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A theorem of Erdos says: If &7 is a family of subsets of a set S of » elements
and no A + 1 different members of the family form a chain 4, C -+ C 4,,,,
then the maximum of the size of 7 is the sum of the 4 largest binomial coeffi-
cients of order n. The paper gives a weaker condition guaranteeing the same
maximum. It is formulated in more abstract language.

INTRODUCTION

Sperner proved the following theorem [1]: Let &/ = {4, ,..., 4,,} be a
family of subsets of a set S of n elements. If no two of them possess the
property A, C A, (i #j), then

n

3
Erdos answered the question: what is the maximum of m if no A + 1
different elements of the family form a chain My, G G Aih“ ? The answer
[2]is the sum of the % largest binomial coefficients of order n. Kleitman [3]
and Katona [4] independently proved a sharpening of Sperner’s theorem:
Let Sl ) S2 — S, Sl N Sz =g be a pal’tition Of S. If o = {Al gesey Am}
is a family of subsets of S and no two different 4, , 4; satisfy the properties

A,-ﬁSl-:—A,-ﬂsl and AinS2CA.jnS2
or
A;NS;CA; NS, and A;NS, = A4;NS,,

* This work was done while the author was at the Department of Statistics of the
University of North Carolina at Chapel Hill.
t The author used earlier only the initial G.
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v ()

De Bruijn, Tengbergen, and Kruyswijk [5] generalized the original
theorem of Sperner in the following manner: Let f; ..., f,, be integer-valued
functions defined on S = {x, ,..., x,,} such that 0 << fi(x;) < oy, where
a,’s are given positive integers. If no two different ones of them satisfy
fi(x) < fi(x;) (for all k), then m << M, where M is the number of functions
satisfying

then

é foo) = [H).

Recently, Schonheim [6] gave a generalization of both Erdés’s and
Kleitman and Katona’s results for integer-valued functions. The aim of
this paper to give a common generalization of all these papers in a little
more general language.

DEFINITIONS AND THE THEOREM

Assume the directed graph G has the following property:

1. There exists a partition of its vertices into disjoint subsets
Ky, K, ..., K, (they are called levels) of k,, k,,..., k, elements and all
the directed edges go from a vertex of K; to a vertex of K;,; (0 < i < n).
If g € K; then we say that the rank of g is r(g) = it

A symmetrical chain in G is a set of vertices of a directed path, where
for the starting point g and for the end point 4 the following equality holds:?

(@) + r(h) = n.

We say that a directed graph G is a symmetrical chain graph if it satisfies
property 1 and the following property 2:

2. There is a partition of its vertices into disjoint symmetrical chains.

It is easy to see that the following property is a consequence of prop-
erty 2:

2a. ky < k[ﬁ] s ki =k (0 <0 < n).
2
Let us consider now a set S of # elements. Let its subsets be the vertices

of the graph G and connect two vertices 4 and B (from A to B)if BD A

1 This is equivalent to a partially ordered set with a rank function.
2 The notion is introduced in [5].
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and | B— A | = 1. This is the so-called subset graph. In this case K; is the
family of all subsets of i elements, k; = (7); thus property 1 (and (2a)
easily holds. [5] shows that it has also property 2.

Similarly, if we consider the set of integer-valued function satisfying
0 < f(x:) <« as a vertex-set of a graph G, we connect two vertices f and
g (from f'to g) if f = g except for one place x;, , where f(x;) = g(x;) — 1.
K; is in this case the set of functions for which 3,_, f(x;) = i. It is easy
to see that property 1 is satisfied. [5] proves that property 2 is also satisfied.
This is called function graph.

Now we define the direct sum G + H of two symmetrical chain graphs.
Its vertices will be ordered pairs (g, h) (g€ G, he H) and (g, , i) is con-
nected with (g, , 4,) (in this direction) if and only if g, = g, and A, , A,
are connected in H (from A, to h,), or by = h, and g, , g, are connected in
G (from g, to g,).°

If G is the subset graph of a set S; and H is a subset graph of a set S,
(S; and S, are disjoint), then G + H is the subset graph of S; U S, . The
situation is the same in the case of function graphs; the direct sum of two
function graphs is again a function graph.

The generalization of Sperner’s theorem (and also of the de Bruijn-
Tengbergen-Kruyswijk theorem) in this language is the following: If we
have a set {qa; ,..., a,,} of vertices of a symmetrical chain graph and no two
of them are connected with a direct path, then m << kp,,03 .

The generalization of the Erdds theorem in this language is: if

no k + 1 different vertices from {a, ,..., ay} a1
lie in a directed path,

then m < the sum of the 4 largest k,’s. In a direct sum graph we will use a
weaker condition rather than (1):

THEOREM. Let G and H be symmetrical chain graphs with levels
Ky ,..., K, (of kg 5..., k, elements) and L,,..., L, (of I,...,1,) elements),
respectively. If we have a set (g, , hy)s--.s (@m » hn) of vertices of G + H
such that

no h + 1 different ones of them satisfy the conditions:
gty =i =8
hiy sees by, lie in a directed path in H in this order;

()

iy, 5> 8inyy lie in a directed path in G in this order;
Y, = vaw =

g iﬁ+1

Jorsomew (1 <w<h+4 1),

3 This definition is equivalent to the usual definition of the direct sum of two partially
ordered sets.
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then m < the number of vertices of the h largest levels of G + H, that is,
the sum of the h largest numbers of type ¥ ;_o ki, .

Remark 1. If G and H are the subset graphs of the sets .S; and S, of
n and p elements, respectively, then the condition (2) becomes

there are no & + 1 different subsets A4, ,..., Ay, In

S = §; U S, such that

Ay 0V S; = == Ay 08y 3

A, NS, CA, NS, C-CA, NSy 3)
A, NS CA, NS C-CApy NS,

Ay N Sy = Ayyg NSy = = Ay, N5,

hold for some w (1 < w < A+ 1).

It is clear that, if (3) would hold, then 4, C A, C +-- C 4, C -+- C A,,, also
should hold, that is, in this case we have a weaker condition than the Erdos
theorem has, but we have the same result. The relation of this special
case of our theorem to the Erdds theorem is the same as the relation of
Kleitman and Katona’s result to Sperner’s theorem.

Remark 2. If we put h =1 in the preceding example we obtain
Kleitman and Katona’s result.

Remark 3. Theorems of Schonheim can be obtained if we use our
theorem for function graphs and we put # = 1 or we change condition (2)
by the stronger condition: no /2 4 1 functions satisfy f; < -+ < f;4, for
every Xy .

Remark 4. Let us consider now another important special case. Let
S, be a one-element set, and let the vertices of G be the “functions”
fonS;, where 0 < f < n and fis an integer. There is a directed edge
from fto g only if g = f+4 1. Thus, G will be a directed path of length
n + 1. Let H be the same graph with p instead of n. G + H is in this case
a rectangular (n + 1) x (p + 1) lattice (Fig. 1). It is a special case of the
de Bruijn-Tengbergen-Kruyswijk theorem that, if we have a set of points
of this rectangle no two of them connected with a directed path, then the

- R

FIGURE 1
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maximal number of these points is the length of the maximal diagonal
(a diagonal is a set of vertices with the same coordinate sum), that is,
min(z + 1, p + 1).

Schénheim’s generalization of Erdds’s theorem would state in this case
that, if we have a set of vertices from this rectangle and

no h + 1 different one lie in one directed path, ()

then the maximal number of these points is the sum of the lengths of the A
largest different diagonals.

FIGURE 2

Our theorem says that, if we exclude the existence of 4 - 1 different
points lying in a directed path which consists of two straight lines (Fig. 2)
(instead of (4)), we obtain the same maximum. More exactly:

LEMMA. Let R be a graph with vertices (i,j) (0 <i<a; 0 <j <b;
i and j are integers), where there are directed edges from (i,j) only to
(6,7 + 1) and (i 4 1,j). If we have a set of vertices of m elements such that

there are no h + 1 different vertices (iy , j1),..., (ins1 » Jns1)
with the properties for some w (1 <w < h -+ 1)

==y

h=<=e<je o w>=l)j

b < o L g Gf w<h-+1);

®)

Jw= "= Jri1 s

then m < sum of the lengths of the h largest different diagonals

PROOFS

Proof of the Lemma. The set of the vertices (i, , j), where i, is fixed and
0 <j < bis called a column. The rows are defined similarly. Let ¥ be the
set of vertices satisfying the conditions of the lemma and denote by ¢, the
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number of columns having exactly 7 vertices from V. Obviously, by (5),
¢, = 0 if t > h. Thus,

h
Ye=a+ 1 (6)
t=0

Let us count in two different ways the number of vertices which are at least
u-th elements of V in any column starting from below. In a column where
the number of elements of V" less than u we have to count 0, so counting
column by column we obtain

€y + 2641 + 3y + -+ (B —u4 e

On the other hand, counting row by row, we find that this number is at
most (h — u + 1)(b — u + 2) because we do not have to count the first
u — 1 rows, and in the other rows we can have at most # — u + 1 such
points by condition (5). Thus, we have the inequality

Cut+ 204+ 3+ F+h—u+Deoy<th—ut+1)b—u-t2)
(A <u<h. (M

It therefore follows that the maximum of Z:;o ic; subject (only) to
conditions (6) and (7) is an upper bound for m in the lemma.

If a+1<b—h+2, then the choices ¢, =(a-+ 1), ¢; =0,
i=12,..,(h — 1) maximize ZLO ic; subject to (6) and (7) since for
arbitrary c, ,..., ¢, satisfying (6) and (7) we have

h h
Zic,- \<\h z C,-=h(a+ 1).

i=0 i=0

Next, suppose that a + 1 > b — h + 2. We first show that, if ¢,’,..., c;’
maximizes Z?:l ic; subject to (6) nad (7),it is no loss of generality to assume
that ¢;,” = b — h + 2. For ¢,/ <<b — h + 2 (in view of (7) with u = h)
and,ifc,” > b — h+ 2,thenc, = b — h + 2,

Cha=Cp1— 2 —h+2— ), Chg=Cgt+tb—h+2—¢/,

By == Oy 5 £y == 0y suitisfy ):Lo ic; = ZL., ic;’, (6), and (7), as may be
verified directly. For instance, verifying (7), we have for u = h — 1:

gt 20=¢y —20—h+2—0¢))+2b—h-+2)
= Cpy + 2¢" <200 — h + 3),
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and foru < h — 2:

Gt vt h—u—Das+h—we, +Gh—ut+ Do
=ttt —u—1Det+b—h+1—a)
4+ th—w(cha — 20 —h+2—c))
+Gh—utDE—h+2)
=c/+ "+ h—u+Dejst+G—tcoa+ G —u+1)cy
<th—u+ 1) —u+2).

For such a special choice ¢, = b — h + 2, ¢4y 5., ¢1, (7) is equivalent to
Gtdapt e+ h—=doa<h—ut)b—u @)
forl<u<h—1.Ifa+1<b—h+4,thenc;, = - = ¢35 =0,

2 if a+1=5b—h-+4,
1, if a+1=b—h-+3,

Cp—1 =

maximizes Z?=1 ic; subject to ¢, = b — h + 2, (6), and (8) (=(7)). Let us
assume now thata + 1 > b — h + 4. It is easy to see that there is a choice
of ¢y, s ..., Chp_y = 2 Which maximizes ZLI ic; subjecttoc, = b — h + 2,
(6), and (8) (=(7)). If we have another system ¢, , ¢; ,..., ¢4y < 2, then we
can change for a more appropriate one: ¢,_; = 2, ¢ = €55 — 2(2 - ¢4,
Chg =10y 5+ @ — Chy)s Cryg= Chqsws €= €5 which satisfies (6)
(with ¢, = b — h — 2) and (8) (=(7)) and gives the same value for
ZLI ie; . Following this procedure we find a choice exists:

ed=b—h+2, e) o= 250 €y = 2,

¢, = 1or0, e, = =¢"=0

which maximizes 2:":1 ic; subject to (6) and (7), where v is determined
by (6). :

It is clear that 3°,_, ic,® gives an upper bound for m in the lemma. Now
we shall show that we can achieve this bound under the stronger con-
dition (5).

The set of points (i, j) satisfying i + j = k is called the k-th diagonal
of the rectangle and it is denoted by D, . The middle diagonals are
Dy,...;D, sy, where

at+b—h+1
y=| 2 ]
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Iti Is easy to see, that the number of points of the # middle diagonals is thus
Z, 1 ic® , that is, maximal. It means they are also the / largest diagonals,
because arbitrary / diagonals satisfy the conditions of the lemma. The
lemma is proved.

Proof of the Theorem. By property 2 of the symmetrical chain graphs,
the vertices of G and H are divisible into symmetrical chains. Denote by
G’ and H’ the graphs which have the same vertex-set as G and H, respec-
tively, but they have edges only along these chains. Thus, G’ and H' is a
subgraph of G and H, respectively. It follows that G’ + H' is a subgraph
of G + H. Hence, for a given set V of vertices, if 4 corresponds to V as
a subset of G + H while i’ corresponds to V as a subset of G* + H’, then
R < h and the number of vertices on the A" middle diagonals of G + H’
is less than or equal to the number of vertices on the 4 middle diagonals
of G’ + H’ or, what is the same thing, the # middle diagonals of G + H.
Thus it is sufficient to prove the theorem for G’ - H’ instead of G + H.
However, G’ 4 H’ consists of disjoint rectangular lattices and condition (2)
means simply condition (5) for every such rectangle.

We know that an optimal set of points in every rectangle is the union of
the # middle diagonals. Define the levels of G’ 4 H' (G -+ H) in the
following manner. (g, h) € M;iff g€ K; and h e L;_; for some i (0 < i <j).
By definition of direct sum, it is easy to see that M;’s satisfy point 1 of the
definition of a symmetrical chain graph. The k middle levels of G' + H’
are M, ,..., M,.,_, , where

- plestey

We will show that the union of the # middle diagonals for all the rectangles
is just the 2 middle levels in G' + H'.

First we verify that an element of the # middle diagonals in a rectangle
is an element of the A middle levels in G’ + H’. Let us consider a fixed
rectangle which is a direct sum of two symmetrical chains from G’ and H’
with vertices g ,..., g, and A, ,..., h, , respectively. If #(g,) = i, then by the
symmetricity r(g,) = n — i; thus i +a = n — i, or

h—a

=252, ©9)

(Obviously, n and a have the same parity.) Similarly, if r(h,) = j then

. p—b
e T (10)
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If a point (g, , A;) is in D, , in one of the 4 largest diagonal of the rectangle,
then

k+1=r; (11

further, r(g.) = i+ k, r(h) = j + 1, thus (g¢, h) € M; i1, OF, USING
(9), (10), and (11),

(gk,hl)eMM,,__;_,,H. (12)
Since
y=[a—iﬂ-}m]<r<})+h—l,
thus
Z:[n—l-p;h—l—l]<n+p;a—b+r<2+h_l’

and (12) means that (g, , h;) is in one of the 4 middle levels of G’ + H'.
Conversely, let (g, /) be an element of M, , where z <s <z -+ h — 1.

(g, h) is contained by one rectangular which is a direct sum of two sym-

metrical chains, say g ,..., &, and /g ,..., Ay . Then by (9) and (10)

Mg = 25—, i) =2

—b
2 .

If (g, h) = (gx , hy) then

n—a

p—5b _
T et kg l=gy

that is, for

- - _nva_p—b
r=k4+1=s 5 5

the following inequality holds:

[a—l—b—h—l—l]_zﬁn—%p—agb
2 o 2
a+b—h+1
<r<[P2E —] +r—1
(g, h) is really an element of a diagonal from the # middle ones.
Thus, we proved that the points of the 4 middle levels form an optimal
set. For the union of / arbitrary chosen levels of G' 4+ H' the conditions
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of the theorem are satisfied, so the middle levels must be the 4 largest ones
(but there may exist / different levels with the same size-sum). The number
of elements in M is obviously 3;_, k;/,_; ; thus the optimal number is the
sum of the 4 largest ones of these numbers. The proof is completed.
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