GY. KATONA

INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS
INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS

By
GY. KATONA (Budapest)

(Presented by A. RÉNYI)

Let \(k \leq m \), and \(M \) be a finite set of cardinal number \(m \). Determine the largest number \(n \) such that there exists a system of \(n \) sets \(a_v \) satisfying the conditions

\[
a_v \subseteq M, \quad a_{\mu} \neq a_v, \quad |a_\mu a_v| \leq k \quad (\mu < v < n),
\]

where \(|a| \) is the cardinal number of \(a \).

If \(m + k \) is even, then the system consisting of the sets \(a \) such that

\[
a \subseteq M \quad \text{and} \quad |a| = \frac{1}{2}(m + k)
\]

has the required properties. P. ERDÔS, CHAO KO and R. RADO have guessed, that this system contains the maximum possible number of sets [1].

In this note I prove this conjecture, and determine the extremal system also in the case when \(m + k \) is odd. For the proof I use a theorem (Theorem 2) which is also interesting in itself.

Notations:

The letters \(a, b, c, d, e \) denote finite sets of non-negative integers, all other lower-case letters denote non-negative integers. If \(k \leq l \), then \([k, l)\) denotes the set

\[
\{k, k+1, \ldots, l-1\} = \{t : k \leq t < l\}.
\]

The obliteration operator \(\sim \) serves to remove from any system of elements the element above which it is placed. Thus \([k, l) = \{k, k+1, \ldots, l\} \). The cardinal number of the set \(a \) is denoted by \(|a| \); inclusion, union, difference and intersection of sets are denoted by \(a \subseteq b \), \(a+b \), \(a-b \), \(a \cdot b \).

If \(k \leq l \leq m \), \(S(k, l, m) \) denotes the set of all systems \(\{a_0, a_1, \ldots, a_n\} \) such that

\[
a_v \subseteq [0, m), \quad |a_v| = l \quad (v < n),
\]

\[
a_\mu \neq a_v, \quad |a_\mu a_v| \leq k \quad (\mu < v < n).
\]

Put \(A = \{a_0, \ldots, a_n\} \), where \(|a_v| = l \quad (v < n) \). \(A^g \) or \(\{a_0, \ldots, a_n\}^g \) denotes the system of sets \(b_v \) such that \(|b_v| = g \), \(b_\mu \neq b_v \) \((\mu < v < |A^g|) \), and for some \(\mu \) \(b_v \subseteq a_\mu \).

Let us consider \(A = \{a_0, \ldots, a_n\} \), where \(a_v \) are arbitrary sets. Denote by \(A_1 \) the subsystem of sets \(a_v \) satisfying the conditions \(a_v \subseteq A \) and \(|a_v| = l \).

Theorem 1. If \(1 \leq g \leq l, \ 1 \leq k \leq l \) and \(g+k < l \), further \(\epsilon > 0 \), then there exists a system \(A = \{a_0, \ldots, a_n\} \in S(k, l, m) \) for which

\[
\frac{|A^g|}{n} < \epsilon.
\]
PROOF. Let \(m \equiv k \) be a non-negative integer. If \(a_0, a_1, \ldots, a_n \) are distinct sets such that
\[
[0, k) \subset a \subset [0, m) \quad \text{and} \quad |a| = l,
\]
then \(A = \{a_0, \ldots, \hat{a}_n\} \in S(k, l, m) \) and \(n = \binom{m-k}{l-k} \). Clearly \(|A^e| = \binom{m}{g} \) (in fact it is easy to see that \(|A^e| = \binom{m}{g} \)), and
\[
\frac{m}{g} \cdot \frac{m-k}{l-k}
\]
can be arbitrarily small, if \(m \) is sufficiently large, because \(g < l - k \).

THEOREM 2. If \(1 \equiv g \equiv l, 1 \equiv k \equiv l \) and \(g + k \equiv l \), further \(A = \{a_0, \ldots, \hat{a}_n\} \in S(k, l, m) \) then
\[
(1) \quad n \cdot \frac{\binom{2l-k}{g}}{\binom{2l-k}{l}} \equiv |A^e|.
\]

REMARK. From \(g \equiv l - k \) and \(l \equiv g \) it easily follows that
\[
(2) \quad \frac{\binom{2l-k}{g}}{\binom{2l-k}{l}} \equiv 1
\]
and equality holds if and only if \(g + k = l \) or \(g = l \).

PROOF of Theorem 2. If \(g = l \), the theorem is trivial (moreover always equality holds). In what follows we consider the case \(g < l \).

We distinguish three cases.

Case 1: \(2l - k \equiv m \).

By counting in two different ways the number of pairs \((a_v, c)\) where \(c \in A^e \) and \(c \subset a_v \), we obtain
\[
(3) \quad n \binom{l}{g} \equiv |A^e| \binom{m-g}{l-g}.
\]

We have to prove that
\[
\frac{\binom{l}{g}}{\binom{m-g}{l-g}} \equiv \frac{\binom{2l-k}{g}}{\binom{2l-k}{l}}.
\]
This is trivial, if $2l-k \equiv m$, moreover equality holds only in case $2l-k = m$. Hence we obtain that equality holds in (3) only if $m = 2l-k$ and every c is included in $\binom{m-g}{l-g}$ distinct sets a_v, that is A is the system of all subsets of $[0, m)$. Thus equality in Case 1 can hold only in this way.

Case 2: $g = 1$.

Since $g+k \equiv l$, we have $k \equiv l-1$. There are two cases: $k=l$ and $k=l-1$. If $k=l$, then $n=1$ and we can choose $m=k$. Here $2l-k = k = m$, therefore we have Case 1. Assume next $k = l-1$. If we have a system $A = \{a_0, \ldots, a_n\} \in S(l-1, l, m)$ such that every set of $l-1$ is included in at most in a_v, then consider the set a_0a_1. Clearly $|(a_0a_1)a_v| \equiv l-1$, on the other hand $|(a_0a_1)a_v| < l-2$ is impossible, because in this case we should have

$$|a_0a_v| \equiv (a_0a_1)a_v + 1 < (l-2) + 1 = l-1.$$

Thus $|a_0a_1a_v| = l-2$.

We have $a_0 - a_1 \subset a_v$ for every v, because of $|a_0a_1| = l-1$ and $|(a_0a_1)a_v| = l-2$. Similarly $a_1 - a_0 \subset a_v$. Here $a_0a_1, a_0 - a_1, a_1 - a_0$ are disjoint sets, therefore

$$a_v = (a_0 - a_1) + (a_1 - a_0) + a_0a_1 - \lambda_v,$$

where λ_v is an element of a_0a_1. From this results $n \equiv l+1$, and every element is contained at most in l sets a_v. Thus $n \frac{l}{l} \equiv |A^1|$, since every a_v has exactly l elements.

If the system A is such that there is a set c satisfying $|c| = l-1$, which is included at least in 3 sets a_v (for example a_0, a_1 and a_2) then for arbitrary $v < n$ $c \subset a_v$. Namely, $|ca_v| \equiv l-2$ can not be true, because in this case $|a_0a_v| \equiv l-1$, similarly $|ca_v| = l-2$ can not hold, since its consequence would be $a_v \supseteq ca_v, a_v \supseteq a_1 - c$ and $a_v \supseteq a_2 - c$ because of $|ca_v| = |a_1a_v| = |a_2a_v| = l-1$, that is $|a_v| \equiv l+1$, which is impossible. This completes the proof in Case 2, since here $|A^1| = n + l - 1 > n$.

In Case 2 equality can hold if and only if every set of $l-1$ is included at most by two a_v, and A consists of all sets a_v satisfying (4). This falls under Case 1, where equality holds.

Case 3: $2l-k < m$ and $g \geq 1$.

We use induction over m, and we apply Cases 1 and 2.

Here $1 < g < l \equiv m$, thus $m \equiv 3$. First we consider $m=3$. Here $l=3$, thus $n=1$, $g=2, k=1$ or 2 ($k=3$ is impossible, since we should then have $2l-k = m$, and this is Case 1). Since $|A^2| = 3$ and $\frac{5}{2} = 1, \frac{4}{2} = \frac{3}{2}$, in both cases strict inequality holds.

Suppose that $m > 3$ and for $m-1$ Theorem 2 is true. We prove the theorem for m. Denote by s_v the sum of the elements of a_v. We can clearly assume that our system is such that $|A^a|$ is minimal and amongst all such systems $\sum_{v=0}^{n-1} s_v$ is minimal. Denote now by A the system $A = \{a_v : v < n\}$.
We separate in Case 3 two subcases.

Case 3a. Suppose that whenever

\[m - 1 \in a_v \in A \quad \text{and} \quad \lambda \in [0, m) - a_v \]

then

\[a_v - \{m - 1\} + \{\lambda\} \in A. \]

We may assume that for some \(n_0 \equiv n \), \(m - 1 \in a_v \), \(v \equiv n_0 \), and \(m - 1 \not\in a_v \) \((n_0 \equiv v < n)\). If \(n = 1 \), this is Case 1, because we can choose \(m = l \) and thus \(2l - k \equiv m \) holds. Let be \(n > 1 \). If \(n_0 = 0 \), then the theorem holds by our induction hypothesis. Suppose that \(n_0 \equiv 2 \). Let be \(\mu \equiv v < n_0 \). Then \(|a_{\mu} + a_v| \equiv 2l - k < m \), and there exists an element \(\lambda \in [0, m) - a_{\mu} - a_v \). Put \(b_{\mu} = a_{\mu} - \{m - 1\} \) \((\mu \equiv n_0)\). Here \(b_{\mu} + \{\lambda\} \in A \), \(\|b_{\mu} + \{\lambda\}\| = \|(b_{\mu} + \{\lambda\})b_v\| = \|(b_{\mu} + \{\lambda\})a_v\| \equiv k \), and therefore \(l - 1 \equiv k \) and \(B = \{b_0, \ldots, b_{n_0}\} \in S(k, l - 1, m - 1) \). If \(n_0 = 1 \), since \(n > 1 \), then \(m - 1 \not\in a_1 \) and \(|a_0a_1| \equiv l - 1 \). Thus also \(l - 1 \equiv k \) and \(B = \{b_0\} \in S(k, l - 1, m - 1) \). We can use our induction hypothesis, if \(n_0 \equiv 1 \) and \(g - 1 > 1 \), since both \(g - 1 + k \equiv l - 1 \) (because of \(g + k \equiv l \)) and \(g - 1 < l - 1 \) (because of \(g < l \)) hold, and \(l - 1 \equiv k \equiv 1 \). Therefore we have in this case

\[
\left(\frac{2(l - 1) - k}{g - 1} \right)^{n_0} \leq |B^{g - 1}| = p.
\]

(5)

We can not use the induction hypothesis, when \(g - 1 = 1 \) that is \(g = 2 \). However, (5) holds, because we can apply Theorem 2 for \(k, l - 1 \) and \(g - 1 = 1 \) (Case 2).

On the other hand \(C = \{a_{n_0}, \ldots, a_n\} \in S(k, l, m - 1) \). We can use the induction hypothesis, if \(l \equiv m - 1 \):

\[
(n - n_0) \left(\frac{2l - k}{g} \right)^{2l - k} \leq |C^g| = r.
\]

(6)

If \(l = m \), then this is Case 1, because \(2l - k \equiv m \). Trivially

\[
\left(\frac{2l - k}{g} \right)^{2l - k} \leq \left(\frac{2(l - 1) - k}{g - 1} \right)^{2(l - 1) - k} \leq \left(\frac{2(l - 1) - k}{l - 1} \right)^{2(l - 1) - k}
\]

(7)

since \(l > g \) and \(g + k - l \equiv 0 \).

Adding (5) and (6), applying (7) we get

\[
n \left(\frac{2l - k}{g} \right)^{2l - k} \leq p + r.
\]

(8)
Denote by $d_v (v < p)$ elements of B^{q-1}, and by $c_v (v < r)$ elements of C^q. Let $e_v = d_v + \{m - 1\} (v < p)$. Then obviously $|e_v| = q$, $e_v \not\subset e_v (\mu < v < n)$. Moreover for every $v < p$ there exists an index $\mu < n_0$ such that $d_v \subset b_\mu$. Hence $e_v \subset a_\mu$, since $e_v = d_v + \{m - 1\}$ and $a_\mu = b_\mu + \{m - 1\}$. Thus $e_v \subset A^q$, moreover trivially $e_v \not\subset c_v (\mu < p, v < r)$, since $m - 1 \not\subset e_\mu$ and $m - 1 \not\subset c_v$. Consequently $c_0, c_1, \ldots, c_r, e_0, \ldots, e_p$ are distinct elements of A^q, that is

$$ p + r \equiv |A^q|,$$

which completes the proof of 3a.

It remains to prove that in Case 3a equality can not hold. If $m = 3$, this is true. Suppose now that $m \geq 3$, and use induction over m. Apply the same steps, as in the proof of the inequality. In those cases, where then induction could be used, it can be used here too, that is if $m > 2l - k$, then $m - 1 > 2l - k$. Thus it follows by induction hypothesis that in (5) (and in the theorem) strict inequality holds. Those cases where induction could not be used are settled by Cases 1 and 2. Thus in Case 3a strict inequality always holds.

Case 3b. Suppose that there are $a \in A$ and $\lambda \in [0, m) - a$ such that $m - 1 \in a$ and $a - \{m - 1\} + \{\lambda\} \notin A$. Then $\lambda < m - 1$.

We may assume that the sets are labelled in such a way, that the following relations hold:

$$m - 1 \in a_v, \quad \lambda \in a_v, \quad b_v = a_v - \{m - 1\} + \{\lambda\} \in A \quad (v \leq n_0),$$

$$m - 1 \in a_v, \quad \lambda \in a_v, \quad c_v = a_v - \{m - 1\} + \{\lambda\} \in A \quad (n_0 \leq v < n_1),$$

$$m - 1 \in a_v, \quad \lambda \in a_v \quad (n_1 \leq v < n_2),$$

$$m - 1 \notin a_v \quad (n_2 \leq v < n).$$

Here $1 \leq n_0 \leq n_1 \leq n_2 \leq n$. Put $b_v = a_v (n_0 \leq v < n)$. We have now to prove that $B = \{b_0, \ldots, \hat{b}_n\} \subseteq S(k, l, m)$.

Let be $\mu < v < n$. We must prove that $b_\mu \neq b_v$ and $|b_\mu b_v| \equiv k$.

For $\mu < v < n_0$ or $n_0 \leq \mu < v$ these are obvious. Now let be $\mu < n_0 \equiv v$. Then $b_\mu \in A$, $b_v \subset a_v \in A$, and hence $b_\mu \neq b_v$.

If $n_0 \equiv v < n_1$, then $c_v \in A$; and there are k distinct common elements of a_μ and c_v. λ and $m - 1$ are not among these, therefore they are common elements also of b_μ and $b_v = a_v$.

If $n_1 \equiv v < n_2$, then $|a_\mu a_v| \equiv k$, but $\lambda \notin a_\mu a_v$. If instead of a_μ we take b_μ, then out of the common elements at most one is lost: $|b_\mu a_v| = |b_\mu b_v| \equiv k - 1$, but λ, which is common element, does not belong to these $k - 1$ elements. Thus $|b_\mu b_v| \equiv k$.

Finally, if $n_2 \equiv v < n$, then b_μ and a_v have k common elements. $m - 1$ does not belong to them, since $m - 1 \notin a_v$. Therefore the same k elements are also common elements of b_μ and b_v. Thus $B \subseteq S(k, l, m)$ is proved.

Now we must show, that $|A^q| \equiv |B^q|$. Let c be such a set that $|c| = q$, $c \in B^q$ but $c \not\subset A^q$. Then $c \subset b_v$ for some $v < n$, because of $c \subset B^q$. Obviously $v < n_0$, because if $n_0 \equiv v < n_0$, then $b_v = a_v$ and $c \subset A^q$.

$\lambda \in c$, because $c \subset b_v$ for some $v < n_0$, and $c \subset a_v = b_v + \{m - 1\} - \{\lambda\}$.

On the other hand $m - 1 \notin c$, because of $m - 1 \notin b_v (v < n_0)$.
Let be \(d = c - \{ \lambda \} + \{ m - 1 \} \). Here \(d \subseteq a_v \), that is \(d \in A^v \), since \(c \subseteq b_v \) and \(b_v = a_v - \{ \lambda \} + \{ m - 1 \} \). However, \(d \notin B^v \). If \(d \subseteq b_v \) would hold for some \(v < n \), then obviously \(n_0 \leq v < n_2 \) because in the cases \(v < n_0 \) and \(n_2 \leq v < n \), \(m - 1 \notin b_v \) holds. If \(n_0 \leq v < n_1 \), then \(c \subseteq c_v = a_v - \{ m - 1 \} + \{ \lambda \} \) holds (for such \(v \), for which \(d \subseteq b_v \) and since \(c_v \subseteq A \), follows \(c \subseteq A^v \), which contradicts our supposition. However, if \(d \subseteq b_v \) holds for \(n_1 \leq v < n_2 \), then \(c \subseteq a_v \) because of \(\lambda \in b_v = a_v \), \(m - 1 \notin b_v = a_v \), and this also is a contradiction.

Hereby we associated a set \(d \) to every set \(c \), which is an element of \(B^v \), but is not one of \(A^v \) (to distinct sets \(c \) correspond distinct sets \(d \)) in such a way, that set \(d \) is an element of \(A^v \), but is not one of \(B^v \). From this follows
\[
|A^v| \leq |B^v|.
\]

Since for fixed \(n \) we supposed \(A \) to be the system, for which \(|A^v| \) is minimal, in (9) only equality can hold. However we have
\[
f(b_0, ..., b_n) - f(a_0, ..., a_n) = n_0[-(m - 1) + \lambda] < 0,
\]
which contradicts the maximum property of \(A \). This shows that Case 3b can not occur.

Remarks.
1. In this proof I used the sequence of ideas contained in the proof of Erdős—Chao Ko—Rado’s Theorem 1 (11).
2. We showed also, that equality can hold in Case 1, and here only if \(m = 2l - k \), and \(A \) contains every subset of cardinal number \(l \), or in the trivial case \(g = l \).

The following are all consequences of Theorem 2.

3. Theorem 1 of Erdős—Chao Ko—Rado [1]. If \(1 \leq l \leq \frac{1}{2} m \) and
\[
A = \{ a_0, ..., a_n \} \subseteq S(1, l, m), \text{ then } n \leq \binom{m - 1}{l - 1}.
\]

Proof. Let \(b_v = (0, m) - a_v \) and \(B = \{ b_0, ..., b_n \} \). Then \(|b_v| = m - l \leq l \), \(|b_v.b_v| = |(0, m) - (a_v + a_v)| \geq m - 2l + 1 \), because \(|a_v + a_v| \leq 2l - 1 \) (\(\mu < v < n \)). We use now Theorem 2 for \(m - 2l + 1 \), \(m - l \) and \(l \) in place of \(k \), \(l \) and \(g \). We can apply the theorem, since \(1 \leq l \leq m - l \), \(1 \equiv m - 2l + 1 \leq m - l \), and \(l + (m - 2l + 1) \equiv m - l \). Thus
\[
\binom{m - 1}{l} \leq |B^v|.
\]

Let be \(c \subseteq B^v \). Then there exists a number \(\mu < n \) such that \(c \subseteq b_\mu \). For this \(\{ 0, m \} - b_\mu = c a_\mu = \emptyset \). Thus \(c \notin A \). Consequently
\[
|B^v| + |A| = |B^v| + n \leq \binom{m}{l}.
\]

From this, applying (10),
\[
n \leq \binom{m - 1}{l - 1}.
\]
REMARKS.
1. [1] contains this theorem in a more general form which follows from the form proved here by a simple step, shown in [1].

2. If $2l-k=m$, $|a_v|=l$ ($v<n$), and $\{a_0, ..., a_n\} \in S(k, l, m)$, then trivially $n \leq \binom{m}{l}$, and this estimate is the best possible. If $2l-k<m$, then according to Theorems 1 and 2 of ERDős—CHAO KO—RADO [1], the estimate $n \leq \binom{m-k}{l-k}$ holds in most cases. The estimate is however not true for every case: In [1] an interesting example is cited. Further simple example:

2a. Let $k = l-1$, $|a_v|=l$. Then either $n \leq l+1$ or $n > l+1$.

Consider in the latter case the subsets of a_0 having $l-1$ elements. The number of these is l, and one of these is included in a_v ($1 \leq v < n$). Thus there exists a set $c \subseteq a_0$ such that $|c| = l-1$, and there exist two sets, for example a_1 and a_2 for which $c \subseteq a_1$, $c \subseteq a_2$. We showed that if there is a set c for which $|c| = l-1$ and which is included at least in 3 sets a_v, then for every $v<n$ $c \subseteq a_v$. As a consequence $n \leq m-l+1$, because there can exist at most as many sets a_v as the number of distinct elements which are not contained in set c. That is $n \leq \max(l+1, m-l+1)$, and there is always a system satisfying the equality.

2b. Let $m = 2l-k+1$, $|a_v|=l$ ($v<n$) and $k>1$. Use Theorem 2 for $g = l-k+1$:

$$n \frac{l}{l-k+1} \leq |\{a_0, ..., \hat{a_n}\}^{l-k+1}| = p.$$ \hfill (11)

If $c \in \{a_0, ..., \hat{a_n}\}^{l-k+1}$ then $|[0, m)-c| = l$. Moreover, since $c \subseteq a_v$ for some $v<n$, $|a_v([0, m)-c)| = |a_v-c| = k+1$. Thus $[0, m)-c \notin A$ and the elements of A and the complementary sets of the elements of A^{l-k+1} are distinct, therefore

$$n + p \leq \binom{2l-k+1}{l}.$$

Hence applying (11)

$$n \leq \binom{2l-k}{l} = \binom{m-1}{l}.$$

Here equality holds if and only if A is the system of all subsets of $[0, m-1)$ having l elements. Namely, according to Remark 2 of Theorem 2 equality in (11) can hold only if the number of elements is $2l-k$ and A is as specified. In this case equality is trivial.

Theorem 4. Let $2 \leq k \leq m$. If $A = \{a_0, ..., \hat{a_n}\}$ is a system such that $a_\mu \neq a_v$, $|a_\mu a_v| \equiv k$, $a_v \subset [0, m)$ ($\mu < v < n$), then either

(a) $k+m = 2v \quad n \leq \sum_{i=v}^{m} \binom{m}{i},$

or

(b) $k+m = 2v-1 \quad n \leq \binom{m-1}{v-1} + \sum_{i=v}^{m} \binom{m}{i}.$
Moreover there exists a unique maximal system of sets \(a \subset [0, m) \) and \(|a| \equiv v \) in case (a), and in case (b) a system of sets of the same property and additionally of all the sets satisfying the conditions

\[
a \subset [0, m-1) \quad \text{and} \quad |a| = v - 1.
\]

Proof. 1. If \(1 \leq k \leq l \equiv m \) and \(A = \{a_0, \ldots, a_n\} \in S(k, l, m) \), then \(n \leq \binom{m}{l-k} \).

From Theorem 2 for \(l-k = g \) follows \(n \leq |A^{l-k}| \). However, \(|A^{l-k}| \leq \binom{m}{l-k} \), that is \(n \leq \binom{m}{l-k} \).

If in addition \(l-k < \frac{1}{2}(m-1) \) then \(n \leq \binom{m}{l-k} \leq \binom{m}{l-k+1} \).

2. If \(l < \frac{1}{2}(m+k-1) \) and \(A \) is an arbitrary system satisfying the conditions of Theorem 4, then

\[
|a| + |A_{m-l+k-1}| \leq \binom{m}{m} \leq \binom{m}{l-k+1} = \binom{m}{l-k+1}.
\]

and equality can hold only if \(|a| = 0 \) and \(A_{m-l+k-1} \) consists of all the sets \(a \) such that \(|a| = m-l+k-1 \).

Proof of (12): If \(l < \frac{1}{2}(m+k-1) \), then \(l-k < \frac{1}{2}(m-1) \) thus by 1:

\[
|a| \leq \binom{m}{l-k+1}.
\]

If \(|a| = 0 \), (12) is true. If \(0 < |a| < \binom{m}{l-k+1} \), we shall show, that

\[
|A_{m-l+k-1}| \leq \binom{m}{m-l+k-1} - |a|.
\]

Let \(c \in (A_i)^{l-k+1} \). Then there exists a number \(v \) such that \(c \subset a_v \), \(|a_v| = l \) and \(a_v \in A \), thus \(|a_v([0, m)-c]| = |a_v-c| = k-1 < k \), and hence \([0, m)-c \in A \). Since \(|[0, m)-c| = m-l+k-1 \), there are \((A_i)^{l-k+1}\)

sets of cardinal number \(m-l+k-1 \), which can not be elements of \(A \) and \(A_{m-l+k-1} \) respectively. We have

\[
|A_{m-l+k-1}| \leq \binom{m}{m-l+k-1} - |(A_i)^{l-k+1}|.
\]

To complete our proof we must show, that \((A_i)^{l-k+1}| > |A_i|\). This trivially follows from Theorem 2. We can use the theorem because of \(k \geq 2 \), \((l-k+1)+k \equiv l \) and \(l > l-k+1 \) and thus the coefficient (2) is larger than 1. Equality can hold only in the case \(|A_i| = 0 \).

3. \(|A_i| = 0 \) (\(\mu < k \)), thus we have to determine the maximum of \(|A| = |A_1| + \ldots + |A_m| \). By 2 the pairs \(|A_1| + |A_{m-1}| \), \(|A_{k+1}| + |A_{m-2}| \), \ldots are maximal, if the first term is 0. The last pair is \(|A_{\frac{1}{2}(m+k-2)}| + |A_{\frac{1}{2}(m+k)}| \) and here also \(l = \frac{1}{2}(m+k-2) \leq \frac{1}{2}(m+k-1) \). The maximum of \(|A_m| \) is 1. This completes the proof in the case (a).

Similarly in case (b) for the maximal system \(|A_i| = 0 \) (\(\mu < \frac{1}{2}(m+k-1) \)) and \(|A_m| = 1 \). Only the term \(|A_{\frac{1}{2}(m+k-1)}| \) remains. In the Remark 2b we have shown that
\[|A_{\frac{1}{2}(m+k-1)}| \leq \binom{m-1}{\frac{1}{2}(m+k-1)} = \binom{m-1}{v-1}, \text{ and equality can hold only if } A_{\frac{1}{2}(m+k-1)} \]
is the system of all the sets satisfying the conditions

\[a \subset [0, m] \quad |a| = \frac{1}{2}(m+k-1). \]

This system trivially satisfies the conditions. Therefore this is the maximal system as stated.

MATHEMATICAL INSTITUTE,
EÖTVÖS LORÁND UNIVERSITY,
BUDAPEST

(Received 1 August 1963)

Bibliography