Extensions of the Erdos-Ko-Rado Theorem

C. Greene, G.O.H. Katona and D.J. Kleitman

One of the most useful extremal properties on collections of
subsets of a set is the following result of Brdds, Ko and Rado [1].

THEOREM 1. Given a collection ¥ = {A,, ..., Ay} of subsets of an
n-element set S satisfying
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A short proof of this theorem was obtained by one of the authors

[2) . In this paper we extend the ideas of [2] to obtain a proof of a
stronger theorem.

then

THECREM 2. Under the hypotheses
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of Theorem 1 4

n —1
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We also describe several ways in which the hypothesis of the

theorem can be weakened without disturbing the conclusion, along with
a second extremely short proof of Theorem 2 from the "LYM theorem"

z £ 4w (1)

based on a theorem of Kruskal, which also proves a slightly stronger
statement.

FIRST PROOF of Theorem 2. Let A be the set of all possible arran-
gements of the n elements around a circle.
and each member A, of F let f(x,A;) =

For each arrangement o
]ﬁg if A contains
zZero
over both arguments in the two

consecutive elements for that arrangement and let f(a,Ai) be
otherwise. Then by summing  f(e¢,A;)
possible orders, we obtain
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since Ai will by symmetry be consecutive 1in a proportion of

n

(2

the orderings « €A . The result will therefore follow if in each o

the sum z IZLI on the left hand side of (2) is £ 1 . This in turn
il

follows from the following lemma:

LEMMA . If Ai is consecutive in en arrangement o then the total
number of Aj's consecutive in o cannot exceed fAil 3

PROOF of lemma. Every consecutive A. must intersect Ai' The in-

o
tersection cannot be Ai or Aj' Thus the intersection Ai N Aj
is a set of the first some elements or the last some elements of Ai'

For j# 3"y A;N Aj;# AN Az- holds. We have 2(]1a4l -1) pos-

sibilities. However, A, N A. and Ay N A.- cannot give a partition
of A, (using 1451, IAj.J g%). Thus, only  [A;] -1 of the
2( IAiI - 1) possibilities can be simultaneously realized, which pro-
ves the lemma.

For each o the number of terms in the sum g lll_l on the left
1

hand side of (2) is therefore no greater than the smallest IA.ll s

Each sum is therefore <£ 1 and the entire sum is < |A| , which pro-
ves the theorem.

SECOND PROOF of Theorem 2. Let F be fixed and let P; denote the
number of cyclic arrangements o in which an AeF of size i
(1£ig %) has consecutive elements and there is no_ smaller AeF
with this property. Dencte by u; the number of A's with AeF,

|Al = i. We prove now the inequality
w w b
I wit m-i)tg T pyi (12w< (3. 3)
i=1 i=1

Here, on the left hand side we count the number of pairs (A,oc),

where AeF, 1< Al € w, o is a cyclic arrangement and the ele-
ments of A are consecutive in o« . It is easy to see that the num-
ber of cyclic arrangements permuting a.given A into consecutive mem-
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bers is i!(n - i1)!, where |A] = i. Let us count the same thing in
a different way. Fixing an arrangemer.t o which kras an i-element
A€ F of cconsecutive members but not smuller, ther there are at most
i A€F with consecutive members by the lemma. This gives an upper
bourid on the number of above pairs, it is the right hanrd side of (3).

Bl-r [B)-s-1 (2]

Let aj - 1 i =i o+ 1)

< . n =
if 154 £ [2] and a[g] 4:-s
2

Take the lineer combinations of the inequalities (3) by the coeffi-
cients a (1<wg [%]). The resulting inequality is

n n

z] 3]
¥ ui(l -4 ) (n-i)t g X P; (4)

i=1 i=1
where Zp; = (n-41)! and (4) is equivalent to the statement of
the theorem. The proof is completed.

The preceding theorem shows that the E.K.R. bound will not be
exact if Ai's are not all of size k. If we are only interested in
attaining the E.K.R. bound we can relax some of the constraints in
the theorem. In particular, it is not necessary to require that the
Ai's be an antichain (that is, unordered by inclusion). We give se-
veral examples of weakenings of the theorem, among a wide spectrum of
possibilities. Further weakening possibilities are described in refe-

rence [5].

THEOREM 3. Let the elements of S be colored in two colors and sup-

pose that the A.’s satisfy Al € k< g, A, N As @ eand

either A, # Aj or Aj = # is multicolored (i # j). Then

W< (g lq)
PROOF. If one partitions the subsets of S into symmetric rectang-
les, one direction representing the elements of each color, the num-
ber of A’'s in a rectangle is bounded by the number of rank k sub-
sets B in it, that contain them; since k is a bound on their rank
and no two can be in a row or column. The B's are pairwise non-dis-
Jjoint, thus having size k; by Theorem 1 they satisfy the E.K.R.

bound. The number of A's is < the number of 3 s from which the

b

theorem follows.
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We call a 2-coloring of a set balanced, if the excess of ele-
ments of either class over the other is < 1

THEOREM 4. Suppose the elements of S are 2-colored twice; and
that S; and 82 are the sets colored in the two colors in the
first coloring, while the second coloring is balanced in Sy and

S,. Then, if the Ai's satisfy Al € k< %, Ay N Aj # @ and
either Aigt Aj or (Aj - Ai) is multicolored in the first co-
lor or (A. - Ai) is unbalanced in the second color for each
(i,3) (i # j), then
n -1
N (g —4)-

PROOF. The result follows directly from the form of an explicit
partition of ZS into symmetrical rectangles. For details and fur-
ther similar results see reference [5].

The value of the extension of E.K.R. theorem to Theorem 2 can be
seen from the following consequence.

THEOREM 5. Let f(k) be an arbitrary real function. Then under the
hypotheses of Theorem 2

N
1 £0la) € Max (3 (7 o (5)
1:

3 =4
Osjsg

PROOF. let g be a value for which f(g)(} 1 1) is meximal. Then
obviously

N
£(1a4l) i§1 £Clagl)

4 N
B o= =-§1f(|A1>““1 Zf()“‘1
hAi[ 1) & i (lAil -1) 8)g —1)

holds. Hence (5) follows by (1). The proof is completed.

M=

i

We conclude with & third independent proof of Theorem 1. This
method in fact proves a stronger statement, since one can use it to
completely characterize the numbers of sets of a given size which can
occur in an E.K.R. family. The technique is based on a thecrem (see
[3] end [4]) which solves a similar problem for simplicial complexes.

Assume that the elements of our set S are the integers 1 ,
2, ++., n. This induces a natural ordering on sutsets of S, obtai-
ned by asscciating sets with sequences of zeros and ones and ordering



S

these sequences lexicographically. For any antichain F & 2 we de-
fine the compression of ¥ to be the antichain C(F) obtained in
the following wey: suppose that F = 3k U 3£+1 Uoswm U 35 where 3&
denotes the sets in ¥ of size i (k < j). Begin by taking the last
|3k| k-subsets of S 1in the lexicographic ordering just obtained.
Then take the last Lfk+1l (k+1)-sets which do not contain sets al-
ready chosen. Continue in this wsy until the procedure has been ap-
plied to all levels. The resulting family of sets (obviously an anti-
chain) is defined to be C(JF). Clearly F and C(F) have the same
numkter of sets et each level. The gbcve mentioned theorem states that
"compressed" antichains have the smallest "shadcws" at higher levels.

For sny entichair F in ES let N _(F) denote the number of p-sets

which contain at least one member cf F.

THEOFEM 6. ([3] end [4].) If F is any antichain in 2°

Np(.?') > Np(c(f)).

then

The original version cf Thecrem 6 was proved for sets of uniform
size, but the extension to arbitrary antichsin is immediate. For ar-
bitrary antichain, it is non-trivisl to show that the compression
c(F) actuslly exists - 1i.e. that there are always enough sets to
chcose at each level. However this is guaranteed by Thecrem 8. We re-
fer the resder to [6] fcr further discussion of these ideas.

The third proof of Thecrem 1 consists of verifying the follcwing
statement:

THEOREM 7. If an antichain Fg ES

has the Erdde-Ko-Rado property
(i.e. |Al £ % for 211 A€ F and no two members of F are

disjoint), then so dces its compression C{F) In fact, every

member of C(F) contains the element 1.

From this result it fcllows that the numbers LTﬂ have exzactly
the same rroperties as those corresponding to arbitrary Sperner fami-
lies c¢cn a set of r -1 elements. Thecrem 1 follows immediately.

To prove Theorem 7, first consider the case where all of the
members of F have the seme size. Then proving that every memter of
C(F) containse 1 is equivalent to showing |F| S(E ::) . Hence the
theorem is true in this case, by the original E.K.R. theorem * (see

footnote on the next page).
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If F has sets of more then one size, let k denote the mini-
mum of thcse sizes. By Theorem 6, the operation of compressing F
can only decreaée the number of k-sets which contain members of F
as subsets. Prior to compression, each of these subsets must contain
the elemrent 1 , by the remark in the preceding parsgrarh. Here the
same is true after compression, and the result follows.

Using Theorem 7, it is possible to completely characterize the
numbers I?&I. To do so, we use the following notation. If m 1is a
rositive integer, then for each k we can write

a a a.
m= () () e+ ()
with

> a > 400 28 2120,

8y k-1 1

and this expression is unique. Define

a a.
ak(m) = (k 51) + o * (- . ) )

THEOREM 8. Let a;, 85 Vi 5
integers, with k g. Then there exists an antichain 3@;25
with the E.K.R. property if and only if

P y 8 be a sequence of non-negative
<

n-1

a-+ai(ai+1+a i

3 (ai+2+.c- +3k_2(ak_1+ak_1(ak))---)) S(

i+

This is essentially the statement that an E.K.R. fam’ly exists
with parameters Biy 85,4y =eey B if and only if a Sperner family
with the same perameters exists ¢n a set of n - 1 elements. A cha-
racterization of these numhers using Theorem 6 wes obtained by Day-

kin [8] (see also [9] and [6]). This characterization yields the abo-
ve result.

Of course Theorem 8 gives a better characterization of the num-
bers LTiI than Theorem 2 dces. In fact, it is nct hard to deduce
Theorem 2 from Theorem 8.

Our theoreme do not give information about the situation if the

* We could prove the E.K.R. theorem by these methods too: just con-
sider the family F of complements of members of F . Then F UF
is an antichain, and the inequality |3W:£(§ ::) follows immedia-
tely from Theorem 6 (see Daykin [7]).
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subsets of size > % are also allowed. The next theorem gives an

inequality for this case.

THEOREM 9. Given a collection JF = {A1, B AN} of subsets of an
n element set S satisfying A; N A,j e, AP Aj (i# 3,

then ” A
s el A e il L (6)
n i ¢ S
MES (iyiq) - AeF ()]
lals 3 |AI>2

PROOF. The proof follows the first proof of Theorem 2. The weight-

-function is

( n - A +1
‘—W“K*?'I-—--— if Ai contains consecutive
x elements in oo , and IAil < % -
f(m’Ai) = 1 if Ai contains consecutive
elements in oo , and IAi] > % 3
0 otherwise.
In this cese the equations (2) have the following form:
T ( z f(O(,Ai)) = Z ( 2 f(ot,Ai)) =
o« A. consecu- Aiejr o
tive inoc A. consecu-
AiEJ' tive ino
=l + 1 B
- TR SRR g
TP n A, consecu- A PQ A. consecu-
3™ 2 tive ine i~ 2 tive in«
n - lA:l + A
= L [al 2 G lal —2
lA.| n n
[A0< 2 ¥ A > 2 d
i= 2 i 2
1 1
SRl E s=p=r v gl L 5ET » (1)
hi€F (ja.l -1) A€ (1)
A.1< 2 ! [A-> 2 1
I g il
Hence (6) follows, if we prove the inequality
L = ;Ail + 1
¥ f(nc,Ai) = z w3 ey 3 1 £ n, (8)
A. consecti- Ai consecu- 1 A. consecu-
tive ino tive ino tive ino
< B n
Ip:l_ 2 {Ail> P
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and apply it for (7).

To prove (8) we use the ideas of the proof of the lemma.

1. Assume first, that there is no Ai with consecutive mem-

bers in o with IAiI < '5—1.
terms are 1 , that the number of consecutive subsets is £ n. Consi-

In this case we have to prove, as the

der the consecutive subsets beginning with a fixed element; at most
one Ai can occur among them, since Ai ¢ A.. Thus the number of
consecutive Ai's is £ the number of elements (= n).

2. Assume, there is an |Ail =r £~§- with consecutive ele-

ments and there is no smaller one. We can suppose without loss of ge-
nerality that Ay = {81, o0r, s.}. Consider the sets A. consisting
of consecutive elements and beginning with 8, or ending with Sl-1
(2 <£u<r). Every A. belongs at least to one of these classes be-
5 Ay ¢ Aj and A; N Aj # 8. By Aj ? Ay there is
at most one subset beginning with Sy and there is at most one en-

cause of Ai 2 A

ding with R On the other hand, one of the two sets beginning

u
. < . . n y:
with s, or ending with S4-1 must be of size > 3 by Aj N Ak # 0.
Thus, the sum of their weights is at most 241§4t1 +41, and the en-
. . . p n-r+1 n-r+1
tire sum of all weights is maximally e + (r -1)———;——— ¥ iy

This proves (8) and the theorem.

It is easy to see that this method gives a proof of the Lubell-
-Meshalkin-Yamamoto inequality ([10],([11],[(212] ). In this case Flocy Ay )
is simply 1 or O, and the proof of (8) consists of section 1.

THEOREM 10. Under the conditions of Theorem 9
N < n
gy )

This theorem is a trivial consequence of Theorem 9. It is a spe-
cial case of a theorem of Milner [13], and it was independently pro-
ved in [14], too.

D.E.Daykin kindly called our attention to the fact that Theo-
rem 2 is published earlier by Béla-Bollobds [15]. His proof is simi-
lar to our first proof,'however, our lemmra is somewhat stronger. This
difference enabled us to prove Theorem §.
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