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Perovskite, solar cell, photodetector, grain boundary, crystallization. 

ABSTRACT 

We report the synthesis of lead-methylamine iodide (CH3NH3PbI3) nanowires by a low 

temperature solution processed crystallization using a simple slip-coating method. The 

anisotropic particle shape exhibits advantages over nanoparticles in terms of charge transport 

under illumination. These results provide a basis for solvent-mediated tailoring of structural 

properties like the crystallite size and orientation in trihalide perovskite thin films, which 

once implemented into a device, may ultimately result in an enhanced charge carrier 

extraction. 

 

MAIN TEXT 

Perovskites, the structural analogues of the natural crystal of calcium titanium oxide, cover 

a broad range of versatile materials, which have potential applications in multiple fields such 

as superconductors
1
, sensors

2
, fuel cells

3
, ferroelectrics

4
 and thermoelectrics

5
. The recently 
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 3

rediscovered, half-century old members of this family
6
, organolead halide perovskites, turned 

out to be promising components of next generation solar cells
7
. Incorporated as a light 

harvesters in mesoscopic solar cells, a remarkable power conversion efficiency of 16.2 % was 

demonstrated in lab-scale devices
8
. It has been shown that aside from the role of the light 

absorber, the organolead halide perovskites can be viewed both as electron and hole 

transporting media due to their ambipolar charge transport character
9
. So far, the highest 

solar-to-electric conversions have been reached with two main compounds (the CH3NH3PbI3 

and CH3NH3PbI3-xClx, abbreviated as MAPbI3 and MAPbI3-xClx) showing minor alterations 

in halide content
10,11

. These are direct band gap semiconductors with a high absorption 

coefficient, a favorable band gap of 1.5-1.65 eV and electron-hole diffusion length ranging 

from ≈100nm to ≈1 micron
12,8, 13, 14

. However, the structural and electronic differences 

between the two materials, as well as the exact role of the Cl anions have yet to be 

undoubtedly determined by the scientific community. Colella et. al.
15

 observed that 

incorporation of Cl as a dopant dramatically improves the charge transport within the 

perovskite layer. It has also been described that the Cl inclusion enhances the granular 

morphology resulting in a more homogenous current production probed by electron beam-

induced current (EBIC) method
16

. Very recently, by inserting formamidinium cations into a 
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 4

lead iodide structure, nearly cubic phase (band gap ≈1.43 eV) perovskite was reported, with 

an absorption edge broadened by 30 nm as compared to MAPbI3
17

. These findings validate 

the bandgap engineering strategies, where the bandgap of the material might be efficiently 

tuned by choosing the halide anion and the organic amide constituent
18,19,20

. One of the key 

aspects towards a low-cost technology capable of competing with the established silicon 

technology lies in the material`s low temperature solution processability. The current 

approach is based on a single step deposition of a mixture of PbX2 and CH3NH3X (X is a 

halide anion) in a common solvent or sequential deposition of the constituents from a solution 

onto a mesopourous scaffold
21,22

. Rapid crystallization of the perovskite has been observed 

during the spin-coating process. In order to obtain an optimized device performance, very 

often a post-annealing treatment is required. Recent results
23

 demonstrated an efficiency of 

15 % on devices entirely processed below 150 
o
C. The general observation is that minor 

alterations of the applied processing parameters may lead to dramatically different device 

performances. This indicates that it is critical to have fine control over the nucleation and 

crystal growth of the MAPbI3. In their effort to control the morphology of the trihalide 

perovskite films, Eperon et al.
24

 showed that the highest photocurrents were attainable only 

with the highest perovskite surface coverage. This prior work suggests that the final 
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 5

crystalline morphology depends mainly on the dynamics of annealing, which will ultimately 

govern the solvent evaporation, pore voiding or closing and the film thickness. Liu and co-

workers reported
25

 that the solution-cast films onto a compact TiO2-layer over an FTO-coated 

glass inhomogeneously covered the substrate and that it was composed of crystalline 

‘platelets’ with a length on the scale of tens of micrometres. The crystallite sizes determined 

from X-ray diffraction were larger than 400 nm. On the other hand, studies based on electron 

microscopy observations report the presence of small, ~6 nm nanoparticles supported by 

surface-modified mesoporous TiO2 film prepared by solution processing.
26

 As is well known, 

the dimensionality and morphology of crystallites may have a striking influence on their 

chemical and physical properties. Under most circumstances, nano- and micron-sized 

particles with isotropic particle shapes have been observed. This suggests that the crystallites 

tend to grow uniformly along the three major crystallographic directions. This can be easily 

accepted, since MAPbI3 more likely crystallizes in a cubic structure, therefore in principle 

there should be no crystallographic driving force for anisotropic growth. Surprisingly, we 

found that some solvents induce highly anisotropic crystallization of MAPbI3. To the authors’ 

knowledge, no 1D form of organolead halide perovskites has been observed to date.  
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 6

Here we report the synthesis of two sets of MAPbI3 nanowires with mean diameter of 50 

and 400 nm and length up to 10 µm. They were prepared through a simple slip-coating 

approach. The one-dimensional form of MAPbI3 could have unique optical and electrical 

properties. The feasibility of anisotropic growth of organolead halide perovskites opens up a 

new strategy towards the realization of low-temperature, solution processed films with 

controlled morphology.  

Synthesis 

Saturated solution of MAPbI3 in dimethylformamide (DMF) was dropped onto a glass 

microscope slide and covered with a second glass slide so that the excess yellow solution 

squeezed out; the remaining solution formed a homogenous liquid film between the glass 

plates (Fig 1 a-c, details of the synthesis can be found in the Supporting Information). The 

excess of MAPbI3 solution was removed from the sides by soaking with a tissue. Next, the 

bottom substrate was held in place while gradually sliding the upper glass plate, exposing the 

thin liquid film to air. Solvent evaporation from the uncovered surface caused an 

instantaneous yellow to brown-red color change. 
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 7

 

Figure 1. Schematic illustration of the low temperature slip-coating process for the fabrication of 

filiform lead-methylamine iodide perovskite thin films (a-c). Photo of the coating formed on a 

microscope glass slide (d). Optical microscopy image of filiform crystallites grown on SiO2/Si 

substrate (e). 

 

 

Optical microscopy was performed to confirm the crystallization of the solid. 

Unexpectedly, instead of a granular film composed of isotropic crystallites, a network of 

several micron long wire-like objects was observed, some of them pointing in the direction of 
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 8

sliding of the two glass plates (Fig 1 d-e). The filiform morphology was further confirmed 

using TEM, SEM and AFM measurements.  

 

Figure 2. Morphological parameters of filiform MAPbI3 crystallites. TEM image of a MAPbI3 (a), 

Optical microscope images of individual MAPbI3 nanowire (c-d). SEM image of micron-sized 

Page 8 of 23

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 9

MAPbI3 filaments grown on SiO2/Si surface (b, e, f). AFM images and height profiles. The white lines 

denote the corresponding cross-section profiles shown in the insets (g-h). Note that for Figures c-g 

and d-h the same zones of the surfaces are imaged. 

 

The width of the nanowires varied between 50 and 200 nm and they had lengths up to 16 

microns. The height of the crystallites was determined from AFM measurements displaying a 

range from ultrathin (~9 nm) to several tens of nanometers thick (~90 nm) scale. The 

formation of a small number of aggregates of ~10 nm sized isotropic crystallites was also 

observed, as can be seen on TEM and SEM micrographs (Fig 2 a, b). These particles were 

homogeneously dispersed on the SiO2 surface and attached to the wall of larger nanowires 

(Fig 2 b.). Increasing the MAPbI3 solution volume-to-surface ratio during the slip-coating 

process yields larger, sub-micron sized whiskers (Fig 2 b, d, f, h, experimental details in the 

Supporting Information). Unlike the thinner wires that have a flat surface, some of these 

thicker crystallites possess a U-shape void along their surface. The size distribution of 

nanowires (read from optical, AFM and SEM images) prepared by two solution volumes is 

shown in Figure 3. We experienced that parameters such as solvent concentration, 
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 10

temperature, fluid philicity/phobicity, sliding speed, etc. influence the kinetics of 

crystallization. We assume that the optimized combination of these parameters could result in 

a major product having well-controlled surface density, crystal habit, aspect ratio, size-

distribution and even orientation on a given substrate. 

 

Figure 3. Size distribution of two sets of nanowires of MAPbI3. The height has been determined by 

AFM (a, b) while the width and length have been obtained by SEM (c, d) and optical microscopy (e, 

f) images. 
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 11

The elemental composition of the anisotropic crystallites was analyzed by EDX. The 

presence of lead and iodine was readily confirmed, while the low atomic number carbon and 

nitrogen cannot be reliably quantified by EDX (Supplementary Figure S3). The Pb:I atomic 

percent ratio was found to be 25:75. To gain more insight into the structure of the nanowires 

XRD, Raman and infrared spectroscopies were performed. The XRD diffractogram shows 

high intensity diffraction peaks at 2 Theta 14 º (110) and 28.4 º (220), which were identified 

as the characteristic peaks of the cubic MAPbI3 phase
27

. The presence of the low intensity 

peak at 12.54° is assigned to a PbI2 phase which presumably formed as a result of the 

humidity-induced partial decomposition of MAPbI3 during the PXRD measurement. The 

presence of two major reflection peaks suggests that the crystallites are highly oriented along 

the (110) direction. Raman spectra recorded on filiform crystallites are also in accordance 

with the reported Raman modes of MAPbI3
28

. The cathodoluminescence spectrum of filiform 

nanoparticles shows a single peak centered at ~770 nm, ~1.61eV (FigS7). This peak position 

corresponds well with the band gap reported of MAPbI3 perovskites (1.5 eV to 1.6 eV). 

Furthermore, Fourier Transform Infrared Spectroscopy (FTIR) spectra show a close 

correspondence in the vibration modes of filiform crystallites and bulk single crystal 

suggesting identical chemical composition (CH3NH3PbI3). 

Page 11 of 23

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12

The central question is where does the directionality of the perovskite growth stem from? 

The role of the solvent in the nanowire formation was investigated by changing the solvent. 

The same protocol was repeated by replacing dimethylformamide (DMF) by gamma-

butyrolactone (GBL), another commonly used solvent of organolead halide perovskites. Due 

to GBL's higher boiling point the evaporation was much slower, and ca. 350 K heat treatment 

was required to evaporate the solvent. Clearly, no anisotropic growth was taking place during 

the slip-coating process from GBL solution. Thus, we assume that the use of DMF is the key 

step, and therefore a unique role of DMF as a growth-directing agent is suggested. It is not 

clear yet whether DMF specifically affects the crystallization kinetics of the lead iodide 

framework or if the directional growth is due to an internal complex or adduct formation with 

the methylamine group. Currently we are assuming the second as a working hypothesis. The 

elucidation of the exact role of DMF on the formation of different solvatomorphs will be the 

subject of further studies. 

 

Testing of photoresponse of the nanowires 

The major interest in MAPbI3 is its high sensitivity to visible-light, which together with its 

high photovoltage of about 1.1 V are the basic ingredients for efficient solar-to-electric 
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 13

energy conversion
29

. These advantageous characteristics will certainly be explored in other 

device-oriented research, like photodetection and solid state lasers
30

. The elucidation of the 

morphology-dependent photoconductive performance could have a consequence on the 

development of more efficient devices. So far, the intrinsic photoconductive properties 

measured by standard contact methods have not even been reported for the bulk samples. 

Here, we demonstrate the first results showing that one can make efficient photodetectors 

based on nanowires of MAPbI3. In addition, these findings are compared to the 

photodetection of a thin film of spin coated MAPbI3 frequently used in photovoltaic devices. 

The devices were fabricated by slip-coating nanowires of different sizes of MAPbI3 onto a 

highly p-doped silicon substrate with 300 nm SiO2 on top. 100-nm-thick Pt contacts were 

deposited by e-beam evaporation through a microfabricated hard mask. The fabricated 

devices have a width of 100 µm and a length varying between 5 µm and 50 µm. The sketch 

and the optical image of a device are shown in Figure 4a and 4b. 
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 14

 
Figure 4. Schematic illustration of the nanowire-based device fabricated for FET and I-V 

photocurrent measurements (a) Optical microscopy image showing the MAPbI3 nanowires crossing 

the Pt source-drain contacts deposited by e-beam evaporation (b). Dark and laser illuminated I-V 

curves under increasing laser power (c). Time-resolved photoresponse (d).  

 

We measured the current density in the device as a function of the applied source-to-drain 

electric field in the dark and under illumination (red laser, λ=633 nm). The output 

characteristics follow a linear behavior, indicating that the contacts are ohmic (Fig 4 c). (The 

contacts show a slight asymmetric behavior probably due to fabrication asymmetries). 
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 15

In the dark state, the device behaves like a good insulator with currents of the order of tens 

of pA and resistances in the GOhm range. Under the illumination of the laser, the absorption 

of the light generates electron-hole pairs that are extracted by the source-to-drain electric 

field and cause an increase in the conductance of the material up to a factor of 300. We 

probed the photoresponse of the device under different incident laser powers in the 70 nW to 

7 µW range. The current increases parabolically with the incident power, however, under the 

applied experimental conditions the saturation of the photocurrent was not reached (inset to 

Fig 4 c).  

The device configuration allows to test the effect of a gate electric field on the I-V 

characteristics. Despite the semiconducting nature of the material, no influence of gating was 

noticed (FigS12). The applicable electric field limit (break-down voltage) was determined to 

be ≈20kV/cm. Higher electric fields risk an irreversible rupture of the filiform crystallites 

(FigS13). 

From the photocurrent one can estimate the responsivity of the device defined as R= Iph/Pin, 

where Iph is the photocurrent and Pin is the power of the incident light, respectively. For our 

device R was calculated to be 5 mA/W. Although this value is about 4 orders of magnitude 

smaller than the best-in-class photoelectric devices made out of graphene and monolayer 
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MoS2
31,32,33,34

, it is still comparable (10 times higher) to the value that has been achieved with 

the first prototypes of those 2D materials
35,36

(Chart S1). Optimization of the device 

fabrication process and the engineering of its configuration might improve the performances 

of the photodetectors based on filiform perovskites.  

The response time of our device (Fig 4d) showed that rise and decay times for the on-off 

current under illumination are less than 500µs, ~10
4 

faster than the state-of-the-art 

photodetectors
 
made of monolayer MoS2 

31,33
 and graphene

32,34,37
. The stability of the device 

was also tested by performing ~100 consecutive cycles measured over 1 h (Fig S14). A slight 

increase of the photocurrent (~5 %) over time is presumably due to contact adjustments (a 

better interface is created with the metal trough some annealing mechanism, FigS14). In 

recent studies several groups
38-40

 working on perovskite-based solar cells have reported a 

slight increase of Jsc (short-circuit current) after sequential measurements of light conversion 

efficiency or in the first hours of light instability tests. It has been suggested that the slight 

increase of the photocurrent could be the result of ionic charge transport, ion intercalation, or 

it might even be a ferroelectric effect. Deeper electrical and electro-optical characterization is 

needed to establish the exact mechanisms. 
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To compare the performance of the wire structure (Figure 5a, upper panel) with respect to 

the spin-coated film used today in solar cells, a photodetector with a film of MAPbI3 

nanoparticles was produced (Figure 5a, lower panel). Figure 5b gives the current density 

(calculated with the corresponding geometrical factors, details are in the Supplementary 

information) as a function of the source-drain voltage. The dark current measurements 

revealed that the flow of charge carriers is facilitated in the coating composed of MAPbI3 

nanoparticles slip-coated from GBL solution. The photocurrent-dark current ratio under a 

laser intensity of 2.5 Wcm
-2

 (λ=633nm) increases exponentially for the elongated perovskites, 

while the increase is almost linear for the nanoparticles (Fig 5c). The photocurrent-dark 

current ratio is one order of magnitude higher for filiform crystallites applying 1kV/cm 

electric field. The performance limitations in the nanoparticle based film (most probably due 

to the increased number of grain boundaries) are also observable from the external quantum 

efficiency (EQE) defined as Rhν/e (details are in Supplementary information). For low 

voltages (<0.5V) the EQE of the device made of fibrous perovskites is twice as high as the 

photodetector prepared from MAPbI3 nanoparticles.  
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Figure 5. (a) Combined SEM-optical micrographs showing the surface of the thin film composed of 

nearly isotropic MAPbI3 particles (bottom) and nanowires (top) with the Pt source-drain contacts 

deposited by e-beam evaporation (a). The grain boundaries in the nanoparticle-based film are clearly 

perceivable with a green-blue color (a, bottom). Note the absence of such a contrast in the case of 

filiform perovskites (a, top). Comparison of the dark current density of the nanoparticle and nanowire 

based devices (b). Comparison of the photocurrent-dark current ratio of the nanoparticle and nanowire 

based devices (c). Comparison of the external quantum efficiency of the nanoparticle and nanowire 

based devices (d). 
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These results demonstrate that the morphological properties, such as the crystallite size, 

form and its orientation could play an essential role in the photodetection and 

photoconductive response of the trihalide perovskite thin films.  

 

 

Conclusion 

Lead-methylamine iodide in a photovoltaic configuration with a very simple processing has 

already demonstrated 16% light conversion efficiency. One can hope We hypothesize that 

improving the materials properties could increase the upper limits of this conversion. 

Keeping in mind dye-sensitized solar cells with solid state electrolyte, where the replacement 

of TiO2 nanoparticles with nanowires has considerably improved efficiency, we have 

developed the synthesis of MAPbI3 nanowires. Their transport (photophysical) characteristics 

supersede those of isotropic nanocrystal-based thin films used in current devices. The 

relevant example, that recrystallization from solvents of different nature facilitates forming of 

elongated solvatomorphs of lead-methylamine iodide gives an opportunity to realize new 

solution-mediated strategies with the ultimate goal of exerting control over crystallite 

characteristics. The optically active elongated form of trihalide perovskites will make it 
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possible to explore exciting opportunities in the photonics industry such as solar energy 

conversion, photodetectors, light-emitting diodes and on-chip coherent light sources. 
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