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ON A PROBLEM OF L. FEJES TOTH

by
G. 0. H. KATONA

It is easy to see by induction that » lines in the Euclidean plane determine at
=1 . ; - .
most [” 2 ] bounded domains. L. Fejes Téth conjectured that an analogous

statement holds for n convex sets. We prove in this note a slightly stronger theo-
rem. Instead of convexity we need only that the pairwise intersections of the do-
main are connected.

Let £ denote the Euclidean plane. If ACE, then d(A) denotes the set of
boundary points of A. The family of subsets 4 which are homeomorphic to the
closed unit disc is denoted by 2. The elements of @ are called domains. The family
of closed connected sets is denoted by €. A homeomorphic map of an interval is
called an arc. If an arc is non-empty and is not a single point we call it non-trivial.
If it is not ambiguous we name the arcs by their endpoints a, b: (a, b) if the arc
is open and [a, b] if it is closed.

THEOREM. If Ay, ..., A,€D and A,NA;€D (1=i, j=n) then
E-U) 4,
i=1

—1
has at most [n 2 ] bounded connected componets.

In the proofs we use the following trivial statements without proofs:

() Let Ac% and let B,CcA, BNC=@ be sets in the plane. If x,,y,€
€0(B)6(A). x5, y,€6(C)NS(A) and x;, X,, 3y, ¥, lie on 8(4) in this order then
either B or C is disconnected (Fig. 1).

(i) Let 4€9. If BcA and TcA are connected sets satisfying BNT= &,
BN(A-T)=#@ then BNS(T)NS(A-T)=@ (Fig. 2).

7%
220,

Fig. 2.
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Let AC9D, B, ..., B,€% be sets in the plane. The family of those connected
components T of :

for which TNé&(A4) contains at least two connected components is denoted by
FT,=T,(A; By, ..., B,). The set of the connected components of 77110(A4)
(TET,) is ¥Yo=Y,(A; By, ..., B,).

LEMMA. Let A€9D, B, ...,B,c% be sets in the plane satisfying B;C A
(1=i=m) and B,N\B;=@ (1=i<j=m). Then |%,| and |7, are finite and

ol = | Tm| = m—1.

PrOOF. 1. We first prove that there is an index j such that between the extremal
points of &(4)N B; there is no element of B; (i+j) on 8(A) (Fig. 3, 4).

Fig. 3. Fig. 4.

Choose k and two points a, b of 6(4)N B, (and one of the arcs determined
by them) in such a way that the number z of B;’s having non-empty intersection
with (a, b) is =0 but minimal. If the condition that z=0 can not be satisfied,
we are ready. On the arc [a, b] take the maximum point ¢ of 8(4) N B, so that (a, 0)
does not contain any point of B; (i=k). On the other hand let d be the minimum
point (=¢) of 8(4)N B, on [c, b]. 1t is easy to see that (¢, d) still contains a point
from some B; (i=k). Thus, (c,d) satisfies the conditions required for (a, b), but
it does not contain any point of Bj.

Choose now an index /sk such that B, has a point on the arc (c, d). Let e
and f be the minimum and maximum points of B, on the arc (e, d). If (e, f)
contains a point of some B;, i=I, then (e, f) contains points form at most z—1
different B;, which contradicts the minimality of z. Consequently, (e, f) contains
only points of B,. If there is a point g of B, outside of [c, d], then we obtain a
contradiction by (i), since ¢, d€B,, e, g€B, and B, and B, are disjoint connected
sets. It follows that there is no point of B, on &(4) outside of [e, f], and there is
no point of B; (i#[) in [e, f]. Our statement is proved.

2. Choose j according to section 1 of this proof. Let and b be the minimum
and maximum points of &(A)NB; (Fig. 3, 4).

We shall use the following notations:

T m-1= T4 Byy vees B;_,, B, .. B,),
Ya-1= Yp-1(A; By, «ocs Bj—1y Bjiqs ooy B
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We claim that

6)] [Pl —Pa-1] =2.

Denote by ¢ the maximum of the points =a of 6(A)ﬂ(U B)). Similarly, let
d denote the minimum of the points =54 in é(A)ﬂ(U B) Slnce the B/s are

dxs_jmnt we have c¢<a and b<d. Let us show that there is no element of ¥,
in the arc (a, b). In the opposite case there is an arc e TNJ(A) in (a, b) for some
Te€7,,. There must be an azBCTNS(A) by the definition of 7,,. If f is outside
of (a, b), then we obtain the contradiction by (i) becaused a, ﬁC TN6(A), a, be
Eé(A)ﬂB and T and B; are disjoint and connected. If B is also in (a, b) then there
is a point e between « and p satisfying e€ B; for some i. It follows from the defini-
tion of j that i=;. We obtain the contradiction by (i) using the points a, ¢ and
one pomt of each of « and .

It is easy to see that the elements of ¥7, and ¥, lying outside of (c, d)
coincide.

Thus ¥7,—¥,,-1 contains at most 2 elements: the arcs (c, a) and (b, d). (1)
is proved.

Equality holds in (1) only if both (¢, @) and (b, d) belong to some members
T; and T, of ¥, but (¢, d) does not belong to any member of ¥, _, (Fig. 3).

We prove now that

2 | Tl = [F—a| =—1.
Let T be the connected component of A4— U B; containing (c, d). If there

is a point of B; outside of 7, we may apply (u) w1th A, B; and T: B;N6(T)N
Naé(A— T)-*@ However 6(T)N6(A— T)CU B; since the B s are closed thus

the fact that B;Nd(T)NS(A-T)= T contradlcts the disjointness of B;s. We
have shown that B,CT. Ae a consequence we obtain that B; does not change the

elements of 7, _,—{T}: 7,_,—{T}=7,. We have proved (2).

Equality holds in (2) only if T€Z,,_, but no subset of T€.7,,. It means that
(c,a), (b,d)¢ ¥, and we have the stronger inequality |¥,|—|¥,-./=0. (It can
be proved that thls situation does not occur.) In this case we have
A3) (1Pl = %) = (F0l = 1T0-a) = 1.

If both in (1) and (2) there is strict inequality (Fig. 4), then (3) is true, again. We
still have to discuss the case when we have equality in (1) (Fig. 3). Then
|Zml = |Zm-11=1 can be proved. Indeed, in this case 7¢ 7, _,, showing that
In-1CZ,. On the other hand T,€7,,—7,,_;. (3) is proved.

3. To prove the lemma we use induction over m. For m=1 it is easy to see
that |¥7,|=1|7,|=0. Suppose that m=1 and the lemma is true for m—1:

© [#-1l— Tl = m—-2.
The lemma follows from

1Yl = 17l = (%] = 1¥2-1D— (1Tl = [T 1D + (Frca| = [T =)
and from (3) and (4).
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PROOF OF THE THEOREM. We use induction over n. For n=1 the statement
trivially holds. Let us suppose n+1=>1 and the theorem is true for n, which means

that the number of the bounded connected components of E— (1] 4; is at most
i=1

[n;Z]_ We have to prove that subtracting A4,,,, the number of the bounded

connected components does not increase by more than n—1. Then the statement

for n+1 follows from the identity [n;1]+n—1=[;].

Ay does influence only those connected components of E—J 4, which

i=1
are non-disjoint to A4,,,. Denote these components by Cj, ..., C,. The connected
components of C;— 4, are denoted by D;,, ..., D;,,. Thus we have to prove that

5) 3 wi—u = n—1.
i=1

Construct a graph G; whose vertices are on the one hand D, ..., D,;,,, and on the
other hand the connected components E, ..., E, of C;(A,,,. Two vertices are
connected in G; iff they have a common non-trivial arc on §(A4). If they have more
such common arcs, then the are connected with more edges. It is easy to see that
G, is a connected graph, since C; is connected. Denote the number of edges of G;
by v;. The number of edges of a connected graph is greater than or equal to the
number of vertices —1. That is,

wi+t,—1=v;, (1=i=u)
whence

© ZW—U=E Zo— 2k

Denote the connected components of |J (4,,,M4;) by B,...,B,. Ob-
i=1

viously

) m=n
and by definition
® Su= 1% Zv= 1%l

Now (5) follows from (6), (8), the Lemma and (7). The proof is completed.
Recently M. Geréb, E. Gydry and Gy. Szész found some other proofs and
generalizations. They will be published in a forthcoming paper.
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