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Abstrat

A simple mehanial model of the skateboard-skater system is onstruted in whih a PD ontroller with time delay is implemented as a model of the rider's ankle. Equations of

motion of this nonholonomi system are derived with the help of the Appell-Gibbs method and are linearised around the straight uniform motion. The linear stability analysis is

arried out analytially using the D-subdivision method. Stability harts and the ritial time delay are presented for realisti system parameters. The e�et of the longitudinal

speed on the stability of the uniform motion is also shown.

The model

We onstruted the mehanial model (see Figure 1) based on [1, 2℄. Here we onsidered

that the front and the rear suspensions are similar and we onsider the balaning e�ort

of the skater as a PD ontrol loop whih models the ankle of the rider.
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Figure 1: Mehanial model

The skateboard is modelled by

a massless rod (between the

front axle at F and the rear one

at R) while the skater is repre-

sented by another massless rod

(between the points S and C)

with a mass point at C. The free

rotation between the skater and

the board around the longitudi-

nal axes of the board is antag-

onized by the torque from the

PD ontroller (MPD = Pϕ(t −
τ )+Dϕ̇(t−τ )), where the re�ex
time of the skater is onsidered

with the delay τ .
The model onsists one geo-

metri onstraint, namely the

skateboard always move in a

parallel plane to the ground and

there is a relation between the

lurh of the board β and the

steering angle δS, suh that sin β(t) tanκ = tan δS(t), where κ is the omplement of

the rake angle in the skateboard wheel suspension system. The motion of the skate-

board is bloked by three kinemati onstraints, i.e. the diretion of the veloity at

point F and R is determined by the lurh of the board (see Figure 1). We onsider that

the longitudinal speed of the board is V at any time. Thus, the three onstraints are:

(− sinψ + cosψ sin β tan κ)Ẋ + (cosψ + sinψ sinβ tanκ)Ẏ + (l − a)ψ̇ = 0 , (1a)

(sinψ + cosψ sin β tanκ)Ẋ + (− cosψ + sinψ sin β tan κ)Ẏ + (l + a)ψ̇ = 0 , (1b)

cosψẊ + sinψẎ = V . (1)

The geometri onstraint redues the degrees of freedom of the model by two, so �ve

generalised oordinates are needed (X , Y , ψ, β and ϕ, see Figure 1). One so-alled

pseudo veloity σ is introdued along the Appell-Gibbs method, what is a powerful

method for nonholonomi mehanial systems. For the easier handling two dimension-

less parameters θa := a/l tanκ and θh := h/l tanκ, and three other parameters, like

natural angular frequenies square, are introdued as well: α2
g := g/h, α2

st := st/(mh
2)

and α2
V := V 2/h2. The lower ase p and d are the relative ontrol gains, ompared to

the spring sti�ness of the skateboard suspension (p := P/st, d := D/st). With these,

we an write the equation of motion:

σ̇ =
1

2
α2
V θ

2
h sin(2ϕ) sin

2 (arsinh (pϕ(t− τ ) + dσ(t− τ ))) + α2
g sinϕ− (2a)

−α2
st
(pϕ(t− τ ) + dσ(t− τ ))− α2

V θh cosϕ sin (arsinh (pϕ(t− τ ) + dσ(t− τ )))−

−αV θa
pσ(t− τ ) + dσ̇(t− τ )

√

1 + (pϕ(t− τ ) + dσ(t− τ ))2
cosϕ cos (arsinh (pϕ(t− τ ) + dσ(t− τ ))) ,

ϕ̇ =σ , (2b)

Ẋ

h
=αV (cosψ + θa sinψ sin (arsinh (pϕ(t− τ ) + dσ(t− τ )))) , (2)

Ẏ

h
=αV (sinψ − θa cosψ sin (arsinh (pϕ(t− τ ) + dσ(t− τ )))) , (2d)

ψ̇ =− αV θh sin (arsinh (pϕ(t− τ ) + dσ(t− τ ))) . (2e)

The e�et of the speed on the stability

We investigate the retilinear motion of the skateboard-skater system. The delayed dif-

ferential equation system of neutral type (2) an be linearised, and it remains a naturally

delayed one. Beause X , Y and ψ are yli oordinates, the �rst two equations of (2)

desribe the system uniquely.

During the stability investigation we found saddle-node (SN) bifuration as well as

Hopf bifuration with the angular frequeny ω (see Figure 4). Suh bifurations o-

urs in ase of the simplest human balaning models, e.g. see the ontrolled inverted

pendulum in [3℄. Based on our model, the ritial time delay is τc = 2αg, whih is√
2 times greater than for the PD ontrolled inverted pendulum in [3℄. The retilinear

motion an be stable if the re�ex delay is hosen from the shaded domains of Figure 2

and Figure 3. These two harts are onstruted by means of realisti parameters. The

obtained tolerated time delay ranges are lose to the average re�ex delays of humans

(see [4℄).
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Figure 2: Re�ex delay in ase of sti� skateboard suspension

In Figure 2, we onsider a relatively high sti�ness of the skateboard's suspension. As

a result, we obtain that the ritial delay inreases �rst with the forward speed V when

the skater stands in front of the entre of the board (a > 0, right panel). For a < 0
(left panel), the ritial time delay dereases as the skateboard starts moving forward.

If the sti�ness of the skateboard's suspension is small enough (see Figure 3) and a < 0
(left panel), the ritial delay an reah the zero value at a ertain speed range, where

PD ontroller an not stabilize. The behaviour of the system is even more strange for

a > 0 (right panel), namely, there is a speed range where small time delays an also

lead to unstable motions.
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Figure 3: Re�ex delay in ase of soft skateboard suspension
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Figure 4: Stable ontrol gains for di�erent veloities

The e�et of the speed an

be investigated from another

point of view (see in Figure

4). The stable domains are

represented in the P-D plane

for a �xed delay and for di�er-

ent speeds. It an be observed

that the stable domain shrinks

and its loation modi�es while

the speed inreases. It means

that the skater has to tune the

ontrol gains and has more dif-

�ult task at higher speed.
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