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and Levente A. Kovács∗∗Physiological Controls Group, Obuda University, Budapest, Hungary
Email: eigner.gyorgy@phd.uni-obuda.hu, [kovacs.levente, kurtan.balazs]@nik.uni-obuda.hu
†University Research and Innovation Center, Obuda University, Budapest, Hungary

Email: rudas@uni-obuda.hu
‡Control and Mechatronics, Department of Mechanical Engineering, National University of Singapore, Singapore

Email: mpecck@nus.edu.sg

Abstract—In this paper we investigate a novel diabetes model able
to model both type 1 and 2 diabetes mellitus and beyond this it
could handle mixed state of these diseases (Double Diabetes) by
DDEs (Delay Differential Equation). Through different investi-
gations we analyze this model, its behavior and its parameters’
sensitivity. Further, it is compared with a known diabetes model
by different complementing digestion models.

I. INTRODUCTION

Modeling constitutes an essential part in control engineering
[1], [2], as well in the research of diabetes [3]. Because of the
complexity of the human metabolic system, intense abstraction
is needed. To reduce this complexity, the modeling tasks can
be divided into four main groups:

1) Patient models, describing the behavior of a diabetic
patient (type 1, type 2, double, or other kind of diabetes);

2) Digestion models, as inputs of diabetes models respon-
sible for the modeling of the entire absorption (through
the digestion) - complex models (intakes are complex
nutrition) or reduced models (intakes are carbohydrates
(CHO) or glucose);

3) Sensor models, modeling the blood sugar sampling
method or the continuous glucose measuring (CGM)
process;

4) Other modeling tasks like noise simulation, disturbances,
machine models, etc.

In this paper we concentrate on the first two groups (patient
models and digestion models), and try out different meal intake
protocols to analyze the behavior of the selected models. All
used patient models are associated directly or indirectly with
the Minimal Model [4]. This was the first model successfully
used to simulate the changing of the plasma glucose level of a
diabetic patient. Since then, several patient models have been
developed [3], [5], [6], classifying them in two main parts:

• Low complexity models with few states (usually 3-5),
concentrating on the glucose-insulin dynamics;

• High complexity models with several states (more then
5) that preferably gives extended description of the
metabolic system.

The main area of use for the low complexity models is the
Intensive Care Units (ICU). Here the purpose is the realization
of Tight Glycemic Control (TGC) protocol - to hold the
patient’s blood sugar level in a given range [7]–[9]. On the
other side, the high complexity models are used to describe
the accurate behavior of the diabetic patient. Generally, these
models are highly nonlinear [10]–[14]. Classification of the
digestion models can be done similarly to patient models:

• Reduced models, where in most of the cases the nutrient
intake represents glucose bolus and the absorption func-
tion contains slowly decreasing exponential part com-
pleted with the biological specifics of the glucose [10],
[15];

• Complex models capable simulating the process of the
digestion and absorption, wherein the nutrient intakes
contain mixed meals [14], [16]–[18].

The paper is composed as follows: first, we present and
investigate a novel diabetes model appeared in the literature.
Secondly, we compare the model behavior with a well-known
high complexity diabetes model. Third, we perform simula-
tions of the model supplemented with reduced and complex
digestion models. Conclusion and future work end the current
article.

II. ANALYSIS OF THE NOVEL DOUBLE DIABETES
MODEL

The model in purpose was published in 2013 [15] and contains
the following equations:

Ġp(t) = Gin(t) +HGP (Ip(t− τ1))− Uii(Gp(t))
−E(Gp(t))− k1Gp(t) + k2Gi(t)

Ġi(t) = k1Gp(t)− k2Gi(t)−
−Uid(Gp(t), Q1a(t), Q1b(t), Q2(t))
˙Q1a(t) = pu(t)− LDa(Q1a(t))− ka1Q1a(t)

Q̇1b(t) = (1− p)u(t)− LDb(Q1b(t))− ka2Q1b(t)

Q̇2(t) = ka1Q1a(t)− ka1Q2(t)

İp(t) = αIS(Gp(t− τ2)) + ka1Q2(t) + ka2Q1b(t)−
−keIp(t)

(1)
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It is composed from a type 1 diabetes model (T1DM), and
a type 2 diabetes model (T2DM) handling the time delays.
The model subparts combine ordinary differential equations
(ODEs) with delay differential equations (DDEs) [15], where
the state variables are: Gp(t) and Gi(t) the amount of glucose
in plasma and subcutaneous (SC) compartments [mg], Q1a(t),
Q1b(t) and Q2(t) insulin masses in the SC compartment [mU]
and Ip(t) insulin mass in the plasma [mU].

u(t) represents the injected insulin flow [mU/min] and is
the input of the system, while Gin(t) is the glucose intake
obtained from the meal absorption [mg/min]. Gi(t)

VG
can be

considered the output of the model (here this is the glucose
concentration) in SC (accessible) compartment. The summa-
rized properties of this model can be found in [15].

The visual formulation of the state dependency of the model
is depicted in Fig. 1.a.

Figure 1. The schematic structure of the compared models [(a) novel double
diabetes model, (b) Magni model, (c) Dalla Man model]

A. Controllability and Observability

The model contains two explicit delays, namely an Insulin
Secretion Delay (ISD), and a Hepatic Glucose Production
Delay (HGPD). An observation can be instantly made, the
normoglycemic state is varying due to the parametric changes
in the model (1). As a simplification, our assumption was that
it is possible to eliminate the effect of the delays if and only
if the analysis is done near to the steady-states.

In our analysis, we have developed a symbolic solver in order
to obtain the critical points, with zero rate of change for each
state (relying on the current parameters of the model). The
default parameter set was used from [15], along with Case
11 patient’s parameters (32 years old, 82 kg T1DM male
patient data) of [15]. After obtaining the critical states, the
results (i.e. the normoglycemic states) were substituted in the
differential equations to check, if they represent a critical point
or not. Afterward, the physiologically relevant steady-states
were determined, and the model was linearized in that working
point, considering no inputs (zero insulin and CHO intake).

The linearized model’s controllability and observability matri-
ces proved that the system have full rank for both.

Figure 2. Linearized model vs. nonlinear ISF glucose

Figure 3. T1DM model parameter sensitivity analysis results

The state-space representation of the linearized model had
negative real eigenvalues indicating that the model is asymp-
totically stable at and near to the working point. This observa-
tion has an important physiological aspect: when the material
exchange is stable between the compartments, the state vari-
ables are changing in order to remain around the steady-state
values considering the long-term evaluation of the system.
This means the maintenance of homeostasis. However, if the
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biological parameters (hence, the metabolism) is impaired, the
states can change outside of the normal boundaries, resulting
in hypo- or hypoglycemic states.

Fig. 2. shows the similarity between the original nonlinear
and the linearized system response for arbitrary carbohydrate
intake and zero insulin administration in T1DM case.

B. Parameter Sensitivity Analysis. T1DM Case

By parameter sensitivity analysis it is possible to investigate
the most sensitive parameters of the system. A classification
regarding the impairment of the patient can be made in two
different categories.

At the beginning, the T1DM occurrence will be examined
(with insulin injections). In this case the α parameter is
considered zero (i.e. the pancreas does not excretes insulin),
thus the ISD is zero too. Parameter perturbations were made
for all relevant parameters with +25% of their original values.

The considered meal intake [g] was converted into glucose
absorption [mg/min] based on [15]. In this case, the equivalent
of a 45 g CHO intake (at zero time of the analysis), plus a
4 Unit of short acting insulin were injected. Fig. 3. shows
the result of the sensitivity analysis, where the initial states
were obtained with our symbolic solver on Case 11 patient
of [15]. k1, k2 and β were identified as the most sensitive
parameters for the T1DM case in the short term, while if
insulin therapy is applied, then on the long term m4, p, ka1
resulted as the most sensitive ones. The paper focuses on the
short term parameter investigation, because in a real life case
short term accuracy is much more desirable to be obtained for
adequate control; furthermore, the states can be adjusted to
follow the measurement data from the patient.

1) Critical Parameter Analysis for the T1DM Case: Parameter
k1, k2 are glucose transfer rate parameters, modeling material
exchange between the plasma and the subcutaneous region.
The physiological interpretation reveals the inner glucose
exchange that depends on the diabetic type. In the short term
β represents the insulin resistance parameter. This parameter
implies greater or lesser insulin dependent glucose utilization.
In the analysis we used 5% perturbation steps, from -30% to
+30%.

One can see that the β parameter has a significant effect on
the boundaries of the glucose level. This problem is known as
’double diabetes’ for T1DM patients [19]. Fig. 4. and Fig.
5. shows how the k1 and k2 effects the evaluation of the
glucose concentration in the subcutaneous region, while Fig.
6. demonstrates how the insulin resistance ’offsets’ the glucose
amount, when insulin is administered.

C. Parameter Sensitivity Analysis. T2DM Case

For the T2DM occurrence the parameters were assigned from
[15] as well: Case 20 of [15] was used (70 years old, 52.7 kg

Figure 4. T1DM k1 parameter’s effect

Figure 5. T1DM k2 parameter’s effect

T2DM male patient data), with 37 min considered ISD and
45 min of HGPD. α was 0.42, β was 0.52, ka1 was 0.14 and
ka2 was 0.13, while the other parameters remained unchanged.
The results of the sensitivity investigation are presented in Fig.
7.

For the T2DM case the results revealed that k1, k2, ke, α, β,
HGPD, and ISD were the critical parameters.

1) Critical Parameter Analysis for the T2DM Case: As for
the T2DM case, the following parameters were investigated:
HGPD, ISD, ke, and α. (The k1, k2, ke, and β parameters
were investigated in the T1DM case.) Fig. 8. shows how the
HGPD changes the hepatic glucose production. Higher delays
results in greater amplitude that could imply fatal problems,
when glucose level drops to hypoglycemia.

Fig. 9. demonstrates the effect of ISD, which can greatly
amplify the oscillations, for glucose both in the plasma and
interstitial regions. The impairment of the patient’s metabolism
is represented by the two delays.

Fig. 10. represents the analysis of insulin clearance in plasma,
caused by the liver, namely for parameter ke. When decreasing
it, the results will be in terms of higher plasma insulin.

Fig. 11. illustrates how the pancreas’s insulin secretion rate
changes the glucose levels in the interstitial region. Increasing
α results in higher plasma insulin concentration.
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Figure 6. T1DM β parameter’s effect

Figure 7. T2DM model parameter sensitivity analysis results

Figure 8. T2DM HGPD parameter’s effect

D. Combined Effect of the Delays

The T2DM results concluded that the two delays are signif-
icant from both physiological and modeling point of view.
Hence, we have investigated the combined effect of the two
delays. Results are presented in Fig. 12.

The results show that the amplitude of the glucose level
oscillation is affected by the combination of both delays. This
characteristics strengthens the idea that if the sum of the two
delays are getting bigger (showing some kind of impairment),
the glucose level limits are growing bigger as well.

Figure 9. T2DM ISD parameter’s effect

Figure 10. T2DM ke parameter’s effect

Figure 11. T2DM α parameter’s effect

III. COMPARISON OF DM MODELS

In order to investigate the characteristics of the investigated
diabetes model, we have performed a comparison with the
well-known T1DM model of Magni et al. [20].

The idea of the 10th order high-complexity model of [20]
is similar with the considered model of [15]. It contains two
inputs, Ra(t) and u(t) representing the meal [mg/kg/min] and
insulin [mU/min] inputs and one output, GM(t) reflecting the
subcutaneous glucose level [mg/dl]. The model is depicted
on Fig. 1.b. The comparison of the two diabetes models
confronted the following main problems:
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Figure 12. Combined effect of IS and HGP delays

• different number of states;
• the model of [15] contains time-delays instead of one of

the [20] model;
• the subcutaneous levels are calculated differently.

A. Description of the digest

We used two digestion models (a reduced and a complex one)
to complete the examinations. The reduced model has been
introduced in [15], having the following equation:

Gm(tm, k, b) =
ktexp(−(t−tm)2/2b2)

b2 ∗ u(t− tm) (2)

where k and b are parameters without dimension, tm is the
time moment of meal boluses and u(t − tm) is a unit step
function with unity value [g], if t >= tm.

The complex model was taken from [20] and known in the
literature as the ”Dalla Man model”. This model is based on
3 states and contains annexed exponential part too, depicted
in Fig. 1.c. The model input is the meal bolus [g], while the
output is the absorbed glucose [mg].

B. Results of the comparisons

We compared the models as follows: first, we declared dif-
ferent intake protocols, then select the same digestion model
and execute the comparison. The protocols considered were
the followings:

P1. 48 hours long simulations, with the input protocol given
by [15] for case 1, started from 5 mmol/L;

P2. 48 hours long simulations, with the input protocol given
by [15] for case 20, started from 5 mmol/L;

P3. 48 hours long simulations, without any inputs and started
from 5 mmol/L.

.

The results can be seen on Fig. 13., Fig. 14. and Fig. 15.

Fig. 13. shows the obtained results, with Reduced digestion
model, beside P1 (upper) and P2 (lower) protocols. On Fig.

Figure 13. Results of open loop simulation with Reduced digestion model,
SGL (Subcutaneous Glucose Level) [mmol/L]

Figure 14. Results of open loop simulation with Dalla Man digestion model,
SGL (Subcutaneous Glucose Level) [mmol/L]

14. it can be seen the results for the P1 (upper) and P2 (lower)
protocols using the ”Dalla Man digestion model”. Result of P3
protocol is depicted in Fig. 15. Fig. 16 shows the amount of
absorbed glucose with Reduced (upper) and Dalla Man (lower)
models.
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Figure 15. Results of open loop simulation with Zero inputs, SGL (Subcu-
taneous Glucose Level) [mmol/L]

Figure 16. Characteristics of the absorption from Reduced and Dalla Man
model

IV. CONCLUSION AND FUTURE WORK

As the last figures suggest, the obtained results are quite
similar, as expected, proving the validity of the investigated
DM model.

As next step, we will expand the examination with other
patient and digestion models and investigate the opportunity
to involving other submodels, too. Furthermore, we are going
to try out different identification and estimation possibilities
on these complex systems.
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