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Abstra
t

A simple me
hani
al model of the skateboard-skater system is 
onstru
ted in whi
h a PD 
ontroller with time delay is implemented as a model of the rider's ankle. Equations of

motion of this nonholonomi
 system are derived with the help of the Appell-Gibbs method and are linearised around the straight uniform motion. The linear stability analysis is


arried out analyti
ally using the D-subdivision method. Stability 
harts and the 
riti
al time delay are presented for realisti
 system parameters. The e�e
t of the longitudinal

speed on the stability of the uniform motion is also shown.

The model

We 
onstru
ted the me
hani
al model (see Figure 1) based on [1, 2℄. Here we 
onsidered

that the front and the rear suspensions are similar and we 
onsider the balan
ing e�ort

of the skater as a PD 
ontrol loop whi
h models the ankle of the rider.
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Figure 1: Me
hani
al model

The skateboard is modelled by

a massless rod (between the

front axle at F and the rear one

at R) while the skater is repre-

sented by another massless rod

(between the points S and C)

with a mass point at C. The free

rotation between the skater and

the board around the longitudi-

nal axes of the board is antag-

onized by the torque from the

PD 
ontroller (MPD = Pϕ(t −
τ )+Dϕ̇(t−τ )), where the re�ex
time of the skater is 
onsidered

with the delay τ .
The model 
onsists one geo-

metri
 
onstraint, namely the

skateboard always move in a

parallel plane to the ground and

there is a relation between the

lur
h of the board β and the

steering angle δS, su
h that sin β(t) tanκ = tan δS(t), where κ is the 
omplement of

the rake angle in the skateboard wheel suspension system. The motion of the skate-

board is blo
ked by three kinemati
 
onstraints, i.e. the dire
tion of the velo
ity at

point F and R is determined by the lur
h of the board (see Figure 1). We 
onsider that

the longitudinal speed of the board is V at any time. Thus, the three 
onstraints are:

(− sinψ + cosψ sin β tan κ)Ẋ + (cosψ + sinψ sinβ tanκ)Ẏ + (l − a)ψ̇ = 0 , (1a)

(sinψ + cosψ sin β tanκ)Ẋ + (− cosψ + sinψ sin β tan κ)Ẏ + (l + a)ψ̇ = 0 , (1b)

cosψẊ + sinψẎ = V . (1
)

The geometri
 
onstraint redu
es the degrees of freedom of the model by two, so �ve

generalised 
oordinates are needed (X , Y , ψ, β and ϕ, see Figure 1). One so-
alled

pseudo velo
ity σ is introdu
ed along the Appell-Gibbs method, what is a powerful

method for nonholonomi
 me
hani
al systems. For the easier handling two dimension-

less parameters θa := a/l tanκ and θh := h/l tanκ, and three other parameters, like

natural angular frequen
ies square, are introdu
ed as well: α2
g := g/h, α2

st := st/(mh
2)

and α2
V := V 2/h2. The lower 
ase p and d are the relative 
ontrol gains, 
ompared to

the spring sti�ness of the skateboard suspension (p := P/st, d := D/st). With these,

we 
an write the equation of motion:

σ̇ =
1

2
α2
V θ

2
h sin(2ϕ) sin

2 (ar
sinh (pϕ(t− τ ) + dσ(t− τ ))) + α2
g sinϕ− (2a)

−α2
st
(pϕ(t− τ ) + dσ(t− τ ))− α2

V θh cosϕ sin (ar
sinh (pϕ(t− τ ) + dσ(t− τ )))−

−αV θa
pσ(t− τ ) + dσ̇(t− τ )

√

1 + (pϕ(t− τ ) + dσ(t− τ ))2
cosϕ cos (ar
sinh (pϕ(t− τ ) + dσ(t− τ ))) ,

ϕ̇ =σ , (2b)

Ẋ

h
=αV (cosψ + θa sinψ sin (ar
sinh (pϕ(t− τ ) + dσ(t− τ )))) , (2
)

Ẏ

h
=αV (sinψ − θa cosψ sin (ar
sinh (pϕ(t− τ ) + dσ(t− τ )))) , (2d)

ψ̇ =− αV θh sin (ar
sinh (pϕ(t− τ ) + dσ(t− τ ))) . (2e)

The e�e
t of the speed on the stability

We investigate the re
tilinear motion of the skateboard-skater system. The delayed dif-

ferential equation system of neutral type (2) 
an be linearised, and it remains a naturally

delayed one. Be
ause X , Y and ψ are 
y
li
 
oordinates, the �rst two equations of (2)

des
ribe the system uniquely.

During the stability investigation we found saddle-node (SN) bifur
ation as well as

Hopf bifur
ation with the angular frequen
y ω (see Figure 4). Su
h bifur
ations o
-


urs in 
ase of the simplest human balan
ing models, e.g. see the 
ontrolled inverted

pendulum in [3℄. Based on our model, the 
riti
al time delay is τc = 2αg, whi
h is√
2 times greater than for the PD 
ontrolled inverted pendulum in [3℄. The re
tilinear

motion 
an be stable if the re�ex delay is 
hosen from the shaded domains of Figure 2

and Figure 3. These two 
harts are 
onstru
ted by means of realisti
 parameters. The

obtained tolerated time delay ranges are 
lose to the average re�ex delays of humans

(see [4℄).
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Figure 2: Re�ex delay in 
ase of sti� skateboard suspension

In Figure 2, we 
onsider a relatively high sti�ness of the skateboard's suspension. As

a result, we obtain that the 
riti
al delay in
reases �rst with the forward speed V when

the skater stands in front of the 
entre of the board (a > 0, right panel). For a < 0
(left panel), the 
riti
al time delay de
reases as the skateboard starts moving forward.

If the sti�ness of the skateboard's suspension is small enough (see Figure 3) and a < 0
(left panel), the 
riti
al delay 
an rea
h the zero value at a 
ertain speed range, where

PD 
ontroller 
an not stabilize. The behaviour of the system is even more strange for

a > 0 (right panel), namely, there is a speed range where small time delays 
an also

lead to unstable motions.
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Figure 3: Re�ex delay in 
ase of soft skateboard suspension
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Figure 4: Stable 
ontrol gains for di�erent velo
ities

The e�e
t of the speed 
an

be investigated from another

point of view (see in Figure

4). The stable domains are

represented in the P-D plane

for a �xed delay and for di�er-

ent speeds. It 
an be observed

that the stable domain shrinks

and its lo
ation modi�es while

the speed in
reases. It means

that the skater has to tune the


ontrol gains and has more dif-

�
ult task at higher speed.
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