(2|Xi| − 4)−
∑

h∈H(F)

(deg(h)− 1). (21)

We say that F is k-degenerate if for all F ′ ⊆ F , the hinge graph of F ′ contains a
vertex X ∈ F ′ of degree at most k.

Lemma 34. Suppose G = (V,E) is a non-trivial bipartite graph and F is an 8-
degenerate 2-thin cover of G. Then the rank of C2(G) is at most val(F).

Proof. We use induction on |F|. If |F| = 1 then H(F) = ∅ and the lemma follows
from Lemma 1. Hence suppose that |F| ≥ 2. We may assume that uv ∈ E for all
hinges {u, v} of F since adding such an edge uv to G will not change val(F) or the fact
that F an 8-degenerate 2-thin cover, and can only increase the rank of C2(G). Since
F is 8-degenerate, we can choose an X ∈ F which contains at most 8 hinges of F . Let
E∗ be set of edges of G whose end-vertices are the hinges of F which are contained
in X , and E ′ be the set of edges of G which are induced by X and do not belong to
E∗. Let G′ = G − E ′ and let B′ be a base of C2(G

′) which contains E∗. (Lemma 4
implies that any set of at most eight non-loop edges is independent in C2(G

′).) Since
F ′ = F \ {X} is an 8-degenerate 2-thin cover of G′ we may use induction, to deduce
that |B′| ≤ val(F ′). Let B be a basis of C2(G) which contains B′. Then Lemma 1
implies that |B \B′| ≤ 2|X| − 4− |E∗| and hence |B| ≤ val(F).

Lemma 34 immediately gives the following necessary condition for c-independence.

Corollary 35. Suppose G is a bipartite graph. If G is c-independent in R2 then
|E(H)| ≤ val(F) for all non-trivial subgraphs H of G and all 8-degenerate, 2-thin
covers F of H.

For all examples of c-dependent bipartite graphs we know, their c-dependence can
be demonstrated by a 2-degenerate, 2-thin cover.

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund grant no. K81472,
CK80124, and K109240.

EGRES Technical Report No. 2014-01



References 27

References

[1] V. Batagelj, An inductive definition of the class of 3-connected quadrangula-
tions of the plane, Discrete Math. 78 (1989) 45-53.

[2] R. Connelly, Generic global rigidity, Discrete Comput. Geom. 33:549-563,
2005.

[3] R. Connelly, T. Jordán, and W. Whiteley, Generic global rigidity of
body-bar frameworks, J. Combinatorial Theory, Ser. B., Vol. 103, Issue 6,
November 2013, pp. 689-705.

[4] R. Connelly and W. Whiteley: Global rigidity: the effect of coning, Dis-
crete Comp. Geometry, Volume 43, Number 4, 717-735 (2010).

[5] S. Gortler, A. Healy, and D. Thurston, Characterizing generic global
rigidity, American J. Math., 132:897–939, 2010.

[6] I. Izmestiev, Projective background of the infinitesimal rigidity of frameworks,
Geometriae Dedicata June 2009, Volume 140, Issue 1, pp 183-203.

[7] B. Jackson and T. Jordán, Connected rigidity matroids and unique realiza-
tion graphs, J. Combinatorial Theory, Ser. B., 94 (2005) 1–29.

[8] B. Jackson and T. Jordán, The Dress conjectures on rank in the 3-
dimensional rigidity matroid, Advances in Applied Mathematics, Vol. 35, 355-367,
2005.

[9] B. Jackson and T. Jordán, On the rank function of the 3-dimensional rigidity
matroid, International Journal on Computational Geometry and Applications,
Vol. 16, Nos. 5-6 (2006) 415-429.

[10] T. Jordán and Z. Szabadka, Operations preserving the global rigidity of
graphs and frameworks in the plane, Computational Geometry, 42 (2009) 511-
521.

[11] G. Kalai, E. Nevo, and I. Novik, Bipartite rigidity, arXiv:1312.0209, De-
cember 2013.
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