
Finding at least one excellent element in two
rounds

Gyula O.H. Katona∗

Rényi Institute
Budapest, Hungary
ohkatona@renyi.hu

Dedicated to the memory of Jagdish N. Srivastava

Abstract

Suppose that some elements of the set [n] = {1, 2, . . . , n} are ex-
cellent. Their number and positions are unknown. Subsets of [n] can
be used for tests. If this test is A ⊂ [n] then the result of the test is
YES if at least one of the excellent ones is in A. Otherwise the answer
is NO. The goal of the search is to find at least one of the excellent
elements, or to claim that there is none. We prove that the number
of tests is at least n in the non-adaptive case. On the other hand, if
two rounds can be used, then the number of tests in the worst case is
at least (2 + o(1))

√
n, and this is sharp.

Keywords: Search problem, two rounds, tranversal

1 Introduction

Suppose that we have n marbles, some of them are radioactive, and we need
one radioactive marble. A possible test is taking an arbitrary subset and
checks if this set is radiating, that is, if there is at least one radioactive

∗The work was supported by the Hungarian National Foundation for Scientific Research
grant numbers NK0621321, 048826, 78439.

1

among them. The mathematical problem, of course, is the minimum number
of tests sufficient to find at least one of the radioactive ones.

Let [n] = {1, 2, . . . , n} be an n-element set. Some of them are excellent.
In the traditional model of Search Theory one has to find all of these excellent
elements from the answers to some questions of type ”does the subset F ⊆ [n]
contain at least one excellent element?”. The following survey papers and
books contain many pretty examples, applications and results of this type:
[6], [2], [1], [4].

Ray Chambers [3] raised the question what happens if not all excellent
elements have to be found, only one. In the present paper we give the
first (partial) answer to Chambers’ question. Another model of this type
is considered in the forthcoming paper [5].

In the case of every search problem there are two essentially different
approaches. If the search is adaptive then the choice of the subsequent ques-
tions may depend on the answers to the previous questions. More precisely,
first a set F is tested. If the answer is Y, that is F contains at least one
excellent element then a set F1 is tested afterwards, while in the case when
the answer is N, that is F contains no excellent element then another set F0

is tested. This is repeated. If e.g. the answer to the question F1 is Y then
the next question is F11, and so on. This is continued until the goal of the
search is achieved, in the present paper when at least one excellent element
is determined, or it is established that there is none. The question sets form
a tree-like structure. This is called a search algorithm. Of course the number
of questions may depend on the actual placement of the excellent elements.
The number of questions in the worst case (length of the longest path in
the tree) is the length of the search. The (adaptive) complexity of the search
problem is the the minimum of the length of the search taking for all search
algorithms solving the given problem.

The non-adaptive search, however, is just a family F of the question sets.
They are all tested and the goal of the search should be achieved based on
these answers. The length of the non-adaptive search is just |F|. The non-
adaptive complexity of the search problem is min |F| for all families solving
the given problem. Since the non-adaptive search is also an adaptive search,
the adaptive complexity cannot exceed the non-adaptive complexity for any
search problem.

For illustration let us consider now the easiest search problem when it
is known that there is exactly one excellent element. Let us denote this
problem by P (1 → 1). The number of possible outcomes is n. At each

2

step of the (adaptive) algorithm we can exclude at most half of the possible
outcomes, the adaptive complexity A(n) of P (1→ 1) satisfies the inequality
dlog ne ≤ A(n). Now we give a non-adaptive search consisting of the same
number of subsets. For convenience replace the elements 1 ≤ j ≤ n of the
underlying set by 0 ≤ j − 1 ≤ n− 1. Write them in a binary form of length
dlog ne. The set Fi contains those elements of {0, . . . , n− 1} which have a 1
in the binary form of i. The family {F1, . . . , Fdlogne} really solves the search
problem since the answers for these questions determine all the entries in the
binary form of the excellent element. This gives an upper estimate on the
non-adaptive complexity N(n) of P (1→ 1). Summarizing, we have

dlog ne ≤ A(n) ≤ N(n) ≤ dlog ne,

giving a complete solution for this case.
Let us go back to the main search problem of the present paper. The

number of excellent elements is unknown, our goal is either to find one ex-
cellent element or to declare that there is none. This problem is denoted by
P (? → 1). The total number of possible outcomes is n + 1, therefore the
adaptive complexity α(n) of P (? → 1) is at least log(n + 1). Surprisingly,
the method above also works for this case, (with a slight modification).

Theorem 1.1 α(n) = dlog(n+ 1)e.

Proof. An adaptive search algorithm will be given with maximum length
dlog(n+ 1)e.

The algorithm will be slightly different when n is a power of 2. Then
move, again, the underlying set to the interval {0, 1, . . . , n−1}, and consider
the binary form (of length log n) of these integers. The initial question set
F consists of the integers having 1 in the first position of their binary form.
If the answer is Y then all other questions will be subsets of F . The next
question in this case is F1 consisting of the integers having 1 in the first two
positions. If the answer to the first question F is N then the next question
is F0 which consists of the integers containing 01 in the first two positions.
Continue in this way, choosing the next question set to the subset of the
previous one and having 1 in the next position. (Less formally we always
halve the set of the elements which can be excellent.) After log n steps, if
one of the answers was Y then we have arrived to a unique element with a
binary form containing at least one 1. However, if all the answers were N,
then we have arrived to the number 0, we had no information if this was

3

excellent or not. In this case the last question is F ∗ = {0}. The answer
decides if 0 is excellent or there is none. The number of steps, the length of
the search algorithm is log n+ 1 what is equal to dlog(n+ 1)e in this case.

Suppose now that n is not a power of 2. Then the original underlying set
[n] can be considered, since the binary forms of these numbers have a length
dlog ne. Use the same algorithm as before. If at least one the answers was
Y then a unique excellent element has been determined. Otherwise we can
claim that there is no excellent element, since in this case there is no element
with binary form containing only 0. Of course dlog ne = dlog(n+ 1)e. �

The situation is dramatically different in the case of non-adaptive search.
We will show in Section 2 that the non-adaptive complexity of this problem is
n. Observe that the additional information of knowing that there is exactly
one excellent element reduces this to dlog(n+ 1)e!

There is an intermediate approach between the adaptive and the non-
adaptive search algorithms. When the number of ”rounds” is bounded. A
search with two rounds will be considered in Section 3. In the first round one
asks all members of a family F , then, depending the sequence of answers the
members of another family G are asked. The length of this two-round search
is |F| plus the largest |G|. It will be shown in Section 3 that its minimum
for our problem is of order

√
n.

2 The non-adaptive case

It is easy to characterize the families F which are non-adaptive algorithms
for the problem P (1→ 1). The necessary and sufficient condition is that for
any pair x, y of distinct elements of [n] there is a member F ∈ F such that
it separates them, that is either x ∈ F, y 6∈ F or x 6∈ F, y ∈ F holds.

This characterization is less trivial for the problem P (? → 1). The fol-
lowing definition will be useful towards this end. We say that the family
T ⊆ 2[n] has a fixed point if there is one element contained in every member
of T : ⋂

T∈T

T 6= ∅.

Lemma 2.1 The non-empty family F ⊆ 2[n] is a non-adaptive algorithm for
the problem P (?→ 1) iff the following two conditions hold.

(i)
⋃
F∈F

F = [n],

4

(ii) for every partition F = F1 ∪ F2(F1 6= ∅) the family

T (F1,F2) = {T : T ∩F 6= ∅ for every F ∈ F1, T ∩F = ∅ for every F ∈ F2}

has a fixed point, that is ⋂
T∈T (F1,F2)

T 6= ∅. (2.1)

Proof. Before starting the proof, let us mention that if the choice of
members of F1 is ”contradictory” (say e.g. when a member of F1 is a subset
of a member of F2 then T (F1,F2) is empty. Then the empty intersection in
(2.1) is interpreted as [n], (2.1) automatically holds.

The necessity of (i) is trivial: if x ∈ [n] is not covered by any of the
members of F then the answers cannot decide if x is excellent or not.

To prove the necessity of (ii) suppose that the answer is Y for the members
of F1 and N for the members of F2. Then we know that the (non-empty)
set T of excellent elements intersects every member of F1 and disjoint to
every member of F2. On the other hand any such set can be the set of
excellent elements. That is the family of possible sets of excellent elements
is T (F1,F2). If (2.1) does not hold, no element is surely excellent.

On the other hand, if both (i) and (ii) hold then we can find the solution.
If all the answers are N then we know by (i) that there is no excellent element.
Otherwise define F1 as the family of sets with answer Y where F1 6= ∅. The
possible set of excellent elements must be in T (F1,F2). Since (2.1) is non-
empty for this family, it contains an element f , which is an element of every
possible set of excellent elements, it must be excellent. �

A transversal T ⊆ [n] of the family F ⊆ 2[n] is a set satisfying F ∩ T 6= ∅
for every F ∈ F . The family of all transversals of F is denoted by T (F).
the following proposition is trivial, but might have some interest on its own
right, independently on search problems.

Proposition 2.2 Let ∅ 6= F ⊆ 2[n], {∅} 6∈ F . If T (F) has a fixed point then
F has a one-element member.

Proof. Let a be a fixed point of T (F). Then [n] − {a} cannot be a
member of T (F). It meets every subset of [n] except for {a}, therefore {a}
must be a member of F . �

The following lemma is an immediate consequence.

5

Lemma 2.3 If the non-empty family F ⊆ 2[n], {∅} 6∈ F is a non-adaptive
algorithm for the problem P (?→ 1) then it contains a one-element member.

Proof. Use (ii) of Lemma 2.1 with F1 = F . The family T (F , ∅) = T (F)
has a fixed point. Proposition 2.2 finishes the proof. �

If F is a family of subsets, f ∈ [n], let F − f denote the family {F − f :
F ∈ F , f ∈ F, |F | ≥ 2}.

Lemma 2.4 If the non-empty family F ⊆ 2[n], {∅} 6∈ F is a non-adaptive
algorithm for the problem P (?→ 1) on the set [n], {f} ∈ F holds then F−f
is a non-adaptive algorithm for the problem P (?→ 1) on the set [n]− {f}.

Proof. Choose f according to Lemma 2.3. Use (ii) of Lemma 2.1 under
the assumption {f} ∈ F2. Then the members of T (F1,F2) do not contain f .
It is easy to see that T (F1,F2) is the same as T (F1 − f,F2 − f) (restricted
to [n] − f). Therefore (ii) holds for the family F − f on [n] − {f}. It is
trivial that (i) also holds. Hence, using Lemma 2.1 once more (backwards),
the statement of lemma is obtained. �

Theorem 2.5 If F is a non-adaptive algorithm for the problem P (? → 1)
on [n] then |F| ≥ n.

Proof. Use induction on n. The case n = 1 is trivial. Suppose n > 1. By
Lemma 2.4 we know that F − f is a non-adaptive algorithm for the problem
P (?→ 1) on [n]−{f}, by the inductional hypothesis |F|−1 ≥ n−1 implying
the statement for F and n. �

3 Two rounds

The search algorithm with two rounds consists of a family F ⊆ 2[n], |F| = m
and a set of families G(s) ⊆ 2[n] defined for every s ∈ {N,Y}m. The members
of F are asked in the first round. If the sequence of answers is s then the
members of G(s) are asked in the second round, and either an excellent
element is found after all the answers or these answers show that there is
none. We say that (F , {G(s) : s ∈ {N,Y}|F|}, [n]) is a search algorithm with
two rounds. (Later, in some cases [n] will be replaced by some X ⊂ [n].
Then, obviously, F ⊆ 2X is supposed.) The length of this algorithm is

|F|+ max
s
|G(s)|. (3.1)

6

The two-round complexity of a search problem is the minimum of the lengths
of the algorithms solving the given problem. It is obvious that the two-round
complexity is between the adaptive and non-adaptive complexities. Therefore
the two round complexity of P (? → 1) is at least dlog ne and and not more
than n.

The goal of the present section is to show that the two-round complex-
ity τ(n) of P (? → 1) is different from both the adaptive and non-adaptive
complexities and has the order

√
n. The proof is broken into several lemmas.

Suppose that the answers for the members of FY ⊆ F are Y, while
the answers for the members of FN ⊆ F are N. (Here FY ∪ FN = F and
FY ∩FN = ∅ are obvious.) Then we know that every member of FY contains
an excellent element and the members of FN contain none. At least one
excellent element should be found using this information. This problem will
be denoted by P ((?,FY,FN) → 1). The second round in our two-round
algorithm is a family G(s) where s is determined by the families FY and FN.
This part of the two-round algorithm for solving the problem P (?→ 1) is a
(one-round) non-adaptive algorithm for the problem P ((?,FY,FN)→ 1).

The series of lemmas is starting with a generalization of Lemma 2.1. The
generalization is broken into two parts according to whether FY is empty or
not.

Lemma 3.1 Let FY 6= ∅,FN ⊆ 2[n],FY ∩ FN = ∅. The non-empty family
G is a non-adaptive algorithm for the problem P ((?,FY,FN) → 1) iff the
following condition holds. For every partition G = G1 ∪ G2 the family

T (FY,FN,G1,G2) =

{T : T ∩ F 6= ∅ for every F ∈ FY, T ∩G 6= ∅ for every G ∈ G1,

T ∩ F = ∅ for every F ∈ FN, T ∩G = ∅ for every G ∈ G2}

has a fixed point, that is ⋂
T∈T (FY,FN,G1,G2)

T 6= ∅. (3.2)

7

Proof. If answer Y is obtained for the members of G1 and N for the mem-
bers of G2 then the set of excellent elements is a member of T (FY,FN,G1,G2)
and every member can be the set of excellent elements. If (3.2) does not hold,
then no element can be identified as excellent. Therefore it must hold. The
opposite direction of the proof is trivial: if T (FY,FN,G1,G2) is non-empty
then (3.2) determines at least one excellent element. If it is empty then the
answers are contradicting. �

Lemma 3.2 Let FY = ∅,FN ⊆ 2[n]. The non-empty family G is a non-
adaptive algorithm for the problem P ((?, ∅,FN)→ 1) iff the following condi-
tions hold.

(iii)
⋃
G∈G

G ⊇ [n]−
⋃

F∈FN

F,

(iv) For every partition G = G1 ∪ G2 the family

T (∅,FN,G1,G2) = {T : T ∩G 6= ∅ for every G ∈ G1,

T ∩ F = ∅ for every F ∈ FN, T ∩G = ∅ for every G ∈ G2}

has a fixed point, that is ⋂
T∈T (∅,FN,G1,G2)

T 6= ∅. (3.3)

Proof is the same as before. �
If H ⊆ 2[n], C ⊂ [n] then let H− C be the following family of subsets of

[n]− C: H− C = {H − C : H ∈ H, H 6⊆ C}. (In the case when C = {c}
then H− c is simply denoted by H− c.)

Lemma 3.3 If the non-empty family G is a non-adaptive algorithm for the
problem P ((?,FY,FN)→ 1) on the underlying set [n], moreover C =

⋃
F∈FN

F
then G−C is a non-adaptive algorithm for the problem P ((?,FY−C, ∅)→ 1)
on the underlying set [n]− C.

Proof. Suppose that FY 6= ∅. Then (3.2) holds for T (FY,FN,G1,G2) for
every partition of G. The members of cannot have elements in C =

⋃
F∈FN

F ,
therefore T (FY,FN,G1,G2) = T (FY − C, ∅,G1 − C,G2 − C) and (3.2) holds

8

for this reduced family of subsets of [n]−C. Applying Lemma 3.1 again, we
obtain the statement of the lemma, since every partition of G − C can be
obtained in the form of (G1 − C) ∪ (G2 − C) where G1 ∪ G2 is a partition on
G.

In the other case, when FY = ∅, Lemma 3.2 can be used. Then (iii)
implies ⋃

G∈G−C

G ⊇ [n]− C.

Moreover, (3.3) holds for T (∅,FN,G1,G2) = T (∅, ∅,G1−C,G2−C). Another
application of Lemma 3.2 (or simply Lemma 2.1) proves the statement. �

Lemma 3.4 Let FY 6= ∅. If the non-empty family G ({∅} 6∈ FY ∪ G) is a
non-adaptive algorithm for the problem P ((?,FY, ∅) → 1) then there is an
element a ∈ [n] such that {a} ∈ FY ∪ G.

Proof. By Lemma 3.1 T (FY, ∅,G, ∅) = T (FY ∪ G) has a fixed point.
Proposition 2.2 implies the statement. �

Lemma 3.5 Suppose FY 6= ∅. If the non-empty family G is a non-adaptive
algorithm for the problem P ((?,FY, ∅)→ 1) on the underlying set [n], more-
over {a} ∈ G then G−a is a non-adaptive algorithm for the problem P ((?,FY−
a, ∅)→ 1) on the underlying set [n]− {a}.

Proof. Apply Lemma 3.1 with {a} ∈ G2. Then the members of
T (FY, ∅,G1,G2) do not contain a. Therefore T (FY, ∅,G1,G2) = T (FY −
a, ∅,G1− a,G2− a) holds for this reduced family of subsets of [n]−{a}. Ap-
plying Lemma 3.1 again, we obtain the statement of the lemma, since every
partition of G − a can be obtained in the form of (G1 − a) ∪ (G2 − a) where
G1 ∪ G2 is a partition on G. �

Lemma 3.6 Suppose FY 6= ∅. If the non-empty family G is a non-adaptive
algorithm for the problem P ((?,FY, ∅)→ 1) on the underlying set [n] then

min
F∈FY

|F | − 1 ≤ |G|

holds.

9

Proof. Use induction on n. The case n = 1 is trivial. Suppose that the
statement is true for n − 1 and prove it for n. By Lemma 3.4 there is an
{a} ∈ FY∪G. If {a} ∈ FY then the smallest size in FY is 1, the statement of
the lemma is trivial. {a} ∈ G can be supposed. Use Lemma 3.5. The size of
the smallest set in FY − a is either the same as in FY or less by one. Hence
we have

min
F∈FY

|F | − 2 ≤ |G − a|,

and |G − a| = |G| − 1 finishes the proof. �
If F is a family of k members, define H1 = F1 as (one of) the smallest

member(s). Let F2 be one of the members of F minimizing {|F − F1| : F ∈
F , F 6= F1} and introduce the notation H2 = F2 − F1. Define F3 as one of
the members of F minimizing {|F − (F1∪F2)| : F ∈ F , F 6= F1, F2}. Again,
let H3 = F3 − (F1 ∪ F2). The sets F4, . . . , Fk and H4, . . . , Hk are defined
similarly. Finally, the family H(F) is simply {H1, H2, . . . , Hk}.

Lemma 3.7 The members of H(F) are pairwise disjoint. Moreover

k⋃
i=1

Hi =
k⋃

i=1

Fi

holds.

Proof. The first part of the lemma is a trivial consequence of the defini-
tions. To see the second part use induction on j to prove

j⋃
i=1

Hi =

j⋃
i=1

Fi.

�

Lemma 3.8 Let (F , {G(s) : s ∈ {N,Y}|F|}, [n]) be a search algorithm with
two rounds and use the notation A =

⋃
F∈F . Then

max{|H| − 1 : H ∈ H(F), n− |A|} ≤ max
s
|G(s)|. (3.4)

Proof. If s = (N,N, . . . ,N) then G(s) is a non-adaptive algorithm for the
problem P ((?, ∅,F)→ 1). By Lemma 3.3 G −A is a non-adaptive algorithm

10

for the problem P ((?, ∅, ∅) → 1) on the underlying set [n] − A. However,
P ((?, ∅, ∅)→ 1) is simply P (?→ 1) and Theorem 2.5 results in

n− |A| ≤ |G((N,N, . . . ,N))|. (3.5)

Suppose that s = (N,N, . . . ,N,Y, . . . ,Y) where the number of answers N
is j(0 ≤ j < k = |F|). Here G(s) is a non-adaptive algorithm for the problem
P ((?, {Fj+1, . . . , Fk}, {F1, . . . , Fj}) → 1). Let Cj =

⋃j
i=1 Fj. By Lemma 3.3

G − Cj is a non-adaptive algorithm for the problem P ((?, {Fj+1, . . . , Fk} −
Cj, ∅) → 1) on the underlying set [n] − Cj. Observe that, by definition, the
smallest size in the family {Fj+1, . . . , Fk} − Cj is |Hj+1|. By Lemma 3.6

|Hj+1| − 1 ≤ |G(s)|. (3.6)

Take the largest lower bound obtained from (3.5) and (3.6). �

Theorem 3.9 The two-round complexity of the problem P (? → 1) on n
elements is

τ(n) = min
k≥1,integer

⌊
k +

n

k + 1

⌋
. (3.7)

Proof. Suppose that the first round of the search consists of the members
of the family F where |F| = k. Add the sizes of the sets occurring on the
left hand side of (3.4):

k∑
i=1

(|Hi| − 1) + n− |A|. (3.8)

Using Lemma 3.7 this can be written in the form

|
k⋃

i=1

Hi| − k + n− |A| = |A| − k + n− |A| = n− k. (3.9)

(3.8) is a sum of k + 1 numbers, one of them must be at least⌈
n− k
k + 1

⌉
=

⌊
n

k + 1

⌋
, (3.10)

by (3.9). Since (3.1) is the complexity of this two-round search algorithm, k
should be added to (3.10) and (3.7) is obtained as a lower bound for τ(n).

11

It is easy to give an algorithm reaching this bound. Take a k minimizing
(3.7) and divide n+ 1 by k+ 1 in the following way: n+ 1 = q(k+ 1) + r(0 <
r ≤ k + 1). Then n = qk + r − 1 + q. Consider the partition of [n] into
k + 1 classes, where |F1| = . . . |Fr−1| = q + 1, |Fr| = . . . = |Fk| = q, and the
(k + 1)’st one, B has also size q. One can verify that q is equal to (3.10).

In the first round F1, . . . , Fk are asked. If all answers are N then ask the
elements of the B one by one in the second round. This is k+ q questions. If
one of the answers is Y then ask the elements of that F one by one until only
one remains unasked. If one of the answers is Y then an excellent element is
found. If the answers are N for all the elements of F and only one element
is left, we do not have to ask it since the answer Y for F makes it sure that
this last element is excellent. It is easy to see that the number of questions
is at most k + q in these cases. �

Consequence 1

⌊
2
√
n− 1

⌋
≤ τ(n) ≤

⌊
2
√
n− 1

2

⌋
.

Proof. By differentiation one can see that the function f(x) = x + n
x+1

has its minimum at
√
n − 1 and it is convex in the interval [

√
n − 2,

√
n] if

n > 1. Therefore the integer x minimizing f(x) is in the interval [
√
n −

3
2
,
√
n − 1

2
] and this minimum is between f(

√
n − 1) = 2

√
n − 1 and

max{f(
√
n− 3

2
), f(
√
n− 1

2
)} = f(

√
n− 3

2
) =
√
n− 3

2
+ n√

n− 1
2

≤ 2
√
n− 1

2
.�

4 A remark and a conjecture

The definition of the r-round search algorithm is obvious. The r-round com-
plexity of the problem P (? → 1) on [n] is denoted by τr(n). The notation
P ((? ≥ 1)→ 1) stands for the problem when the only information about the
number of excellent elements is that there is at least one.

Conjecture 1 If r is fixed, n tends to infinity then

τr(n) ∼ rn
1
r .

The conjectured shortest algorithm is recursively defined in the following way.
Start with a partition of [n] consisting of almost equal parts and let the first

12

round ask the members of the partition except one class C which is one of
the smaller ones. If all the answers are N then use the optimal r − 1-round
algorithm for the problem P (?→ 1) on C. on the other hand, if the answer
is Y for one question in the first round then use the optimal r − 1-round
algorithm for the problem P ((? ≥ 1) → 1) on the corresponding part of the
partition.

There is an old theorem of Peter Ungar [7] which is resembling our The-
orem 2.5. It also states that ”if the number of excellent elements might be
large” then there is no better algorithm than check every element one by one.
His model is, however, different from ours. Let 0 < p < 1 be a probability.
Every element of [n] can be excellent independently, with probability p. The
goal is to find all excellent elements with an adaptive algorithm. Of course
the length of the algorithm depends on the random event: how many and
which element are excellent. The (probabilistic) average number of questions
for a given algorithm is denoted by `A(n). Its minimum for all algorithms
finding all excellent elements from [n] is L(n). Ungar’s theorem claims that
L(n) ≥ n if 1

3
(3−

√
5) ≤ p.

References

[1] Ahlswede, R., Wegener, I., 1987. Search Problems, John Wiley.

[2] Aigner, M., 1988. Combinatorial Search, John Wiley and Teubner.

[3] Chambers, Ray, personal communication.

[4] Du Dingzhu, Hwang, Frank K., 2000. Combinatorial Group Testing and
its Applications, Second edition, World Scientific, 2000.

[5] Gerbner D., Keszegh B., Pálvölgyi D., Wiener, G., Search with density
tests, manuscript.

[6] Katona G.O.H., 1973. Combinatorial Search Problems, in: A survey
of combinatorial theory, J.N.Srivastava (Ed.), North Holland/American
Elsevier, Amsterdam/New York, pp. 285-308.

[7] Ungar, P., 1960. The cut-off point for group testing. Commun. Pure
Appl. Math. 13, 49-54.

13

