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THE HAMMING-SPHERE HAS MINIMUM BOUNDARY

by
G. 0. H. KATONA

Introduction

In their information-theoretical investigations [6] AHLSWEDE, GAcs and
KORNER needed the solution of the following problem. Let .o be a subset of the space
of 0—1 sequences of length n. The Hamming-distance ¢ (a, b) of the sequences @ and
b is the number of places where they differ. 6 (s#) is the set of sequences which have
Hamming-distance =1 at least from one element of . The question: what is the
minimum of |6 (/)| (|X'| means the number of elements of X) if |.«/| is given. To deter-
mine the minimum of |§(#/)—.</| is an equivalent question. They have found an
asymptotical solution in a paper of MARGULIS [5], but the problem of determining the
exact minimum remained open*. The aim of this paper is to give the exact minimum.

If || allows, the optimal &7 is a Hamming-sphere. If |.¢| is different, then we
have to choose some additional points in a suitable way.

The proof seems to be quite complicated, but it is very easy after knowing the
technique of a similar combinatorial question described below (see also Theorem 1):
Let o be a family of k-tuples of an n-element set (0—1 sequences with k I’s). Deter-
mine the minimal number of (k—1)-tuples which are contained at least in one
k-tuple of & (that is, “lower’”” Hamming-boundary). This question was solved first by
KruskalL [1], later (but independently) by the author [2]. The technique is used in the
proofs of HANSEL [3] and EckHOFF and WEGNER [4]. This last proof is the shortest
variant of this type. (For other ways of proofs see [7] and [8].) We did not succeed in
reducing our problem to this one, but we use the methods. We use heavily an inequal-
ity (see Lemma 2) which appears in different forms in [2], [3] and [4].

There is a natural correspondence between the 0—1 sequences of length n
and the subsets of an n-element set. We use both terms alternately.

Summary of the used earlier results

LemMA 1. If m and k are given non-negative integers, then there is a unique rep-
resentation

M) m=(2)+(e=3) + - +(%).

where &G=a,_,>..>a=t=1.

* In the paper of Margulis it is slightly differently formulated. 3 (/) consists of the sequences
x belonging to o and having a sequence y¢ & with Hamming distance d(x, ¥)=1. However, it is

easy to see that 3 (o )=09 () — .
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The proof can be find in [1]—[2].
(1) is called the k-canonical representation of m. We define (k, m=0)

@ Fem = (%) + (P3) + -+ (%)
F(k,0) = 0.
LemMa 2. If k=0, my, my=0, then
3) F(k+1, my+m,) = max (my, F(k+ 1, my)))+ F(k, m,).

This inequality appears in a modified form in [2], and [3]. This form and the
shortest proof can be found in [4].

If o is a family of k-element subsets of a set of n elements, then 6, (/) means
the family of k — 1-element subsets which are subsets of a k-element set €.o7.

THEOREM 1. If & consists of different k-element subsets of an n-element set and
O=m=|A|= (Z), then

1oL ()| = F(k, m)
and this is the best lower bound.

This theorem can be found in [1], [2], [3], [4], [7] and [8], and it is an easy con-
sequence of Lemma 2. It is easy to see, that |6, (s#)|= F(k, m) if we choose the
first m 0—1 sequences with k 1’s in the lexicographic order.

LemMa 3. If 0<k, 0=m,, m, then
4 F(k, my+my) = F(k, my)+ F(k, my),
ProoF. It can be found in [2]. However (4) is an easy consequence of Theorem 1,

thus we give here the proof. Take two disjoint sets S; and S, of n, (m1§ (7;]] and

n, elements (m2§ [rl?)), respectively. Construct an optimal family of n, k-tuples on

S, which contains F(k, m;) (k—1)-tuples. Take the same for S;,.It means, that the
family on S;U.S, contains exactly F(k, m))+ F(k, m,) (k—1)-tuples. By theorem 1
this family must contain at least F(k, m;+m,) (k—1)-tuples. This gives (4).

Lemma 4. If O<k; Oémlémgé[Z], (Z]éml—i—mz, then

) [ki ]) +F(k,m1+m2—~ (Z]] = F(k, m))+ F(k, my).

Proor. If m1:(2) or mz:{::)’ equality holds in (5). Thus we may assume
n 2
my, My < k)’ that is,

F[k+1,[ki 1)+m1) ::(z]+F(k, my) = ms.
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On the other hand,

leen () emerm (@) = (8 )+l mem- 2)).

using, that m1+m2-—>[2)<[2]. Now we shall use Lemma 2 with the numbers

n
[k—l—l]+m1 and m,:
1
F[k+l,[k_|’_1])+m1+m2] = F(k"'l’[.ll;i]}_'_ml-*-mz”(z]]:
n+1 n n
- ( & ]+F(k’m1+m2_(k]) = F[k+1,(k+l)+ml]+F(k, my) =

= (Z] + F(k, my) + F(k, my).

Thus we obtained an inequality which is equivalent to (5).

A consequence. Theorem 2 in [2] (which has a complicated proof in [2]) is an easy
consequence of this lemma. The theorem says (in a slightly more general form),
that if .o/ is a family of different k-tuples on a set S;\U.S, (8;MN.S,= &), where |S,|=

=|S|=n, (E]glﬂlg[m—#[!%i] and at most one of the relations ANS;# &
AN S,# @ (A€.of) holds, then

[0, ()] = (kf 1]+F(k, || — [Z]]

That is, the best arrangement is, if we choose all the k-tuples from S; and the
remainder from S,.

Proof. Let m, and m, denote the number of the subsets (€.«) contained by
S; and S,, respectively. The minimum of (k—1)-tuples “‘contained by &/ in S is
F(k, m,) by Theorem 1, and F(k, m,) in S,. Thus Lemma 4 gives the result.

The results

We start with an analogue of lemma 1.

LeMMA 5. If u and n are given non-negative integers (u—<2") then there is a unique
representation (called n-bounded canonical representation)

a, a,_ a
® w= )+ i)+ (3),
where n=a,=a,_ 1= ... = Q1= Q> _1> ... >q,=1=1 for some k(t—1=k<n).
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May be, it is better to write

Q) W (ZJ”*‘[nfl]"‘"‘+(kj|1—1)+[‘;:)+”'+{c:l]

n=aq >aq_;>..>a=t=1),
' k-1 a;

with the remark that the part of @’s can completely vanish.
Now we are able to introduce the following notation

®  Gu) = (Z]Jr[nf 1)+ +[kil)+[,';]+(k‘i“1]+ +(tfz_‘1]

if >0, and G (1, 0)=0.
LemMMA 6. If 0=u, = u,, then
¢)] G (n, uy+u,) = max (us, G(n— 1, 4))) + G (n— 1, uy).

If & ={4,, ..., 4,} is a family of different subsets of an n-element set S, then
4(a) denotes the family of subsets B of S, the Hamming-distance o(B, 4;) of which
is =1 at least for one member 4; of /.

THEOREM 2. If of is a system of different subsets of an n-element set S and |sf | =
=u<2" then
[0()| = G(n, u)

and this is the best possible bound.
In general, 6,(«) is defined in the following way :
04(H) = {B:34c A, 0(B, A) = d}.
Similarly, we need the generalization of (7):
Gy(n, u) =

= kbt th i B ot e Beabele®a # =[5

The following theorem is a more general form of Theorem 2:
THEOREM 3. If || = u < 2" then
[04()| = Gy(n, u).

PROOF of Lemma 5. (Warning: it is easier to prove than read!) First we prove
there is a representation of form (6). Take the minimal k satisfying

7 n
U= n +...+ k+1 = 0.

Then, applying lemma 1 for u—v we obtain a representation of form (6). It remains
only to prove that #>ag,. In the contrary case

_n n &) __(n n n
u= [n]+ +(k+1]+(k] = (n]+ +[k+1)+[k]
holds, thus k& was not the minimum, in contradiction with our suppositions.
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We have to prove that (6) is unique. Suppose, the contrary case holds, there
are two representations. If the k’s are the same in both, then u—v has two different
representations of form (1) contradicting lemma 1. We can suppose that the k’s
are different (k>k’). Let the other representation be

(10) u:(z]+[nfl)+...+[k,11]+[l;c"l)+...+[l;','].

Using a well-known formula

@)+ +(@) =< (=) G2+ +075 )+
et )
o< (Y2 ) et i) (1)
0= (el o) e lef) + )

from (10). These two statements contradict each other. The lemma is proved.

Thus,

from (6), and

PROOF of theorem 2. First we reduce the theorem to Lemma 6 which will be
proved afterwards.

We use induction over n. If n=1, then u=1=[i], G(1,1)=G)+((1)]=2,

and |6(s#)| is always 2. Assume the theorem is proved for n—1, and prove it for #.

Fix an element x of S, and divide .« into two families. &, or &, consists of the
subsets which contain or do not contain x, respectively. The operation * on a family
of subsets means that x is added to the members of the family which do not contain
it and it is omitted from the members which do. Denote |.o/,| and |&/s| by z; and z,,
respectively. Obviously,

z = || = z;+ 2s-

We distinguish several cases.

Case 1. z,=z,=G(n—1, z;). We have, by the induction hypothesis,

(11) [0(H)| = G(n—1, z5)

and

(12) [6() =G@n—1,2z)

as || =|of|=z,. (Here & is taken for the (n—1)-element set S—{x}). Similarly,
(13) [6(*)| = G(n—1, z)

follows from (12). As () C(s#), 6(4,*)*Cd() and they are disjoint,
6 ()| = |6()| + [0 ()] =
=Gn—1,z)+G(n—1,z)
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from (11) and (12). However, this is at least
G(n,z:+25) = G(n,2)
by Lemma 6 and the suppositions of this case. Case 1 is settled.

Case 2. z;=z,, G(n—1,2z)=z,. Now, we use (/) >D5(Hy), (&) DAy and
0(,) Ntk =0. These fact result in

[0(2)]| = |8 ()| + | |-
Here |#/,f|=2z,, and by the inductional hypothesis |6 (o/,)|=G (n—1, z,), thus
16()] = 2,+G(n—1, z,).

The right hand side is at least G (n, z, +z,) =G (n, z) by lemma 6 and the suppositions
of this case. This case in settled, too.

Case 3. z;=z;=G(n—1, z,). We can repeat the proof of Case 1. The only dif-
ference, that in lemma 6 we have to write z, in place of u, and z; in place of u,.

Case 4. z,=z;, G(n—1, z))=z,. Now, we use 5(#)D ("), §(#)D, and
0 (") Nty =0. These facts result in

16(a2)] = |6 ()| + | 4.
Here |s#,|=z,, and by the inductional hypothesis |6 (,*)|=G (n—1, z,), thus
[6(H)] = 2, +G(n—1, z)).

The right-hand side is at least G(n, z;+z,)=G (n, z) by lemma 6 and the suppositions
of this case. The inequality of theorem 2 is proved.

We have to construct an & showing that the inequality is the best possible.
Let o/ consist of all the subsets having at least k+1 elements and of the first

u—[:]—... *(kf:-l] k-tuples in the lexicographic order. It is easy to see that

6(/) contains all the subsets having at least k& elements and [ka—kl]‘*“ et (t i‘l]
(k—1)-tuples according to Theorem 1. The proof is completed.

PrROOF of Lemma 6. Case 1. G(n—1, u;)=u,. It is easy to see that G(n, u) is
monotonically increasing in u. We have to prove

(14) G, uy+uy) = us+G(n—1, uy).
By the monotonity it is enough to prove this inequality for the maximal possible
u, satisfying G(n—1, u;)=u,. Suppose, u, has the (n—1)-bounded representation

n—1 n—1 c Gy e
(15) u2=(n—-—l]+"'+(’)’+1)+[')3,J+('y—-i}+"'+(S)’
and p is the smallest index satisfying ¢,>pu. Then
n—1 n—1 c c
(16) Ul=(n_]]+.,.+(y+2]+(y;1]+...+[‘u;1)

satisfies G(n—1, U)=uy. But U;+1 does not satisfy it. This is trivial if B=5.
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If p=s then U;+1 has an additional term [c“y“] = [‘z ]:1 and

T ONC RN AREAR
RS e TN

Thus, we really can consider U, for u, in (14): Here, from (16)

cy+1 cite 1 u s+1
Gt = (o) et ;o) + (G0 o () + G+ ()

TN O WS N E R
=(Z:}]++(';;}]+[C},’]++(Z“]+[ﬁ:n++[§]+
e e W LA s W R EOR

= U +G(n—1, uy).

and

The case is settled.

Case 2. u,<G(n—1, u,). Let u; have the form

(17 w = [,’;‘:})++(Zﬂ]+[%’]++(€]

From the inequality u, =u, (see (15)) it follows f=v. On the other hand, from u,<
<G(n—1,u;) f=y+1 follows and if =7+ 1, then

(18) By = (C?"]-}- +(CS} = [byy“]+ +(ri'1].

Summarizing,  can be y or y+ 1. These two cases will be distinguished.

Case 2a. B=y. Let us introduce the following notations
bﬁ b’
U, = ﬂ + ... + r
= (Cﬁ“] <P +[2‘] :
Then

(19) u1+u2=[::)+...+[y_?_2]+[(’;;;]+vl+v2].
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Unfortunately, it is not a perfect form for taking G (n, u; +u,). However, if

Case 2aa. v,+v,< ["; 1), then [',;; i) +v, 40, < [?: 1] that is, the bracket

does not disturb the part (:] +...+ [Y-,II- 2) in (19). Thus

-1
G (n, uy +u,) =(:)+ +[),_T_1]+F[y+l, [3+1]+vl+vg] =

n n n—1
:[n)+...+(,y+1)+( ,? ]‘{'F(?,vl‘*’vz).
On the other hand

(20)

@1 G(n—1,u) = [Z:})+ +[""; I)-E—F(y, 2)
and
22) G(n—1,us) = (Z:i)+ +(n;1)+F(y, v,).

From (20), (21) and (22) it is easy to see that (9) is reduced to F(y, v, +v.)= F(y, v,)+
+ F(y, v;) which is lemma 3. We can turn to the next case.

Case 2ab. vy +v,= [n; 1). In this case we use a modified form of (19):

gttty = (Z]+--- +[yiz]+[yil)+["l+”2“(";1)]'

n—1

Here vl+v2—( y

previous terms.
A | F I e |
(23), (21) and (22) lead to

)<(n-?-l) and the last term in bracket can not disturb the

n—1 n—1
G2l e[ ove— (") = £0uoa+ Fouo.
This is true by lemma 4. Case 2a is proved.
Case 2b. f=7+1. Now

n n
ll]_"*'llz = [n]+ eae +[.y+2)+(vl+vg)

Y+

holds, where v,< ("; 1)’ 01<(n— }], thus v1+v2<[},_?_ 1). The term v;+v,
does not disturb the previous ones. Hence

24) G, 10y F1tg) = (Z]Jr ...+(y11]+F(v+l,vl+va).
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Furthermore the terms on the right-hand side of (9) have the forms

25) Gln—1u)= (Z:}]+ +[';_",:}]+F(y+1,ul)

(26) G(n—1,up) = [Z:%]Jr +(n;1]+F(y, 0g).

Comparing (24), (25) and (26), (9) reduces to

F(?+ l’ vl+”2) = F(7+ 11 vl)+F(7i 02)'
This is true by lemma 2 if

b b
v = F(y+1,0) = ( *;‘]4— +(r__’1].

But this is (18) which always holds when f=y+1. The proof of the lemma is
completed.

PROOF of theorem 3. We prove the theorem by induction over d. For d=1 it is
theorem 2. Suppose d>1 and the statement is proved for smaller values. Observe
that 6,(o/)=8(3,_,(s#)) and hence by the inductional hypothesis

64()| = G(n, G4 (n, w)).
We have only to prove

27) G(n, Ga_1(m, w)) = Gy(n, u).

This is trivial, if
n n a,
u= n+...+ k+1 + ...+ t

and t=d or k+ 1=d. Otherwise, if t <d<k+ 1, then
n n a, a,
Gd-l(”’”)z(n]+"'+(k—d+2]+[k—c;+1]+"'+(t—-j+l s

= (::)+ +(k—3+2)+(k—(:5+ 1}+ +(ado"]-

Let p be minimal index such that a,<a,,, —1 (d—1<pu=k). Then

' n n a a a,+1
Ga-a(m, u) = (n)+---+[k—d+2)+(k—é‘+1]+~-+ p—"§i2]+[yi'd+1]
and

G(n,Gy_y(n,u)) =

n n n a a,.q a,+1
1‘(n)+-~~+(k—d+2}+(k—d+1]+[k—d]+---+[u—'c'i+1 +[;—d :
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On the other hand,

Ga(n,u) = (2)+ +(k-—Zr+ 1)+[kﬁ‘d]+ +(‘8‘] =

n n a; a,.q a,+1
== [n]+"'+(k_-d+1]+(k—d)+'”+[,u—‘::1++1 +[[f—d)

This shows (27) and the theorem. The proof is completed.

Remarks and an epen problem

Theorem 2 gives a formula for the min |6 (&7)|. It is easy to derive formulas from
it for min |6 (#)—.</| and min |9(=)|:

min |§ (/) — /| = min |8()| - || =

= (o)) + (i) (B —~[3)-

On the other hand
min |9 ()| = min |§() — | = min |6()| — .

Thus, we have to write 2"—|/| into the n-bounded canonical representation, and
G(n, 2"—|<Z|) gives the minimum.

An open question: What is the minimum of |6 (&/)| if |&7] is fixed and |4|=k
for A€.o/?
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