Egerváry Research Group on Combinatorial Optimization

Technical ReportS

TR-2014-04. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H-1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres. ISSN 1587-4451.

Henneberg moves on mechanisms

Bill Jackson, Tibor Jordán, Brigitte Servatius, and Herman Servatius

Henneberg moves on mechanisms

Bill Jackson ${ }^{\star}$, Tibor Jordán ${ }^{\star \star}$, Brigitte Servatius ${ }^{\star \star \star}$, and Herman Servatius ${ }^{\ddagger}$

Abstract

A bar-and-joint framework in the plane with degree of freedom 1 is called a mechanism. It is well-known that the operations of 0 -extension and 1-extension, the so called Henneberg moves, can always be performed on a framework so that its degree of freedom is preserved. It was conjectured by the first and second author in 2012 that for a mechanism in generic position these operations can be performed without restricting its motion. In this note we provide a counterexample.

1 Introduction

A 2-dimensional (bar-and-joint) framework is a pair (G, p), where $G=(V, E)$ is a graph and p is a map from V to \mathbb{R}^{2}. We consider the framework to be a straight line realization of G in \mathbb{R}^{2}. A flexing of the framework (G, p) is a continuous function $\pi:[0,1] \times V \rightarrow \mathbb{R}^{2}$ such that $\pi_{0}=p$, and such that the corresponding edge lengths in frameworks (G, p) and $\left(G, \pi_{t}\right)$ are the same for all $t \in[0,1]$, where $\pi_{t}: V \rightarrow \mathbb{R}^{2}$ is defined by $\pi_{t}(v)=\pi(t, v)$ for all $v \in V$. The flexing π is trivial if the frameworks (G, p) and $\left(G, \pi_{t}\right)$ are congruent for all $t \in[0,1]$. A framework is said to be rigid if it has no non-trivial flexings. It is called a mechanism if it has degree of freedom 1, that is, if it is not rigid but can be made rigid by inserting one additional bar.

A realization of a graph is generic if there are no algebraic dependencies between the coordinates of the vertices. It is known, see [7], that the rigidity of frameworks (and their degree of freedom) in \mathbb{R}^{2} is a generic property, that is, the rigidity of (G, p) depends only on the graph G and not the particular realization p, if (G, p) is generic.

[^0]We say that the graph G is rigid in \mathbb{R}^{2} if every (or equivalently, if some) generic realization of G in \mathbb{R}^{2} is rigid. See [1, 7] for more details.

The 0 -extension operation on vertices x, y in a graph H adds a new vertex z and new edges $x z, y z$ to H. The 1 -extension operation [2] (on edge $x y$ and vertex w) deletes an edge $x y$ from a graph H and adds a new vertex z and new edges $z x, z y, z w$ for some vertex $w \in V(H)-\{x, y\}$. See Figure 1. It is known that these extension operations, the so-called Henneberg moves, preserve rigidity [6]. A graph $G=(V, E)$ is minimally rigid if G is rigid, but $G-e$ is not rigid for all $e \in E$. We say that graph H is a mechanism if $H=G-e$ for some minimally rigid graph G.

It is well-known that a graph is minimally rigid if and only if it can be constructed from an edge by a sequence of 0 -extensions and 1 -extensions. Similarly, if K, G are mechanisms with $K \subset G$ and such that K is contained in no rigid subgraph of G, then G can be obtained from K by a sequence of 0 -extensions and 1 -extensions.

Let $G=(V, E)$ be a graph. We shall consider realisations (G, p) of G in \mathbb{R}^{2} which are in standard position with respect to two given vertices v_{1}, v_{2} i.e. $p\left(v_{1}\right)=(0,0)$ and $p\left(v_{2}\right)$ lies on the ' y-axis'. We will suppress the coordinates of v_{1}, v_{2} which are fixed at zero and take $p \in \mathbb{R}^{2|V|-3}$. We say that such a realisation (G, p) is generic if the $2|V|-3$ coordinates of p are algebraically independent over \mathbb{Q}.

Given a realisation (G, p) of a mechanism G we refer to the set of all frameworks (G, q) which are in standard position with respect to $\left(v_{1}, v_{2}\right)$ and can be reached by a flexing of (G, p) as the flex of (G, p). Let $\Theta(G, p)=\left\{q \in \mathbb{R}^{2|V|-3}\right.$: (G, q) is in the flex of $(G, p)\}$. It is known that $\Theta(G, p)$ is diffeomorphic to a circle when (G, p) is generic.

Suppose K, G are mechanisms with $K \subset G$ and $v_{1}, v_{2} \in V(K)$. Put $\Theta(K, G, p)=$ $\left\{\left.q\right|_{K}: q \in \Theta(G, p)\right\}$. Then $\Theta(K, G, p) \subseteq \Theta\left(K,\left.p\right|_{K}\right)$ but we may have $\Theta(K, G, p) \neq$ $\Theta\left(K,\left.p\right|_{K}\right)$ since the edges of G which do not belong to K may place additional constraints on how $\left(K,\left.p\right|_{K}\right)$ flexes inside of (G, p). When $\Theta(K, G, p) \neq \Theta\left(K,\left.p\right|_{K}\right)$, $\Theta(K, G, p)$ will be a closed 1-manifold with boundary i.e. will be diffeomorphic to a closed line segment. This can occur, for example, when K is contained in a rigid subgraph of G, in which case $\Theta(K, G, p)$ will contain the single point $\left.p\right|_{K}$.

Motivated by a problem concerning globally linked pairs of vertices in graphs, it was conjectured in a recent paper [4] that if K, G are mechanisms with $K \subseteq G$ and such that K is contained in no rigid subgraph of G then there exists a generic realisation (G, p) of G such that $\Theta(K, G, p)=\Theta\left(K,\left.p\right|_{K}\right)$. This conjecture is still open.

The inductive construction of mechanisms from submechanisms mentioned above leads to the idea of proving this conjecture recursively. It can be seen that if G is obtained from H by a 0 -extension, and $\Theta(K, H, p)=\Theta\left(K,\left.p\right|_{K}\right)$ for some generic realisation (H, p) of H, then p can be extended to a generic realisation (G, \tilde{p}) of G such that $\Theta(K, G, \tilde{p})=\Theta\left(K,\left.\tilde{p}\right|_{K}\right)=\Theta\left(K,\left.p\right|_{K}\right)$. This led the first and second author of this note to conjecture an analogous result for 1-extensions. The conjecture was posed at a workshop on rigidity held at BIRS (Banff, Canada) in 2012. A similar idea was outlined previously by Owen and Power [5, Problem 2].

This conjecture was subsequently disproved by the third and fourth author. The goal of this note is to present a small (in fact, the smallest possible) counterexample together with a simple analysis. We shall prove the following:

Figure 1: Let K be the subgraph of G and H with $V(K)=\{a, y, c\}$ and $E(K)=$ $\{a y, y c\}$. The graph G is obtained from H by a 1-extension which deletes the edge $a b$ and adds the vertex d and the edges $d a, d b, d c$.

Theorem 1.1. There exist mechanisms K, H, G with $K \subset H$ and such that K is contained in no rigid subgraph of G and G is obtained from H by a 1-extension, for which $\Theta(K, H, p)=\Theta\left(K,\left.p\right|_{K}\right)$ for some generic realisation (H, p) of H and for which p cannot be extended to a generic realisation (G, \tilde{p}) of G for which $\Theta(K, G, \tilde{p})=$ $\Theta\left(K,\left.\tilde{p}\right|_{K}\right)=\Theta\left(K,\left.p\right|_{K}\right)$.

We shall prove that the graph in Figure 1 is a counterexample. Based on this fact it is not hard to construct an infinite family of counterexamples. We need some new notation and two lemmas. The first lemma is a special case of [3, Lemma 3.3].

Lemma 1.2. [3] Let (G, p) be a generic realization of a mechanism G in standard position. Then the set of edge lengths of (G, p) are algebraically independent over the rationals.

Given a framework (G, p) and an edge $u v$ of G let $\ell_{p}(u v)$ denote the length of $u v$ in (G, p). We suppress the subscript p when it is obvious which realisation we are referring to.

Lemma 1.3. Let $\left(C_{4}, p\right)$ be a realisation of the 4 -cycle $C_{4}=$ aybda. Suppose that $\ell(a y)>2 \ell(b y)$. Consider the flex $\Theta\left(C_{4}, p\right)$ with a pinned at the origin and y pinned on the y-axis and suppose that d transcribes a circle around a in this flex. Then $\ell(a d) \leq 2 \ell(b y)$

Proof. Note that since $a y$ is an edge, y must also remain fixed throughout the flex. Applying the triangle inequality when d is at the point furthest away from y in the flex, we deduce that

$$
\begin{equation*}
\ell(d b)-\ell(b y) \leq \ell(a d)+\ell(a y) \leq \ell(d b)+\ell(b y) . \tag{1}
\end{equation*}
$$

Consider the case when $\ell(a d) \geq \ell(a y)$. Applying the triangle inequality when d is at the point nearest to y in the flex, we deduce that

$$
\begin{equation*}
\ell(d b)-\ell(b y) \leq \ell(a d)-\ell(a y) \leq \ell(d b)+\ell(b y) . \tag{2}
\end{equation*}
$$

Adding (1) and (2) gives

$$
\ell(d b)-\ell(b y) \leq \ell(a d) \leq \ell(d b)+\ell(b y)
$$

and hence $\ell(d b)-\ell(b y)+\ell(a y) \leq \ell(a d)+\ell(a y)$. Inequality (1), now gives

$$
\ell(d b)-\ell(b y)+\ell(a y) \leq \ell(a d)+\ell(a y) \leq \ell(d b)+\ell(b y) .
$$

This gives $\ell(a y) \leq 2 \ell(b y)$ and contradicts the hypothesis that $\ell(a y)>2 \ell(b y)$.
Hence $\ell(a d)<\ell(a y)$. Applying the triangle inequality when d is at the point nearest to y in the flex, we deduce that

$$
\begin{equation*}
\ell(d b)-\ell(b y) \leq-\ell(a d)+\ell(a y) \leq \ell(d b)+\ell(b y) . \tag{3}
\end{equation*}
$$

Adding (1) and (3) gives $\ell(d b)-\ell(b y) \leq \ell(a y) \leq \ell(d b)+\ell(b y)$ and hence $\ell(d b)-$ $\ell(b y)+\ell(a d) \leq \ell(a d)+\ell(a y)$. Inequality (1), now gives

$$
\ell(d b)-\ell(b y)+\ell(a d) \leq \ell(a d)+\ell(a y) \leq \ell(d b)+\ell(b y)
$$

and hence $\ell(a d) \leq 2 \ell(b y)$ as required.
Proof of Theorem 1.1. Consider the graphs in Figure 1. Choose a generic realisation (H, p) in which $\ell(c y)>\ell(a y)>4 \ell(b y)$. Extend this to a realisation (G, p) of G by placing d at some point in the plane. Consider the flexes of (G, p) and $\left(H,\left.p\right|_{H}\right)$ which keep a fixed at the origin and y on the ' y-axis'. Note that since $a y$ is an edge this implies that y also remains fixed throughout each flex. It is easy to see that c transcribes a circle about y during the flex of $\left(H,\left.p\right|_{H}\right)$ and hence that $\Theta\left(K, H,\left.p\right|_{H}\right)=\Theta\left(K,\left.p\right|_{K}\right)$.

Assume that c transcribes a circle around y in $\Theta(G, p)$. Let $\left(G, p_{t}\right)$ be the position of G at time t in $\Theta(G, p)$. The triangle inequality gives $|\ell(d a)-\ell(d c)| \leq\left\|p_{t}(c)-p_{t}(a)\right\| \leq$ $\ell(d a)+\ell(d c)$ for all $t \in[0,1]$. Since a is pinned at the origin this gives

$$
\begin{equation*}
|\ell(d a)-\ell(d c)| \leq \min _{t}\left\{\left\|p_{t}(c)\right\|\right\}=\ell(c y)-\ell(a y) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\ell(d a)+\ell(d c) \geq \max _{t}\left\{\left\|p_{t}(c)\right\|\right\}=\ell(c y)+\ell(a y) \tag{5}
\end{equation*}
$$

We first consider the case when d transcribes a circle around a in $\Theta(G, p)$. Lemma 1.3 applied to the 4 -cycle aybda implies that $\ell(a d) \leq 2 \ell(b y)$. This gives $2 \ell(a d) \leq$ $4 \ell(b y)<\ell(a y)$. Since c transcribes a circle around y, we may now apply Lemma 1.3 to the 4 -cycle adcya (with the roles of a and y reversed) to deduce that $\ell(y c) \leq$ $2 \ell(a d) \leq 4 \ell(b y)$. This contradicts the fact that $\ell(c y)>4 \ell(b y)$.

Hence d cannot transcribe a circle around a in $\Theta(G, p)$. Since the flex of G is continuous and $p(a)$ is inside the circle transcribed by c, the points $p_{t_{0}}(c), p_{t_{0}}(d), p_{t_{0}}(a)$ must be collinear for some $t_{0} \in[0,1]$. Hence we have $|\ell(d a)-\ell(d c)|=\left\|p_{t_{0}}(c)\right\|$ or $\ell(d a)+\ell(d c)=\left\|p_{t_{0}}(c)\right\|$. Thus equality must hold in either (4) or (5). Either alternative implies that $p_{t_{0}}(d), p_{t_{0}}(c), p(a), p(y)$ are collinear. Hence all four points lie on the y-axis and the edge lengths of the four-cycle of (G, p) on vertex set $\{d, c, y, a\}$ are algebraically dependent over the rationals. Lemma 1.2 now implies that (G, p) cannot be generic.

2 Acknowledgements

This work was supported by the Hungarian Scientific Research Fund grant no. K81472, and the National Development Agency of Hungary, grant no. CK 80124, based on a source from the Research and Technology Innovation Fund.

References

[1] J. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity, AMS Graduate Studies in Mathematics Vol. 2, 1993.
[2] L. Henneberg, Die graphische Statik der starren Systeme. Leipzig, 1911.
[3] B. Jackson, T. Jordán, and Z. Szabadka, Globally linked pairs of vertices in equivalent realizations of graphs, Discrete Comput. Geom., Vol. 35, 493-512, 2006.
[4] B. Jackson, T. Jordán, and Z. Szabadka, Globally linked pairs of vertices in rigid frameworks, in: Rigidity and Symmetry, Fields Institute Communications, Vol. 70, R. Connelly, A. Ivic Weiss, W. Whiteley (Eds.) 2014, in press.
[5] J. C. Owen and S. C. Power, Infinite bar-joint frameworks, crystals and operator theory, New York J. Math. 17 (2011) 445-490.
[6] T. S. Tay and W. Whiteley, Generating isostatic frameworks. Structural Topology, 11:21-69, 1985.
[7] W. Whiteley, Some matroids from discrete applied geometry. Matroid theory (Seattle, WA, 1995), 171-311, Contemp. Math., 197, Amer. Math. Soc., Providence, RI, 1996.

[^0]: *School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, England. email: B.Jackson@qmul.ac.uk
 ${ }^{\star \star}$ Department of Operations Research, Eötvös University, and the MTA-ELTE Egerváry Research Group on Combinatorial Optimization, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary. email: jordan@cs.elte.hu
 ***Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA 01609-2280, USA. email: bservat@wpi.edu
 ${ }^{\ddagger}$ Mathematical Sciences, Worcester Polytechnic Institute, Worcester MA 01609-2280, USA. email: hservat@wpi.edu

