Comments Dataset for $A = 129^*$

JANOS TIMAR AND ZOLTAN ELEKES

Institute of Nuclear Research (ATOMKI), Pf. 51, 4001, Debrecen, Hungary

BALRAJ SINGH

Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada.

- Abstract: The experimental nuclear spectroscopic data for known nuclides of mass number 129 (Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm) have been evaluated and presented together with adopted properties for levels and γ rays. This evaluation represents a revision of previous one about 18 years ago by Y. Tendow (1996Te01). Extensive new data have become available for many nuclides in the intervening years, although, no data are available for excited states in ¹²⁹Ag, ¹²⁹Cd, ¹²⁹Pm and ¹²⁹Sm. The decay schemes of ¹²⁹Ag, ¹²⁹Pm and ¹²⁹Sm radioisotopes are unknown, and those for ¹²⁹Cd, ¹²⁹In, ¹²⁹Ce, ¹²⁹Pr and ¹²⁹Nd are incomplete. Many γ rays and extended level schemes have been reported for the ground state and isomer decays of ¹²⁹Ba to ¹²⁹Cs, yet the adopted set of intensities in this evaluation originate from a brief paper in an annual laboratory report. There remain several unplaced gamma rays, coupled with ambiguity about division of intensities amongst the two activities of ¹²⁹Ba with nearly the same half-lives. Isomerism is expected in ¹²⁹Pr, but there is no confirmed identification. Low-lying level structure in ¹²⁹Nd including identification of a possible third long-lived isomer in this nuclide remains uncertain.
- The spin-parity assignments of (5/2+) for ground state and (7/2-) for an isomer at 107.6 keV in 129 Ce are assigned based on strong support from systematics and band configurations, yet this result is in contradiction with the quadrupole interaction hyperfine structure measurement which favors 9/2- over 7/2- for the isomer, consequently 7/2+ for the ground state. Direct measurements of spins of ground state and isomer of 129 Ce are needed to settle this issue. Confirmed spins and parities of ground state and isomer of 129 La are also lacking. Assignments in this work are mainly based on systematics of $h_{11/2}$ decoupled structures. A direct measurement of ground state spin of 129 La will be desirable.
- Recommended data presented in this work supersede those in previous NDS evaluations of A=129 nuclides published by 1996Te01, 1983Ha46 and 1972Ho55

Cutoff Date: Literature available up to February 28, 2014, has been consulted.

- General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.
- Acknowledgments: Evaluators thank McMaster undergraduate students M. Lee, A. MacDonald, J. Roediger and S. Geraedts for several compiled datasets for A=129 available in XUNDL database. The evaluators are grateful to Professor W.B. Walters (U. Maryland) for extensive help and sending several communications, including checking some $\gamma\gamma$ -coincidence gated spectra of decay schemes of ¹²⁹Sn and ¹²⁹Sb. This work benefited from the earlier NDS evaluations of A=129 (1996Te01, 1983Ha46 and 1972Ho55).
- General Comments: The statistical analysis of γ-ray data and deduced level schemes is carried out through computer codes available at NNDC, Brookhaven National Laboratory (www.nndc.bnl.gov). Theoretical conversion coefficients are from BrIcc code: v2.2b (20-Jan-2009) (2008Ki07) with "Frozen Orbitals" approximation, and with implicit uncertainty of 1.4%. Measured static magnetic dipole moment (µ) and electric quadrupole moments (Q) are from compilation by 2014StZZ, when available. All decay Q values and particle-separation energies are from AME-2012 (2012Wa38)

^{*} Work at Debrecen was supported by the Institute of Nuclear Research (ATOMKI), the International Atomic Energy Agency through Research Contract No: 15902, and the Bolyai grant from the Hungarian Academy of Sciences. Work at McMaster was supported by the

 $^{129}_{47}\mathrm{Ag}_{82}$ -1

$^{129}_{47}\text{Ag}_{82}$ -1

Adopted Levels

 $Q(\beta^{-})=11300 SY; S(n)=5380 SY; S(p)=14630 SY; Q(\alpha)=-12430 SY 2012Wa38.$

Estimated (2012Wa38) uncertainties: 360 for $Q(\beta^-)$, 420 for S(n), 670 for S(p), 590 for $Q(\alpha)$.

 $S(2n) = 9770 \ 360, \ Q(\beta^-n) = 6960 \ 300 \ (syst, 2012Wa38). \ S(2p) = 31890 \ (theory, 1997Mo25).$

2000Kr18, 1998KaZM: ¹²⁹Ag produced through spallation of Uranium using 1 GeV p beam at ISOLDE-CERN facility, Laser

isotope separator. Measured $\beta^-n,$ proportional counter, observed g.s. decay and a possible isomer.

Structure calculations:

 $2007Cu03: \ \text{calculated} \ \ T_{1/2}, \ \ Q-value, \ \ G-T \ \ \text{strength} \ \ \text{distributions, } S(2n), \ \ \text{delayed one-neutron emission probability.}$

2003MO09: calculated $T_{1/2}$, discussed astrophysical r-process.

2003Bo06: calculated $T_{1/2}.$ 2003Br19: calculated level-mixing features, $\beta\text{-decay}\ T_{1/2}.$

¹²⁹Ag Levels

E(level)	Jπ	T_1/2	Comments
0.0	(9/2+)	46 ms +5-9	$\beta^{-100}; \ \beta^{-n>0}.$
			J π : expected configuration= $\pi g_{9/2}$ (2000Kr18). 2012Au07 propose 7/2+ from systematics; 9/2+ in predictions by 1997Mo25.
			$T_{1/2}$: from decay curve for delayed neutrons (2000Kr18).
			Theoretical $\%\beta^{-}n=12.1$ (1997Mo25), 11.8, 9.0 (2002Pf04).
0 + x ?	(1/2-)	$\approx 160 ms$	$\beta^{-2}; \beta^{-n>0}.$
			E(level): x=20 20 (from syst, 2012Au07).
			${ m T}_{1/2}$: crude estimate from composite decay curve of delayed neutrons from $^{129}{ m Ag}$ g.s. and
			¹²⁹ In (2000Kr18). Other: 10 ms from systematics (2012Au07).
			J\pi: expected configuration= $\pi p_{1/2}$ (2000Kr18); also 1/2- from systematics (2012Au07).

Adopted Levels

 $Q(\beta^{-})=9330 SY; S(n)=4340 SY; S(p)=15900 SY; Q(\alpha)=-11710 SY 2012Wa38.$ Estimated (2012Wa38) uncertainties: 200 for $Q(\beta^-)$ and S(n), 360 for S(p), 450 for $Q(\alpha).$

- $Q(\beta^-n)=2570$ 250, S(2n)=11160 200, S(2p)=30650 540 (syst,2012Wa38). 1986Go10: ¹²⁹Cd produced by thermal neutron fission of ²³⁵U at OSIRIS, Studsvik facility, measured half-life.
- 2003ArZX, 2005Kr20: 129Cd produced through spallation of Uranium using 1 GeV p beam at ISOLDE-CERN facility, Laser isotope separator. Measured $\beta^-n,$ proportional counter.

¹²⁹Cd Levels

E(level)	Jπ	T 1/2	Comments
0.0	3 / 2 +	242 ms† 8	%β ⁻ =100; %β ⁻ n>0. μ=+0.8481 8 (2013Yo02,2014StZZ). momm2=+0.132 9 (2013Yo02,2014StZZ).
			Theoretical %β ⁻ n=0.07 (1997m025), 0.77, 0.94 (2002Pf04).
			$J\pi,\mu,Q$: hyperfine structure in collinear laser spectroscopy (2013Yo02). For Q, uncorrelated uncertainty of 0.007, and correlated uncertainty of 0.005 from electric field gradient combined in quadrature.
			${ m T}_{1/2}$: other: 0.27 s 4 (1986Go10) is in agreement with the Adopted value but less precise.
0 + x	11/2 -	104 ms† 6	$\beta^{-1}=100; \beta^{-1}=0.$
			μ=-0.7063 5 (2013Yo02,2014StZZ).
			momm2=+0.570 26 (2013Yo02,2014StZZ).
			$J\pi,\mu,Q$: hyperfine structure in collinear laser spectroscopy (2013Yo02). For Q, uncorrelated uncertainty of 0.013, and correlated uncertainty of 0.023 from electric field gradient combined in quadrature.
			E(level): 0 200 (syst, 2012Au07).

 $^\dagger\,$ From decay curve of delayed neutrons (2003ArZX, 2005Kr20).

 $^{129}_{49}$ In $_{80}$ -1

Adopted Levels, Gammas

 $Q(\beta^{-})=7769\ 19;\ S(n)=6760\ 150;\ S(p)=12885\ 8;\ Q(\alpha)=-11030\ 600\ 2012Wa38.$

S(2n)=12082 21, S(2p)=28830 200 (syst), $Q(\beta^-n)=2453$ 18 (2012Wa38).

1970OsZZ, 1974Gr29, 1975Al11, 1978Al18: ¹²⁹In produced in thermal neutron fission of ²³⁵U followed by mass

separation at OSIRIS Studsvik facility, measured half-life, $\beta,\ \beta$ strength functions.

Later decay studies: 1980Lu04, 1986Go10.

- 2009Ar04: experiment performed at ISOLDE facility. 1 GeV proton beam hit Ta or W rod producing neutrons close to uranium target where fission is induced. The products were laser ionized after diffusion out the heated target. γ -ray single and coincidence spectra measured with laser on and off by four HPGe detectors. β rays measured by $\Delta E-E$ β telescope.
- 2012Ha25: mass measurement using Penning-trap system at JYFL; mass excess=-72838.0 keV 26.

2013Ka08: mass excess=-72379 keV 4 for (1/2-) isomer in ¹²⁹In measured relative to that of g.s. of ¹³⁰Xe using Penning-trap system at JYFL facility.

Most of the level scheme from ^{129}Cd β^- decay is tentative.

¹²⁹In Levels

Cross Reference (XREF) Flags

A ^{129}Cd β^- Decay: Mixed

B $^{129} \mathrm{In}$ IT Decay (8.7 $\mu s)$

C ¹²⁹In IT Decay (110 ms)

				D 130 Cd β^- n Decay (162 ms)
E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2}	Comments
0.0	(9/2+)	ABCD	611 ms 5	%β ⁻ =100; %β ⁻ n=0.23 7 (1993Ru01).
				$\%\beta\text{-}n\text{:}$ value recommended in 1993Ru01 and 2002Pf04 based on the following
				measurements: 0.25 5 (1980Lu04), 0.13 3 (1986ReZU), 0.331 32 (1993Ru01).
				$\mathrm{T}_{1/2}$: weighted average of 611 ms 5 (1993Ru01) and 610 ms 10.
				(1986Wa17,1986ReZU). Others: 590 ms 20 (1980Lu04), 0.8 s 3 (1970OsZZ,
				1974Gr29,1975All1) for either or both 0.61-s and 1.23-s activities.
450 5	(1/9)	٨D	1 99 ~ 9	Configuration=vn _{11/2} $^{20}\pi g_{9/2}^{2}$.
459 5	(1/2-)	AD	1.25 8 5	%p >99.7; $%$ 11<0.8; $%$ p H=3.6 4 (1993Ru01). %B=n: value recommended in 1993Ru01 and 2002Pf04 based on the following
				measurements: 2.5 5 (1980Lu04), 2.52 52 (1986ReZU), 3.92 19 (1993Ru01).
				%IT: Estimated by the evaluators assuming only M4 γ directly to g.s., and
				$\beta(M4)(W.u.)<30$ from nuclear data sheets general policies.
				E(level): from measured mass excess= -72379 keV 4 (2013Ka08) for (1/2-), 1.3-s
				isomer using JYFL Penning-trap system (2013Ka08), and mass $excess=-72837.9$
				keV 26 (2012Wa38,2012Ha25) for g.s. of 129 In. Earlier value of 369 keV 46
				(2004Ga24) determined from β^- end-point energies from the decay of the 1.3-s
				and 611-ms activities is much less precise and deviates by $\approx 2\sigma$ from value
				deduced from direct mass measurements by 2013Ka08 and 2012Ha25. The average value of 1.26 ± 2 (1980Lu04) and 1.18 ± 2 (1986Ba7U). Other: 0.8 \pm
				3 (19700sZZ,1974Gr29,1975All1) for either or both 0.61-s and 1.23-s activities.
858.8? 4	(5/2)	Α		
995.17 17	(11/2+)	AB		$Configuration = vh_{11/2}^{-2} \otimes \pi g_{9/2}^{-1}.$
1020.5?4	(5/2)	Α		
1091.0? 4	(3/2-)	Α		
1354.14 17	(13/2+)	AB		$Configuration = vh_{11/2}^{-2} \otimes \pi g_{9/2}^{-1}.$
1422.8 4	(5/2+)	A		
1562.0? 4	(5/2)	A		
1080.7 0	(9/2+)	A	0 67 0 10	« 8100. « TT- 2
1030 50	(23/2-)	U	0.07 \$ 10	$\pi_{\mu\nu} \approx 100, \ \pi_{11} = 0$ T: from $\chi(t) \ (2004Ge24 \ 1998FoZY)$
				$\Gamma_{1/2}$. from (10) (2004Ga24, bosol 021). E(level): from 2004Ga24, based on beta decay energies.
1632.8? 7	(5/2-)	А		
1687.97 25	(17/2-)	AB	8.7 μs 7	%IT=100.
				$\rm T^{}_{1/2}:$ weighted average of 8.5 μs 5 (2003Ge04) and 11.3 μs +22-16 (2012Ka36).
				$J\pi$: M2 γ to (13/2+).
				$Configuration = v(d_{3/2})^{-1}(h_{11/2})^{-1} \otimes \pi g_{9/2}^{-1}.$
1911 56	(29/2+)	С	110 ms 15	$\% IT \approx 100; \% \beta^{-}=?$
				$T_{1/2}$: from ¹²⁹ In IT decay (110 ms) (1998FoZY).
9410 9 4	(19/0)			$J\pi$: (E3) γ to (23/2-).
2419.2 4	(13/2-)	A		
2918.91 4	(0/2)	A		

Adopted Levels, Gammas (continued)

¹²⁹In Levels (continued)

E(level) [†]	Jπ‡	XREF
3150.2 4	(13/2-)	А
3183.9 4		Α
4578.9? 4	(5/2-)	А

 † From least-squares fit to Ey data, keeping energy of 459-keV isomer fixed.

[‡] From shell-model predictions and systematics of neighboring nuclides, unless otherwise stated.

 $\gamma(^{129}In)$

E(level)	$E\gamma^{\dagger}$	Iγ‡	Mult.	α	Comments
959 99	400 58 5	100 20			
000.0:	400.3° 5 858 18 5	100 20			
995 17	995 2 2	100			
1020 52	561 78 5	9/ 19			
1020.0.	1020 38 5	100 20			
1091 02	631 9 5	100 20			
1354 14	359 0 2	100 10			
1001111	1354 1 2	42 4			
1422.8	1422.65	100			
1562.0?	1103.48 5	100 20			
	1561.5 \$ 5	100 20			
1585.7	1585.7 5	100			
1632.8?	541.8 [§] 5	100			
1687.97	333.8 2	100	M2	0.0816	$\alpha(K)=0.0697 \ 10; \ \alpha(L)=0.00968 \ 14; \ \alpha(M)=0.00190 \ 3.$
					$\alpha(N)=0.000348 5; \alpha(O)=2.51\times10^{-5} 4.$
					Mult.: from $\alpha(K)exp=0.08$ 2 and half life in ¹²⁹ In IT decay (8.5 µs).
					B(M2)(W.u.)=0.0312 25.
1911	281.0 2	100	(E3)	0.1695	$\alpha(K)=0.1299$ 19; $\alpha(L)=0.0320$ 5; $\alpha(M)=0.00646$ 10.
					$\alpha(N)=0.001123 \ 17; \ \alpha(O)=5.14\times 10^{-5} \ 8.$
					Eγ: from 129 In IT decay (110 ms) (2004Sc42,1998FoZY).
					Mult.: M2 or E3 from observation of K-x rays (2004Ga24,1998FoZY), with
					preference for E3 from systematics of neighboring nuclides.
					B(E3)(W.u.)=0.069 10.
2419 . 2	731.15	$100 \ 20$			
	1065.25	$94 \ 19$			
2918.9?	2460.28 5	100 20			
	2918.5 § 5	$17 \ 3$			
3150 . 2	1462.25	34 3			
	1796.1 5	$100 \ 9$			
	2155.15	28 6			
3183.9	1760.9 5	100 10			
	3184.1 5	$16 \ 3$			
4578.9?	3487.8 5	$50 \ 10$			
	4119.9 5	100 20			

 † From ^{129}In IT decay (8.7 $\mu s)$ when possible. ‡ From ^{129}Cd β^- decay:mixed when multiple values are available.

§ Placement of transition in the level scheme is uncertain.

 $^{129}_{49}\mathrm{In}_{80}\mathrm{-2}$

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

¹²⁹Cd β⁻ Decay: Mixed 2009Ar04

 $Parent \ ^{129}Cd; \ E=0; \ J\pi=3/2+; \ T_{1/2}=242 \ ms \ 8; \ Q(g.s.)=9330 \ syst; \ \%\beta^- \ decay=100.$

Parent ¹²⁹Cd: E=0+x; $J\pi$ =11/2-; $T_{1/2}$ =104 ms 6; Q(g.s.)=9330 syst; % β^- decay=100.

¹²⁹Cd(0)-J,T_{1/2}: From ¹²⁹Cd Adopted Levels.

 129 Cd(0)-Q(β^{-}): 9330 200 (syst,2012Wa38).

¹²⁹Cd(0+x)-J,T_{1/2}: From ¹²⁹Cd Adopted Levels.

 129 Cd(0+x)-Q(β^-): 9330 200 (syst,2012Wa38).

2009Ar04: experiment performed at ISOLDE facility. 1 GeV proton beam hit Ta or W rod producing neutrons close to uranium target where fission is induced. The products were laser ionized after diffusion out the heated target. γ -ray single and coincidence spectra measured with laser on and off by four HPGe detectors. β rays measured by ΔE -E telescope. All gamma rays from the decay of both the 242-ms and 104-ms activities are listed without separating these into two decay schemes. An earlier list of 32 γ rays is provided in 2003DiZY, also from an experiment at ISOLDE-CERN, possibly the same one as described in 2009Ar04. There seems a systematic difference between the E γ values quoted in 2003DiZY and 2009Ar04; the intensities are in reasonable agreement.

1986Go10: ²³⁵U(n,F),E=th, on-line mass; HPGe γ.

Evaluators consider the decay scheme given here as tentative in view of many unplaced transitions and preliminary nature of the 2009Ar04 conference paper.

¹²⁹In Levels

E(level) [†]	$J\pi^{\#}$	T _{1/2} #	Comments
0.0 459 5	(9/2+) (1/2-)	611 ms 5 1.23 s 3	%β ⁻ =100. F(lava): from mass measurement using ivfl Panning-trap system (2013Ka08). Farlier value:
			$369 \text{ keV } 46 \text{ (2004Ga24)}$ determined from β^- end-point energies from the decay of the 1.3-s and 611-ms activities is about 2σ lower than the value from mass measurements.
858.8?‡ 4	(5/2)		
995.1^{\S} 4	(11/2+)		
$1020.5?$ $\ddagger 4$	(5/2)		
1091.0?‡ 4	(3/2-)		
1354.08 4	(13/2+)		

$^{129}_{49}$ In $_{80}$ -4

¹²⁹Cd β⁻ Decay: Mixed 2009Ar04 (continued)

129 In Levels (continued)

E(level) 5	π [#] T _{1/2} [#]		Comments
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{\pi^{\prime\prime}}{2} + \frac{1}{1/2}^{\prime\prime} \\ 2) \\ 2+) \\ 2-) \\ /2-) \\ 2) \\ /2-) \\ 2) \\ /2-) \\ 2-) \\ 2-) $	Jπ: from 2003Ge04.	Comments

 † From least-squares fit to Ey data, keeping energy of the 459-keV isomer as fixed.

Level populated by the 11/2-, 104-ms isomer (2009Ar04).
 Level possibly populated by the 3/2+, 242-ms isomer (2009Ar04,2013Ka08).

From Adopted Levels.

 $\gamma(^{129}In)$

$E\gamma^{\dagger}$	E(level)	$\underline{ } I\gamma^{\dagger}$	$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$	$E\gamma^{\dagger}$	E(level)	$I\gamma^\dagger$
333.5 <i>5</i>	1687.8	13.0 13	×1234.1 5		5.0 10	×2330.9 5		5.0 10
x338.2 5		6.0 12	1354.1 5	1354.0	21.0 21	2460.2 ‡@ 5	2918.9?	6.0 12
358.8 5	1354.0	50 5	1422.65	1422.8	20 2	x2628.5 5		4.0 8
400.5 ^{‡§} 5	858.8?	7.0 14	1462.2 5	3150.1	11.0 11	x2838.4 5		2.04
×439.7§ 5		7.0 14	x1499.4 5		7.0 14	x2879.9 5		2.55
x537.2 5		2.04	x1554.8 5		5.0 10	2918.5 ^{‡@} 5	2918.9?	1.02
541.8 5	1632.8?	11.0 11	x1557.9 5		5.0 10	x2999.0 5		2.02
561.7 ^{‡@} 5	1020.5?	8.0 16	1561.5 ^{‡@} 5	1562.0?	5.0 10	3184.1 5	3183.9	3.06
x589.1 5		5.2 10	1585.7 5	1585.7	12.0 12	x3348.0 5		4.0 8
x618.3 5		4.3 9	×1689.9 5		6.0 12	x3388.9 5		2.04
631.9 5	1091.0?	30 3	×1755.3 5		4.0 8	3487.8 5	4578.9?	1.0 2
731.1 5	2419.1	8.5 17	1760.9 5	3183.9	19.0 19	x3701.9 5		6.0 12
^x 839.8 5		6.0 12	x1763.3 5		5.0 10	x3761.9 5		6.0 12
858.1 5	858.8?	3.3 7	x1770.9 5		3.06	x3888.2 5		2.04
^x 863.1 5		5.5 11	1796.1 5	3150.1	32 3	x3914.7 5		3.06
995.0 5	995.1	100 10	x1835.0 [#] 4			x3967.5 5		4.0 8
1020.3 ^{‡@} 5	1020.5?	8.5 17	x2087.9 5		5.5 11	4119.9 5	4578.9?	2.04
1065.2 5	2419.1	8.0 16	2155.1 5	3150.1	9.0 18			
1103.4 ^{‡@} 5	1562.0?	5.0 10	×2216.7.5		8.0.16			

 † From 2009Ar04. The energy uncertainty is quoted by 2009Ar04 as =0.5 keV. Intensity uncertainty is 10% for strong peaks and 20% for weak lines. Evaluators assign 10% for $I\gamma{\geq}10$ and 20% for for $I\gamma{<}10.$

^{\ddagger} Placement proposed by 2013Ka08 based on a difference of 458 keV between some of the unplaced γ rays in 2009Ar04. This placement is treated as tentative by the evaluators.

 Tentative placement by 2009Ar04 is either no longer valid or revised in view of adopted E(level)=459 5 for (1/2-) β^- decaying isomer.

 $^{\#}\,$ A doublet from 2003DiZY only, not listed by 2009Ar04. Intensity is not available.

@ Placement of transition in the level scheme is uncertain.

 $^{\rm x}~\gamma$ ray not placed in level scheme.

 $^{129}_{49}\mathrm{In}_{80}\text{--}5$

$^{129}Cd\ \beta^-$ Decay: Mixed \quad 2009Ar04 (continued)

¹²⁹In IT Decay (8.7 µs) 2004Sc42,2003Ge04,2012Ka36

Parent $^{129}In;$ E=1687.97 25; J\pi=(17/2-); $T_{1/2}{=}8.7~\mu s$ 7; %IT decay=100.

2004Sc42, 2003Ge04, 2002Ge07: E(n)=thermal. Measured Ey, Iy, yy, y(t) using two large-volume Ge detectors and two cooled Si(Li) detectors after isotopic separation by the LOHENGRIN spectrometer.

- 2012Ka36: ²³⁸U beam at E=345 MeV/nucleon provided by the RIBF accelerator complex at RIKEN facility. Fission fragments were separated and analyzed by BigRIPS separator, transported to focal plane of ZeroDegree spectrometer and finally implanted in an aluminum stopper. Particle identification was achieved by $\Delta E-tof-B\rho$ method. Delayed gamma rays from microsecond isomers were detected by three clover-type HPGe detectors. Measured Ey, Iy, yy-coin, isomer half-life.
- All data taken from 2003Ge04 unless otherwise stated.

¹²⁹In Levels

Configurations from figure 5(a) of 2004Sc42.

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
$\begin{array}{c} 0.0\\ 995.17 \ 16\\ 1354.14 \ 16\\ 1687.97 \ 25 \end{array}$	(9/2+) (11/2+) (13/2+) (17/2-)	8.7 μs 7	Configuration=vh _{11/2} ⁻² $\otimes \pi g_{9/2}^{-1}$. Configuration=vh _{11/2} ⁻² $\otimes \pi g_{9/2}^{-1}$. Configuration=vh _{11/2}) ⁻² $\otimes \pi g_{9/2}^{-1}$. T _{1/2} : weighted average of 8.5 µs 5 (2003Ge04) and 11.3 µs +22-16 (2012Ka36). Configuration=v(d _{3/2}) ⁻¹ (h _{11/2}) ⁻¹ $\otimes \pi g_{9/2}^{-1}$. M2 γ to (13/2+).

[†] From least-squares fit to Eγ data.

[‡] From Adopted Levels.

 $\gamma(^{129}In)$

Iy normalization: $I(\gamma+ce)(333.8\gamma)=100$.					
$E\gamma^{\dagger}$	E(level)	Iγ [‡]	Mult.	α	Comments
333.8 <i>2</i>	1687.97	100	M2	0.0816	Εγ: 333.8 5 (2012Ka36). α(K)=0.0697 10; α(L)=0.00968 14; α(M)=0.00190 3.

$^{129}_{49}$ In $_{80}$ -6

			$\gamma(^{129}In)$ (continued)
$E\gamma^{\dagger}$	E(level)	Iγ‡	Comments
			$\alpha(N)=0.000348$ 5; $\alpha(O)=2.51\times10^{-5}$ 4.
			Mult.: from $\alpha(K)exp=0.08$ 2 and half-life.
359.0 2	1354.14	83	Eγ: 359.0 5 (2012Ka36).
995.2 2	995.17	82	Eγ: 995.3 5 (2012Ka36).
1354.1 2	1354.14	28	Eγ: 1354.6 5 (2012Ka36).

¹²⁹In IT Decay (8.7 µs) 2004Sc42.2003Ge04.2012Ka36 (continued)

 $^\dagger~\Delta(E\gamma)$ assigned as 0.2 keV based on a general statement by 2003Ge04. ‡ For absolute intensity per 100 decays, multiply by 0.92.

¹²⁹In IT Decay (8.7 μs) 2004Sc42,2003Ge04,2012Ka36 (continued)

Parent ¹²⁹In: E=1911 56; $J\pi$ =(29/2+); $T_{1/2}$ =110 ms 15; %IT decay=100. 2004GA24: the ¹²⁹In isotope was obtained by thermal-neutron induced fission of a ²³⁵U carbide target inside the combined target and ion source ANUBIS. During the measurements of singles data, surface ionization was used to select the element In and thereby suppress the daughter activities. Measured E β , E γ , I γ , $\gamma\gamma$, $\beta\gamma(coin)$, $\gamma\gamma(t)$, T_{1/2} (isotope) with 3 Ge detectors of which one was a LEPS. Three Ge detectors were also used for the Q_{β} measurement, where the LEPS detector was used as a β spectrometer.

¹²⁹In Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}	Comments
1630 56	(23/2-)	0.67 s 10	%β ⁻ ≈100.
1911 56	(29/2+)	110 ms 15	$E(level), T_{1/2}$: from 2004Ga24 by beta decay energy measurement. E(level), from 2004Sc42
1511 50	(2372+)	110 ms 15	Configuration=vh _{11/2} ⁻² $\otimes \pi g_{9/2}^{-1}$.

[†] From Adopted Levels.

$\gamma(^{129}In)$

Eγ	E(level)	$I\gamma^\dagger$	Mult.	α	$I(\gamma+ce)^{\dagger}$	Comments
281.0 2	1911	85.5	(E3)	0.1695	100	$ \begin{aligned} &\alpha(\mathrm{K}) {=} 0.1299 \ 19; \ \alpha(\mathrm{L}) {=} 0.0320 \ 5; \ \alpha(\mathrm{M}) {=} 0.00646 \ 10. \\ &\alpha(\mathrm{N}) {=} 0.001123 \ 17; \ \alpha(\mathrm{O}) {=} 5.14 {\times} 10^{-5} \ 8. \end{aligned} $
						Mult.: M2 or E3 from observation of K-x rays (2004Ga24,1998FoZY),

with preference for E3 from systematics of neighboring nuclides.

[†] Absolute intensity per 100 decays.

 $^{129}_{49}$ In $_{80}$

¹³⁰Cd β⁻n Decay (162 ms) 2001Ha39,1986Kr17

Parent ¹³⁰Cd: E=0.0; $J\pi$ =0+; $T_{1/2}$ =162 ms 7; Q(g.s.)=3200 160; % β -n decay=3.5 10. ¹³⁰Cd-Q(β -n): From 2012Wa38. ¹³⁰Cd-T_{1/2}: From ¹³⁰Cd Adopted Levels in ENSDF database.

¹³⁰Cd-%β⁻n decay: %β⁻n=3.5 10 (2001Ha39,2002Pf04). Others: %β⁻n≈4 (1986Kr17), ≈5 (2003DiZZ). 2001Ha39: laser-ion source, measured delayed neutron emission probability, ISOLDE-CERN facility. The details of the decay scheme are not known.

¹²⁹In Levels

E(level)	$J\pi$
----------	--------

(9/2+)

Comments

0.0

E(level): g.s. is assumed to be populated in this decay.

program ENSDAT

 $^{129}_{50}$ Sn₇₉-1

Adopted Levels, Gammas

 $Q(\beta^{-})=4022\ 29$; $S(n)=5316\ 26$; $S(p)=13750\ 150$; $Q(\alpha)=-9684\ 20\ 2012Wa38$.

S(2n)=13279 22, S(2p)=26695 23 (2012Wa38).

1962Ha16: ¹²⁹Sn produced and identified in 170-MeV proton irradiation of uranium target followed by chemical separation; measured half-life. Two activities were reported in this work with half-lives of 1.0 h and 8.8 min, the former has not been confirmed, the latter corresponds to 6.9-min isomer. A 1.8-h activity reported by 1960Al03 and assigned to ¹²⁹Sn decay has never been confirmed.

1962Dr01: ¹²⁹Sn produced and identified in thermal neutron fission fission of ²³⁵U followed by chemical separation, measured half-life and gamma spectra. Only a 6.2-min activity identified. No longer-lived activity was found as reported in 1962Ha16.

Later decay studies: 1967Bi15, 1972Iz01, 1974Fo06, 1974Gr29, 1980De35, 1982Hu09,.

 $Precise \ mass \ measurement \ by \ Penning-trap \ system: \ 2005Si34.$

¹²⁹Sn Levels

No levels are known from $^{130} In \ \beta^{-}n$ decays.

Cross Reference (XREF) Flags

A 129 In β^- Decay (611 ms)	F ¹²⁹ Sn IT Decay (217 ns)
B 129 In β^- Decay (1.23 s)	G 130 In β^- n Decay (0.29 s)
C 129 In β^- Decay (0.67 s)	H 130 In β -n Decay (0.54 s)
D ¹²⁹ Sn IT Decay (3.40 µs)	I 239 Pu(n,F γ)
E ¹²⁹ Sn IT Decay (2.22 μs)	

E(level) [†]	Jπ	XREF	T _{1/2}	Comments
0.0	3/2+	ABC GHI	2.23 min <i>4</i>	$%\beta^-$ =100. μ=+0.754 3 (2005Le34,2014StZZ). Q=+0.05 11 (2004Le13,2014StZZ). Evaluated rms charge radius=4.6934 fm 58 (2013An02). δ <r<sup>2>(relative to ¹²⁰Sn)=+0.384 fm² 52; charge radius=4.693 fm 5 (2005Le34). μ,Q: atomic beam laser fluorescence spectroscopy (2005Le34); 2004Le13 and 2002Le30 are conference articles from the same group as 2005Le34. 2004Le13 give Q₂=+0.05 11, but this value is not listed in authors' later publication 2005Le34. Jπ: agreement of measured μ with shell model calculations for semi-closed nucleus (2005Le34,2004Le13); 2d_{3/2} neutron orbital. T_{1/2}: weighted average of 2.4 min 1 (1982Hu09), 2.16 min 4 (1980De35) 2 23 min 3 (1974Gr29) 2.5 min 3 (1974Fr066) and</r<sup>
35.15 <i>5</i>	11/2-	ABCDEF I	6.9 min <i>1</i>	 (1950De35), 2.25 min 5 (1974F125), 2.5 min 5 (1974F000) and 2.52 min 12 (1972Iz01). %β⁻=100; %IT<2×10⁻³. µ=-1.297 5 (2005Le34,2014StZZ). Q=-0.18 17 (2005Le34,2014StZZ). δ<r<sup>2>(relative to ¹²⁰Sn)=+0.411 fm² 53, charge radius=4.696 fm 6 (2005Le34).</r<sup> %IT: Calculated from the upper limit of B(M4)(W.u.)<30 recommended in Nuclear Data Sheets policies. µ,Q: atomic beam laser fluorescence spectroscopy (2005Le34); 2004Le13 and 2002Le30 are conference articles from the same recover a 0.05 Le34.
				 group as 2005Le34. Jπ: agreement of measured μ with shell model calculations for semi-closed nucleus (2005Le34,2004Le13); 1h_{11/2} neutron orbital. T_{1/2}: from 1982Hu09. Others: 6.7 min 4 (1980De35), 7.3 min 2 (1974Fo06), 8.9 min 6 (1974Gr29), 7.5 min 1 (1967Bi15), 6.9 min 12 (1962De01) 8.8 min 6 (1969Ho16)
315.406 19	(1/2)+	AB		$J\pi$: log ft=6.08 from (1/2-); E2(+M1) γ to 3/2+; shell model and odd tin systematics.
763 70 5	(9/2-)	AB		$J\pi$: three-quasiparticle systematics of odd tin isotones
769.07 5	(5/2+)	AB		$J\pi$: odd tin systematics (one phonon+dere multiplet), weak β
	(3/21)	110		feeding from $(1/2-)$ and $(9/2+)$ parents
1043.66 5	(7/2-)	AB		J π : three-quasiparticle systematics of odd tin isotopes; weak β
				feeding from $(1/2-)$ parent.
1047.35 6	(7/2+)	AB		$J\pi$: log ft=7.12 assuming β feeding from (9/2+) parent; gammas to 3/2+ and (5/2+).

$^{129}_{50}\mathrm{Sn}_{79}\mathrm{-}2$

Adopted Levels, Gammas (continued)

¹²⁹Sn Levels (continued)

E(level) [†]	Jπ	XREF		T	Comments
1054.21 8	(7/2+)	А			J π : log ft=6.34 from (9/2+); M1(+E2) γ to (5/2+); odd tin systematics (one phonon+d _{eve} multiplet).
1171.48 7	(15/2-)	CDEF	Ι		$J\pi$: energy systematics arguments deduced from comparison with the known lighter Sn isotopes and shell model considerations (2000Pi03); vh _{11/2} ⁻¹ \otimes (2+ core) (2004Ga24).
1222.58 5	(3/2+)	В			$J\pi$: log ft=6.83 from (1/2-); gammas to (7/2+), 3/2+ and (1/2)+.
1288.70 8	(3/2+)	AB			J π : log ft=7.24 from (1/2-); odd tin systematics (one phonon+d _{3/2} multiplet); gammas to (1/2)+, 3/2+ and (5/2+).
1359.40 7	(13/2-)	CDEF	Ι		Jπ: based on the energy systematic arguments deduced from comparison with the known lighter Sn isotopes and shell model considerations (2000Pi03); vh _{11/2} ⁻¹ ⊗(2+ core) (2004Ga24).
1455.52 9	(5/2+)	А			$J\pi:$ odd tin systematics (one phonon+d_{3/2} multiplet); weak β feeding from (9/2+).
1534.35 11	(7/2-,9/2+)	Α			J π : log ft=6.85 from (9/2+); gammas to (5/2+), (7/2+) and 11/2
1613.45 15	(1/2 to 7/2+)	В			$J\pi;~\gamma$ to 3/2+; 1/2 and 3/2 less likely from no detectable β feeding from (1/2-) parent.
1701.10 11	(7/2-)	AB			$J\pi$: log ft=7.08 from (9/2+); gammas to (5/2+), (7/2-) and (9/2-).
1741.89 7	(15/2+)	CDEF	Ι		$J\pi$: three-quasiparticle systematics of odd tin isotopes.
1761.6 10	(19/2+)	CDEF	Ι	3.40 µs <i>13</i>	%IT=100.
					$T_{1/2};$ weighted average of values in $^{129} In$ β^- decay (0.67 s), $^{129} Sn$ it decay (0.27 $\mu s)$ and $^{239} Pu(n,F\gamma).$
					J π : (E2) γ from (23/2+); (E2) γ to (15/2+).
1802.6 10	(23/2+)	C EF	Ι	$2.22 \ \mu s \ 14$	%IT=100.
					$T_{1/2}$: weighted average of values in 129 In β^- decay (0.67 s), 129 Sn it decay (0.27 µs) and 239 Pu(n,F γ).
					$J\pi$: energy systematic arguments deduced from comparison with the known lighter Sn isotopes and shell model considerations (2000Pi03).
1853.62 15	(7/2,9/2)	Α			$J\pi$: log ft=6.53 from (9/2+); gammas to (7/2+) and (7/2-,9/2+).
1865.054	(7/2+)	Α			$J\pi$: log ft=4.85 from (9/2+); gamma to 3/2+.
1906.24 10	(7/2)	Α			$J\pi$: log ft=7.28 from (9/2+); γ to 3/2+.
2118.345	(7/2+)	Α			J π : log ft=4.64 from (9/2+); γ to 3/2+; weak γ to 11/2
2276.5 10	(21/2)	С			J π : log ft=5.91 from (23/2-); gammas to (19/2+) and (23/2+).
2407.6 11	(23/2-)	F			$J\pi$: shell model and odd tin systematics.
2552.9 11	(27/2-)	F		217 ns 19	%IT=100.
					$T_{1/2};$ from $\gamma(t)$ in ^{129}Sn IT decay (2011Pi05). Other: 0.27 μs 7 (2008Lo07).
					$J\pi$: shell model and odd tin systematics.
2790.89 20	(7/2,9/2+)	Α			$J\pi$: log ft=6.41 from (9/2+); gammas to (5/2+) and (7/2+).
2835.76 9	(7/2+, 9/2+)	Α			J π : log ft=5.62 from (9/2+); γ to (5/2+).
2981.81 17	(7/2+)	Α			$J\pi$: log ft=6.14 from (9/2+); γ to 3/2+.
3079.3 3	(3/2-)	В			$J\pi$: log ft=6.79 from (1/2-); gammas to (1/2)+, (7/2-).
3140.32 17	(7/2+)	Α			$J\pi$: log ft=6.12 from (9/2+); γ to 3/2+.
3394.3 3	(1/2,3/2)	В			$J\pi$: log ft=6.95 from (1/2-).
3590.51 7	(3/2-)	AB			$J\pi$: log $ft=5.51$ from (1/2-); γ to (7/2-).
					E γ and I γ for all the transitions are from $^{129}In~\beta^-$ decay (1.23 s).
3992.5 10	(21/2-)	С			J\pi: fed by main GT β branch from (23/2-) parent, however lack of γ transition to 15/2- unlike in case of $^{127}Sn.$

 † From least-squares fit to the adopted Ey data.

$\gamma(^{129}\text{Sn})$ E(level) $E\gamma^{\dagger}$ Iγ† Mult. Comments α $\begin{array}{l} \alpha({\rm K}) {=} 0.0236 \ 19; \ \alpha({\rm L}) {=} 0.0033 \ 6; \ \alpha({\rm M}) {=} 0.00064 \ 12. \\ \alpha({\rm N}) {=} 0.000120 \ 21; \ \alpha({\rm O}) {=} 9.3 {\times} 10^{-6} \ 7. \end{array}$ 315.406 315.42 2 $1\,0\,0$ E2(+M1) 0.028 3 Mult.: from $\alpha(K)$ exp and K/L (1980De35). 763.70 728.53 3 100 769.07 769.31 18 $1\,0\,0$ 4.2 ‡ 6 1043.66279.93 11

$^{129}_{50}\mathrm{Sn}_{79}\mathrm{-}3$

Adopted Levels, Gammas (continued)

$\gamma(^{129}Sn)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.	α	Comments
1043 66	1008 53 3	100 \$ 5			
1047 35	278 18 9	68 16			I_{V} from ¹²⁹ In β^{-} decay (611 mg)
1041.00	1047 41 10	100 8			I_{V} from ¹²⁹ In B ⁻ decay (611 ms).
1054.21	285.24 12	33 2	M1(+E2)	0.037 5	$\alpha(K) = 0.032 4$; $\alpha(L) = 0.0045 10$; $\alpha(M) = 0.00089 21$.
			()		$\alpha(N)=0.00016$ 4; $\alpha(O)=1.26\times10^{-5}$ 14.
					Mult.: from $\alpha(K) \exp (1980 De35)$.
	1054.30 16	100 7			
1171.48	1136.31 5	100			Eγ: from ¹²⁹ In β^- decay (0.67 s).
1222.58	175.13 12	2.2 13			
	907.34 8	74 5			
	1222.518	100 7			
1288.70	519.5 6	$36^{\ddagger}6$			
	973.52	80‡ 5			
	1288.64 11	100‡6			
1359.40	1324.255	100			Eγ: from ¹²⁹ In β^- decay (0.67 s).
1455.52	1455.53 11	100			
1534.35	480.29 13	100 9			
	765.45	696			
	1499.00 17	99 7			
1613.45	1613.4 2	100			
1701.10	657.7 3	75+6			
	931.96 19	100+ 9			
1741 80	937.34 19	90† 9 75 4			F_{44} from 1291r θ doors (0.67 c)
1741.89	362.49 2	15 4			Ey: from 1 h b decay (0.67 s).
					129 Sn it decay 0.27 us
	570 41 3	100 6			Figure 129 In β^{-} decay (0.67 s)
	570.41 5	100 0			E_1 . from an p decay (0.07 s).
					and 129 Sn it decay 0.27 us
1761.6	19.7 10		(E2)	1.0×10^{3} 3	$\alpha(L) = 7.8E2 \ 23; \ \alpha(M) = 1.6E2 \ 5; \ \alpha(N) = 27 \ 9; \ \alpha(O) = 0.58 \ 17.$
					Ey: from ¹²⁹ In β^- decay (0.67 s).
					Mult.: half-life is characteristic of an E2 transition
					(2002Ge07).
					B(E2)(W.u.)=1.4 6.
1802.6	41.0 2		(E2)	39.9 10	$\alpha(K)=13.64\ 23;\ \alpha(L)=21.1\ 6;\ \alpha(M)=4.37\ 12.$
					$\alpha(N)=0.756\ 21;\ \alpha(O)=0.0195\ 5.$
					Mult.: from K x ray intensity and L-conversion intensity in
					239 Pu(f,n γ).
					Eγ: from ¹²⁹ In β^- decay (0.67 s).
					B(E2)(W.u.)=1.39 10.
1853.62	319.34	324			
	799.41 14	100 8			
1865.05	330.8 3	0.66 5			
	409.3 3	0.34 4			
	576.1 5	0.39 3			
	821.4 2	2.22 1			
	1096.00 4	6.3 11 E 7 4			
	1920 1 5	0.29.7			
	1864 89 6	100 7			
1906 24	1906 32 15	100 /			
2118 34	212 17 12	0 64 5			
2110.01	252.99 16	0.08 2			
	265.0	0.35 5			
	662.92 16	1.22 8			
	830.0 3	0.60 10			
	1071.0 12	0.2 10			
	1074.71 3	6.1 4			
	1349.29 7	4.6 3			
	1354.41 8	2.9 3			
	2082.94	0.424	[M2]		
	2118.26 10	100 7			
2276.5	473,99 16	100 8			

$^{129}_{50}$ Sn₇₉-4

				γ(¹²⁹ Sn) (co	ontinued)
E(level)	$\mathbf{E}\gamma^{\dagger}$	Ιγ [†]	Mult.	α	Comments
2276.5	515.1 6	30 3			
2407.6	605.0 3				
2552.9	145.3 <i>3</i>		[E2]	0.425 7	$\begin{split} &\alpha(K){=}0.334~6;~\alpha(L){=}0.0733~12;~\alpha(M){=}0.01478~25.\\ &\alpha(N){=}0.00265~5;~\alpha(O){=}0.0001420~23.\\ &E\gamma:~from~^{129}Sn~IT~decay.\\ &B(E2)(W.u.){=}0.73~6. \end{split}$
2790.89	1736.76	36 24			
	2021.8 2	100 7			
2835.76	1301.74	10.2 8			
	1781.54 13	100 7			
	1791.95	7.27			
	2066 . 64 11	574			
	2072.35	3.5 9			
2981.81	2212.70 17	100 6			
	2982.16	9.2 18			
3079.3	2035.55	909			
	2763.94	100 8			
3140.32	2371.59	16.2 18			
	2376.66	30 3			
	3140.27 18	100 8			
3394.3	3078.9 3				
3590.51	1889.62	23 2			
	1977.02	$21 \ 2$			
	2301.7 2	302			
	2368.15 17	514			
	2546.61 11	100 7			
	3275.16 15	63 4			
	3590.84	12.6 <i>11</i>			
3992.5	1716.1 3	16.4 14			
	2189.92 10	100 7			
	2230.88 18	41 2			

Adopted Levels, Gammas (continued)

[†] From β^- decay datasets, unless otherwise stated. [‡] weighted average of values in ¹²⁹In β^- decay (611 ms) and ¹²⁹In β^- decay (1.23 ms).

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level

(21/2-)		3992.5
$(3/2_{-})$		3590 51
(0/2-)		
(1/2,3/2)		3394.3
(3/2-)		- 3079.3
$(7/2_{\pm})$		2981 81
_((/21)		2001.01
(7,0,0,0,.)		- 0500 00
_(7/2,9/2+)		2790.89
(27/2-)		2552.9
		217 ns
(23/2-)		2407.6
(91/9)		2276 5
		2210.5
(7/2+)		2118.34
	Str. 6	
(7/2.9/2)		- 1853.62
(15/2+)		- 1741.89
(7/2-)		= 1701.10
(1/2 to 7/2+)		1613.45
(7/2-,9/2+)		1534.35
(5/2+)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1455.52
		1359.40
(3/2+)		1288.70
$\frac{(3/2+)}{(17/2)}$		1222.58
(15/2-) (7/2+)		<u>1171.48</u>
(7/2+)	───┼/╇┼┼┤╩┼┼┼┼┼╬┼┱╤ _{┱┲┲┍} _{╼┲} ╶────	1047.35
(7/2-)		1043.66
(5/2+)		769.07
(9/2-)		763.70
(1/2)+		315.406
		35.15 60 min
3/2+	<u>────</u> <u>↓</u>	-0.0 2.23 min

 $^{129}_{50}$ Sn₇₉-7

$^{129}In\ \beta^{-}$ Decay (611 ms) 2004Ga24,1980De35

- Parent $^{129}In;$ E=0.0; J\pi=(9/2+); $T_{1/2}{=}611$ ms 5; Q(g.s.)=7769 19; $\%\beta^-$ decay=100.
- ¹²⁹In-J: From shell model systematics.
- $^{129}\mathrm{In-T}_{1/2}\!\!:$ Average value of 611 5 (1993Ru01) and 610 10 (1986Wa17).
- 129 In-Q(β⁻): From 2012Wa38. 1980De35: 235 U(n,F) E=th, on-line ms; semi, scin β, γ, ce, γγ-, βγ-coin.
- 1978Al18: $^{235}U(n,F)$ E=th, on-line ms; semi, scin $\beta,~\gamma,~\beta\gamma-coin.$
- 1987Sp09: ²³⁵U(n,F) E=th, on-line ms; HPGE, β , γ , $\beta\gamma$ -coin.

2004Ga24: The ¹²⁹In isotope was obtained by thermal-neutron induced fission of a ²³⁵U carbide target inside the combined target and ion source ANUBIS. During the measurements of singles data, surface ionization was used to $T_{1/21/2}$ (isotope) with 3 Ge detectors of which one was a low energy photon (LEP). Three Ge detectors were also used

for the Q_β measurement, where the LEP detector was used as a β spectrometer.

¹²⁹Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	$T_{1/2}^{\ddagger}$	Comments
0.0	3/2+	2.23 min 4	
35.11 6	11/2-	6.9 min <i>1</i>	$\%\beta^{-}=100.$
315.418 20	(1/2)+		
763.67 6	(9/2-)		
769.045	(5/2+)		
1043.625	(7/2-)		
1047.317	(7/2+)		
1054.18 8	(7/2+)		
1288.68 9	(3/2+)		
1455.519	(5/2+)		
1534.31 11	(7/2-, 9/2+)		
1701.14 13	(7/2-)		
1853.55 14	(7/2,9/2)		
1865.024	(7/2+)		
1906.21 10	(7/2)		
2118.315	(7/2+)		
2790.86 20	(7/2, 9/2+)		
2835.73 10	(7/2+, 9/2+)		
2981.79 17	(7/2+)		
3140.32 17	(7/2+)		
3589.6 10	(3/2-)		E(level): only from 1980De35.

 † From least-squares fit by evaluators to the Eq data from 2004Ga24; level scheme is also from 2004Ga24, except as noted. [‡] From Adopted Levels.

β^- radiations

$E\beta^{-}$		E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(4179	19)	3589.6	1.6 2	5.54 6	av Eβ=1800.0 90.
					Iβ ⁻ : from 1980De35.
(4629	19)	3140.32	0.674	6.11 3	av Eβ=2012.7 90.
(4787	19)	2981.79	0.744	6.14 3	av Eβ=2087.8 90.
(4933	19)	2835.73	3.36 15	5.542	av Eβ=2157.0 90.
(4978	19)	2790.86	0.47 9	6.4 1	av Eβ=2178.3 90.
5480	120	2118.31	49 3	4.63 3	av Eβ=2497.2 91.
					Eβ ⁻ : from 1978Al18.
(5863	19)	1906.21	0.13 3	7.3 1	av Eβ=2597.8 91.
(5904	19)	1865.02	36 2	4.85 3	av $E\beta = 2617.4 \ 91.$
(5915	19)	1853.55	0.76 6	6.53 4	av $E\beta = 2622.8 \ 91.$
(6068	19)	1701.14	0.24 2	7.08 4	av Eβ=2695.1 91.
(6235	19)	1534.31	0.46 6	6.85 6	av $E\beta = 2774.2$ 90.
(6313‡	19)	1455.51	<0.3	>7.1	av Eβ=2811.6 90.
(6715	19)	1054.18	2.1 3	6.33 7	av $E\beta = 3001.8 \ 90.$
(6722	19)	1047.31	0.35 6	7.1 1	av $E\beta = 3005.1 90.$
(6725	19)	1043.62	2.04	6.4 1	av $E\beta = 3006.8 90.$
(7000‡	19)	769.04	<2	>6.4	av $E\beta = 3136.9 90.$
(7005	19)	763.67	2.14	6.4 1	av $E\beta = 3139.5$ 90.

$^{129}_{50}\mathrm{Sn}_{79}\mathrm{-8}$

		¹²⁹ In β ⁻	Decay (611	ms) 2004Ga24,1980De35	(continued)	
			_	β^- radiations (continued)		
Eβ ⁻	E(level)	$I\beta^{-\dagger}$	Log ft		Comments	
(7734 ± 19)	35.11	<10	>5.9	av Eβ=3484.3 <i>90</i> . Iβ ⁻ : from log <i>ft></i> 5.9; 2004Ga24 giv	ve <15 which gives	log?Ift>5.7.

[†] Absolute intensity per 100 decays.
 [‡] Existence of this branch is questionable.

 $\gamma(^{129}\text{Sn})$

Most of the unplaced γ rays belong to activities $T_{1/2} \leq 10$ s in the mass 129 isobaric chain (1980De35) and are tentatively assigned to 129 In β^- decay by the evaluators. I γ normalization: from 2004Ga24. Uncertainty estimated by the evaluators. $\beta^-n=0.331$ 32 (1993Ru01).

$E\gamma^{\dagger}$	E(level)	Ιγ§#	Mult.	α	Comments
919 17 19	9118 91	0 64 5			
252 99 16	2118 31	0.08.2			
265 0 3	2118.31	0 35 5			
278 18 9	1047 31	0 42 10			
279 93 11	1043 62	0 53 11			
285.24 12	1054.18	3.1.2	M1(+E2)	0.037 5	$\alpha(K) = 0.032$ 4: $\alpha(L) = 0.0045$ 10: $\alpha(M) = 0.00089$ 21.
					$\alpha(N)=0.00016$ 4; $\alpha(O)=1.26\times 10^{-5}$ 14. Mult.: $\alpha(K)\exp=0.03$ 1 (1980De35). E2 mixing is very small. α : value for pure M1.
315.42 2	315.418	0.33 3			
319.3 4	1853.55	0.53 6			
330.83	1865 . 02	0.49 4			
×382.5‡ 3		$2.8 \ 3$			
409.3 3	1865 . 02	0.25 3			
x417.1 3		0.2 1			
×473.9 3		0.6 1			
480.29 13	1534.31	0.97 9			
x501.2 3		0.8 1			
519.5 6	1288.68	0.154			
^x 570.2∓ 3		3.84			
576.15	1865.02	0.29 2			
657.7 3	1701.14	0.172			
662.92 16	2118.31	1.22 9			
728.53 3	763.67	13.4 9			
765.4 5	1534.31	0.67 6			
769.31 18	769.04	24.3 17			
799.41 14	1853.55	1.66 13			
821.4 2	1865.02	1.65 1			
830.0 3	2118.31	0.60 10			
931.96 19	1701.14	0.22 3			
937.54 19	1701.14	0.21 3			
973.5 2	1288.68	0.333			
1008.000	1045.02	12.4 9			
1045.2 5	1047 21	0.1 1			
1047.41 10	1047.31	0.02 5			
1054.50 10 ×1062 5 2	1034.18	5.47			
1003.5 5	9118 91	0.31			
1071.0 12	2118.31	6 1 1			
1096 00 4	1865 02	638			
1101 39 6	1865 02	4 2 3			
×1136.0‡ 3	1000.02	4.2.4			
×1172.8 3		0.3 1			
1288.64 11	1288.68	0.41 4			
1301.7 4	2835.73	0.47 4			
×1308.7 3		0.5 1			
×1323.7 [‡] 3		3.4 3			
1349.29 7	2118.31	4.6 3			
1354.41 8	2118.31	2.9 3			

$^{129}_{50}\mathrm{Sn}_{79}\text{--}9$

$^{129}_{50}$ Sn₇₉-9

¹²⁹ In β ⁻ Decay (611 ms)	2004Ga24,1980De35 (continued)

	$\gamma(^{129}\text{Sn})$	(continued)
--	---------------------------	-------------

$E\gamma^{\dagger}$	E(level)	Iγ ^{§#}	Comments
^x 1427.3 3		1.0 1	
1455.53 11	1455.51	1.91 13	
1499.00 17	1534.31	0.96 7	
×1577.5 3		0.6 1	
×1716.1 3		0.5 1	
1736.7 6	2790.86	0.3 2	
1781.54 13	2835.73	4.6 3	
1791.9 5	2835.73	0.33 3	
1830.1 5	1865.02	0.24 5	
1864.89 6	1865.02	74 5	
x1906.3 3		0.9 1	
1906.32 15	1906.21	0.96 6	
×1977.0 3		1.0 1	
2021.8 2	2790.86	0.84 6	
2066.64 11	2835.73	2.62	
2072.3 5	2835.73	0.16 4	
2082.9 4	2118.31	0.42 4	
2118.26 10	2118.31	100 7	
x2189.5 3		3.74	
2212.70 17	2981.79	1.64 10	
x2302 1		1.22	
x2367 1		1.52	
2371.5 9	3140 . 32	0.18 2	
2376.6 6	3140 . 32	0.33 3	
2546 1	3589.6	3.54	Εγ,Ιγ: from 1980De35.
2982.1 6	2981.79	0.15 3	
3140 27 18	3140 32	1 11 9	

[†] From 2004Ga24, except as noted.
[‡] Possibly correspond to γ rays which 1977He24 regarded as deexciting the 1703-keV isomer (3 μs) in ¹²⁹Sb (1980De35).
§ from 2004Ga24, except for unplaced gammas which come from 1980De35.

 $^{\#}$ For absolute intensity per 100 decays, multiply by 0.42 2.

 $x \gamma$ ray not placed in level scheme.

¹²⁹In

β⁻ Decay

(611)

ms)

2004Ga24,1980De35 (continued)

 $^{129}_{50}\mathrm{Sn}_{79}\mathrm{-10}$

$^{129}In\ \beta^{-}$ Decay (1.23 s) $\ 2004Ga24,1980De35$

 $Parent \ ^{129}In: \ E=459 \ 5; \ J\pi=(1/2-); \ T_{1/2}=1.23 \ s \ 3; \ Q(g.s.)=7769 \ 19; \ \%\beta^- \ decay=100.$

¹²⁹In-E,J,T_{1/2}: From ¹²⁹In Adopted Levels.

 129 In-Q(β^{-}): From 2012Wa38. 1980De35: 235 U(n,F) E=th, on-line ms; semi, scin β , γ , ce, $\gamma\gamma^{-}$, $\beta\gamma$ -coin.

1987Sp09: ²³⁵U(n,F) E=th, on-line ms; HPGE, β , γ , $\beta\gamma$ -coin.

2004Ga24: The 129 In isotope was obtained by thermal-neutron induced fission of a 235 U carbide target inside the combined target and ion source ANUBIS. During the measurements of singles data, surface ionization was used to select the element In and thereby suppress the daughter activities. Measured E β , E γ , I γ , $\gamma\gamma$, $\beta\gamma(coin)$, $\gamma\gamma(t)$, $T_{1/2}$ (isotope) with 3 Ge detectors of which one was a LEPS. Three Ge detectors were also used for the Q_{β} measurement, where the LEPS detector was used as a β spectrometer.

 129 Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	T	Comments
0.0	3/2+	2.23 min 4	T
35.35 13	11/2 -	6.9 min 1	$86^{-}=100.$
			T ₋₁₀ : from 1980De35.
			$r_{1/2}$. The residue point for the second from RIII, and not observed in experiments
315.410 20	(1/2)+		
763.89 13	(9/2-)		
769.28 9	(5/2+)		
1043.89 13	(7/2-)		
1047.45 7	(7/2+)		
1222.61 5	(3/2+)		
1288.74 9	(3/2+)		
1613.51 15			
1701.28 13	(7/2-)		
3079.4 3	(3/2-)		
3394.3 3	(1/2,3/2)		
3590.62 9	(3/2-)		

 † Based on a least-squares fit to the Ey data from 2004Ga24; level scheme is also from 2004Ga24.

‡ From Adopted Levels.

β^- radiations

$E\beta^-$	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(4637 20	2) 3590.62	5.10 17	5.542	av $E\beta = 2016.8 \ 93.$
(4834 20	0) 3394.3	0.22 2	6.98 5	av $E\beta = 2109.8 \ 94.$
(5149 20	0) 3079.4	0.42 3	6.82 4	av $E\beta = 2259.1 94.$
(6939 20	0) 1288.74	0.58 7	7.26 6	av $E\beta = 3108.2$ 93.
(7005 20	0) 1222.61	1.56 14	6.85 4	av $E\beta = 3139.5$ 93.
(7913 20	0) 315.410	15.1 13	6.10 4	av Eβ=3568.8 93.
(8228 20	0.0	77 15	5.479	av Eβ=3717.9 93.

[†] Absolute intensity per 100 decays.

$\gamma(^{129}\text{Sn})$

Iγ normalization: From 2004Ga24. %IT<0.3; %β-n=3.92 19 (1993Ru01).

$E\gamma^{\dagger \ddagger}$	E(level)	Iγ§	Mult.	α	Comments
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1222.611047.451043.89315.410	$\begin{array}{cccc} 0.17 & 10 \\ 0.07 & 3 \\ 0.45 & 9 \\ 100 & 7 \end{array}$	E2(+M1)	0.028 3	α(K)exp=0.025 2.
010112 2	0101110	100 1	()	0.020 0	$\alpha(K)=0.0236$ 19; $\alpha(L)=0.0033$ 6; $\alpha(M)=0.00064$ 12. $\alpha(N)=0.000120$ 21; $\alpha(O)=9.3\times10^{-6}$ 7. Mult.: from $\alpha(K)$ exp. M1 mixing is very small. α : value for pure E2.
519.5 6	1288.74	1.0 2			
657.7 3	1701.28	0.61 6			
728.53 3	763.89	1.23 13			

${}^{129}_{50}$ Sn₇₉-12

$\gamma(^{129}Sn)$ (continued) $E\gamma^{\dagger\ddagger}$ Iγ§ $E\gamma^{\dagger\ddagger}$ Iγ§ E(level) E(level) 769.31 18 769.28 1.9 2 1889.6 2 3590.62 2.221222.61 907.34 8 5.74 1977.0 2 3590.62 1.98 16 1701.28 0.82 9 2035.5 6 3079.4 1.11 11 931.96 19 937.54 19 1701.280.78 9 2301.723590.622.822368.15 17 973.521288.742.223590.624.841008.53 3 1043.8910.6 8 2546.61 11 3590.629.4 7 1047.41 10 1047.450.10 3 2763.9 4 3079.4 1.23 10 1222.61 7.75 3078.9 3 3394.3 1.24 10 1222.51 8 1288.64 11 1288.74 2.8 2 3275.16 15 3590.62 5.94

3590.8 4

¹²⁹In β⁻ Decay (1.23 s) 2004Ga24,1980De35 (continued)

3590.62

1.18 10

[†] From 2004Ga24.

1613.42

1613.51

 \ddagger As for unplaced γ rays, see comments under ^{129}In β^- decay (0.61 s).

2.0 3

§ For absolute intensity per 100 decays, multiply by 0.18.

${}^{129}_{50}$ Sn₇₉-12

¹²⁹In β ⁻ Decay (1.23 s) 2004Ga24,1980De35 (continued)

¹²⁹In β^- Decay (0.67 s) 2004Ga24

Parent $^{129}In:$ E=1630 56; J\pi=(23/2-); $T_{1/2}$ =0.67 s 10; Q(g.s.)=7769 19; % β^- decay=100 $^{129}In-E,J,T_{1/2}:$ From Adopted Levels of $^{129}In.$

 $^{129}In-Q(\beta^{-})$: From 2012Wa38.

2004Ga24: The ¹²⁹In isotope was obtained by thermal-neutron induced fission of a ²³⁵U carbide target inside the combined target and ion source ANUBIS. During the measurements of singles data, surface ionization was used to select the element In and thereby suppress the daughter activities.

Measured E β , E γ , I γ , $\gamma\gamma$, $\beta\gamma(coin)$, $\gamma\gamma(t)$, T (isotope) with 3 Ge detectors of which one was a LEPS. Three Ge detectors were also used for the Q_{β} measurement, where the LEPS detector was used as a β spectrometer.

¹²⁹Sn Levels

E(level) [†]	Jπ§	$T_{1/2}$ §
0.0	3 / 2+	2.23 min 4
35.51	11/2 -	6.9 min 1
$1171.82^{\ddagger}4$	(15/2-)	
$1359.75^{\ddagger}4$	(13/2-)	
1742.24 4	(15/2+)	
1762.0 10	(19/2+)	3.2 µs 2
1803.0 11	(23/2+)	2.0 µs 2
2276.9 11	(21/2)	
3992.9 11	(21/2-)	

 † From least-squares fit to Ey data.

[‡] 2004Ga24 notes that an imbalance of the γ -ray intensities for transitions feeding and depopulating this level has been observed. The authors indicate that unobserved γ feeding is most likely the cause of the apparent β feeding and that true β feeding is assumed to be zero for this level.

§ From Adopted Levels.

β^- radiations

$\mathbf{E}\beta^{-}$	E(level)	Ιβ-	Log ft	Comments
(5410 60)	3992.9	75 4	4.4 1	av Eβ=2381 28.
(7120 60)	2276 . 9	8.0 12	5.9 1	av Eβ=3195 28.

$^{129}_{50}$ Sn₇₉-14

¹²⁹In β⁻ Decay (0.67 s) 2004Ga24 (continued)

β^- radiations (continued)

Εβ-	E(level)	Ιβ-	Log ft	Comments
(7600 60)	1803.0	$14^{\dagger} 4$	5.8 2	av Eβ=3419 28.

[†] Total feeding for 1761.9 and 1802.9 levels; but most of this feeding is expected to be for 1802.9 level. The feeding for the 1761.9 level is expected to be much weaker in view of first- forbidden transition involved.

 $\gamma(^{129}{\rm Sn})$

Iγ normalization: From 2004Ga24.

Εγ	E(level)	Ιγ‡	Mult. [†]	α	I(γ+ce) [‡]	Comments
19.7 10	1762.0		(E2)		168	$I(\gamma \text{+ce}):$ from the level scheme by 2004Ga24.
41.0 2	1803.0	2.58	(E2)	39.9 10		$\alpha(K)=13.64\ 23;\ \alpha(L)=21.1\ 6;\ \alpha(M)=4.37\ 12.$
						$\alpha(N)=0.756\ 21;\ \alpha(O)=0.0195\ 5.$
						B(E2)(W.u.)=1.54 17.
382.49 2	1742 . 24	72 5				
473.99 16	2276.9	21.3 16				
515.1 6	2276.9	6.3 7				
570.41 3	1742.24	92 7				
1136.31 5	1171.82	100 7				
1324.25 5	1359.75	74 5				
1716.1 3	3992.9	13.6 12				
2189.92 10	3992.9	83 6				
2230.88 18	3992.9	34 2				

[†] From Adopted Gammas.

 \ddagger For absolute intensity per 100 decays, multiply by 0.58.

$^{129}_{50}$ Sn₇₉-15

$^{129}In~\beta^-$ Decay (0.67 s) ~~2004Ga24 (continued)

Parent ¹²⁹Sn: E=1761.6 10; $J\pi=(19/2+)$; $T_{1/2}=3.40 \ \mu s$ 13; %IT decay=100.

¹²⁹Sn Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
35.15 5	11/2-	6.9 min 1	$\%\beta^{-}=100; \% IT < 2 \times 10^{-3}.$
1171.48 7	(15/2-)		
1359.40 7	(13/2-)		
1741.89 7	(15/2+)		
1761.6 10	(19/2+)	3.40 µs <i>13</i>	%1T=100.

[†] From Adopted Levels.

$\gamma(^{129}\text{Sn})$

$E\gamma^{\dagger}$	E(level)	Mult. [†]	α	Comments
19.7 10	1761.6	(E2)	1.0×10 ³ 3	$\alpha(L)=7.8E2$ 23; $\alpha(M)=1.6E2$ 5; $\alpha(N)=27$ 9; $\alpha(O)=0.58$ 17. Mult.: half-life is characteristic of an E2 transition (2002Ge07).
382.49 2	1741.89			
570.41 3	1741.89			
1136.31 5	1171.48			
1324.25 5	1359.40			

[†] From Adopted Gammas.

¹²⁹Sn IT Decay (3.40 μs) 2002Ge07 (continued)

Decay Scheme

%IT=100

¹²⁹Sn IT Decay (2.22 µs) 2002Ge07

Parent $^{129}{\rm Sn:}$ E=1802.6 10; J\pi=(23/2+); T $_{1/2}$ =2.22 μs 14; %IT decay=100.

¹²⁹Sn Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
35.15 5	11/2-	6.9 min 1	$\beta^{-1}=100; \ \pi^{-1}=100; \ \pi^{-3}$.
1171.48 7	(15/2-)		
1359.40 7	(13/2-)		
1741.89 7	(15/2+)		
1761.6 10	(19/2+)	3.40 µs 13	%IT=100.
1802.6 10	(23/2+)	2.22 µs 14	%IT=100.

† From Adopted Levels.

$\gamma(^{129}\text{Sn})$

$E\gamma^{\dagger}$	E(level)	Mult. [†]	α	Comments
19.7 <i>10</i> 41.0 2	1761.6 1802.6	(E2) (E2)	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	α(L)=7.8E2 23; α(M)=1.6E2 5; α(N)=27 9; α(O)=0.58 17. α(K)=13.64 23; α(L)=21.1 6; α(M)=4.37 12. α(N)=0.756 21; α(O)=0.0195 5. Mult.: from K x ray intensity and L-conversion intensity in 239Pu(f,nγ). Ev: from 129In β- decay (0.67 s).
382.49 2	1741.89			
570.41 3	1741.89			
1136.315	1171.48			
1324.25 5	1359.40			

[†] From Adopted Gammas.

^{129}Sn IT Decay (2.22 $\mu s)$ - 2002Ge07 (continued)

¹²⁹Sn IT Decay (217 ns) 2008Lo07,2011Pi05

Parent $^{129}Sn:$ E=2552.6 15; J\pi=(27/2-); $T_{1/2}{=}217$ ns 19; %IT decay=100.

¹²⁹Sn-J: from shell model and odd tin systematics.
2008Lo07: ¹²⁹mSn produced in the reactions: ⁹Be(²³⁸U,X) E=750 MeV/ nucleon and ⁹Be(¹³⁶Xe,X) E=600 MeV/nucleon.

Measured delayed y, Ey, Iy, yy, (ion)y coin using eight Cluster Ge detectors of RISING array with BGO Compton and bremsstrahlung suppression. Particles identified using FRS fragment separator, time-of-flight and energy loss measurements.

2011Pi05: 136 Xe beam with E=750 MeV/nucleon impinged on a 4 g/cm² thick ⁹Be target within the RISING campaign at GSI using 15 large-volume Ge cluster detectors. Measured Ey, Iy, yy, yy(t). Comparison with shell model-calculations.

¹²⁹Sn Levels

E(level) [†]	$J\pi^{@}$	T _{1/2} ‡@	Comments	
35.1 <i>1</i>	11/2 -	6.9 min 1	$\% \beta^{-}=100.$	
1171.2 3	(15/2-)			
1359.5 3	(13/2-)			
1741.6 3	(15/2+)			
1761.3# 11	(19/2+)	3.4 µs 4	%IT=100.	
1802.3# 15	(23/2+)	$2.4 \ \mu s \ 4$	%IT=100.	
2407.3 \$ 15	(23/2-)			
2552.6 [§] 15	(27/2-)	217 ns 19	%IT=100.	
			T _{1/2} : from γ(t) (2011Pi05). Other: 0.27 μs 7 (2008Lo07).	

[†] From least-squares fit to $E\gamma$ data.

 \ddagger Measured by 2008Lo07 using delayed coin technique ($\gamma(t)).$

Member of h_{11/2}⁻³ multiplet.
 # Member of d_{3/2}⁻¹h_{11/2}⁻² multiplet.
 @ From Adopted Levels, unless otherwise specified.

$\gamma(^{129}Sn)$

$E\gamma^{\dagger}$	E(level)	<u>Ιγ</u> ^{†#}	Mult.§	α	I(γ+ce) [#]	Comments
(19.7‡)	1761.3		(E2)	963		$\alpha(L)=776 \ 11; \ \alpha(M)=159.7 \ 23; \ \alpha(N)=27.4 \ 4; \ \alpha(O)=0.578 \ 8.$
						B(E2)=0.0059 7 (2008Lo07).
(41.0‡)	1802 . 3		(E2)	39.9		$\alpha(K)=13.64$ 19; $\alpha(L)=21.1$ 3; $\alpha(M)=4.37$ 7; $\alpha(N)=0.756$ 11;
						$\alpha(O)=0.0195$ 3.
						B(E2)=0.0050 9 (2008Lo07).
145.3 3	2552.6	70.2	(E2)	0.4257	100	$\alpha(K)=0.334$ 6; $\alpha(L)=0.0733$ 12; $\alpha(M)=0.01478$ 25.
						$\alpha(N)=0.00265 5; \alpha(O)=0.0001420 23.$
						B(E2)=0.0031 12 (2008Lo07).
382.1 3	1741.6	697				
570.3 3	1741.6	100 10				

¹²⁹Sn IT Decay (217 ns) 2008Lo07,2011Pi05 (continued)

 $\gamma(^{129}Sn)$ (continued)

$E\gamma^{\dagger}$		E(level)	Iγ [†] #
605.0	3	2407.3	97 10
1136.1	\mathcal{B}	1171.2	88 9
1324 . 4	3	1359.5	65 7

[†] Uncertainties assigned as 0.3 keV for E γ and 10% for I γ based on a general statement by 2008Lo07. [‡] From 2002Ge07, not detected by 2008Lo07 due to energy limitations of the recorded γ -ray spectra.

From Adopted Gammas.
Absolute intensity per 100 decays.

 $Parent \ ^{130}In: \ E=0.0; \ J\pi=1(-); \ T_{1/2}=0.29 \ s \ 2; \ Q(g.s.)=2650 \ 40; \ \%\beta^{-}n \ decay=0.93 \ 13.$

¹³⁰In-Q(β-n): From 2012Wa38.

 $^{130}\mathrm{In}{-}\mathrm{J}{,}\mathrm{T}_{1/2}{:}$ From $^{130}\mathrm{In}$ Adopted Levels in ENSDF database.

¹³⁰In-ββ⁻n decay: %β⁻n=0.93 13; weighted average of 1.49 22 (1993Ru01) and 0.90 5 (1986Wa17). 1993Ru01 and 2002Pf04 recommend 1.01 22.

1993Ru01, 1986Wa17: measured delayed neutron emission probability and half-life.

The details of the decay scheme are not known.

¹²⁹Sn Levels

(level)	$J\pi$		Comments
---------	--------	--	----------

0.0

Е

3/2+ Assumed that g.s. is populated in this decay.

130 In β ⁻n Decay (0.54 s) 1993Ru01,1986Wa17,1981En05

- $Parent \ ^{130}In: \ E=50 \ 50; \ J\pi=(10-); \ T_{1/2}=0.54 \ s \ 1; \ Q(g.s.)=2650 \ 40; \ \%\beta^{-}n \ decay=1.65 \ 15.50 \ 10^{-} \ 10^{-$
- Parent ¹³⁰In: E=400 60; $J\pi$ =(5+); $T_{1/2}^{-2}$ =0.54 s 1; Q(g.s.)=2650 40; % β -n decay=1.65 15.
- ¹³⁰In(50)-Q(β-n): From 2012Wa38.

 $^{130}\mathrm{In}(50)\text{--}J, T_{1/2}\text{:}$ From $^{130}\mathrm{In}$ Adopted Levels in ENSDF database.

- $^{130}In(400)-Q(\beta^{-}n)$: From 2012Wa38.
- $^{130}\mathrm{In}(400)\text{--}\mathrm{J},\mathrm{T}_{1/2}\text{:}$ From $^{130}\mathrm{In}$ Adopted Levels in ENSDF database.

 130 In(400)- $\%\beta$ -n decay: $\%\beta$ -n=1.65 15; combined for (10-) isomer at 50 50 and (5+) isomer at 400. Weighted average of (10-) isomer at 50 50 and (5+) isomer at 400. 2.03 12 (1993Ru01), 1.67 9 (1986Wa17), 4.3 15 (1981En05), 1.40 9 (1980Lu04). 1993Ru01 and 2002Pf04 recommend

1.65 18, combined for both isomers.

1993Ru01, 1986Wa17, 1981En05: measured delayed neutron emission probability and half-life.

The details of the decay scheme are not known.

¹²⁹Sn Levels

E(level) $J\,\pi$

Comments

0.0 3/2+ Assumed that g.s. is populated in this decay.

${}^{129}_{50}$ Sn₇₉-20

²³⁹Pu(n,Fγ) 2002Ge07,2000Pi03

Includes 241 Pu(n,F γ).

2002Ge07, 200PiO3 Measured Εγ, Ιγ, γγ, lifetimes using LOHENGRIN spectrometer, Ge and Si(Li) detectors. All data are from 2002Ge07 unless otherwise stated.

¹²⁹Sn Levels

E(level) [†]	$J\pi^{\ddagger}$	T_1/2 [#]	Comments
0.0§	3/2+8		
35.28 3	11/2-8	6.9 min 1	$\%\beta^{-}=100.$
1171.2 3	(15/2-)		
1359.0 3	(13/2-)		
1741.3 3	(15/2+)		
1761.0 4	(19/2+)	3.6 µs 2	%IT=100.
1802.0 5	(23/2+)	$2.4~\mu s~2$	%IT=100.

 † From Ey data assuming $\Delta(E\gamma){=}0.2$ keV as suggested in 2000Pi03.

[‡] Based on the energy systematic arguments deduced from comparison with the known lighter Sn isotopes and shell model theory considerations, unless otherwise stated (2000Pi03).

§ from Adopted Levels.

From 2002Ge07.

 $\gamma(^{129}{\rm Sn})$

Εγ	E(level)	$I\gamma^{\dagger}$	Mult.	α	Comments
19.7	1761.0		(E2)	963	$\alpha(L)=776$ 11; $\alpha(M)=159.7$ 23; $\alpha(N)=27.4$ 4; $\alpha(O)=0.578$ 8.
					Mult.: half-life is characteristic of an E2 transition (2002Ge07).
41.0	1802.0		(E2)	39.9	$\alpha(K) = 13.64 \ 19; \ \alpha(L) = 21.1 \ 3; \ \alpha(M) = 4.37 \ 7; \ \alpha(N) = 0.756 \ 11; \ \alpha(O) = 0.0195 \ 3.$
					Mult.: from K x ray intensity and L-conversion intensity.
382.2	1741.3	46			
570.1	1741.3	56			
1136.0	1171.2	56			
1323 . 8	1359.0	44			

† From 2000Pi03.

²³⁹Pu(n,Fγ) 2002Ge07,2000Pi03 (continued)

Level Scheme

Intensities: relative $I\gamma$

Adopted Levels, Gammas

 $Q(\beta^{-})=2376\ 21;\ S(n)=8070\ 29;\ S(p)=8556\ 28;\ Q(\alpha)=-6580\ 30\ 2012Wa38.$

S(2n)=14072 22, S(2p)=22309 30 (2012Wa38).

1939Ab02: ¹²⁹Sb produced and identified in irradiation of uranium with high-energy neutrons produced in a cyclotron, followed by chemical separation; measured half-life and absorption curves.

Later decay studies: 1962Uh01, 1966Ta05, 1967Ha27, 1974Fo06, 1982Hu09, 1987St03, 1987StZO.

1981Sa15: particle-core coupling and shell-model calculations of level energies and $J\pi$ values.

Inclusion of detailed decay data from 1987StZO in the 2014 update of 129 Sb has resulted in extensive revision of data for levels and γ rays. In the opinion of the evaluators, decay of 6.9-min 129 Sn decay is incomplete and is worthy of further study.

¹²⁹Sb Levels

Cross Reference (XREF) Flags

	A 129 Sn β^{-}	Decay (2.23 min)		E ¹²⁹ Sb IT Decay (1.1 μs) F ¹³⁰ Te(d, ³ He) G ¹³⁰ Te(t,α)		
	B ¹²⁹ Sn β ⁻	Decay (6.9 min)				
	C ¹²⁹ Sb IT	Decay (17.7 min)				
	D ¹²⁹ Sb IT	' Decay (2.2 μs)		H 241 Pu(n,F γ) E=thermal		
E(level) [†]	Jπ	XREF	T _{1/2}	Comments		
0.0	7 / 2 +	ABCDEFGH	4.366 h 26	$\%\beta^{-}=100.$		
				μ=2.79 2 (1997St06,2014StZZ).		
				$J\pi$: L(t, α)=L(d, ³ He)=4; log ft=7.78 to 5/2+.		
				$T_{1/2}$: weighted average (LRSW method) of 4.41 h 1 (1974Fo06),		
				4.31 h 3 (1967Ha27), 4.35 h 5 (1966Ta05), 4.34 h 7		
				(1962Uh01). Others: 4.6 h 1 (1953Pa25), 4.2 h (1939Ab02).		
				Uncertainty in LRSW method was increased to 0.024 h in		
				1974Fo06. Reduced $\chi^2 = 2.35$.		
				μ: NMR on oriented nuclei (1997St06,1996Li01).		
645.14 5	(5/2)+	A FG		$J\pi$: L(t, α)=L(d, ³ He)=2; log ft=5.86 from (3/2+); shell model		
				predictions; systematics of odd Sb nuclides (1981Sa15).		
913.58 5	(3/2)+	A FG		J π : L(t, α)=2. Shell-model calculation (1981Sa15) predicts 3/2+.		
1128.634	(11/2+)	BCDE H		J π : odd Sb systematics. Shell model calculations (1981Sa15).		
1161.39 4	(9/2+)	AB D		$J\pi;~\gamma$ to 7/2+; odd Sb systematics. Shell model calculations (1981Sa15).		
1252.255	(3/2+,5/2,7/2-)	А		J π : γ to 7/2+; log ft=8.0 from (3/2+).		
1493.337	(1/2+)	A FG		XREF: F(1450)G(1450).		
				J π : L(d, ³ He)=(0); log ft=6.8 from (3/2+). Shell-model		
				calculation (1981Sa15) predicts 1/2+ near 1.1 MeV.		
1503.61 7	(5/2+)	А		J π : log ft=7.1 from (3/2+); γ to 9/2+.		
1762.179	(1/2,3/2,5/2)	А		$J\pi: \log ft = 6.8$ from (3/2+).		
1842.137	(1/2,3/2,5/2)	А		$J\pi: \log ft = 6.5$ from (3/2+).		
1848.97 9	(5/2+)	А		J π : log ft=7.1 from (3/2+); γ to (9/2+).		
1851.31 6	(19/2-)	BCDE H	17.7 min 1	$\beta^{-}=85; \ \% IT=15.$		
				E(level): assigned as isomer by 1987St23. 1982Hu09 also report		
				a 17-min isomer with excitation energy unknown.		
				T _{1/2} : from 1982Hu09. Other: 17.1 min (1987St23).		
				$J\pi:$ (M4) γ to (11/2+); shell model systematics; possible		
				$configuration = \pi g_{7/2} \otimes vh_{11/2} \otimes vd_{3/2}.$		
1861.06 5	(15/2-)	B D H	$2.2 \ \mu s \ 2$	%IT=100.		
				J π : gammas to (9/2+) and (19/2-); no β feeding from (11/2-);		
				comparison to ¹³¹ Sb and shell-model calculations.		
				T _{1/2} : γ(t) in (n,Fγ) (2003Ge04,1998GeZX). Other: >2 μs (1987St23).		
1911.215	(13/2-)	В		J π : log ft=6.6 from (11/2-); γ to (15/2-) is possibly M1.		
1913.81 22	(1/2,3/2,5/2)	А		$J\pi: \log ft = 6.7 \text{ from } (3/2+).$		
1922.32 6	(11/2-)	В		Jπ: log ft=6.6 from (11/2-); γ to (9/2+); γ from (13/2-) possibly M1.		
1928.63 5	(17/2-)	В		$J\pi:$ gammas to (15/2-) and (19/2-) possibly M1; no β feeding from (11/2-).		
1940.37 8	(15/2-,17/2-)	В		J\pi: γ to (15/2-) possibly M1; no β feeding from (11/2-).		
1972.755	(13/2-)	В		J π : log ft=6.4 from (11/2-); γ to (15/2-) possibly M1.		
1991.95 5	(13/2-)	В		J π : log ft=7.3 from (11/2-); γ to (15/2-) possibly M1.		
2031.065	(11/2-,13/2-)	В		J π : log ft=6.7 from (11/2-); γ to (13/2-) possibly M1.		
2040 . 81 21	(19/2+)	E H		$J\pi$: comparison to shell model calculations.		
2115.09 11	(1/2,3/2,5/2)	Α		$J\pi: \log ft = 6.1$ from (3/2+).		

Continued on next page (footnotes at end of table)

 $^{129}_{51}\rm{Sb}_{78}\text{--}1$

$^{129}_{51}\rm{Sb}_{78}\text{--}2$

Adopted Levels, Gammas (continued)

¹²⁹Sb Levels (continued)

E(level) [†]	Jπ	XREF	T_1/2	Comments
2139.4 3	(23/2+)	ЕН	I 1.1 us <i>1</i>	%1T=100.
	(,,			$J\pi$: E2 γ to (19/2+).
				T _{1/2} : y(t) in (n,Fy) (2003Ge04).
2148.12 5	(15/2-)	В		$J\pi$: gammas to (13/2-) and (17/2-); no β feeding from (11/2-).
2148.46 7	(9/2,11/2,13/2)	В		$J\pi$: log ft=7.0 from (11/2-).
2155.05 <i>11</i>	(1/2,3/2,5/2)	Α		$J\pi$: log ft=6.9 from (3/2+).
2181.09 9	(1/2,3/2,5/2)	Α		$J\pi$: log ft=6.0 from (3/2+).
2221.32 12	(9/2,11/2,13/2)	В		$J\pi$: log ft=6.7 from (11/2-).
2232.16 11	(9/2-,11/2,13/2)	в		J π : log ft=6.8 from (11/2-); γ to (13/2-).
2247.35 7	(13/2-,15/2+)	В		Jπ: log ft=7.7 from (11/2-); gammas to (13/2-) and (15/2-17/2-)
2259.75 11	(1/2, 3/2, 5/2)	А		$J\pi$: log $ft=6.4$ in $(3/2+)$.
2271.56 7	(15/2-)	В		$J\pi;~\gamma$ to (15/2-) possibly M1; 296 γ between 2568 and 2272 levels
				disfavors $17/2$; no β feeding from $(11/2-)$.
2294.69 8	(9/2 - to 15/2 +)	В		$J\pi$: log ft=7.5 from (11/2-); γ to (13/2-).
2297.23 10	(13/2 - , 15/2 +)	В		$J\pi$: log $ft=7.8$ from (11/2-); γ to (17/2-).
2303.35 7	(9/2 - , 11/2, 13/2 +)	В		$J\pi$: log $ft=7.0$ from (11/2-); gammas to (9/2+) and (13/2-).
2317.08 7	(9/2, 11/2, 13/2+)	В		$J\pi$: log $ft=7.2$ from (11/2-); γ to (9/2+).
2329.85 21	(13/2-)	В		$J\pi$: log $ft=7.4$ from (11/2-); γ to (15/2-) possibly M1.
2369.21 10	(9/2, 11/2, 13/2+)	В		$J\pi$: log $ft=6.4$ from (11/2-); γ to (9/2+).
2377.5 6	(9/2, 11/2, 13/2)	в		$J\pi$: log $ft=7.1$ from (11/2–).
2383.63 22	(1/2, 3/2, 5/2)	A		$J\pi$: log $ft=6.4$ from (3/2+).
2392.89 10	(1/2, 3/2, 5/2)	A		$J\pi$: log $ft=6.4$ from (3/2+).
2430.24 6	(11/2 - , 13/2 +)	В		$J\pi$: log $ft=7.5$ from (11/2-); gammas to (9/2+) and (15/2-).
2434.44 8	(13/2 - , 15/2 +)	В		$J\pi$: log $ft=8.3$ from (11/2-); γ to (17/2-).
2564.80 10	(11/2 - , 13/2)	В		$J\pi$: log $ft=0.3$ from (11/2-); γ to (15/2-).
2008.28 8	(11/2 - , 13/2 +)	В		$J\pi$: log $ft=0.7$ from (11/2-); gammas to (9/2+) and (15/2-).
2611.26 8	(11/2 - , 13/2 +)	В		$J\pi$: log $ft=6.2$ from (11/2-); gammas to (9/2+) and (15/2-).
2665.03 8	(9/2, 11/2, 13/2+)	В		$J\pi$: log $ft=6.4$ from (11/2-); γ to (9/2+).
2010.29 9	(9/2, 11/2, 13/2)	D		$J\pi$: log $f_{t}=0.8$ from $(11/2)$.
2058.40 21	(11/2 - , 13/2)	D FC		$J\pi$: I (f_{π}) = 4
2710 10	(11/9 12/9)	P		J_{π} $L(t, \alpha) = 4$.
2722.8 5	(11/2 - , 13/2) (9/2 - 11/2 - 13/2)	B		$J\pi$: log $ft=5.5$ from $(11/2-)$, γ to $(15/2-)$.
2720.457	(1/2, 11/2, 15/2)	Δ		$J\pi$: log $ft = 5.8$ from $(3/2+)$
2766 90 10	(9/2, 11/2, 13/2)	B		$J\pi$: log $ft = 6.8$ from $(11/2_{-})$
2785 4 4	(1/2, 3/2, 5/2)	A		$J\pi$: log $ft=5.9$ from $(3/2+)$
2796.80 21	(9/2, 11/2, 13/2+)	В		$J\pi$: log $ft=6.6$ from $(11/2-)$: γ to $(9/2+)$.
2822.71 19	(9/211/2.13/2)	В		$J\pi$: log $ft=5.7$ from $(11/2-)$; γ to $(13/2-)$.
2831.30 11	(1/2, 3/2, 5/2)	А		$J\pi$: log $ft=6.1$ from $(3/2+)$.
2864.40 19	(11/213/2)	в		$J\pi$: log ft=5.9 from (11/2-); γ to (15/2-).
2882.08 15	(9/2, 11/2, 13/2+)	в		$J\pi$: log ft=6.0 from (11/2-); γ to (9/2+).
2884.43 15	(9/2, 11/2, 13/2)	в		$J\pi$: log ft=6.2 from (11/2-).
2948.25 21	(9/2, 11/2, 13/2)	В		$J\pi$: log ft=6.8 from (11/2–).
2960.5 4	(9/2, 11/2, 13/2)	В		$J\pi$: log ft=6.3 from (11/2–).
3013.8 4	(9/2,11/2,13/2)	в		$J\pi$: log ft=6.8 from (11/2-).
3031.95 21	(9/2-,11/2,13/2)	в		J π : log ft=6.4 from (11/2-); γ to (13/2-).
3070.02 8	(9/2,11/2,13/2)	в		$J\pi$: log ft=6.2 from (11/2-).
3071 10	1/2-,3/2-	FG		$J\pi$: L(t, α)=1.
3094.1 5	(1/2,3/2,5/2)	Α		$J\pi$: log ft=5.9 from (3/2+).
3097.03 20	(9/2-,11/2,13/2)	в		J π : log ft=6.0 from (11/2-); γ to (13/2-).
3110 10		G		
3130.8 8	(9/2,11/2,13/2)	в		$J\pi$: log ft=6.3 from (11/2-).
3148.13 8	(9/2,11/2,13/2)	в		$J\pi: \log ft=5.6$ from (11/2-).
3164.05 11	(9/2,11/2,13/2)	В		$J\pi: \log ft=6.3$ from (11/2-).
3208.68 12	(9/2,11/2,13/2)	в		$J\pi$: log ft=6.1 from (11/2-).
3274.16 12	(9/2-,11/2,13/2)	в		J π : log ft=5.3 from (11/2-); γ to (13/2-).
3280.71 8	(13/2-)	В		$J\pi$: log ft=5.5 from (11/2-); γ to (17/2-).
3291 10		G		
3410 10	1 / 2 - , 3 / 2 -	G		$J\pi: L(t,\alpha)=1.$
3484 10	5 / 2 - , 7 / 2 -	G		$J\pi: L(t,\alpha)=3.$

Footnotes continued on next page

 $^{129}_{51}\rm{Sb}_{78}\text{--}2$

$^{129}_{51}\rm{Sb}_{78}\text{--}3$

Adopted Levels, Gammas (continued)

 $\gamma(^{129}{
m Sb})$

¹²⁹Sb Levels (continued)

[†] From least-squares fit to E γ data by leaving out 408 γ from 2726 level and doubling the uncertainties of the following γ rays: 579 γ from 1493 level, 862 γ and 1470 γ from 2115 level, 1174 γ from 2303 level, 159 γ from 2430 level, 445 γ from 2678 level, 295 γ , 408 γ and 422 γ from 2726 level. Reduced χ^2 =2.1 instead of 4.6 without making these adjustments as compared to critical χ^2 =1.5.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	001462 <i>21</i> .
699.64 6 100.0 22 [E3] B(E3)(W.u.)=0.53 6. 732.48 5 47.4 [M2] B(M2)(W.u.)=9.7×10 ⁻⁵ 10. 1911.21 50.13 5 10.19 [M1] 4.53 782.59 5 100 3 100	
732.485 47.44 [M2] B(M2)(W.u.)=9.7×10 ⁻⁵ 10. 1911.21 50.135 10.199 [M1] 4.53 782.595 1003 1003	
1911.21 50.13 5 10.19 9 [M1] 4.53 782.59 5 100 3 1913.81 410.2 2 100	
782.59 5 100 3 1913.81 410.2 2 100	
1913.81 410.2 2 100	
1922.32 761.0 <i>I</i> 100	
1928.63 67.47 5 31 3 [M1] 1.91	
77.34 5 100 3 [M1] 1.29	
1940.37 79.4 <i>I</i> 100 [M1] 1.20	
1972.75 44.04 5 35.8 17 [E2] 31.9	
61.55.5 + 68.2.22 + [M1] + 2.49	
111.785 100.0 II [M1] 0.452	
1991.95 69.67.5 100.3 [M1] 1.742	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
108 81 5 15 7 5 [M1] 0.40	
119.92 5 53.0 9 [M1] 0.37	
902 39 5 100 9	
2040 81 189 5 2	
2115.09 266.1 2 76.6 12	
353.1.2 26.3 12	
862.2 1 38.3 12 Ey: level-energy difference=862.8.	
1470.4 1 100.0 24	
2139.4 98.6 2 E2 1.73 3 B(E2)(W.u.)=0.52 5. α(K)=1.226 19; α(L)=0.406 7; α(M)=0.0833 α(N)=0.0153 3; α(O)=0.001138 19. Mult.: α(K)exp is compatible only with E (2003Ge04).	8 <i>14.</i> 22 character
2148.12 156.18 5 14.4 4	
175.36512.53	
219.48 5 100.0 10	
236.96.5 $43.6.4$	

$^{129}_{51}\rm{Sb}_{78}\text{--}4$

Adopted Levels, Gammas (continued)

$\gamma(^{129}{ m Sb})$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.	α	Comments
2148.46	117.40 5	100			
2155.05	1509.9 1	100			
2181.09	332.2 2	13.8 9			
	339.1 2	30.4 23			
	928.8 2	100.0 18			
	1535.9 1	66.8 14			
2221 . 32	299.01	100			
2232 . 16	320.91	100			
2247.35	307.005	52 26			
	336.12 5	100 5			
2259.75	1614.6 1	100			
2271.56	123.44 5	100.0 6	[MI]	0.34	
2291 69	279.01	0 4 100			
2294.09	368 6 1	100 10			
2201.20	386 0 2	59 5			
2303.35	311.47 5	100.0 12			
	1141.5 8	88 8			
	1174.425	28.9 18			
2317.08	285.98 6	8.6 12			
	1155.729	100.04			
	1188.65	36 6			
2329.85	82.5 2	100	[M1]	1.07	
2369.21	1207.7 2	100.0 9			
	1240.6 1	25.0 13			
2377.5	145.3 6	100			
2383.03	890.3 2	100 10			
2392.89	140.8 2	27 9			
2430.24	135.7 1	8.8.12			
2100.21	159.4 2	37.6 8			
	507.84 7	100 8			
	519.04 6	79.2 24			
	1268.6 2	68 4			
2434 . 4 4	505.805	100			
2564.80	417.02	34.6 9			
	1436.1 1	100.0 13			
2568.28	296.2 5	31 3			
0.011 0.0	1406.89 7	100.0 13			
2611.26	339.6 2	11.9 24			
	688 5 2	60 6 14			
	1449 97 8	28 0 10			
2665.03	1503.63 7	100			
2678.29	445.2 2	100 4			
	1549.69 8	36 3			
2698.46	426.9 2	100			
2722.8	425.45	57 14			
	451.4 5	100 14			
	574.7 5	51 5			
2726.45	295.0 3	100.0 7			
	408.0 2	98 10			Eγ: poor fit. Level-energy difference=409.4.
	422.3 2	48.4 7			
	1597 4 9	59 1 9			
2747.9	2102 7 3	100			
2766.90	844.58 8	100			
2785.4	1281.8 4	100			
2796.80	1635.4 2	100			
2822.71	258.24	0.75 8			
	505.52	100.0 23			
	851.3 9	2.63 15			
2831 . 30	1327.69 8	100			
Adopted Levels, Gammas (continued)

 $\gamma(^{129}{
m Sb})$ (continued)

E(level)	$E\gamma^{\dagger}$	$I\gamma^\dagger$	E(level)	$\mathbf{E}\gamma^{\dagger}$	Iγ [†]
2864.40	592.8 2	33.6 9	3094.1	2448.9 5	100
	716.44	100.0 10	3097.03	1066.2 7	61 3
2882.08	578.82	97 16		1185.8 2	1004
	1720.6 2	100.0 13	3130.8	827.4 8	100
2884.43	961.8 2	2.6 3	3148.13	1225.80 5	100
	1756.1 2	100 3	3164.05	2035.4 1	100
2948.25	1819.6 2	100	3208.68	891.6 1	100
2960.5	1831.94	100	3274.16	1301.4 1	3.76
3013.8	1885.2 4	100		2146 1	100.0 10
3031.95	1059.2 2	100	3280.71	1352.07 5	100
3070.02	1147.69 6	100			

[†] From either 2.23-min ¹²⁹Sn decay or 6.9-min ¹²⁹Sn decay. A few high-spin levels are populated only in ²⁴¹Pu(n,Fγ).

$^{129}_{51}\rm{Sb}_{78}\text{--}5$

Level Scheme

Intensities: relative photon branching from each level

5/2-,7/2-		- 0 -												3484
1/2-,3/2-		200°, 200°,												3410
(10/0.)	<u>8</u>	8 N 8												
(13/2-)	2000		°,°°											$\frac{3280.71}{2274.16}$
	<u> </u>		<u>); </u>	<u> </u>									—	5274.10
(9/2,11/2,13/2)		+	×- 0,00-0	-00										3208.68
(9/2,11/2,13/2)			2024	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	e									3164.05
(9/2,11/2,13/2)			-~~	2.0	<u></u>								ال	3148.13
(9/2,11/2,13/2)				>_%_0	0_0000, 0000,	0.00	_							3130.8
(9/2-,11/2,13/2)			+++++-	L-&.&		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.000	~					7)))	3097.03
(1/2,3/2,5/2)				TT,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>%_%</u> ^	<u>20-7:</u>		_ =				ווה	2070.02
(9/2, 11/2, 13/2)				4		2000	- 10 ⁻ 0 ⁻ 1	2	0.9.7.9.0.	0.6			-лШ	3031.95
$(9/2 \ 11/2 \ 13/2)$	///┌───┼┼					Ŧ᠇᠇ᠮ	6. Ý X	8×1×8000	0 / ~ ~ ~ - '	6 Ó	200 -	_ = 	())))	3013.8
(9/2,11/2,13/2)	/////====						FT-	v-88468	N 2 2 - 0	6 6 7 6	_%;%; _%;%;	<u>};;=;=;</u> ;]	/////	2960.5
(9/2 11/2 13/2)	/////////							-		28.8	~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~		/////	2948 25
(9/2,11/2,13/2)	////////////								$ \rightarrow + + + + + + + + + + + + + + + + + + $	╤╤୬	૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૺ	6. 2 c o i i i i i i i i i i i i i i i i i i	11111	2884.43
(9/2,11/2,13/2+)	///////////////	++++	+++++							<u> </u>		28.55-1118	ullli	2882.08
(11/2-,13/2)	////////////	++++	+++++		+++++			+++++			┝┼┼┯		//////	2864.40
(1/2,3/2,5/2)													illlli	2831.30
(9/2-,11/2,13/2)													ıllllı	2822.71
(9/2,11/2,13/2+)	////////												1111/r	2796.80
(1/2,3/2,5/2)	///////												1111/	2785.4
(9/2,11/2,13/2)	////////////								- † ∰†+			<u>₩+++</u> \\\\\\\		2766.90
(1/2,3/2,5/2)										\$				2747.9
(9/2,11/2,13/2)	////////								7			_ <u></u>		2726.45
(11/2-,13/2)	////////							<u>+</u>	<u></u>					2722.8
(11/2-,13/2)													/////	2698.46
(9/2,11/2,13/2)	/////////		╞╨┼┼┼					<u>+</u> %		++			/////	2678.29
(9/2,11/2,13/2+)		♥	₩		1	1							11111	2665.03
(11/2-,13/2+)	///////₽≢	®	⋪⊒⋬⋐		2					\equiv			11111	2611.26
(11/2-,13/2+)	////////												11111	2568.28
(11/2-,13/2)	////////												11111	2564.80
(13/2-,15/2+)	////////-+											_ <u>+</u> \\\\\\\	11111	2434.44
(11/2-,13/2+)													11111	2430.24
(9/2,11/2,13/2+)													./////	2317.08
(9/2-,11/2,13/2+)													.()))))	2303.35
(13/2-,15/2+)													.()))))	2297.23
(15/2-)	/////					<u>¥</u>	<u> </u>						1111	2271.56
(9/2-,11/2,13/2)												//		2232.16
(13/2-) (11/2-12/2-)	////												())))	2140.12
(13/2_)	///													1991 95
(13/2-)	/												_\\\\	1972 75
(17/2-)	/												_ ///	1928 63
(11/2-)					V	1	L			<u> </u>	V.		_//	1922.32
(13/2-)	¥	¥						¥	¥_			¥	7//	1911.21
(5/2+)													//	1503.61
(9/2+)													1	1161.39
(11/2+)														1128.63
_														-
(5/2)+			V					1						645.14

 $^{12\,9}_{5\,1}{\rm Sb}_{78}$

0.0 4.366 h

Level Scheme (continued)

Intensities: relative photon branching from each level

5/2-,7/2-		3484	
1/2-,3/2-		3410	
(0/9_11/913/9)		3974 16	
(0/0.11/0.12/0)		2274.10	
(9/2,11/2,13/2)		3208.68	
(9/2,11/2,13/2)		3130.8	
(9/2,11/2,13/2)		3070.02	
(9/2,11/2,13/2)		3013.8	
(9/2,11/2,13/2)		2948.25	
(11/2-,13/2)		2864.40	
(1/2,3/2,5/2)		2785.4	
(11/2-,13/2)		2722.8	
(9/2,11/2,13/2+)		2665.03	
(11/2-,13/2)		2564.80	
(11/2-,13/2+)		2430.24	
(1/2,3/2,5/2)		2383 63	
(9/2,11/2,13/2)		2377.5	
(9/2,11/2,13/2+)		2369.21	
(13/2–)		2329.85	
(9/2,11/2,13/2+)	<u> </u>	2317.08	
(9/2-,11/2,13/2+)		2303.35	
$\frac{(13/2-,15/2+)}{(0/2-t_0-15/2+)}$		2297.23	
(9/2-t0-15/2+)		2294.69	
(1/2,3/2,5/2)		2259.75	
(13/2-,15/2+)	ⅈⅆℹℿ	2247.35	
(9/2-,11/2,13/2)	╢╢║╓╦╤╪╼╾╪╪╼┿╧╪╼╼╌╧╼╼╧╗╢╢╢╢	2232.16	
(9/2,11/2,13/2)		2221.32	
(1/2,3/2,5/2)		2181.09	
(1/2,3/2,5/2)		2155.05	
(9/2,11/2,13/2)		2148.40	
(10/2)		2139.4	11
(1/2,3/2,5/2)		2115.09	1.1 µs
(19/2+)		2040.81	
(11/2-,13/2-)		2031.06	
(13/2-)		1991.95	
(13/2-)		1972.75	
(13/2-,17/2-)		1940.37	
(11/2-)		1922.32	
(13/2-)		1911.21	
(15/2-)		1861.06	2 2 us
(19/2-)		1851.31	17.7 min
_(5/2+)		1848.97	
(1/2,3/2,5/2)		1842.13	
(1/2,3/2,5/2)		1/02.17	
(3/2+5/2,7/2-)		1252 25	
(9/2+)		1161.39	
(11/2+)	1128.63	
(3/2)+		913.58	
(5/2)+		645.14	
7/2+		0.0	4.366 h

Level Scheme (continued)

Intensities: relative photon branching from each level

5/2-,7/2-		3484	
1/2-,3/2-		3410	
(9/2-,11/2,13/2)		3274.16	
(9/2,11/2,13/2)		3208.68	
(9/2, 11/2, 13/2)		3130.8	
(9/2,11/2,13/2)		3070.02	
(9/2,11/2,13/2)		3013.8	
(9/2,11/2,13/2)		2948.25	
(11/2-,13/2)		2864.40	
(1/2,3/2,5/2)		2785.4	
(11/2-,13/2)		2722.8	
(9/2,11/2,13/2+)		2665.03	
(11/2-,13/2)		2564.80	
(11/2-,13/2+)		2430.24	
(9/2,11/2,13/2+)		2369.21	
(9/2-,11/2,13/2+)		2303.35	
(13/2-,15/2+)		2247.35	
(1/2,3/2,5/2)		2181.09	
(1/2,3/2,5/2)	\$\$\$ <u>\$</u>	2115.09	
	2222820 000 000000000000000000000000000		
(15/2-,17/2-)		1940.37	
(11/2-)		1928.83	
(1/2,3/2,5/2)		1913.81	
(13/2-)		1911.21	
(15/2-)		1861.06	2.2 us
(19/2-)		1851.31	17.7 min
(5/2+)		1848.97	
(1/2, 3/2, 5/2)		1842.13	
(1/2, 3/2, 3/2) (5/2+)		1503 61	
(1/2+)		1493.33	
(3/2 + 5/2, 7/2 -)		1252 25	
(0/2+)		1101.00	
(9/2+) (11/2+)	<u> </u>	1128.63	
(3/2)+		913.58	
<u>(5/2)+</u>		645.14	
7/2+		0.0	4.366 h

$^{129}_{51}$ Sb₇₈-9

¹²⁹Sn β⁻ Decay (2.23 min) 1995St28,1987StZO

 $Parent \ ^{129}Sn: \ E=0.0; \ J\pi=3/2+; \ T_{1/2}=2.23 \ min \ 4; \ Q(g.s.)=4022 \ 29; \ \%\beta^- \ decay=100.$

 $^{129}Sn{-}Q(\beta^{-}){:}$ From 2012Wa38.

 $^{129}\mathrm{Sn}{-}\mathrm{J}{,}\mathrm{T}_{1/2}{:}$ From Adopted Levels of $^{129}\mathrm{Sn}{.}$

- 1995St28, 1987StZO (thesis by the first author of 1995St28): 235 U(n,F) E=th, on-line mass separator; Ge detector, ce, $\gamma\gamma$ -coin, $T_{1/2}$.
- 1982Hu09: $^{235}U(n,F)$ E=th, on-line mass separator; Ge detector, $\gamma\gamma$ -coin, $T_{1/2}$. A total of 57 γ rays up to 1951 keV are reported in this study, but only 14 γ rays are common with those in 1987StZO and 1995St28. Only 17 γ rays were placed in a level scheme with 12 excited states. Following levels are not confirmed in 1987StZO: 1448.2, 1755.8, 2018.1, 2148.6 and 2463.8. Placements of several γ rays are different from those in 1987StZO and 1995St28.

Others: prior to work of 1982Hu09, only one γ ray at 645 was known.

1980De35: $^{235}U(n,F)$ E=th, on-line mass separator; Ge detector, scin $\gamma,~\beta,~ce,~\gamma\gamma-,~\beta\gamma-coin.$

1974Fo06: $^{235}U(n,F)$ E=th, chem; pc $\beta,$ Ge detector.

1972Iz01: ²³⁵U(n,F) E=th, on-line mass separator; Ge detector, $\gamma\gamma$ -coin.

The decay scheme given here is from 1987StZO and 1995St28. Note that 1982Hu09 proposed a decay scheme with 12 levels, 7 of which are confirmed in 1987StZO.

¹²⁹Sb Levels

Following levels proposed in 1982Hu09 are not confirmed in 1987StZO. The gamma rays assigned in 1982Hu09 either have been placed elsewhere or not seen in 1987StZO: 1448.2, 1755.8, 2018.1(?), 2148.6, 2463.8(?). These are omitted here.

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} ‡	Comments
0.0	7/2+ (5/2)+	4.366 h 26	
913.61 5	(3/2)+		
1161.41 5	(9/2+)		Gamma-intensity balance gives non-physical β feeding of -0.56% 7.
1252 . 24 5	(3/2+,5/2,7/2-)		Jπ: 1995St28 (also 1987StZO) suggest 5/2+.
1493.117	(1/2+)		
1503.597	(5/2+)		Jπ: 1995St28 (also 1987StZO) suggest 7/2+.
1762.00 10	(1/2,3/2,5/2)		Jπ: 1995St28 suggest 3/2+.
1841.95 8	(1/2,3/2,5/2)		1995St28 suggest 5/2+.
1848.82 10	(5/2+)		Jπ: 1995St28 (also 1987StZO) suggest 7/2+.
1913.79 22	(1/2,3/2,5/2)		
2114.96 12	(1/2,3/2,5/2)		
2154.87 12	(1/2,3/2,5/2)		
2180.94 10	(1/2,3/2,5/2)		
2259.57 12	(1/2,3/2,5/2)		
2383.41 22	(1/2,3/2,5/2)		
2392.91 10	(1/2,3/2,5/2)		
2747.7 3	(1/2,3/2,5/2)		
2785.4 4	(1/2,3/2,5/2)		
2831.29 11	(1/2,3/2,5/2)		
3093.9 5	(1/2,3/2,5/2)		

[†] From least-squares fit to the E γ data with double the quoted uncertainty for 645 γ , 862 γ and 1470 γ to get an acceptable fit with reduced χ^2 =2.9. Otherwise reduced χ^2 =6.9.

[‡] From Adopted Levels.

β⁻ radiations

$\mathbf{E}\beta^{-}$	E(level)	Ιβ-†‡	Log ft	Comments
(930 30)	3093.9	0.4 2	5.92	av $E\beta = 318$ 12.
(1190 30)	2831.29	0.607 20	6.10 5	av Eβ=426 13.
(1240 30)	2785.4	1.02 3	5.945	av Eβ=446 13.
(1270 30)	2747.7	1.5 7	5.82	av Eβ=462 13.
(1630 30)	2392.91	1.02 11	6.40 6	av $E\beta = 616$ 13.
(1640 30)	2383.41	0.97 9	6.43 6	av $E\beta = 621$ 13.
(1760 30)	2259.57	1.30 4	6.43 4	av $E\beta = 676$ 13.
(1840 30)	2180.94	4.00 9	6.01 3	av $E\beta = 711$ 13.
(1870 30)	2154.87	0.63 2	6.84 4	av Eβ=722 13.
(1910 30)	2114.96	3.55 7	6.13 3	av E β =740 13.
(2110 30)	1913.79	1.62 5	6.64 3	av E β =831 14.
(2170 30)	1848.82	0.67 5	7.08 4	av E β =861 14.
(2180 30)	1841.95	2.648	6.49 3	av Eβ=864 14.

$^{129}_{51}{ m Sb}_{78}{-10}$

¹²⁹Sn β⁻ Decay (2.23 min) 1995St28,1987StZO (continued)

β ⁻ radiations	(continued)
---------------------------	-------------

$\mathbf{E}\beta^{-}$	E(level)	$I\beta^{-\ddagger\ddagger}$	Log ft	Comments
(2260 30)	1762 . 0 0	1.72 6	6.74 3	av Eβ=901 14.
(2520 30)	1503.59	1.2 1	7.09 5	av Eβ=1020 14.
(2530 30)	1493.11	2.72	6.75 4	av Eβ=1024 14.
(2770 30)	1252 . 24	0.24 12	8.0 2	av Eβ=1136 14.
(3110 30)	913.61	3.2 2	7.054	av Eβ=1294 14.
(3380 30)	644.96	71 2	5.853 22	av $E\beta = 1420 \ 14$.

 $\gamma(^{129}Sb)$

[†] Deduced by evaluators from γ -ray intensity balance.

[‡] Absolute intensity per 100 decays.

_____ Gamma rays reported in 1982Hu09 but not confirmed in 1987StZO $\mathbf{E} \gamma$ Ιγ Level $\mathbf{E} \gamma$ Ιγ Level 5.0 106.6 92.3 566.4 3 455.2 5 0.4 2 80.5 1 541.0 3 0.8 3 82.2 2 567.440.6 2 2749.0?139.8 1 569.622.3 2 $1.1 \ 3$ 2018.1? 182.2 1 0.71598.22 $1.1 \ 3$ 190.2 2 0.5 1 600.6 2 $1.5 \ 3$ 2749.0? 192.6 2 0.5 1 618.6 2 1.5 4 198.1 *1* 2.22803.0 2 2.161448.2867.7 2 202.9 2 0.91 1.24256.6 2 0.512018.1? 897.74 0.8 3 258.320.92 1110.7 2 4.0 10 1755.8 262.6 10 1406.6 3 1.24273.720.4 1 2115.4 1410.7 3 1.141725.62284.8 3 0.512749.0? 2.88296.0 1 $2.1 \ 3$ 1755.9 3 1.551755.8 336.0 1 1.721779.1 3 2.58368.3 2 0.5 1 1831.8 3 1.8 6 372.3 3 0.62 1865.0 3 1.3 5 374.140.4 2 1915.2.3 1.5 5 385.9 3 0.72 1942.6 3 2.17416.9 2 1.0 3 2258.6 1951.041.25445.5 2 1.022463.8? _____

 $I\gamma$ normalization: From summed $I(\gamma\text{+ce})$ to g.s.=100. No β^- feeding to g.s. is expected.

$E\gamma^{\dagger}$	E(level)	$I\gamma^{\dagger}$ §	Comments
251 7 4	1503 59	0 59 2	
266 1 2	2114 96	1 28 2	
200.12	2114.50	1.20 2	Fy lay from figure III 20 in 1987St70, uncertainting accumed by the evolutions
332.2 2	2100.94	0.30 2	$\Sigma_{\gamma,1\gamma}$, from figure fit-50 in 15075120, uncertainties assumed by the evaluators.
339.1 2	2180.94	0.66 5	
342.22	1503.59	0.922	
349.02	1841.95	0.69 2	
353.12	2114.96	0.442	
410.2 2	1913.79	1.845	
579.30 8	1493.11	2.4 1	
645.19 [‡] 5	644.96	100.0 16	
688.0 3	1848.82	0.62 3	
848.27 6	1493.11	2.445	
858.2 2	1503.59	1.70.3	
862.2 ‡ 1	2114.96	0.64 2	
890.3 2	2383 . 41	1.1 1	
913.54 5	913.61	6.3 2	
928.8 2	2180.94	2.174	
1117.06 8	1762.00	2.395	
1140.6 2	2392 . 91	0.91 9	
1161.42 5	1161.41	0.90 6	

$E\gamma^{\dagger}$	E(level)	Iㆧ	$E\gamma^{\dagger}$	E(level)	Iㆧ	$E\gamma^{\dagger}$	E(level)	Iγ [†] §
1196.98 5	1841.95	2.97 5	1470.4 ‡ 1	2114.96	1.67 4	1614.6 <i>1</i>	2259.57	1.48 4
1203.8 1	1848.82	1.72 3	1479.3 1	2392.91	0.25 8	2102.7 3	2747.7	1.7 8
1252 . 21 5	1252 . 24	4.58 9	1503.63 8	1503.59	1.90 5	2448.95	3093.9	0.52
1281.8 4	2785.4	1.16 3	1509.9 <i>1</i>	2154.87	0.72 2			
1327.69 8	2831.29	0.69 2	1535.9 1	2180.94	1.45 3			

¹²⁹Sn β ⁻ Decay (2.23 min) 1995St28,1987StZO (continued)

 $\gamma(^{129}{
m Sb})$ (continued)

 † From 1987StZO (thesis from first author of 1995St28). Detailed γ -ray data are also available from 1982Hu09, but a large number

of γ rays in this work has not been confirmed by 1987StZO. Many of these γ rays probably belong to impurities. [‡] Double uncertainty assumed by evaluators for least-squares fit.

 $\$ For absolute intensity per 100 decays, multiply by 0.880 13.

¹²⁹Sn β⁻ Decay (2.23 min) 1995St28,1987StZO (continued)

 $Parent \ ^{129}Sn: \ E=35.15 \ 5; \ J\pi=11/2-; \ T_{1/2}=6.9 \ min \ 1; \ Q(g.s.)=4022 \ 29; \ \%\beta^{-} \ decay=100.53 \ Comparent \ M_{1/2}=0.53 \ Comparent$

- $^{129}Sn-Q(\beta^{-})$: From 2012Wa38.
- ¹²⁹Sn-E,t,J: From Adopted Levels of ¹²⁹Sn.

1987StZO, 1987St23, 1988StZQ: ²³⁵U(n,F) E=th, on-line mass separator; Ge detector, ce, $\gamma\gamma$ -coin, $T_{1/2}$.

- 1982Hu09: ²³⁵U(n,F) E=th, on-line mass separator; Ge detector, γγ-coin, T_{1/2}.
- 1977He24: $^{235}U(n,F)$ E=th, on-line mass separator; Ge detector, $\gamma\gamma\text{-coin.}$
- 1980De35: $^{235}U(n,F)$ E=th, on-line mass separator; Ge detector, scin $\gamma,~\beta,~ce,~\gamma\gamma-,~\beta\gamma-coin.$
- 1974Fo06: $^{235}U(n,F)$ E=th, chem; pc, $\beta,$ Ge detector.
- See also ^{129}Sb IT decay (17.7 min) and ^{129}Sn β^- decay (2.23 min).

The decay scheme first proposed by 1982Hu09 is substantially extended and revised in 1987StZO, only a small portion of which is presented in 1987St23. A 17-min isomer is observed by 1982Hu09 and 1987St23; however, only the latter specify the level, 1977He24 propose a 3-us isomer at 1703.4 keV which is not confirmed by 1982Hu09 and 1987St23.

In the opinion of evaluators, the decay scheme of 6.9-min ¹²⁹Sn is not known well from either the work of 1987StZO (also 1987St23) or 1982Hu09. In the present dataset, evaluators have adopted data from 1987StZO (also 1987St23,1988StZQ) since this work seems more reliable in terms of $\gamma\gamma$ -coincidence data and inventory of γ -ray transitions. However, there remain several misprints (and possible mistakes) in data presented by 1987StZO, not all of which have been resolved. The multipolarities of γ transitions (some of which have large conversion coefficients) remain largely unknown. The spins and parities assigned by 1987StZO are tentative at best.

¹²⁹Sb Levels

Following levels proposed in 1982Hu09 are not confirmed in 1987StZO. The gamma rays assigned in 1982Hu09 either have been placed elsewhere or not seen in 1987StZO: 1978.4, 1999.5, 2263.0, 2555.9, 2714.3, 2792.5. These are omitted here

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0	7 / 2 +	4.366 h 26	
1128.634	(11/2+)		
1161.40 4	(9/2+)		

Continued on next page (footnotes at end of table)

 ${}^{129}_{51}$ Sb₇₈-12

$^{129}_{51}{ m Sb}_{78}{-13}$

$^{129}_{51}\rm{Sb}_{78}\text{--}13$

¹²⁹Sn β^- Decay (6.9 min) 1987StZO,1987St23 (continued)

¹²⁹Sb Levels (continued)

E(level) [†]	Jπ‡	T	Comments
1851.31 6	(19/2-)	17.7 min <i>1</i>	%IT=15 (1987St23); $\beta^{-}=85$. T: from Adouted Levels.
1861.07 5	(15/2-)	>2 µs	$T_{1/2}$: from coin resolving time (1987St23). 1982Hu09 propose a ground-state transition of 1861.2 keV from this level, but in view of implied M4 multipolarity, this transition is unlikely. This γ was not reported in 1987StZO.
1911.21 5	(13/2-)		
1922.33 6	(11/2-)		
1928.64 5	(17/2-)		
1940.38 8	(15/2-,17/2-)		
1972.75 5	(13/2-)		
1991.965	(13/2-)		
2031.07 5	(11/2-,13/2-)		Jπ: 11/2- in 1987StZO.
2148.13 5	(15/2-)		
2148.47 7	(9/2,11/2,13/2)		
2221.33 12	(9/2,11/2,13/2)		
2232.17 11	(9/2-,11/2,13/2)		Jπ: 11/2- in 1987StZO.
2247.35 7	(13/2-,15/2+)		Jπ: 15/2- in 1987StZO.
2271.57 7	(15/2-)		Jπ: 13/2-,(15/2-) in 1987StZO.
2294.69 8	(9/2 - to 15/2 +)		
2297.24 10	(13/2 - , 15/2 +)		$J\pi$: 15/2- in 1987StZO.
2303.36 7	(9/2 - , 11/2, 13/2 +)		$J\pi$: 11/2- in 1987StZO.
2317.10 7	(9/2, 11/2, 13/2+)		$J\pi$: $9/2-,11/2-$ in 1987St2O.
2329.85 21	(13/2-)		$J\pi$: 11/2- 1ft 1987StZO.
2309.21 10	(9/2, 11/2, 13/2+)		J#: 9/2- III 1907St20.
2377.5 0	$(\frac{5}{2}, \frac{11}{2}, \frac{13}{2})$		$4\pi \cdot \frac{11}{2}$ in 1987S+70
2430.25 0	(13/2 - 15/2 +)		J_{π} : 15/2- in 1987StZO
2564 81 10	(11/2 - 13/2)		$J\pi$: 13/2 - (11/2-) in 1987StZO
2568.29 8	(11/2, 13/2+)		J_{π} : 11/2-,(9/2-) in 1987StZO.
2611.26 8	(11/213/2 +)		J_{π} : 11/2- in 1987StZO.
2665.04 8	(9/2, 11/2, 13/2+)		Jπ: 7/2 to 11/2 in 1987StZO.
2678.30 9	(9/2, 11/2, 13/2)		Jπ: 13/2- in 1987StZO.
2698.47 21	(11/2-,13/2)		
2722.8 3	(11/2-,13/2)		Jπ: 13/2- in 1987StZO.
2726.29 10	(9/2,11/2,13/2)		Jπ: 9/2-,11/2- in 1987StZO.
2766.91 10	(9/2,11/2,13/2)		
2796.81 21	(9/2,11/2,13/2+)		Jπ: 7/2 to 13/2 in 1987StZO.
2822.73 19	(9/2-,11/2,13/2)		
2864.40 19	(11/2-,13/2)		Jπ: 13/2- in 1987StZO.
2882.08 15	(9/2,11/2,13/2+)		Jπ: 9/2,11/2 in 1987StZO.
2884.44 15	(9/2,11/2,13/2)		
2948.25 21	(9/2,11/2,13/2)		
2960.5 4	(9/2,11/2,13/2)		
3013.8 4	(9/2, 11/2, 13/2)		
3031.96 21	(9/2 - , 11/2, 13/2)		
3070.02 8 2007 02 20	(3/2, 11/2, 13/2)		$I_{\pi}: 0/2 = 12/2$ in $10875+70$
3130 8 9	(2 / 2 - , 1 1 / 2 , 1 3 / 2) (9 / 9 - 1 1 / 9 - 1 9 / 9)		on. 0/2-,10/2- 111 100/01/20.
3148 13 8	(0/2, 11/2, 10/2)		
3164 05 11	(9/2, 11/2, 13/2)		
3208 70 12	(9/2, 11/2, 13/2)		
3274.17 12	(9/211/2 - 13/2)		$J\pi$: 11/2- in 1987StZO.
3280.72 8	(13/2-)		$J\pi: 15/2-$ in 1987StZO.
	-		

[†] From least-squares fit to Ey data. The uncertainties of following Ey values were doubled in order to obtain an acceptable least-squares fit with reduced $\chi^2=2.1$ instead of 4.1 without this adjustment: 159y from 2430 level, 445y from 2678 level, 1174y from 2303 level, 296y, 408y, 423y and 695y from 2726 level. Critical $\chi^2=1.6$.

* As proposed by 1987StZO and 1987StZ3 from systematics and shell-model calculations in 1981Sa15. All assignments are considered as tentative.

¹²⁹Sn β⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

β^- radiations

There are negative β feedings of -1.7% 7 at 1928 level, -0.55% 8 at 2148.1 level, and -0.18% 13 at 2271 level. These are not surprising since both levels involve low-energy transitions, multipolarities of which are only assumed M1 values, small admixtures can easily affect these feedings.

$E\beta^-$	E(level)	$I\beta^{-\dagger \$}$	Log ft [‡]	Comments
(780 30)	3280.72	1.7 2	5.5	av $E\beta=257$ 12.
(780 30)	3274.17	3.06 11	5.2	1p: 1987/5120 list 1.8 4. av Eβ=260 12.
(850 30)	3208.70	0.60 5	6.1	av E β =286 12. IB 1987\$t70 list 0.69 5
(890 30)	3164.05	0.39 2	6.3	av E β =303 12. IB~- 19875tZO list 0.45 1
(910 30)	3148.13	2.11 8	5.6	μ = 10015010 Hz = 10 Hz av Eβ=310 12. Iβ ⁻ : 19878tZO list 2.41 3.
(930 30)	3130.8	0.51 4	6.3	av E β =317 12. I β ⁻ : 1987StZO list 0.58 3.
(960 30)	3097.03	1.23 6	5.9	av Eβ=331 12. Iβ ⁻ : 1987StZO list 1.4.
(990 30)	3070.02	0.86 4	6.1	av Eβ=342 12. Iβ ⁻ : 1987StZO list 0.98 2.
(1030 30)	3031.96	0.57 3	6.4	av Eβ=357 <i>12.</i> Iβ ⁻ : 1987StZO list 0.64 <i>2</i> .
(1040 30)	3013.8	0.221 14	6.8	av Eβ=365 12. Iβ ⁻ : 1987StZO list 0.27 1.
(1100 30)	2960.5	0.96 4	6.3	av $E\beta = 387 \ I3.$ I β^{-1} : 1987StZO list 1.10 I.
(1110 30)	2948.25	0.322 14	6.8	av $E\beta$ =392 13. $I\beta^{-1}$: 1987StZO list 0.37 1.
$(1170 \ 30)$	2884.44	1.44 7	6.2	av E β =419 13. I β ⁻ : 1987StZO list 1.6. av E β =420 13.
$(1180 \ 30)$	2864 40	2.5 2 3 13 <i>11</i>	5 9	av E8-427 13
$(1230 \ 30)$	2822.73	5.5 2	5.7	
(1260 30)	2796.81	0.72 3	6.6	Iβ ⁻ : 1987StZO list 0.26 2. av Eβ=456 13.
(1290 30)	2766.91	0.56 9	6.8	Iβ ⁻ : 1987StZO list 0.82 2. av Eβ=469 13.
(1330 30)	2726.29	11.0 5	5.5	I β^- : 1987StZO list 0.64 9. av E β =486 13.
(1330 30)	2722.8	1.17 13	6.5	Iβ ⁻ : 1987StZO list 12.7 3. av Eβ=488 13.
(1360 30)	2698.47	0.68 3	6.8	Iβ ⁻ : 1987StZO list 1.3 <i>I</i> . av Eβ=498 <i>I</i> 3.
(1380 30)	2678.30	0.72 4	6.8	$Iβ^-$: 1987StZO list 0.78 <i>1</i> . av Eβ=507 <i>13</i> .
(1390 30)	2665.04	1.87 7	6.4	$1\beta^{-1}$: 1987/SE2O hist 0.82 3. av Eβ=513 13.
(1450 30)	2611.26	3.39 13	6.2	av E β =536 13. E β =-536 13.
(1490 30)	2568.29	1.18 5	6.7	av E β =555 13. IB 1987\$tZO list 1.35 4
(1490 30)	2564 . 81	2.95 11	6.3	av Eβ=556 I3. Iβ=: 19878tZO list 3.37 4.
(1620 30)	2434.44	0.044 17	8.3	av Eβ=613 13. Iβ ⁻ : 1987StZO list 0.05 2.
(1630 30)	2430.25	0.24 10	7.5	av Eβ=615 <i>13.</i> Iβ ⁻ : 1987StZO list 0.3 <i>1.</i>
(1680 30)	2377.5	0.67 3	7.1	av Eβ=639 <i>13.</i> Iβ ⁻ : 1987StZO list 0.77 <i>2</i> .
(1690 30)	2369.21	3.46 12	6.4	av Eβ=642 13. Iβ ⁻ : 1987StZO list 4.0 1.

$^{129}_{51}\rm{Sb}_{78}\text{--}15$

¹²⁹Sn β ⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

β- 1	radiations	(continued)
------	------------	-------------

$E\beta^{-}$	E(level)	Iβ-†§	Log ft [‡]	Comments
$(1730 \ 30)$	2329.85	0.452	7.3	av Eß=660 13.
(,				$IB^-: 1987StZO list 0.25 1.$
$(1740 \ 30)$	2317.10	0.76	7.2	av $EB=666$ 13.
				Iβ ⁻ : 1987StZO list 0.8 4.
(1750 30)	2303.36	$1.1 \ 3$	7.0	av $E\beta = 672$ 13.
				Iβ ⁻ : 1987StZO list 1.3 3.
(1760 30)	2297.24	0.18 9	7.8	av $E\beta = 674 \ 13.$
				Iβ ⁻ : 1987StZO list 0.2 1.
(1760 30)	2294.69	0.33 5	7.5	av Eβ=676 13.
				Iβ ⁻ : 1987StZO list 0.4 1.
(1810 30)	2247 . 35	0.26 13	7.7	av Eβ=697 13.
				Iβ ⁻ : 1987StZO list 0.8 1.
$(1820 \ 30)$	2232 . 17	$2.2 \ 3$	6.8	av $E\beta = 704 \ 13$.
				Iβ ⁻ : 1987StZO list 2.0 3.
(1840 30)	2221 . 33	2.80 10	6.7	av $E\beta = 708 \ 13$.
				Iβ ⁻ : 1987StZO list 3.20 3.
(1910 30)	2148.47	1.70 6	6.9	av $E\beta = 741 \ 13$.
				Iβ ⁻ : 1987StZO list 1.9.
$(2030 \ 30)$	2031.07	3.6 5	6.7	av $E\beta = 794$ 14.
				Iβ ⁻ : 1987StZO list 4.2 1.
(2070 30)	1991.96	$1.2 \ 3$	7.2	av $E\beta = 812$ 14.
				Iβ ⁻ : 1987StZO list 1.3 4.
(2080 30)	1972.75	9.5 6	6.4	av $E\beta = 821 \ 14.$
				Iβ ⁻ : 1987StZO list 11.5 1.
(2130 30)	1922.33	5.7 21	6.6	av $E\beta = 844$ 14.
				Iβ ⁻ : 1987StZO list 6.7 23.
(2150 30)	1911.21	6.5 7	6.6	av $E\beta = 849$ 14.
				Iβ ⁻ : 1987StZO list 7.1 4.
(2900 30)	1161.40	2.9 21	7.5	av E β =1195 14.
				Iβ ⁻ : 1987StZO list 3.2 24.
(2930 30)	1128.63	5.89	7.2	av $E\beta = 1210 \ 14$.
		_	1	I β -: 1987StZO list 1.1 1.
(4060 30)	0.0	≈2	≈9.91u	av $E\beta = 1723$ 14.
				$1\beta^-$: $1\beta(1U$ to g.s.) $\approx 2\%$ is estimated by the evaluators from systematics of
				log ft for 11/2- to 7/2+ transitions in this region. 1987StZO assume no β
				feeding for this level.

[†] From γ-ray intensity balance. All feedings should be considered as approximate since multipolarities of many low-energy transitions are not known, these are only assumed here.

 $\gamma(^{129}Sb)$

All values are considered as approximate.
 § Absolute intensity per 100 decays.

Gamma	rays	$\mathbf{r} \mathrel{e} \mathbf{p} \mathrel{o} \mathbf{r}$	t e d	in 198	2 Hu 0 9	but n	n o t	confirme	ed in	$1987 \mathrm{St}\mathrm{ZO}$
$\mathbf{E}\gamma$		Ιγ		Level		$\mathbf{E}\gamma$		I	Ŷ	Level
97.5 2		1.2	4			579.4	2	6.0	10	
103.7 3		0.8	3			604.9) 1	9.0	20	
109.6 4		1.5	6			692.4	2	5.0	10	2723.1
148.8 1		2.1	3 1	999.5		780.5	57	1.0	5	
206.4 2		1.3	3			792.2	5	2.0	10	2714.3
225.6 1		2.8	4			801.0) 2	4.0	10	2723.1
232.5 2		1.4	3 2	263.0		815.6	5 2	2.7	7	
238.7 1		4.1	4 2	2555.9		862.7	2	2.3	8	2714.3
241.6 1		1.7	3 2	220.5		928.4	2	5.1	15	
264.3 6		1.3	9 2	263.0		931.2	2 7	0.9	6	2792.5
266.5 2		4.8	7 2	822.4		970.1	2	3.0	10	
315.1 2		2.1	5		:	1002.9) 1	9.0	20	
352.5 2		2.7	7 2	331.2	:	1101.0) 4	1.3	5	2263.0
364.5 1		4.4	8			1349.7	2	3.0	10	
421.4 6		0.7	3 2	331.2		1861.2	2 1 (0 1.0	5	1860.9

¹²⁹Sn β⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

 $\gamma(^{129}{
m Sb})$ (continued)

435.4 2 2.2 6

Iv normalization: From summed I(v+ce)=98 to g.s. and 1851-keV isomer, assuming 2% β feeding to g.s.

$E\gamma^{\dagger}$	E(level)	Iγ ^{†§}	Mult. [‡]	α	I(γ+ce) [§]	Comments
(9.76 8)	1861.07		[E2]	33900	26.2 13	$\alpha(L)=2.72E4$ 4; $\alpha(M)=5.59E3$ 8. $\alpha(N)=989$ 14; $\alpha(O)=63.6$ 9. Ev. from level-energy difference
						 I(y+ce): from intensity balance at 1861 level, 5% uncertainty assigned by evaluators. 1987St23 list 25.8 and 1987StZO list 18.6 5.
39.04 5	2031.07	0.092 5	[M1]	9.40		Mult.: M1 suggested by 1987StZO, but I(γ +ce)=1.14 6 and I γ =0.092 5 (1987StZO) give $\delta(E2/M1)$ =0.22 5.
44.04 5	1972.75	0.64 3	[E2]	31.9	21.0 10	Iγ: from I(γ+ce) listed in 1987St23 (and 1987StZO) and α for E2. Iγ=1.93 10 listed in 1987StZO gives $\delta(\text{E2/M1})=0.37$ 5, $\alpha(\text{exp})=9.7$ 8.
50.13 5	1911.21	3.28 3	[M1]	4.53		
61.55 5	1972.75	1.224	[M1]	2.49		
67.47 5	1928.64	2.9 3	[M1]	1.91		Iy: from $I(\gamma+ce)=8.4$ in 1987St23 and α .
						1987StZO list I($\gamma + ce) = 0.64$ 6 and I $\gamma = 0.22$ 2, which seems erroneous.
69.67 5	1991.96	3.41 10	[M1]	1.742		
77.34 5	1928.64	9.3 3	[M1]	1.29		Iγ: from I(γ+ce)=21.4 5 in 1987St23, 1987StZO and α. 1987StZO list Iγ=0.706 5, which seems in erroneous.
79.4 1	1940.38	0.27 13	[M1]	1.20		Iy: from $I(\gamma+ce)=0.6$ 3 in 1987StZO and α . 1987StZO list I $\gamma=0.07$ 1, which seems erroneous in view of γ spectrum shown in author's figure iii-31 and intensity of
00 <u>6</u> 0 5	1001 06	0 0 2	[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	1 149		79.4γ therein.
80.68 2	1991.90	2.23		1.142		Mult M1 proposed by 1987St70 but F2 implied
01.02	1010.00	0.04 1	[111]	1.01		by their spin-parity assignments to levels concerned.
108.81 5	2031 . 07	1.66 5	[M1]	0.49		
111.785	1972.75	1.79 2	[M1]	0.452		
117.40 5	2148.47	3.77 3	[D, E2]	0.54		Mult.: E1 suggested by 1987StZO.
119.92 5	2031.07	5.62 9	[M1]	0.37		
123.44 5	2271.57	4.84 3		0.34		
130.91 0	2430 25	0.403	[M1]	0.290		
145.3 6	2377.5	1.373	[M1]	0.22		
156.18 5	2148.13	1.05 3	[M1]	0.18		
159.42	2430 . 25	0.94 2	[M1]	0.17		
175.365	2148.13	0.912	[M1]	0.13		
219.485	2148.13	7.30 7	[M1, E2]	0.088 17		
236.96 5	2148.13	3.18 3	[M1]	0.058		
258.2 4	2822.73	0.10 1				
279.6 1	2271.57	0.4 2				
285.98 6	2317.10	1.4 2				
295.0 5	2726.29	0 69 7				
299.0 1	2221.33	6.97 7				
307.00 5	2247.35	0.63				
311.475	2303.36	4.88 6				
320.91	2232 . 17	8.5 7				
322.03 8	2294.69	1.1 1				
336.12 5	2247.35	1.16 6				
339.6 2	2611.26	0.5 1				
368.6 1	2297.24	0.79 8				
386.0 2	2297.24	0.474				For near fit. Level onergy difference 400.9
417.0 2	2564.81	1.91 5				Er. poor int. Lever-energy uniference=403.2.

 $^{129}_{51}\rm{Sb}_{78}\text{--}17$

		sn p	Decay (6.9	min) 19878	Stz0,1987St23 (continued)
				γ(¹²⁹ Sb) (cor	ntinued)
			-	1	
$E\gamma^{\dagger}$	E(level)	Iㆧ	Mult. [‡]	α	Comments
422.3 2	2726.29	3.37 5			
425.4 5	2722.8	0.8 2			
426.92	2698.47	1.69 3			
445.2 2	2678.30	1.325			
451.4 5	2722.8	1.4 2			
505.5 2	2822.73	13.3 3			
505.80 5	2434.44	0.11 4			
507.84 7	2430.25	2.5 2			
519.04 6	2430.25	1.98 6			
579 9 9	2122.0	0.727			
592 8 2	2864 40	1 96 5			
618.6 4	2611.26	4.217			
688.5 2	2611.26	2.55 6			
695.43 5	2726.29	6.06 6			
699.64 6	1861.07	2.325	[E3]	0.0076	
716.4 4	2864.40	5.83 6			
722.69 5	1851.31		(M4)	0.0547	Iγ: ≈6.8 deduced by evaluators from total I(γ+ce) feeding this level and 15% ^IT decay. 1987StZO (also 1987St23) list 18.9 10, probably from observation in a spectrum run for a contain counting schedule. The decay of
					17.7-min isomer does not reach equilibrium. $\alpha(K)=0.0457$ 7; $\alpha(L)=0.00721$ 11; $\alpha(M)=0.001462$ 21. $\alpha(N)=0.000281$ 4; $\alpha(O)=2.68\times10^{-5}$ 4. Mult.: from $\alpha(K)\exp=0.049$ 9 (1987St23).
732.48 5	1861.07	1.10 1	[M2]	0.0095	
761.0 1	1922.33	47 5			
782.595	1911.21	32.2 10			
827.4 8	3130.8	1.276			
844.58 8	2766.91	1.4 2			
851.3 9	2822.73	0.35 2			
891.6 1	3208.70	1.5 1			
902.39 5	2031.07	10.6 10			
901.0 2 1059 2 2	2004.44	1 41 4			
1066 2 7	3097 03	1 16 6			
1128.60 5	1128.63	100.0 10			
1141.5 8	2303.36	4.3 4			
1147.69 6	3070.02	2.135			
1155.72 9	2317. 10	16.23 7			
1161.42 5	1161.40	98.7 10			
1174.425	2303.36	1.41 9			
1185.8 2	3097.03	1.91 8			
1188.6 5	2317.10	5.8 10			
1207.7 2	2369.21	6.896			
1225.80 5	3148.13	5.25 6			
1240.01	2369.21	1.729			
1301 4 1	3274 17	0 27 4			
1352.07 5	3280.72	4.1 4			
1406.89 7	2568.29	2.25 3			
1436.1 1	2564 . 81	5.52 7			
1449.97 8	2611.26	1.18 4			
1503.637	2665 . 04	4.65 7			
1549.69 8	2678.30	0.474			
1597.4 2	2726.29	4.12 6			
1635.4 2	2796.81	1.79 4			
1720.6 2	2882.08	3.18 4			
1100.12	2884.44	3.51			
1831 9 1	2940.20	0.002 2.30.2			
1885.2 4	3013.8	0.553			
2035 4 1	3164 05	0.98.3			

¹²⁹Sn β⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

¹²⁹Sn β^- Decay (6.9 min) 1987StZO,1987St23 (continued)

 $\gamma(^{129}{
m Sb})$ (continued)

$E\gamma^{\dagger}$	E(level)	Iㆧ		
2146 1	3274.17	7.33 7		

[†] From 1987StZO. Detailed γ -ray data are also available from 1982Hu09, but many γ rays in this work as listed in above table have not been confirmed in the work of 1987StZO. These probably belong unidentified impurities.

⁴ Assumed multipolarities up to $E\gamma$ =250 keV, based on assignments made in 1987StZO and as suggested by authors' listed I γ +ce and I γ values in table III-16. Only some of these multipolarity assignments are given in Adopted dataset.

§ For absolute intensity per 100 decays, multiply by 0.402 13.

¹²⁹Sn β⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

Decay Scheme

Intensities: $I(\gamma+ce)$ per 100 parent decays

		\$ S	
IB-	Log ft		
1.7		(13/2-)	3280 72
3.06	5.2	V(9/2-11/2.13/2) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3274.17
0.00	0.2		
0.60	6.1		3208.70
0.39	6.3		3164.05
2.11	5.6		2120.8
0.51	6.3		3097.03
1.23	5.9 6 1		3070.02
0.80	6.1	(9/2-11/2,13/2)	3031.96
0.221	6.8	(9/2.11/2.13/2)	3013.8
0.96	6.3	(9/2,11/2,13/2)	2960.5
0.322	6.8	(9/2,11/2,13/2)	2948.25
1.44	6.2		2884.44
2.5	6.0		2882.08
3.13	5.9		2864.40
5.5	5.7		2822.73
0.72	6.6		2796.81
0.56	6.8		2766.91
11.0	5.5	(1/2, 11/2, 13/2)	2726.29
1.17	6.5		2698 47
0.68	6.8 6.9		2678 30
1.87	0.0 6.4		2665.04
3 39	6.2		2611.26
2.95	6.3		2564.81
0.24	7.5		2430.25
0.7	7.2		2317.10
1.1	7.0	(9/2-,11/2,13/2+)	2303.36
0.18	7.8		2297.24
			2271.57
2.2	6.8		2232.17
			2148.13
3.6	6.7		1991.96
1.2	7.2		1972 75
9.0	0.4		1928.64
57	6.6		1922.33
6.5	6.6		1911.21
0.0	0.0		
2.9	7.5		1161.40
5.8	7.2	$\psi(11/2+)$ ψ ψ ψ ψ ψ ψ ψ	1128.63
≈2	$\approx 9.91u$	7/2+	0.0
		129 Sh	

4.366 h

¹²⁹Sn β⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

Decay Scheme (continued)

Intensities: $I(\gamma+ce)$ per 100 parent decays

¹²⁹Sn β⁻ Decay (6.9 min) 1987StZO,1987St23 (continued)

Decay Scheme (continued)

Intensities: $I(\gamma+ce)$ per 100 parent decays

T.Q	Log ft			
1.7	5.5	$-\sqrt{(13/2-)}$	3280.72	
0.60	6.1	((9/2,11/2,13/2)	3208.70	
0.51	6.3	(9/2,11/2,13/2)	= 3130.8	
0.86	6.1	(9/2.11/2.13/2)	3070.02	
0.00	6.9	(9/2,11/2,13/2)	- 3013.8	
0.221	0.0	(0/2, 11/2, 12/2)	2048 25	
0.322	6.8		- 2946.25	
2.5	6.0	\\((9/2,11/2,13/2+)	2882.08	
5.5	5.7		2822.73	
0.56	6.8	(9/2,11/2,13/2)	2766.91	
1.17	6.5			
1.87	6.4		- 2665.04	
3.39	6.2	(11/2-,13/2+) (11/2-13/2)	2564.81	
2.95	6.3		_ 2004.01	
0.24	7.5	V(11/2-,13/2+)	2430.25	
3.46	6.4	(9/2,11/2,13/2+)	2369.21	
0.7	7.2	(9/2,11/2,13/2+)	- 2317.10	
			2 271.57	
2.80	6.7		= 2221.33	
			2148.13	
		V		
		(19/0) (10/00 0) (10/0	1059 55	
9.5	6.4		-1972.75 -1940.38	
			1928.64	
5.7	6.6		1922.33	
6.5	6.6		$\frac{1911.21}{1001.07}$	
		(15/2-) (19/2-)	1861.07	>2 µs
			1001.01	17.7 min
		· · · · · · · · · · · · · · · · · · ·		
2.0	75	$\bigvee_{(9/2+)} \qquad \qquad$	1161 40	
2.9 5.8	7.3	(11/2+) $(11/2+)$ $(11/2+)$ $(11/2+)$	1128.63	
≈2	≈9.91u	V7/2+ VV	0.0	4.366 h
		¹²⁹ Sb-		
		$51 \sim 78$		

¹²⁹Sb IT Decay (17.7 min) 1987St23,1987StZO,1982Hu09

Parent ¹²⁹Sb: E=1851.29 *10*; $J\pi$ =(19/2-); $T_{1/2}$ =17.7 min *1*; %IT decay=15. 1987St23, 1987StZO: ²³⁵U(n,F) E=th, on-line ms; semi, γ , ce, $\gamma\gamma$ -coin, $T_{1/2}$. 1982Hu09: ²³⁵U(n,F) E=th, on-line ms; Ge γ , $\gamma\gamma$ -coin, $T_{1/2}$. See also ¹²⁹Sn β ⁻ decay (6.9 min).

¹²⁹Sb Levels

1982Hu09 report a 17-min isomer with excitation energy unknown. 1987St23 assign the isomer to 1851 level.

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0 0	7/9	1 266 h 26	
1199 60 9	(11/2+)	4.300 11 20	
1128.60 8	(11/2+)		
1851.29 10	(19/2-)	17.7 min 1	$%1T=15$ (1987St23); $%β^{-}=85$.
			$T_{1/2}$: from γ -multiscaling (1982Hu09), 17.1 min (1987St23).
† From Ado	pted Levels.		

$E\gamma^\dagger$	E(level)	Iγ ^{‡§}	Mult.	α	I(γ+ce) [§]	Comments
722.69 5	1851.29	94.8	(M4)	0.0547	100	$\alpha(K)=0.0457$ 7; $\alpha(L)=0.00721$ 11; $\alpha(M)=0.001462$ 21. $\alpha(N)=0.000281$ 4; $\alpha(O)=2.68 \times 10^{-5}$ 4. Mult: from $\alpha(K)=x_0=0.49$ 9 (1987St23).
1128.60 8	1128.60	100			100	

 $\gamma(^{129}Sb)$

† From 1987StZO.

⁺ Deduced from $I(\gamma+ce)=100$ and α. § For absolute intensity per 100 decays, multiply by 0.15.

¹²⁹Sb IT Decay (17.7 min) 1987St23,1987StZO,1982Hu09 (continued)

¹²⁹Sb IT Decay (2.2 µs) 2003Ge04

Parent ¹²⁹Sb: E=1860.8 3; Jπ=(15/2-); T_{1/2}=2.2 μs 2; %IT decay=100.
 2003Ge04 (also 1998GeZX): E(n)=thermal. Measured Eγ, Ιγ, γγ, γ(t) using two large-volume Ge detectors and two cooled Si(Li) detectors after separation by the LOHENGRIN spectrometer.

¹²⁹Sb Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	7/2+	4.366 h 26	
1128.63 4	(11/2+)		
1161.39 4	(9/2+)		
1851.31 6	(19/2-)	17.7 min 1	$\beta^{-}=85; \ \% IT=15.$
1861.06 5	(15/2-)	2.2 µs 2	%IT=100.
			$T_{1/2}$: measured by 2003Ge04, 1998GeZX.

 $^{\dagger}\,$ From Adopted Levels, unless otherwise stated.

$\gamma(^{129}{ m Sb})$

I γ normalization, I(γ +ce) normalization: From summed I γ +ce=100 of transitions from 1861 level.

$E\gamma^{\dagger}$	E(level)	I㇧	Mult. [†]	α	I(γ+ce) [#]	Comments
(9.76 8)) 1861.06	0.033 2	[E2]	33900	1130 60	$\alpha(L)=2.72E4$ 4; $\alpha(M)=5.59E3$ 8; $\alpha(N)=989$ 14; $\alpha(O)=63.6$ 9.
699.64 6	1861.06	100.0 22	[E3]	0.0076		
722.69 5	1851.31		(M4)	0.0547		$\alpha(\mathbf{K})=0.0457$ 7; $\alpha(\mathbf{L})=0.00721$ 11; $\alpha(\mathbf{M})=0.001462$ 21. $\alpha(\mathbf{N})=0.000281$ 4: $\alpha(\mathbf{O})=2.68\times10^{-5}$ 4.
732.48 5	1861.06	47.4 4	[M2]	0.0095		$ \begin{array}{l} \alpha({\rm K})=0.00820\ 12;\ \alpha({\rm L})=0.001059\ 15;\ \alpha({\rm M})=0.000210\ 3.\\ \alpha({\rm N})=4.06\times 10^{-5}\ 6;\ \alpha({\rm O})=4.02\times 10^{-6}\ 6. \end{array} $
1128.60 5	1128.63	47.9 4				
1161.425	1161.39	100.8 22				

 $^\dagger\,$ From Adopted Gammas.

 \ddagger From Adopted Gammas for γ rays from the 1860.8 isomer; for γ rays deduced from the level scheme.

§ For absolute intensity per 100 decays, multiply by 0.078 4.

[#] For absolute intensity per 100 decays, multiply by 0.0078 4.

Parent ¹²⁹Sb: E=2139.4 3; $J\pi=(23/2+)$; $T_{1/2}=1.1 \ \mu s \ I$; %IT decay=100. 2003Ge04 (also 1998GeZX): E(n)=thermal. Measured E γ , I γ , $\gamma\gamma$, $\gamma(t)$ using two large-volume Ge detectors and two cooled Si(Li) detectors after separation by the LOHENGRIN spectrometer.

¹²⁹Sb Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0 0	7/2+	4 366 h 26	
1128.63 4	(11/2+)	1.000 11 20	
1851.31 6	(19/2-)	17.7 min <i>1</i>	$\%\beta^{-}=85; \%IT=15.$
2040.81 21	(19/2+)		
2139.4 3	(23/2+)	1.1 μs <i>1</i>	%IT=100.
			$T_{1/2}$: $\gamma(t)$ in (n,F γ) (2003Ge04).

 $^\dagger\,$ From Adopted Levels, unless otherwise stated.

 $\gamma(^{129}{
m Sb})$

$E\gamma^{\dagger}$	E(level)	Mult. [†]	α	Comments
0.0 0 0	0120 4	FO	1 7 9 9	
98.6 2	2139.4	E 2	1.73 3	$\alpha(K)=1.226$ 19; $\alpha(L)=0.406$ 7; $\alpha(M)=0.0838$ 14. $\alpha(K)=0.0153$ 3: $\alpha(O)=0.001138$ 19
				Mult.: $\alpha(K)$ exp is compatible only with E2 character (2003Ge04).
189.52	2040.81			
722.695	1851.31	(M4)	0.0547	$\alpha(K)=0.0457$ 7; $\alpha(L)=0.00721$ 11; $\alpha(M)=0.001462$ 21.
				$\alpha(N)=0.000281$ 4; $\alpha(O)=2.68\times10^{-5}$ 4.
1128.60 5	1128.63			

[†] From Adopted Gammas.

129Sb IT Decay (1.1 μs) 2003Ge04 (continued) Decay Scheme %IT=100

¹³⁰Te(d,³He) 1968Au04

 $1968Au04: E=34 \ MeV; \ semi, \ \sigma(\theta) \ \theta=11^\circ-35^\circ, \ deduced \ spectroscopic \ factors; \ enriched \ target; \ FWHM=125 \ keV.$

¹²⁹Sb Levels

E(level)	L	S†	Comments	
0.0	4	2.01 20		
640 50	2	0.26 4		
910 50	(2)	0.09 3	S: if 2d _{3/2} .	
1450 50	(0)	0.03 2		
2710 50	(4)	3.5	S: if 1g _{9/2} .	
3060 50	(1)	1.1	S: if $2p_{1/2}$.	
+ a ² a c	DWD			

¹³⁰Te(t,a) 1973Co33

1973Co33: E=12 MeV; measured α spectra and $\sigma(\theta)$ using a magnetic spectrograph, θ =12.5-175°; deduced spectroscopic factors; enriched target. FWHM=30 keV. DWBA analysis.

1980Sh03: E=16 MeV; measured α spectra and $\sigma(\theta)$ using Enge split-pole magnetic spectrograph. FWHM=30 keV. DWBA analysis.

¹²⁹Sb Levels

E(lev	vel)	L§	s†	Comments
0.	0	4	1.75	S: if 1g _{7/2} . Other: 1.85 (1980Sh03).
640	10	2	0.20	S: if 2d _{5/2} . Other: 0.06 (1980Sh03).
913	10	2	0.05	E(level): other: 910 (1980Sh03).
				S: if 2d _{3/2} .
1450^{\ddagger}	30			0/2
2710	10	4	2.72	S: if 1g _{9/2} .
3071	10	1	0.82	S: if 2p _{1/2} .
3110	10			
3291	10			
3410	10	1	0.40	S: if $2p_{1/2}$, 0.32 if $2p_{3/2}$.
3484	10	3	1.42	S: if $1f_{5/2}$.

[†] C²S are relative values, normalized to $\Sigma C^2S=2$ for the low-lying levels with the assumption that ¹³⁰Te can be represented by two protons outside Z=50 core distributed among the $1g_{7/2}$, $2d_{5/2}$, $2d_{3/2}$, $3s_{1/2}$ and $1h_{11/2}$ orbitals.

[‡] From 1980Sh03.

§ From DWBA in 1973Co33.

²⁴¹Pu(n,Fγ) E=thermal 2003Ge04

2003Ge04 (also 1998GeZX): E(n)=thermal. Measured E γ , I γ , $\gamma\gamma$, $\gamma(t)$ using two large-volume Ge detectors and two cooled Si(Li) detectors after separation by the LOHENGRIN spectrometer.

¹²⁹Sb Levels

E(level)	Jπ	$T_{1/2}$		Comments				
0.0	7 (0 .		T-	Ir: from Adopted Levels				
0.0	(11(2+		Jπ: 1	Jr: from Adopted Levels.				
1128.41 20	(11/2+)		Jπ: 1	aken from literature and odd Sb systematics by 2003Ge04.				
1851.0 3	(19/2-)	17.7 min	n 1 %1T:	=100.				
			Jπ: 0	comparison to ¹³¹ Sb and shell model calculations.				
1860.8 3	(15/2-)	2.2 µs	2 %IT:	=100.				
			T _{1/2} :	measured by 2003Ge04, 1998GeZX.				
			Jπ: 6	comparison to $^{131}\mathrm{Sb}$ and shell model calculations.				
2040.54	(19/2+)		Jπ: 0	comparison to shell model calculations.				
2139.14	(23/2+)	1.1 µs	1 %IT:	=100.				
			Jπ: 1	E2 γ to (19/2+).				
				γ(¹²⁹ Sb)				
$E\gamma^{\dagger}$	E(level)	Mult.	α	Comments				
98.6 <i>2</i>	2139.1	E2	1.73 3	$\alpha(K)\exp=1.1\ 2\ (2003Ge04).$				
				$\alpha(K)=1.226$ 19; $\alpha(L)=0.406$ 7; $\alpha(M)=0.0838$ 14.				
				$\alpha(N)=0.0153 \ 3; \ \alpha(O)=0.001138 \ 19.$				
				Mult.: from $\alpha(K)$ exp.				
189.52	2040.5							
722.6 2	1851.0	(M4)	0.0547	$\alpha(K)=0.0457$ 7; $\alpha(L)=0.00721$ 11; $\alpha(M)=0.001462$ 21.				
				$\alpha(N)=0.000281$ 4; $\alpha(O)=2.68\times 10^{-5}$ 4.				
				Mult.: from $\Delta J \pi$.				
732.4 2	1860.8	(M2)		$\alpha = 0.00951$ 14: $\alpha(K) = 0.00820$ 12: $\alpha(L) = 0.001059$ 15: $\alpha(M) = 0.000210$ 3.				
				$\alpha(N) = 4.06 \times 10^{-5}$ 6: $\alpha(O) = 4.02 \times 10^{-6}$ 6.				
				Mult.: from $\Lambda J\pi$.				
1128.4 2	1128.41							

 $^\dagger~\Delta(E\gamma)$ assigned as 0.2 keV based on a general statement by 2003Ge04.

²⁴¹Pu(n,Fy) E=thermal 2003Ge04 (continued)

Level Scheme

 $^{129}_{52}$ Te $_{77}$ -1

Adopted Levels, Gammas

 $Q(\beta^{-})=1502 \ 3; \ S(n)=6082.41 \ 8; \ S(p)=9664 \ 19; \ Q(\alpha)=-3533.3 \ 13 \ 2012Wa38.$

S(2n)=14865.8 17, S(2p)=18112 10 (2012Wa38).

 ¹²⁹Te produced and identified by 1939Se05 in deuteron bombardment of tellurium, measured half-lives of ground state and isomers, later reported in detail in 1940Se01. Earlier reports of T_{1/2} without specific assignment to ¹²⁹Te: 1935Am01; W. Bother and W. Gentner, Naturwiss. 25, 191 (1937); G.F. Tape and J.M. Cook, Phys. Rev. 53, 676 (1938); P. Abelson, Phys. Rev. 55, 670 (1939).

 $Later \ studies \ of \ decay \ of \ ^{129}Te \ g.s. \ and \ isomer: \ 1953Pa25, \ 1963Ma20, \ 1963Br18, \ 1963Ha23, \ 1964De10, \ 1965An05, \ 1965An05, \ 1963Ma20, \ 1963Ha23, \ 1964De10, \ 1965An05, \ 1963Ma20, \ 1963Ha23, \ 1964Ma23, \ 1964Ma20, \ 1965An05, \ 1963Ma20, \ 1963Ma$ 1969Di08, 1970Bo02, 1971Ba28, 1972Em01, 1973Si14, 1974De15, 1976Ma35.

 $Nuclear\ structure\ calculations\ (levels,\ J,\ \pi,\ spectroscopic\ factors):\ 2000Bul5,\ 1994Di06,\ 1986Ma05.$

¹²⁹Te Levels

Cross Reference (XREF) Flags

A ¹²⁹ Sł B ¹²⁹ Sł C ¹²⁹ Τε D ¹²⁸ Τε E ¹²⁸ Τε	b β^- Decay (4.366 h) b β^- Decay (17.7 min) e IT Decay (33.6 d) e(n, γ) E=thermal e(n, γ),(n,n): Resonances	F 1287 G 1289 H 1287 I Cou J 1307	Ce(d,p),(pol d,p) Ce(t,d) Ce(α, ³ He) Ilomb Excitation Ce(p,d)	 K ¹³⁰Te(d,t),(pol d,t) L ¹³⁰Te(³He,α) M ¹³⁰Te(⁶⁴Ni,Xγ) N ²³⁸U(¹²C,Fγ),²⁰⁸Pb(¹⁸O,Fγ) 	
E(level) [†]	$J\pi^{\ddagger}$	XREF	T_1/2	Comments	
0.0	3/2+	ABCD FGHIJKL N	69.6 min <i>3</i>	$\label{eq:barrier} \begin{split} & & & & & & \\ & & & & \\ & & & = 0.702 \ 4 \ (1979Ge04,2014StZZ). \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$	
105.51 3	11/2-	ABCD FGHIJKLMN	33.6 d <i>1</i>	 Infit of (1940)errors, of (1940)errors, 1930(110), 1930	
180.356 16	1/2+	A D FG IJK		1965Br34. Configuration= $v3s_{1/2}$. Jz: L=0 in (t.d). (d.p) and (d t)	
250 5 360 5	(5/2+,3/2+)	J J L		XREF: L(372). J π : L=(2) in (³ He, α).	
455 5	7/2+,9/2+	JL		$\mathbb{E}(\text{level})$: from (p,d). $J\pi$: L=4 in (p,d),(³ He, α). $\mathbb{E}(\text{level})$: from (p,d).	

$^{129}_{52}\mathrm{Te}_{77}\mathrm{-}2$

Adopted Levels, Gammas (continued)

¹²⁹Te Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2} Comments
464 659 25	9/2(-)	A D I	$J\pi$: y to $11/2 - 359y(A)$ does not allow $7/2$
544 585 20	5/2+	A D FGHLJK	$J\pi$: L=2 in (t d): L=2 L+1/2 in (nol d n) and (nol
044.000 20	5724	A D Fuller	d,t).
633.801 24	5 / 2 +	A D FG I	$J\pi$: L=2 in (t,d); log ft=8.6 from 7/2+.
759.84 3	7/2-	A D FG I K	$J\pi$: L(d,p)=3; L+1/2 from (pol d,p).
773.23 3	1/2+	DF JL	XREF: L(783).
			$J\pi$: L=0 in (d,p).
812.991 19	7 / 2 +	A D FG IJK N	XREF: J(819).
			$J\pi$: L=4 and analyzing power in (pol d,p).
865.4 5	(7/2+)	F K	$J\pi$: L=(4) and analyzing power in (pol d,p) and (pol d,t).
865.51 11	15/2(-)	B I MN	$J\pi$: $\Delta J=2$, Q G to 11/2-; systematics of nuclei in this mass region.
874.945 22	3 / 2 +	A D F I JKL	J π : L=2 in (³ He, α) and (d,p); $\gamma(\theta)$ in ¹²⁹ Sb g.s. decay.
878 5	5 / 2 - , 7 / 2 -	G	$J\pi$: L=3 in (t,d).
966.902 <i>22</i>	5 / 2 +	A D FG JKL	$J\pi$: L=2 in (t,d); L=2 and analyzing power in (pol d,p).
1155 5	1 / 2 +	G	$J\pi$: L=0 in (t,d).
1162.255	(7/2)-	D F	$J\pi$: L(d,p)=3; γ to 11/2
1211.8 8	7 / 2 +	FG K	$J\pi$: L=4 and analyzing power in (pol d,p).
1217 5	3 / 2 + , 5 / 2 +	J	$J\pi$: L=2 in (p,d).
1221.28 3	(5/2-,7/2+)	D	$J\pi$: gammas to $3/2+$ and $9/2-$.
1227.98 3	(7/2-,9/2+)	A	J π : gammas to 5/2+ and 11/2-; 5/2 ruled out from $\gamma(\theta)$ of 500 γ from 1727 level. 9/2 from $\gamma(\theta)$ of 683 γ . 525 $\gamma(\theta)$ from 1754 level fits 7/2 somewhat better.
1233.81 9	3 / 2 + , 5 / 2 +	D F	$J\pi$: L(d,p)=2.
1281.64 3	5 / 2 +	A D FG JK	XREF: J(1290).
			$J\pi\colon$ L=2 and analyzing power in (pol d,p); also $\gamma(\theta)$ in ^{129}Sb g.s. decay.
1303.416	1 / 2 +	DF K	$J\pi$: $L(d,p)=0$.
1318.30 3	7 / 2 +	A D FG KL	XREF: F(1319.0)G(1306)L(1280).
			$J\pi$: L=4 and analyzing power in (d,p).
1384.985	(3/2-,5/2,7/2+)	Α	$J\pi$: γ to 3/2+; log ft=8.6 from 7/2+.
1405.665	(5/2,7/2,9/2+)	Α	J π : gammas to 5/2+ and 7/2+; log ft=8.6 from 7/2+.
1421.35 9	5 / 2 +	D FG JK	XREF: F(1419.4)G(1435)J(1430).
			J π : L=2 and analyzing power in (pol d,p).
1460.90 5	(5/2,7/2,9/2+)	A	J π : gammas to 5/2+ and 7/2+; log ft=8.3 from 7/2+.
1481.21 5	(3/2-,5/2,7/2+)	A	J π : γ to 3/2+; log ft=8.0 from 7/2+.
1483.37 4	7/2+	A FG JK	XKEF: J(1490). Jπ: L=4 and analyzing power in (pol d,p).
1515.7 10	(11/2+)	N	
1523.29 13	19/2(-)	B MN	J π : $\Delta J=2$ γ , Q to $15/2(-)$; systematics in this mass region.
1545.09 9	7 / 2 + , 9 / 2 +	A L	XREF: L(1535).
			$J\pi$: L(³ He, α)=4; γ to 5/2+.
1559.864	(3/2)-	D FG	J π : L(d,p)=L(t,d)=1; γ to 7/2
1581.974	7 / 2 +	A F K	$J\pi$: L=4 and analyzing power in (pol d,p).
1600.08 3	5 / 2+	A D F JK	J π : L=2 and analyzing power in (pol d,p); $\gamma(\theta)$ in ¹²⁹ Sb g.s. decay: also L(p,d)=2.
1632.57 3	7 / 2 - , 9 / 2 +	А	J π : $\gamma(\theta)$; $9/2-$ ruled out by $405\gamma(\theta)$; γ to $9/2-$;
1654 5	1/0.	C	$\log ft = 0.7$ from $7/2+$.
1654 0	1/2+	G MAI	$J\pi$: L(t, d)=0.
1654.31 13	(17/2-,19/2-)	B MIN	$J\pi$: gammas to (15/2-) and (15/2-); possible configuration= $\pi g_{7/2}^2 \otimes vh_{11/2}$.
1656.17 4	5 / 2 +	ADF K	XREF: F(1655.7). J π : L=2 and analyzing power in (pol d,p).
1672 10	3 / 2 + , 5 / 2 +	\mathbf{J}	$J\pi$: L(p,d)=2.
1723.55	5 / 2+	К	$J\pi$: L=2 and analyzing power in (d,t).
1727.1 10	(15/2+)	Ν	
1727.972 23	(9/2)+	А	J π : log ft=5.6 from 7/2+; $\gamma(\theta)$; γ to 11/2
1739.75	3 / 2 + , 5 / 2 +	К	$J\pi$: L(d,t)=2.
1751.11 13	(5/2,7/2,9/2)	Α	J π : log ft=6.8 from 7/2+.
1752.32 7	(5/2)-	D F	XREF: F(1752.7). Jπ: L(d,p)=3; γ to 3/2+.

$^{129}_{52}\rm{Te}_{77}{-3}$

Adopted Levels, Gammas (continued)

$^{129}\mathrm{Te}$ Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2}	Comments
1550 05 5	5/0			
1753.35 5	5/2+	A G		$J\pi$: L(t,d)=2; log <i>ft</i> =6.6 from 7/2+.
1754.2 5	7/2+	ĸ		$J\pi$: L=4 and analyzing power in (pol d,t).
1762.454	(5/2+)	A		J π : log ft=8.1 from 7/2+; γ to 1/2+.
1777.8 6	(5/2,7/2,9/2+)	A g		J π : log ft=8.2 from 7/2+; γ to 5/2+.
1779.79 5	5 / 2+	A Fg JK		XREF: J(1797). J π : L=2 and analyzing power in (pol d,p). L(t,d)=(2).
1812.8 6	7 / 2 +	F K		E(level), $J\pi$: L=4 and analyzing power in (pol d,p).
1839.2 6	(1/2+)	D FG		$J\pi: L(t,d)=(0).$
				E(level): from (d,p).
1843.6 5	-	К		E(level), $J\pi$: doublet; L(d,t)=1+5 suggests 1/2-,3/2- for one component and 9/2-11/2- for the other
1843 67 3	(9/2) +	A L		$J\pi$: $L(^{3}He \alpha)=4$: y to $11/2-$: y(θ)
1851 55 6	5/2 - 7/2 -			$XREF \cdot F(1852.9)$
	,			$J\pi$: L(d,p)=3.
1867 65 6	(5/2, 7/2+)	Δ		$J\pi$: log $ft-7.6$ from $7/2+$: γ to $3/2+$
1868 87 12	5/2+	D K		XRFF K(1869.9)
1808.87 12	5/2+	D K		I_{π} : I_{-2} and analyzing newer in (not d t)
1000 0 5		FC		J_{π} : L=2 and analyzing power in (poi d,t).
1869.6 2	5/2-,1/2-	rG .		$J\pi$: L(d,p)=3.
1870.57 3	5/2+	A		$J\pi$: log $ft=6.7$ from $7/2+$; $\gamma(\theta)$; γ to $1/2+$.
1886.64 14	(21/2-)	MN		$J\pi: \Delta J=1$, d γ to $19/2(-)$; γ to $(17/2-)$.
1887.5 6	(3/2+,5/2+)	JK		$J\pi$: L(d,t)=(1,2); L(p,d)=(4+2).
1921.26 6	(5/2)+	A KL		J π : L(³ He, α)=2; log ft=7.5 from 7/2+. L=(2) analyzing
				power in (pol d,t) suggests (3/2+).
1939.524	(5/2,7/2,9/2)	A		$J\pi: \log ft = 7.2$ from 7/2+.
1957.06 15	(21/2-)	B MN		J π : Δ J=1, dipole γ to 19/2(-); log ft=6.1 from
				(19/2-); possible configuration= $\pi g_{7/2} d_{5/2} \otimes nh_{11/2}$ (1998Zh09).
1992.4 5	(5/2-,7/2-)	F		$J\pi: L(d,p)=(3).$
2040.20 4	3 / 2 -	D FG K		$J\pi$: L=1 and analyzing power in (pol d,p).
2059.3 10	1 / 2 +	K		$J\pi$: L(d,t)=0.
2071.400 22	5 / 2+	А		J π : $\gamma(\theta)$; log ft=5.5 from 7/2+; γ to 3/2+, weak γ to
2071 5 10	2/9	K		$1/2\tau$.
2071.5 10	7/9	FC		I_{π} : I_{π} and analyzing power in (rol d.).
2072.4 5	(7/2 - (7/2))			Sh. $L=5$ and analyzing power in (por u,p).
2080.10 5	(1/2+)	A JK		AREF. $5(2003)$ A (2003.3) .
9106 6 5	7/9	FCH V		Jt: $\log / l = 0.0$ from $l / 2 +; \gamma = 0.5/2 +; L(0, t) = (4).$
2100.0 3	1/2-	rgn K		J_{π} : L=5 and analyzing power in (poi d,p) and (poi d,t).
2113.5 10	5/9.	A K		J_{1} $L(\mathbf{u}, t) = 0$.
2114.58 3	5/2+	A		3π : log /t=5.4 from //2+; //2+ ruled out by 2115 $\gamma(\theta)$;
2131 5	(1/2+)	G J		$J\pi$: L(t d)=(0)
2131 20 5	(1/2+)			$\mathbf{XRFF} \cdot \mathbf{F}(9139.7)$
2101.20 0	1/2-	AF		I_{π} : I_{-2} and analyzing new i_{π} (not d n)
9199 0 10	0/9 11/9	K		I_{π} : I
2133.0 10	5/2 - , 11/2 -	A K		$J_{\text{L}} = \log \frac{t}{t} - 6.5 \text{from } \frac{7}{2} + 2 = 0 \text{and } \frac{1}{2} + 2 = 0$
2134.00 2	(3/2-, 1/2+)	A MN 21	0	3π : $\log l = 0.5$ from $l/2+$; gammas to $3/2+$ and $9/2-$.
2137.83 17	(23/2+)	IVEN 5.	5 118 5	$I_{1/2}$: $\gamma(t)$ in (-1,N,A. γ). J π : $\Delta J=1$, dipole γ to (21/2-); level systematics of
0141 0 10	F / O .			$$ re and $$ re (1998 Δ n09).
2141.8 10	7/2+	JK		$J\pi$: L=4 and analyzing power in (pol d,t).
2182.6 10	3/2+	KL		$E(level), J\pi$: L=2 and analyzing power in (pol d,t).
2197.7 11	(5/2-,7/2-)	K		$J\pi: L(d,t)=(3).$
2220.9 4	(3/2,5/2+)	D		$J\pi:$ gammas to 1/2+, 5/2+ and 5/2-; weak primary γ from 1/2+.
2221.3 5	7 / 2 -	FGH JK		$J\pi:$ L=3 and analyzing power in (pol d,p); $L(p,d){=}(0{+}2)$ is inconsistent.
2232.2 5	5/2-,7/2-	F		$J\pi: L(d,p)=3.$
2255.1 15	1/2+	- х		$J\pi$: L(d,t)=0.
2265.29 4	(5/2+.7/2+)	A		$J\pi$: log ft=4.8 from 7/2+: γ to 3/2+
2267 20 4	3/2-	DFGK		$XREF \cdot F(2267.6)G(2261)K(2266.6)$
I	-, -	210 11		$J\pi$: L=1 and analyzing power in (pol d,p). L(d,t)=(2)
2278.5 15	(7/2)+	JK		1s inconsistent. Jπ: L=4 and analyzing power in (pol d,t); L(p,d)=(0+2) is inconsistent.

Adopted Levels, Gammas (continued)

¹²⁹Te Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XRE	F	T _{1/2}	Comments
0000 5 10	0/0 11/0		77		
2303.7 16	9/2-,11/2-	C	K		$J\pi$: L(d,t)=0.
2309.7 15	1/2+	G	K		$J\pi$: L(d,t)=0.
2312.2 5	7/2-	F.			$J\pi$: L=3 and analyzing power in (pol d,p).
2316.6 15	(11/2) -		K		$J\pi$: L=5 and analyzing power in (pol d,t).
2353.8 15	1/2+	5 50	K		$J\pi: L(d,t)=0.$
2360.472 21	3/2-	D FG			$J\pi$: L=1 and analyzing power in (pol d,p).
2362.6 16	(1/2-)		K		$J\pi$: L=1 and analyzing power in (POL d,t).
2370.5 16	(3/2)+		JKL		$J\pi$: L=2 and analyzing power in (pol d,t).
2377.4 16	(1/2-)		K		$J\pi$: L=1 and analyzing power in (POL d,t).
2379.555 <i>23</i>	3/2-	D FG			$J\pi$: L=1 and analyzing power in (pol d,p).
2416 2	5/2+		JK		XREF: J(2395).
					$J\pi$: L=2 and analyzing power in (pol d,t).
					E(level): 2395 in (p,d) may correspond to 2377.4,
					2379.5 and/or 2379.5 levels, but more likely to 2416
					from level populations in similar (d,t) and (p,d)
					reactions, and energy matching.
2427.2 5	7/2-	F			$J\pi$: L=3 and analyzing power in (pol d,p).
2432 2	1/2+		K		$J\pi$: $L(d,t)=0$.
2454 2	7/2+,9/2+		JK		$J\pi$: L(d,t)=4.
2462.5 5	7/2-	F			$J\pi$: L=3 and analyzing power in (pol d,p).
2465 2	(3/2+,5/2+)		K		$J\pi: L(d,t)=(2).$
2477 2	(3/2+,5/2+)		K		$J\pi: L(d,t)=(2).$
2482 2	7/2+,9/2+		K		$J\pi$: L(d,t)=4.
2491 5	1/2+	G			$J\pi$: L(t,d)=0.
2493.06 11	3 / 2 -	DF			XREF: F(2491.6).
					$J\pi$: L=1 and analyzing power in (pol d,p).
2507 3	(3/2)+		K		$J\pi$: L=2 and analyzing power in (pol d,t).
2507.1 5	(5/2-,7/2-)	F			$J\pi: L(d,p)=(3).$
2510.79 16	23/2(-)		MN		J π : $\Delta J=2$, Q γ to 19/2(-); possible configuration=
					$\pi g_{7/2}^{2} \otimes v h_{11/2}.$
2511.0 5	(5/2-,7/2-)	F	_		$J\pi: L(d,p)=(3).$
2515 25	9/2-,11/2-		L		$J\pi: L(^{3}He,\alpha)=5.$
2519 3	3/2+		K		$J\pi$: L=2 and analyzing power in (pol d,t).
2524.76 3	1/2-	DF	1		XREF: F(2524.4).
					$J\pi$: L=1 and analyzing power in (pol d,p). L(p,d)=(2)
	F / 0				is inconsistent.
2556 3	5/2+	D D	K		$J\pi$: L=2 and analyzing power in (pol d,t).
2581.67 8	3/2-	DF			AREF: F(2581.1).
0504 0	(8/8)		17		$J\pi$: L=1 and analyzing power in (pol d,p).
2584 3	(3/2) + (5/2) = (5/2)	P	ĸ		$J\pi$: L=2 and analyzing power in (pol d,t).
2612.4 5	(5/2-,7/2-)	F.	117		$J\pi: L(d,p)=(3).$
2616 4	(3/2+,5/2+)		JK		$J\pi: L(d,t)=(2).$
2632 4	5/2+	Б	ĸ		$J\pi$: L=2 and analyzing power in (pol d,t).
2641.3 6	(3/2-, 7/2-)	r	17		$J\pi: L(d,p)=(3).$
2671 4	(3/2+, 5/2+)		ĸ		$J\pi$: L(d,t)=(2).
2001 4	9/2+	ΠF	ĸ		5π : L=4 and analyzing power in (poi d,t).
2705.150 21	1/2-	DF	ĸ		AREF: $F(2703.8)K(2702)$.
9711 4	5/9		ĸ		$J\pi$: L=2 and analyzing power in (pol d, f) and (pol d, t).
2711 4	1/9 2/9	F	IX IX		J_{π} : $L(d_{\pi}) = 1$
2726 6 5	(2/2)	r F			$J\pi$: $L_{-}(1)$ and analyzing newer in (nol d n)
2730.0 5	(3/2-)	г	IKI		$J\pi$: $L(d t) = 2$: $L(n d)$ is inconsistent
2747 4	$(3/2)_{\pm}$		K		$J\pi$: L-2 and analyzing power in (pol d t)
2765 3 5	(5/2) + (5/2 - 7/2)	F	к		$J\pi$: L(d n)=(3)
2767 4	(5/2+)		к		$J\pi$: L=(2) and analyzing power in (pol d t)
2811 7 5	(9/2 - 11/2)	F			$J\pi$: L(d n)=(5)
2819 5 5	(5/2, 7/2)	F			$J\pi$: L(d n)=(3)
2824 5	7/2 + 9/2 + 9/2 +	Ľ	к		$J\pi: L(d t)=4$
2831 5	(3/2+)		ĸ		$J\pi$: L=(2) and analyzing nower in (nol d t)
2835 2 5	(5/2 - 7/2 -)	F			$J\pi$: L(d n)=(3)
2840 3 6	$(3, 2, 7, 7, 2^{-})$	Ľ	N		$J\pi$: $\Delta J=2$ (E2) γ to $2/2(-)$
2844 5	3/2+.5/2+		к		$J\pi: L(d,t)=2.$
2853.7 5	(5/27/2 -)	F			$J\pi: L(d,p)=(3).$
		1			···· = (-)P/= (0/)

Adopted Levels, Gammas (continued)

¹²⁹Te Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2}	Comments
2856 5	5/2+	K		$J\pi$: L=2 and analyzing power in (pol d,t).
2859.55	(5/2-,7/2-)	F		$J\pi: L(d,p)=(3).$
2871.2 5	(5/2-)	F		$J\pi$: L=(3) and analyzing power in (pol d,p).
2885.8 8		N		
2889.85	(5/2-,7/2-)	F		$J\pi: L(d,p)=(3).$
2891 15	(3/2 to 9/2)(+)	J		$J\pi: L(p,d)=(4+2).$
2899.9 5	9/2-,11/2-	F		$J\pi$: L(d,p)=5.
2919.65	(5/2)-	F		$J\pi$: L=3 and analyzing power in (pol d,p).
2971.35	7 / 2 -	F		$J\pi$: L=3 and analyzing power in (pol d,p).
2979.45	5/2-	F		$J\pi$: L=3 and analyzing power in (pol d,p).
2980 25	7 / 2 + , 9 / 2 +	\mathbf{L}		$J\pi$: L(³ He, α)=4.
2999.6 6		F		
3009.45		F		
3023.8 6		F		
3029.15		F		
3046.35		F		
3051.64	(27/2+)	MN		$J\pi: \Delta J=2$, Q γ to (23/2+).
3056.45		F		
3070.45		F		
$3077 \ 15$	(3/2+,5/2+)	h J		$J\pi: L(p,d)=(2).$
3089.3 5		F h		
3102.85		F		
3128.5 6		F		
3133.55		F		
3150.75		F		
3163.3 6		F		
3182.05		F		
3202.3 6		F		
3211.8 6		F		
3230.55		F		
3240 15	(3/2 to 9/2)(+)	J		$J\pi: L(p,d)=(4+2).$
3246.1 5		F		
3253.15		F		
3260.9 5		F		
3277.1 7		F		
3281.6 5		F		
3295.7 7		F j		
3306.45		F j		
3321.4 5		F j		
3326.65		F		
3350.3 5		F		
3355.46 10	3/2-	DF		XREF: F(3355.6).
0001 5 5		P		$J\pi$: L=1 and analyzing power in (pol d,p).
3361.5 5		F		
3364.6 5		F.		
3311.0 D		r		
0019.00 00010 -		r F		
0004.00 0004.00		r] F :		
2207.00		r] F :		
0400.80 9414 9 5		r j F		
0414.00 2410.05		r F		
3413.3 J 3490 9 9	(3/9) -	r D F		XREF. F(3498 Q)
0447.0 0	(3/2)-	L L		π_{1} π_{2} π_{2
3441 0 5		Fi		5n. $D(u,p)=1$, $100 1/2=$.
3452 8 5		r j F i		
3461 1 5		r i		
3474 8 5		L I		
3479 1 5		т Я		
3489.6.5	1/2-	F		$J\pi$: L=1 and analyzing power in (nol d n)
3500 25	7/2 + .9/2 +	- L		$J\pi$: $L(^{3}He,\alpha)=4$.
	, =	-		

Adopted Levels, Gammas (continued)

¹²⁹Te Levels (continued)

E(level) [†]	$J\pi^{\pm}$	XREF	T _{1/2}	Comments
2502 58 8	(2/2)	DF		YPEF. $F(2502.4)$
3302.38 8	(3/2-)	DT		$J\pi$: L=(1) and analyzing power in (pol d p): gammas to
				1/2+ and 7/2
3512.0 5		F j		
3512.97	(29/2-)	N		$J\pi$: $\Delta J=1$, dipole γ to $27/2(-)$.
3524.25		F j		
3528.28 10	(1/2-)	DF j		XREF: F(3527.7).
				$J\pi$: L=(1) and analyzing power in (pol d,p).
3546.91 9	(3/2-)	D F		XREF: F(3545.8).
2550 2 5		F		$J\pi$: L=(1) and analyzing power in (pol d,p).
3564 51 9	1/9_	F D F		XRFF. F(3565.0)
5504.51 5	1/2-	DT		$J\pi$: L=1 and analyzing power in (pol d.p).
3569.2 5		F		
3579.7 5		F		
3587.4 5		F		
3593.7 5		F		
3600.5 5	(3/2)-	F		$J\pi$: L=1 and analyzing power in (pol d,p).
3615.25		F		
3617.0 9	(31/2-)	Ν		$J\pi$: γ to 27/2(-).
3622.9 6		F		
3628.7 6		F		
3634.2 5		F		
3636.7 7	(29/2+)	N		$J\pi$: γ to (27/2+).
3638.38 7	1/2-	D F		XREF: F(3638.4).
2612 2 5		F		$J\pi$: L=1 and analyzing power in (pol d,p).
3648 77 11	1/9_	r D F		YRFF : $F(3649.0)$
5040.77 11	1/2-	DT		$J\pi$: L=1 and analyzing nower in (nol d n)
3655.1 5		FΗ		ow. Det and analyzing power in (por a,p).
3666.4 5		F		
3671.5 5	3 / 2 -	F		$J\pi$: L=1 and analyzing power in (pol d,p).
3677.9 5		F		
3695.7 5		F		
3707.7 5	1/2-	F		$J\pi$: L=1 and analyzing power in (pol d,p).
3713.8 5		F		
3729.3 5		F		
3737.1 5		F		
3744.9 5	3 / 2 -	F		$J\pi$: L=1 and analyzing power in (pol d,p).
3752.3 5	(0.10)	F		T T T 1 1 1
3765.0 5	(3/2)-	F		$J\pi$: L=1 and analyzing power in (pol d,p).
3703.5 5		F		
3784 6 5		ч Т		
3792.40 4	3/2-	DFH		XREF: F(3792.6).
				$J\pi$: L=1 and analyzing power in (pol d,p).
3800.9 5		F		
3811.7 6		F		
3818.9 5		F		
3826.7 5		F		
3837.7 5		F		
3852.71 12	3/2-	DF		XREF: $F(3851.9)$.
3859 6 5		F		JR: L=1 and analyzing power in (pol d,p).
3865 36 7	3/2-	r D F		XREF: F(3865.7)
2000.00 /	574	<i>D</i> 1		$J\pi$: L=1 and analyzing power in (nol d.n).
3873.4 5		F		
3884.5 5		F		
3890.2 5		F		
3899.3 5	3 / 2 -	F		$J\pi$: L=1 and analyzing power in (pol d,p).
3906.9 5		F		
3917.0 6		F		
3921.6 5		F		

Adopted	Levels,	Gammas	(continued))

¹²⁹Te Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T_1/2	Comments
3929.4 5		F		
3938.5 5		F		
3944.2 5		F		
3948.1 6	(3/2-)	F		$J\pi$: L=(1) and analyzing power in (pol d.p).
3952 8 5	(0)2)	F		ow D=(1) and analyzing power in (per a,p).
3962 3 5		F		
3969 4 6	(3/2)	F		$J\pi$: L=(1) and analyzing nower in (nol d n)
3974 3 5	3/2_	F		$J\pi$: L=1 and analyzing newer1 in (pol d n)
3986 8 6	072	F		sk. H-i and analyzing poweri in (por d,p).
3993 7 5		F		
2007 6 5		F		
4002 4 6		F		
4005 8 6		F		
4017 1 5		F		
4017.1 5		F		
4024.5 5	2/0	r D F		XDEE. E(4029 5)
4032.39 10	3/2-	DF		$\mathbf{XREF:} \mathbf{F}(4032.3).$
4000 1 0	(21/2.)		N	$J\pi$: L=1 and analyzing power in (poi d,p).
4033.1 9	(31/2+)	D	IN	$J\pi: \gamma$ to (29/2+).
4043.3 5		F		
4045.8 5		F		
4053.75	(1(0))	F		
4059.1 5	(1/2) -	F		$J\pi$: L=1 and analyzing power in (pol d,p).
4067.8 5	3/2-	F		$J\pi$: L=1 and analyzing power in (pol d,p).
4072.2 5	2.42	F		• • • • • • • • • • • • • •
4082.2 5	3/2-	F'		$J\pi$: L=1 and analyzing power in (pol d,p).
4087.54 11	3/2-	DF		XREF: F(4086.8).
		_		$J\pi$: L=1 and analyzing power in (pol d,p).
4092.5 6		F		
4101.8 6		F		
4106.1 6		F		
4110.4 6		F		
4121.18 8	1/2-	DFH		XREF: F(4122.1).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4129.0 5		F		
4133.50 9	3 / 2 -	D F		XREF: F(4132.8).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4150.2 6		F		
4155.6 9	(31/2+)		N	$J\pi$: γ to (27/2+).
4161.1 7		F		
4166.2 5		F		
4175.3 3	(1/2)-	D F		XREF: F(4175.1).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4180.68 18	(3/2)-	DF		XREF: F(4181.2).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4200.8 5		F		
4204.3 3	1/2-	D F		XREF: F(4205.9).
				$J\pi$: L=1 and analyzing power in (d,p).
4212.4 5		F		
4220.46 16	3 / 2 -	D F		XREF: F(4220.1).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4229.15		F		
4240.5 3	3 / 2 -	D F		XREF: F(4239.8).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4251.2 6		F		E(level): from (d,p).
4259.3 6		F		
4267.45	(1/2)-	DF		XREF: F(4267.4).
				E(level), $J\pi$: L=1 and analyzing power in (pol d,p).
4277.02 11	3 / 2 -	DF		XREF: F(4277.4).
				JT: L=1 and analyzing power in (pol d,p).
4291.2 6		F		
4297.80 22	1 / 2 -	DF		XREF: F(4298.5).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4306.7 5		F		

Adopted Levels, Gammas (continued)

¹²⁹Te Levels (continued)

E(level) [†]	Jπ [‡]	XREF	T _{1/2}	Comments
	(1/2)			
4311.7 5	(1/2)-	F.		$J\pi$: L=1 and analyzing power in (pol d,p).
4317.1 5		F		
4326.5 5		F		
4336.25	(1/2)-	F		$J\pi$: L=1 and analyzing power in (pol d,p).
4349.55		F		
4356.13 8	1 / 2 -	DF		XREF: F(4356.3).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4364.57 6	1/2-	DF		XREF: F(4365.3).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4374 0 3	(1/2, 3/2, 5/2+)	DF		$XBEF \cdot F(4372.6)$
1011.0 0	(1/2,0/2,0/21)	<i>D</i> 1		I_{π} , α to $2/2$, primary α from $1/2$.
4990 6 5		Б		5π . γ to $5/2+$, primary γ from $1/2+$.
4380.0 2	1 / 9	F		XDEE. E(4900 1)
4300.93 10	1/2-	DF		AREF: F(4389.1).
		_		$J\pi$: L=1 and analyzing power in (pol d,p).
4402.1 6		F		
4410.5 5		F		
4425.15	(3/2-)	F		E(level), $J\pi$: L=(1) and analyzing power in (pol d,p).
4432.939	3 / 2 -	D F		XREF: F(4433.1).
				$J\pi$: L=1 and analyzing power in (pol d,p).
4435.3 10	(33/2-)		N	$J\pi$: γ to (29/2-).
4444.0 5		F		
4456.4 5		F		
4467.4 5	(1/2-)	F		E(level), $J\pi$: L=(1) and analyzing power in (pol d,p).
4474.7 6		F		
4483 9 5		F		
4406.8 5		F		
4490.8 5		F		
4504.2 5		F		
4511.8 6		F		
4522.5 7		F		
4543.3 6		F		
4558.2 6		F		
4572.75		F		
4580.3 6		F		
4588.48 12	(1/2,3/2,5/2+)	D F		XREF: F(4589.2).
				J π : γ to 3/2+; primary γ from 1/2+.
4595.2 7		F		
4608.4 6		F		
4622.0 5		F		
4634.7 7		F		
4643.2 6	(1/2-, 3/2-)	F		$J\pi: L(d,p)=(1).$
4652.9 6	(1/23/2 -)	F		$J\pi: L(d,p)=(1).$
4665 8 5	1/2 - 3/2 -	- न		$J\pi: L(d n) = 1$
4682 0 6	1/2 - 3/2 -	F		$J\pi: L(d,p)=1$
4605 4 7	1/2-,0/2-	F		5 <i>k</i> . <u>H</u> (u , p)-1.
4035.47	(22/2))	г	N	$I_{-1} = (21/2)$
4711 80 95	(00/4+) 1/9 9/9	ъ	14	J_{π} , J_{10} ($J_{1/2\pi}$).
4711.80 25	1/2-,3/2-	F		$3\pi: L(d,p)=1.$
4724.3 5		F		
4743.5 6		F.		
4766.2 7		F		
4777.9 6	(1/2-,3/2-)	F		$J\pi: L(d,p)=(1).$
4794.3 6		F		
4807.9 6		F		
4825.2 11	(35/2-)		N	$J\pi$: γ to (33/2-).
4840.4 6		F		
4849.6 8		F		
4868.2 7		F		
4879.7 6		F		
4907.4 7		F		
4917.0 7	(1/23/2 -)	म		$J\pi: L(d,p)=(1).$
4929 4 7	(_/_ ,0// /	<u>।</u> म		···· - ·······························
1016 8 6		r F		
1058 3 6		r F		
4075 2 6		r F		
4910.0 0		r		

$^{129}_{52}$ Te $_{77}$ -9

Adopted Levels, Gammas (continued)

$^{129}\mathrm{Te}$ Levels (continued)

E(level) [†]	Jπ‡	XREF	T_1/2	Comments
5002.3 6		F		
5013.3 9		F		
(6082.40 8)	1/2+	D		$J\pi$: s-wave capture in 0+.
				E(level): S(n)=6082.41 8 (2012Wa38).
6082.76 8		Е		
6082.83 8	1 / 2	Е	0.15 eV 10	$J\pi$: from (n,n):resonances.
				Γ from (n,n):resonances.
6082.84 8	1/2-	Е	0.0697 eV 10	$J\pi$: from (n,n):resonances.
				Γ from (n,n):resonances.
6083.34 8	1/2-	Е	0.170 eV 20	$J\pi$: from (n.n):resonances.
				Γ from (n.n):resonances.
6083.72 8		Е		(,)
6083.86 8		Е		
6083.98 <i>8</i>		Е		
6084.23 8		Е		
6085.36 8		Е		
6085.65 8		Ē		
6085.93 8		Ē		
6086.46 8		Ē		
6087.70 8		Ē		
6088.47 8		Ē		
6089.43 8		Е		
6090.28 8		Е		
6092.34 8		Е		
6092.68 8		Е		
6092.98 8		Е		
6093.16 8		Е		
6093.82 8		Е		
6094.41 8		Е		
6095.14 8		Е		
6095.20 8		Е		
6095.27 8		Е		
6095.39 8		Е		
6096.90 8		Е		
6097.62 8		Е		
6098.62 8		Ē		
6099.29 8		Ē		
6099.79 8		Ē		
6100.26 8		E		
6101.16 8		E		
6101.68 8		E		
6101.96 8		E		
6102.47 8		E		
6103.27 8		E		
6104.06 8		E		
		_		

[†] From least-squares fit to $E\gamma$ data for levels populated in γ -ray studies. In order to get an acceptable fit with reasonable reduced χ^2 , uncertainties of about 9 γ rays were doubled and another 4 γ rays not included in the fit. With these adjustments reduced χ^2 =1.9 somewhat larger than critical χ^2 of 1.3. For levels populated in particle-transfer data only, values are mainly from (d,p) and (d,t). For energies taken from (d,p), 0.5 keV systematic uncertainty is added in quadrature, and for energies from (d,t), uncertainty of 0.5 to 5 keV has been added in quadrature based on statement in 2003Wi02.

For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population.

E(level)	$E\gamma^{\dagger}$	Ιγ [†]	Mult.&	α	Comments
105.51	105.50 5	100	M4	429 7	 α(K)=217 3; α(L)=165.3 24; α(M)=38.5 6; α(N)=7.43 11; α(O)=0.656 10. Mult.: from ¹²⁹Te IT decay. α(K)exp and L-subshell ratios (1977S006,1972Ka61).

$\gamma(^{129}{ m Te})$ (continued)

E(level)	$\mathbf{E} \gamma^{\dagger}$	Iγ†	Mult.&	α	Comments
					Eγ: from IT decay (33.6 d).
					B(M4)(W.u.)=4.0 11.
180.356	180.375	100	[M1]	$0.1311 \ 21$	$\alpha(K)=0.1130\ 18;\ \alpha(L)=0.01448\ 23;\ \alpha(M)=0.00289\ 5.$
		100			$\alpha(N)=0.000572 \ 10; \ \alpha(O)=6.21\times10^{-5} \ 10.$
464.659	359.19 5	100	(M1+E2)	0.0216 4	$E\gamma$: from (n,γ) .
544 505	224 24 5		[]]	0.0000	$\delta(E2/M1) = -0.025 22 \text{ or } -27 14.$
544.585	364.24 5	2.4 4	[E2]	0.0208	1γ : unweighted average from (n,γ) and 125 Te g.s.
					decay. $\alpha(\mathbf{K}) = 0.01752, 25, \alpha(\mathbf{L}) = 0.00266, 4, \alpha(\mathbf{M}) = 0.000527, 8$
					$\alpha(\mathbf{K}) = 0.01753 \ 25; \ \alpha(\mathbf{L}) = 0.00200 \ 4; \ \alpha(\mathbf{M}) = 0.000557 \ 8.$
	E 4 4 E 0 E	100 0 0	(M1 . E9)		$\alpha(\mathbf{N}) = 0.0001044 \ IS; \ \alpha(\mathbf{O}) = 1.053 \times 10^{-1} \ IS.$
622 801	544.59 5 152 28 5	100.0 9	(MI+E2)		Ly, unweighted everage from (n y) and ¹²⁹ Te g a
033.801	400.00 0	23.0 25			decay
	633 76 5	100 0 10	(M1 + E2)		$\delta(E2/M1) = \pm 0.58.5$ or $\pm 4.3.7$
759 84	295 27 5	29 9 20	(M1 + E2)	0 038 3	Iv: unweighted average from $(n v)$ and 129 Te g s
	200.21 0	20.0 20	(1111112)	0.000 0	decay
					$\delta(E_2/M_1) = -0.07$ 4 or -6.3 15.
	654.29 5	100.0 10	(E2)		
773.23	592.81 5	31.9 7			
	773.22 5	100 7			
812.991	268.48 5	0.444 7	(M1,E2)	0.051 5	$\alpha(K)=0.043$ 4; $\alpha(L)=0.0064$ 14; $\alpha(M)=0.0013$ 3.
					$\alpha(N)=0.00025$ 6; $\alpha(O)=2.5\times10^{-5}$ 4.
					$\delta(E2/M1) = +0.47$ 19 or +9 6.
	812.95 5	100.0 10	(E2)		α =0.00232 4; α (K)=0.00200 3; α (L)=0.000257 4;
					$\alpha(M)=5.13\times10^{-5} 8.$
					$\alpha(N)=1.010\times 10^{-5}$ 15; $\alpha(O)=1.079\times 10^{-6}$ 16.
865.51	759.82 15	100	Q		Mult.: from $\gamma\gamma(\theta)$ in ²³⁸ U(¹² C, F γ).
874.945	330.32 5	13.6 6			Iy: from 129 Te g.s. decay. Iy=34.6 6 in (n,y) is in
					disagreement.
	694.63 14	724			
	874.835	100.0 9	(M1 + E2)		$\delta(E2/M1)=0.00\ 2$ or +3.9 4.
966.902	333 . 21^{\ddagger} 5	1.914			
	$421.72^{@}10$	0.564			
	786.41 5	11.95 12			Iy: from 129 Te g.s. decay. Iy=33.6 24 in (n,y) is in
					disagreement.
	966.83 5	100.0 10	(M1 + E2)		$\delta(E2/M1) = +0.18$ 1 or -9.1 10.
1162.25	697.595	100.0 11			
	1056.53 16	7.96			
1221.28	461.47 5	21.0 10			
	756.59 3	100 10			
	1221.23 13	4.26			
1227.98	415.17 5	1.67 7			
	682.77 ⁸ [#] 5	100.0 10			Eγ: poor fit, level-energy difference=683.40.
1000 01	1122.48 5	1.60 5			
1233.81	689.22° 9	100 6			
1991 64		100 6			
1201.04	514.40 ⁺ 5	22.0 4			
	1991 65 6	00 9			
1202 41	660 64 8	100.0 10			
1303.41	1192 01 7	43.9 23			
	1202 6 1	100 4			
1318 30	351 46 + 11	40 4 2 7 2			
1318.30	505 33 5	18 33 79			
	684 39 21	22 01 22			I_{V} : from ¹²⁹ Sh decay I_{V} -172 12 in (n v) is
	004.00 21	22.01 22			discrepant, probably due to incorrect splitting of
					doublet at 773.2 keV. $I_{\gamma}(684)/I_{\gamma}(1318)=1.35.2$ in
					129 Sb decay as compared to 1.06.17 in (n v)
	773.29# 7	100.0 10			
	1318.42 12	16.35 17			Iv: from 129 Sb decay, Iv=159 20 in (n.v) is
					discrepant.
1384.98	840.17 22	279			r
	1384.98 5	100.0 24			

Adopted Levels, Gammas (continued)

$\gamma(^{129}{ m Te})$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.&	α	Comments
1405.66	592.77 6	61 4			
1100100	861.00 5	100.0 21			
1421.35	648.11 10	39.6 23			
	1421.36 15	100 4			
1460.90	647.94 5	100.0 23			
1401 01	826.75 16	54 16			
1481.21	514.43 8 606 22 5	100 8			
1483 37	$670 \ 31 \ 5$	99 5 100			
1515.7	703.3 6	100			
1523.29	657.74 10	100	Q		
1545.09	1000.50 8	100			
1559.86	338.65 8	71 5			
	786.45 7	43 5			Iγ: doubly placed, intensity split based on ¹²⁹ Sb decay data.
	800.04 3	100 11			·
	1379.33 19	29 5			
	1559.66 21	62 3			
1581.97	354.13 8	13.08 14			
	707.08 5	43.1 14			
1600 08	318 36‡ 5	13 08 14			
1000.00	787.16 5	100.0 11	(M1+E2)		$\delta(E2/M1) = +0.06\ 24$ or $-1\ 8$.
					EY: from ^{129}Sb decay. Other: 786.45 7 doublet in $(n,\gamma).$
	1419.40^{\ddagger} 12	22.7 3	(E2)		
	1600.13+ 5	33.4 3	(M1+E2)		$\delta(E2/M1) = +0.77 \ 11 \ or \ +2.7 \ 6.$
1632.57	404.64 5	84.4 8			$\delta(Q/D) = +0.47$ 5 or +3.65 65 for 9/2 to 7/2; +0.10 4 or +0.71 16 for 9/2 to 9/2; +0.12 19 or +0.93 34 for 7/2 to 7/2; -0.45 to -1.73 for 7/2 to 9/2.
	819.51 5	100.0 21			
	1087.98 5	29.6 6			
	1167.95 5	18.2 2			
1654.31	131.0 1	84 8			
1656 17	$1022 12 \ddagger 7$	2 24 22			
1000.11	$1475.91^{\ddagger} 5$	5.33 11			
	1656.20 10	100.0 11	(M1 + E2)		$\delta(E2/M1)=+0.02$ 3 or -3.7 4.
1727.1	211.4 5	100			
1727.972	95.425	0.19 1	[D, E2]	1.1 9	
	146.11 5	0.39 1	[M1+E2]	0.34 11	
	244.53 5	1.73 2			
	409.71 5	0.992 1842			$\delta(Q/D) = -0.14$ to -3.2 for $J(1228) = 7/2$; no fit for $9/2$
	761.12 5	18.51 19	(E2)		o(q, b)= 0.14 to 0.2 for 0(1220)=1/2, no no 10 0/2.
	914.96 5	100.0 10	(M1+E2)		$\delta(E2/M1)=+0.105$ 15 or -15.5 30.
	1263.305	3.90 4	(E1)		
	1622.46 5	0.89 1	(E1(+M2))		$\delta(M2/E1) = -0.07 \ 10.$
1751.11	523.13\$ <i>12</i>	100			
1752.32	590.00 9	47 3			
	1287 62 18	47 5			
	1752.64	40 12			
1753.35	435.04 \$ 9	22.6 15			
	471.54 9	4.8 4			
	525.23 10	17 1			$ \delta(Q/D) = -0.34 \ 7 \ \text{or} \ +4 \ 8 \ \text{if} \ J(1228) = 7/2; \ \text{no} \ \text{fit} \ \text{for} \ J(1228) = 9/2. $
	940.51\$ <i>12</i>	82 4			
	1209.03 ^w 5		(M1+E2)		Even noor fit loval anargy difference - 1647.84
1762 45	1040.79" 0 1582 11 5	2.87 10 100 4	[E0]		Eq. poor iii, ievei-energy uniference=1647.84.
1102.10	1762.42 5	94 3			
1777.8	1233.2 6	100			

Adopted Levels, Gammas (continued)

$\gamma(^{129}{ m Te})$ (continued)

E(level)	$E \gamma^{\dagger}$	Iγ [†]	Mult.&	α	Comments
1779.79	1779.785	100			
1843.67	115.845	0.58 2	[M1+E2]	0.7 3	
	876.655	18.24			
	1030.65 5	100.0 10	(M1 + E2)		$\delta(E2/M1) = +0.077$ 13 or -10.8 15.
	1738.16 5	49.2 5	1340 1		
1051 55	1843.495 5	0.14 4	[M3]		Eγ: this transition is less certain.
1851.55	689.22ª 9	100 4 9			
	889.0 J	10.9 14			
	1091.42 23	13.9 20			
1867 65	992 70 5	100			
1868 87	1095 47 18	100 8			
1000.01	1234.5.3	100 8			
	1324.6 3	81 8			
1870.57	589.98 25	3.2 9			
	996.54 5	25.3 6			Eγ: poor fit, level-energy difference=995.63.
	1237.81 [§] <i>12</i>	34.7 9	(M1+E2)		Ey: poor fit, level-energy difference=1236.77.
					$\delta(E2/M1) = -0.65$ 17 or -7 to $+10$.
	1326.98 5	100.0 10	(M1+E2)		Eγ: poor fit, level-energy difference=1325.99.
					$\delta(E2/M1)=+0.30$ 15 or +9.2 24.
	1691.245	6.10 21			Eγ: poor fit, level-energy difference=1690.21.
	1871.585	51.3 5	(M1 + E2)		$\delta(E2/M1)=-0.07$ 6 or -2.8 6.
1886.64	232.2	21 4			
	363.35 15	100 10	D		
1921.26	1287.45 5	100			
1939.52	657.6 ^b				
	1126.575	100.024			
	1179.635	45.2 16	_		
1957.06	433.74 9	100	D		
2040.20	480.22 21	18.5 3			
	818.86 6	28.5 9			
	1809.04 8	100 3			
2071 400	2040.38 7	413	(M1 + F9)		$(F_{2}/M_{1}) = 0.12.12$ or $+2.5.8$
2071.400	1104.52 5	40.75	(1011+152)		O(EZ/MI) = -0.15 12 01 +2.5 8.
	1258 44 5	55 1 5	(M1 + E2)		$\delta(E^2/M_1) = -0.37$ 15 or $-2.1.7$
	1437.52.5	43.3 7	(M1 + E2)		$\delta(E_2/M_1) = -1.0$ 4 or -2.2 to $+45$.
	1526.84 5	75.1 7	(M1+E2)		$\delta(E2/M1) = -0.10$ 9 or $+2.1$ 5.
	1606.72 5	2.7 3	[M2]		
	1891.10 7	2.18 13			
	2071.36 5	100.0 10	(M1 + E2)		$\delta(E2/M1) = -0.29 \ 8 \ or \ +1.55 \ 25.$
2086.10	$1211.89^{@}$ 17	100 16			
	1273.105	43.2 9			
	1541.475	17.6 5			
	2086.11 5	$14.18 \ 25$			
2114.58	796.21 6	4.6 3			
	832.99 16	7.2 17			
	1147.59 5	10.2 3			
	1301.45 5	23.2 9			
	1480.94 3 12	42.8 6	(M1. E9.)		S(TPO/M1) 0.10 5
		100.0 10	(M1 + E2)		$O(E2/M1) = -0.10 \ 3 \ 0f \ +2.1 \ 3.$
9191 90	2114.07 5	48.0 5	(MI+E2)		O(E2/M1) = +0.175 or -93.
2131.20	049.07 D 003 10 8	100 5			
2134 86	1501 04 5	100 3			
_101.00	$1669.16^{\#}$ 7	36.3 24			Eγ: poor fit, level-energy difference=1670.20.
	$2134.86^{@}5$	62.1 16			, <u>, , , , , , , , , , , , , , , , , , </u>
2137.83	180.4 2	35 4	(E1)	0.0374	$B(E1)(W.u.)=3.5\times10^{-7}$ 6.
	251.1 2	100 11	(E1)	0.0152	$B(E1)(W.u.)=3.6\times10^{-7}$ 7.
2220.9	1000.26 10	34.7 14			
	1677.29 15	49 5			
	2041.6 7	34.7 14			
	2221.5 7	100 14			

Adopted Levels, Gammas (continued)

$\gamma(^{129}\text{Te})$ (continued)

E(level)	$E\gamma^{\dagger}$	Ιγ†	Mult.&	Comments
2265.29	1037.29 5	100 3		
2200.20	1298.7 4	38 13		
	2265. 27 5	11.0 3		
2267 . 20	707.21 15	31 5		
	1045.83 10	27.3 15		
	$1105.46^{@}$ 11	15.2 15		
	1493.91 12	22 3		
	1633.6 3	20 4		
	2080.840 226719	9 1 23		
2360.472	704.40 18	0.81 8		
	800.40 20	2.84		
	1139.21 13	2.27 17		
	1485.48 16	1.92 12		
	1586.7 5	0.81 23		
	1815.6 5	0.47 12		
	2180.12 3	100 3		
2379 555	2360.42 3	18.72 17		
2015.000	723 22 14	1 9 4		
	1097.9 3	8.6 7		
	1158.37 12	14.6 7		
	1412.45	1.4 4		
	1504.3 3	10.0 16		
	1606.60 13	10.5 9		
	1619.5 6	6.07		
	1745.7 3	4.29		
	2199 21 3	4.0 4		
	2379.514	36.1 7		
2493.06	623.87 20	64 9		
	641.84 17	799		
	1526.46	$79 \ 21$		
	2312.7 8	86 21		
	2493.1 6	100 21	0	
2510.79	987.5 I 1640.478.0	100	Q	
2324.76	2343 7 3	17 3 18		
	2524.78a 3	100a 27		
2581.67	729.97 10	705		
	1360.44	63 11		
	2401 . 74 22	100 7		
	2581.5 9	33 7		
2705.130	344.55 10	4.63		
	437.4 4	1.03		
	1470.9 4	5.68		Ev: placement not unique: also in $\gamma\gamma$ coin with 359 γ .
	1830.22 4	44.2 4		-/· Francisco //
	1931.91 23	6.5 10		
	2071.03 23	9.0 6		
	2524.78 ^a 3	100 ^a 6		
	2705.074	67.3 6		
2840.3	330.4 3	100	(E2)	Mult.: $\Delta J=2$, Q from $\gamma\gamma(\theta)$, and RUL.
4000.8 3051 6	148.06 913.93	100	0	
3355 46	3355 14 14	100	4	
3429.8	2554.0 5	100 31		
	2670.46	42 7		
	3250.0 10	38 8		
3502.58	2627.7 5	43 7		
	2741.4 11	25 7		
2510 0	3322.04	100 11	D	
0012.9	012.0 4	100	D	
Adopted Levels, Gammas (continued)

$\gamma(^{129}{ m Te})$ (continued)

E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger}$	E(level)	$\mathbf{E}\gamma^{\dagger}$	Iγ [†]
3528.28	2652.3 ^a 4	30 ^a 9	4696.8	541.2 5	100
	2754.8 7	22 5	4825.2	389.9 5	100
	3348.6 5	100 5	(6082.40)	1493.91 ^a 12	2.3 ^a 3
	3528.4 4	11.3 17		1649.47 ^a 9	2.5 ^a 5
3546.91	1987.6 6	23 5		1693.45 10	4.8 4
	3366.3 6	100 14		1708.4° 3	2.6° 3
	3546.6 11	23 5		1717.80 5	9.0 3
3564.51	3564.71 14	100		1726.24 7	1.4 3
3617.0	776.7 6	100		1784.58 23	1.13 20
3636.7	586.8 4	100		1805.35 11	2.04 10
3638.38	3457.6 3	48 4		1842.1 3	2.51 10
	3638.36 13	100 4		1861.80 18	3.0 3
3648.77	3468.7 3	100		1878.1 3	$1.4 \ 3$
3792.40	2371.1 7	5.1 9		1901.77 18	1.7420
	3018.7 10	$5.1 \ 14$		1906.9 3	1.02 20
	3612.02 6	100.0 19		1948.81 10	3.1 7
	3792.4 3	18.2 9		1961.16 8	3.2 10
3852.71	2630.0 11	31 12		1994.92 12	3.5 3
	3672.2 3	100 12		2049.87 16	2.61 15
3865.36	3684.74 14	100		2216.96 7	4.35 15
4032.59	3853.6 7	100		2229.63 13	$2.71 \ 10$
4033.1	396.4 5	100		2289.994	19.60 20
4087.54	1708.4 ^c 3	200 ^c 28		2433.65 11	2.87 15
	3907.2 5	100 8		2443.99 7	4.97 15
4121.18	3940.4 4	100 8		2518.02 11	5.83 10
	4120.54	25 5		2535.47 9	4.04 15
4133.50	3952.84	574		2554.06 10	2.24
	4133.23 19	1004		2579.787	5.42 15
4155 . 6	1105.7 6	100		2652.3 ^a 4	3.3 ^a 3
4175.3	4174.6° 6	100 c		2726.70 12	3.48 15
4180.68	4001.5 8	100		3377.264	53.45
4204.3	4204.0 9	100		3500.59 12	4.40 20
4220.46	427.7 3	21 4		3557.60 9	5.94 15
	1999.5 3	100 21		3589.41 17	2.66 15
4240.5	4060.5 5	100		3702.82 6	52.95
4277.02	4096.5 3	100		3721.87 5	100.0 10
4297.80	4297.7 6	100		3815.14 6	12.2 3
4356.13	4174.6° 6	100 c		3860.59 10	5.12 15
4364.57	4184.0 3	534		4042.11 7	10.70 20
	4364.38 15	100.024		4426.8 7	1.18 15
4374.0	4374.6 12	100		4523.05	1.18 10
4388.93	4208.4 4	100		5449.4 6	1.13 10
4432 . 93	4252.0 6	35 3		5901.55 24	3.02 15
	4433.6 5	100 5		6082.0 3	2.00 10
4435.3	922.4 6	100			
4588.48	4588.55	100	I		

[†] The γ -ray data are primarily from (n,γ) and ¹²⁹Sb β^- g.s. decay. When levels are populated in both (n,γ) and β^- decay of 4.366-h decay of ¹²⁹Sb, values are unweighted averages with a minimum uncertainty of 0.05 keV for gamma-ray energy. For high-spin (J>11/2) data, values are unweighted averages from (⁶⁴Ni,X γ) and 17.7-min decay of ¹²⁹Sb, when a level is populated in both studies.

 ‡ γ reported in $^{129}Sb~\beta^-$ (4.366 h), not in (n, $\gamma).$

§ Doublet in $^{129}{\rm Sb}~\beta^-$ (4.366 h).

 $^{\#}\,$ This Ey not included in the fitting procedure due to poor agreement.

@ Uncertainty doubled in the fitting procedure.

& From $\gamma(\theta)$ data at low temperature in ¹²⁹Sb β^- g.s. decay. Mixing ratios are mostly double values and are given under comments.

^a Multiply placed; intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

^c Multiply placed; undivided intensity given.

 $^{129}_{52}\mathrm{Te}_{77}$ -15

Adopted Levels, Gammas (continued)

69.6 min

 $^{12\,9}_{5\,2}\mathrm{Te}_{77}$

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

 $^{12\,9}_{5\,2}\mathrm{Te}_{77}$

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

6104.06

 $^{129}_{52}$ Te $_{77}$

69.6 min

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

6104.06

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

6104.06

 $^{12\,9}_{5\,2}\mathrm{Te}_{77}$

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

6104.06

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

6104.06

 $^{12\,9}_{5\,2}\mathrm{Te}_{77}$

$^{129}_{52}$ Te₇₇-22

$^{129}Sb~\beta^{-}$ Decay (4.366 h) ~~1989WaZJ,1995StZZ

Parent $^{129}Sb:$ E=0.0; J\pi=7/2+; $T_{1/2}{=}4.366$ h 26; Q(g.s.)=2376 21; $\%\beta^-$ decay=100.

¹²⁹Sb-Q(β⁻): From 2012Wa38.

 129 Sb-J,T $_{1/2}$: From 129 Sb Adopted Levels. 1989WaZJ: 129 Sb from fission, mass separated source, measured Ey, Iy, yy coin.

1995StZZ: measured $\gamma(\theta)$ by low-temperature nuclear orientation method, deduced mixing ratios. This report is based on a thesis by M. Lindroos, Chalmers University of Technology, Goteborg, Sweden.

1970Oh05: source from 130 Te(γ ,p). Measured E γ , I γ , β ; $\gamma\gamma$ - and $\beta\gamma$ -coin. A total of 55 γ rays were reported with 48 placed amongst 22 levels; only one level at 1736 is not confirmed in 1989WaZJ.

1970Ca23: 235 U(n,F) and 130 Te(γ ,p). Measured E γ , I γ , $\gamma\gamma$. A total of 85 gamma rays were reported with 60 placed amongst 33 levels, nine of these levels have not been confirmed by 1989WaZJ.

The present decay scheme is from 1989WaZJ, which represents an extension and major revision of previous decay schemes proposed in 1970Ca23 and 1970Oh05.

¹²⁹Te Levels

The following levels proposed in 1970Ca23 have been omitted since not confirmed by 1989WaZJ: 244.5, 350.1, 948.6, 1302.0, 1415.2, 2042.0, 2199.0, 2221,6 and 2262.5.

E(level) [†]	Jπ‡	T _{1/2} ∓	Comments
0.0	3 / 2 +	69.6 min 3	
105.49 4	11/2-	33.6 d 1	$\%1T=63$ 17; $\%\beta^{-}=37$ 17.
180.37 4	1/2+		$J\pi$: isotropic $\gamma(\theta)$ consistent with 1/2.
464.64 6	9/2(-)		$J\pi$: 7/2- not allowed by $\gamma(\theta)$.
544.64 4	5/2+		
633.85 4	5/2+		
759.83 7	7/2-		$J\pi$: $\gamma(\theta)$ can fit 7/2, 9/2 and 11/2, but 7/2- from Adopted Levels.
812.96 4	7 / 2 +		
875.00 5	3 / 2 +		
966.86 4	5 / 2 +		
1227.98 5	(7/2-,9/2+)		J π : from $\gamma(\theta)$. 5/2 ruled out by $\gamma(\theta)$ of 500 γ from 1727 level; 9/2 less favorable from $\gamma(\theta)$ of 525 γ from 1754 level but not ruled out.
1281.725	5 / 2 +		$J\pi:$ from $\gamma(\theta)$ and decay modes; 7/2+ is not allowed by $1282\gamma(\theta).$
1318.235	7 / 2 +		
1384.96 10	(3/2-,5/2,7/2+)		
1405.69 8	(5/2,7/2,9/2+)		
1460.829	(5/2,7/2,9/2+)		
1481.26 8	($3 / 2 - , 5 / 2 , 7 / 2 +)$		
1483.35 8	7 / 2 +		
1545.14 <i>11</i>	7 / 2 + , 9 / 2 +		
1581.99 6	7 / 2 +		
1600.05 6	5 / 2 +		J π : from $\gamma(\theta)$. J π =5/2- and 7/2+ are not allowed by $\gamma(\theta)$.
1632.576	7 / 2 - , 9 / 2 +		$J\pi$: from $\gamma(\theta)$. $9/2-$ ruled out by $405\gamma(\theta)$.
1656.127	5 / 2 +		$J\pi$: from $\gamma(\theta)$. 7/2 ruled out by $1656\gamma(\theta)$.
1727.955	(9/2)+		
1751.11 13	$(\ 5\ /\ 2\ ,\ 7\ /\ 2\ ,\ 9\ /\ 2\)$		
1753.32 6	5 / 2+		$J\pi:$ from $\gamma(\theta)$ and particle-transfer data. 3/2+ not allowed by $525\gamma(\theta)$ and $941\gamma(\theta).$
1762.46 8	(5/2+)		
1777.8 10	(5/2,7/2,9/2+)		
1779.79 <i>10</i>	5 / 2 +		
1843.625	(9/2)+		$J\pi$: from $\gamma(\theta)$ and log $ft=5.3$ from $7/2+$.
1867.71 11	(5/2,7/2+)		
1871.61 5	5 / 2 +		$J\pi$: from $\gamma(\theta)$ and decay modes. J=5/2-,7/2- not allowed by $1327\gamma(\theta)$.
1921.30 11	(5/2)+		
1939.45 7	(5/2,7/2,9/2)		
2071.42 5	5 / 2 +		$J\pi$: from $\gamma(\theta)$. $7/2 +$ ruled out by $2071\gamma(\theta)$.
2086.10 6	(7/2+)		
2114.62 4	5 / 2 +		$J\pi$: from $\gamma(\theta)$. 7/2+ ruled out by $2115\gamma(\theta)$.
2131.24 8	7 / 2 -		
2134.89 8	(5/2-,7/2+)		
2265.29 8	(5/2+,7/2+)		

 † From least-squares fit to E γ data by assuming minimum uncertainty of 0.1 keV for E γ . In addition following E γ values were left out of the fitting procedure due to their poor fit in the level scheme: 314.4 from 1481 level, 1646.79 from 1753 level, 1211.89 from 2086 level, 1669.16 from 2134 level. Without making these adjustments and using the uncertainties as quoted in 1989WaZJ, reduced χ^2 =64 and 53 E γ values fall outside 3 σ . Using 0.05 minimum uncertainty for E γ improved the fit but still with reduced $\chi^2{=}5.0$ and about 15 γ rays deviating from the fitted values by more than $3\sigma.$

⁷ From Adopted Levels.

$^{129}_{52}$ Te $_{77}$ -23

1-3SD p Decay (4.366 n) 1989waZJ,1995StZZ (continued	¹²⁹ Sb	β- D)ecay	(4.366 h)	1989WaZJ,1995StZZ	(continued)
--	-------------------	------	-------	-----------	-------------------	-------------

β⁻ radiations

$E\beta^{-}$		E(level)	Iβ ^{-†‡}	Log ft	Comments
(111 2	27) 22	265 29	0 46 4	483	av EB=28.9.59
(241 2	(1) (21)	134.89	0.119.3	6.5 1	$a_{1} = 25.0 \text{ constant}$ $a_{2} = 67.1 = 65.$
(245 2	21) 21	31.24	0.216 9	6.3 1	$a_{\rm r} = 10^{-10}$ $B_{\rm r}$
(261 2	21) 21	114.62	2.06 4	5.4 1	$a_{\rm r} = -\frac{1}{2} = -\frac{1}{2} = -\frac{1}{2}$
(290 2	21) 20	086.10	0.67 7	6.0 1	av $E\beta = 82.3$ 68.
(305 2	21) 20	071.42	2.46 4	5.5 1	av $E\beta = 87.0$ 68.
(437 2	21) 19	939.45	0.174 4	7.18 8	av $E\beta = 131.0$ 73.
(455 2	21) 19	921.30	0.100 3	7.48 7	av $E\beta = 137.3$ 74.
(504 2	21) 18	871.61	1.533 23	6.45 7	av Eβ=154.8 75.
(508 2	21) 18	367.71	0.105 4	7.62 7	av $E\beta = 156.2$ 76.
(532 2	21) 18	843.62	25.5 4	5.31 6	av Eβ=164.8 76.
(596 2	21) 17	779.79	0.0781 22	7.99 6	av Eβ=188.1 78.
(598 2	21) 17	777.8	0.053 25	8.2 2	av Eβ=188.8 78.
(614 2	21) 17	762.46	0.0656 20	8.11 6	av Eβ=194.5 79.
(623 2	21) 17	753.32	2.165	6.61 6	av Eβ=197.9 79.
(625 2	21) 17	751.11	1.554	6.76 6	av Eβ=198.7 79.
(648 2	21) 17	727.95	29.9 5	5.53 5	av Eβ=207.3 79.
(720 2	21) 16	356.12	1.410 23	7.02 5	av $E\beta = 234.6 \ 81.$
(743 2	21) 16	532.57	3.15 7	6.72 5	av $E\beta = 243.7 \ 82.$
(776 2	21) 16	300.05	2.945	6.82 5	av Eβ=256.3 82.
(794 2	21) 15	581.99	0.441 22	7.68 5	av $E\beta = 263.3 \ 83.$
(831 2	21) 15	545.14	0.0504	8.69 6	av $E\beta = 277.8 84.$
(893 2	21) 14	183.35	0.54 4	7.77 5	av $E\beta = 302.4 \ 85.$
(895 2	21) 14	481.26	0.292 14	8.04 5	av $E\beta = 303.2 \ 85.$
(915 2	21) 14	460.82	0.192 20	8.26 6	av $E\beta = 311.4 \ 85.$
(970 2	21) 14	105.69	0.109 4	8.60 4	av $E\beta = 333.8 86$.
(991 2	21) 13	384.96	0.128 10	8.565	av $E\beta = 342.2$ 86.
(1058 2	21) 13	318.23	4.02 7	7.17 4	av $E\beta = 369.6 87.$
(1094 2	21) 12	281.72	0.693 21	7.99 4	av $E\beta = 384.7 88.$
(1148 2	21) 12	227.98	2.07 8	7.59 4	av $E\beta = 407.2$ 89.
(1409 2	21) 9	966.86	2.29 13	7.89 4	av $E\beta = 518.6 \ 91.$
(1563 2	21) 8	812.96	3.1 6	7.93 9	av $E\beta = 585.7 \ 93.$
(1616 2	21) 7	759.83	3.77 6	7.90 3	av $E\beta = 609.1 \ 93.$
(1742 2	e1) 6	533.85	1.08 4	8.57 3	av $E\beta = 664.9$ 94.
(1831 2	21) 5	544.64	2.74 17	8.26 4	av $E\beta = 704.7 \ 94.$
(1911 2	21) 4	164.64	0.38 3	9.19 4	av $E\beta = 740.6 \ 95.$
(2271 2	21) 1	105.49	3 1	9.76 ¹ u 15	av Eβ=899.8 94.
					$1\beta^{-1}$: measured in singles β spectrum (1966Ta05). This value is consistent
					with a total feeding of ¹²⁵ Te g.s.=84.3% <i>I1</i> in the fission yield study
					by 1969Er01.

^{\dagger} From γ -ray intensity balance unless otherwise stated. From the level scheme, β feeding to 180.37, 1/2+ level is 0.34% 17, whereas none is expected. In the opinion of the evaluators, this apparent feeding is due to poor knowledge of the intensity of 180.42 γ ; note that I γ =2.389 in 1989WaZJ is much lower which gives a non-physical negative β feeding of about 1.5%.

[‡] Absolute intensity per 100 decays.

$\gamma(^{129}{ m Te})$

U_2A_2 values are from 1995StZZ.
Following weak γ rays with E γ (I γ) reported in 1970Ca23 have not been confirmed by 1989WaZJ and are omitted: 125.1
(w), 136.8 (w), 165.0 (0.08 2), 197.4 (0.15 5), 217.2 (0.03 2), 226.3 (0.05 2), 232.1 (0.70 2), 950.6 (0.05 3),
984.3 (0.15 5), 1066.8 (0.12 7), 1139.2 (0.4 1), 1155.0 (w), 1161.8 (0.25 5), 1223.3 (0.4 1), 1752.3 (0.10 15),
1919.2 (0.06 2), 1975.0 (0.17 3), 2011.1 (0.010 5), 2030.5 (0.02 1), 2042.0 (0.010 5), 2091.5 (0.04 1), 2198.9
(0.13 3), 2262.5. Energy uncertainty is ≈1 keV.
Iγ normalization: Summed I(γ+ce)=97 1 to g.s. and 105.5 level. Beta feeding to 105.49, 11/2– level is taken as 3% 1
(1966Ta05). No 8 feeding is expected to g.s. About 1.5% absolute v-ray intensity remains unplaced in level scheme.

$E\gamma^{\dagger}$	E(level)	Ιγ‡@	Mult.#	α	Comments
95.42 3	1727.95	0.093 3	[D, E2]	1.1 9	

$^{129}_{52}\mathrm{Te}_{77}\mathrm{-}24$

$^{129}\text{Sb}\ \beta^-$ Decay (4.366 h) 1989WaZJ,1995StZZ (continued)

 $\gamma(^{129}{
m Te})$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Ιγ ^{‡@}	Mult.#	α	Comments
105.50 5	105.49		M4	429 7	Eγ,Mult.: from Adopted Gammas. I(γ+ce): total transition intensity feeding the 105.5 level is 27.4 2, out of which 17.3 units proceed by isomeric transition.
					$\alpha(K)=217 \ 3; \ \alpha(L)=165.3 \ 24; \ \alpha(M)=38.5 \ 6; \ \alpha(N)=7.43 \ 11; \ \alpha(O)=0.656 \ 10.$
115 84 4	1843 62	0 181 6	[M1+E2]	0 7 3	a(0)-0.000 10.
146.11 1	1727.95	0.188 3	[M1+E2]	0.34 11	
180.42 1	180.37	5.9 3	[M1]	0.1318	Iy: from 1970Oh05. Value of 2.389 19 in 1989WaZJ seems too low which gives non-physical negative β feeding of $\approx 1.5\%$. U_AA_0=+0.03 2.
244.53 1	1727.95	0.837 8	[M1+E2]	0.067 9	$U_{2}A_{2} = +0.35$ 11.
268.48 2	812.96	0.444 7	(M1+E2)	0.0515	$\delta(E2/M1) = +0.47$ 19 or +8.5 59 from U ₀ a ₀ = -0.33 17.
x290.48 4		0.1245			2.2
295.26 1	759.83	1.718 17	(M1+E2)	0.038 3	$\begin{array}{l} \delta(\text{E2/M1}){=}{-}0.07 \ \textit{4} \ \text{or} \ -6.3 \ \textit{15} \ \text{for} \ J(760){=}7/2; \\ \delta(\text{E2/M1}){=}{-}0.65 \ \textit{9} \ \text{or} \ +3.5 \ \textit{8} \ \text{for} \ J(634){=}9/2; \\ \delta(\text{E2/M1}){=}{+}0.13 \ \textit{3} \ \text{or} \ -20 \ \text{to} \ +80 \ \text{for} \ J(634){=}11/2 \ \text{from} \\ U_2a_2{=}{+}0.05 \ \textit{5}. \end{array}$
314.402	1281.72	0.2555			
318.36 <i>1</i>	1600 . 05	0.4715			
330.334	875.00	0.1517			
333 . 21 2	966.86	0.3548			
351.46 11	1318 . 23	0.156 17			
354.13 8	1581.99	0.201 20			
359.20 1	464.64	4.965	(M1 + E2)	0.0216 4	$\delta(E2/M1)=-0.025$ 22 or -27 14 from $U_2a_2=+0.20$ 3.
364.21 3	544.64	0.632 16	[E2]	0.0209	
x398.97 5		0.143 6			
404.64 1	1632.57	2.432 24	(M1+E2)	0.013 2	$\begin{split} &\delta(\text{E2/M1}) {=} + 0.47 \ 5 \ \text{or} \ {+}3.65 \ 65 \ \text{for} \ {9/2} \ \text{to} \ {7/2}; \\ &\delta(\text{E2/M1}) {=} + 0.10 \ 4 \ \text{or} \ {+}0.71 \ 16 \ \text{for} \ {9/2} \ \text{to} \ {9/2}; \\ &\delta(\text{E2/M1}) {=} + 0.12 \ 19 \ \text{or} \ {+}0.93 \ 34 \ \text{for} \ {7/2} \ \text{to} \ {7/2}; \\ &\delta(\text{E2/M1}) {=} - 0.45 \ \text{to} \ {-}1.73 \ \text{for} \ {7/2} \ \text{to} \ {9/2} \ \text{from} \\ &U_2 a_2 {=} - 0.44 \ 6. \end{split}$
409.71 2	1727.95	0.480 10			
415.17 4	1227.98	0.200 8			
421.72 10	966.86	0.104 8			Eγ: poor fit, level-energy difference=422.22.
x434.74		0.231			
435.048 9	1753.32	0.44 3			
453.44 1	633.85	1.116 13			
471.54 9 499.99 1	1753.32 1727.95	0.094 8 0.892 9			$\delta(\text{E2/M1})=-0.14$ to -3.2 for J(1228)=7/2 from U ₂ a ₂ =+0.8 3; no fit if J(1228)=5/2 or 9/2.
505.33 1	1318.23	1.074 11			
514.43 8	1481.26	0.304 25			
523.13 [§] 12	1751.11	3.216			$U_2A_2 = -0.24$ 6.
525.23	1753.32	0.341			$\delta(E2/M1)=-0.34$ 7 or +4.0 75 for J(1228)=7/2 from $U_2a_2=-0.24$ 6; no fit if J(1228)=9/2.
x539.52 6		0.159 12			
544.56 1	544.64	32.0 3	(M1+E2)	0.0070 6	$\delta(E2/M1)=+0.49$ 3 or +6.0 7 from $U_2a_2=-0.43$ 2.
x566.96 2		0.283 5			
589.98 25	1871.61	0.046 13			
592.77 6	1405.69	0.086 6			
606.22 4	1481.26	0.302 9			
x630.29					
633.74 1	633.85	5.24 5	(M1+E2)		δ(E2/M1)=+0.58 5 or +4.3 7 for J(634)=5/2 from U ₂ a ₂ =-0.41 3. Possible doublet.
647.94 2	1460.82	0.258 6			
654.28 1	759.83	6.16 6			E2 for J(760)=7/2; $\delta(E2/M1)=-0.26$ 3 or -2.95 25 for J(634)=9/2; $\delta(E2/M1)=-0.34$ 5 or +1.35 11 for J(634)=11/2 from U ₂ a ₂ =-0.19 3.
657.61	1939.45				
670.31 4	1483.35	1.99 7			

$^{129}_{52}\mathrm{Te}_{77}\mathrm{-}25$

$^{129}\text{Sb}\ \beta^-$ Decay (4.366 h) 1989WaZJ,1995StZZ (continued)

$\gamma(^{129}{ m Te})$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ‡@	Mult.#	Comments
682.77 [§] 1	1227.98	11.94 12		 Εγ: poor fit, level-energy difference=683.34. E2 for J(1228)=9/2; δ(E2/M1)=+0.46 8 or +4.8 14 for J(1228)=7/2 from U₂ a₂=-0.36 2.
684.18 1	1318.23	1.290 13		0242-000021
^x 688.59 8		0.34 3		
694.77 3	875.00	0.837 20		
x697.78		0.528		
x703.36 5		0.198 8		
707.08 3	1581.99	0.286 9		
x715.49 14		0.105 17		
737.07 1	1281.72	0.921 9	(M1 + E2)	$\delta(E2/M1)=-0.11$ 18 or +2.4 10 from $U_2a_2=-0.28$ 16.
761.12 1	1727.95	8.96 9	(E2)	Mult.: $U_2A_2 = -0.43$ 3 consistent with E2.
768.98 2	1581.99	0.665 10		
773.37 1	1318.23	5.86 6		$\delta(E2/M1) = +0.03$ 4 or $+1.53$ 14 from $U_2a_2 = -0.41$ 3.
786.36 1	966.86	2.221 22	[E2]	
787.16 1	1600.05	3.60 4	(M1+E2)	Iγ: from 1995StZZ. 1989WaZJ list 1.819 4. δ(E2/M1)=+0.06 24 or -1.4 79 from U_2a_2 =+0.11 9.
796.21 6	2114.62	0.084 6		
812.97 1	812.96	100.0 10	(E2)	Mult.: $U_2A_2 = -0.41$ 3 consistent with E2.
819.512	1632.57	2.88 6		
826.75 16	1460.82	0.144		
832.99 16	2114.62	$0.13 \ 3$		
840.17 22	1384.96	0.057 19		
849.57 5	2131.24	0.157 6		
861.00 3	1405.69	0.141 3		
874.89 3	875.00	1.108 10	(M1+E2)	$\delta(E2/M1)=0.00\ 2\ \text{or}\ +3.9\ 4\ \text{from}\ U_2a_2=-0.40\ 3.$
876.65 3	1843.62	5.70 13		
903.19 8	2131.24	0.291 15		
914.96 <i>1</i>	1727.95	48.4 5	(M1+E2)	$\delta(E2/M1) = +0.105$ 15 or -15.5 30 from $U_2A_2 = +0.10$ 2.
~939.52 040 518 19	1759 99	0.398		$S(E_0/M_1) = 0.69$ to 1.11 from U o = 0.45.5
940.51 12	1755.52	1, 59 7	(M1, E9)	$\delta(E_2/M_1) = -0.88$ to -1.11 from $U_2 a_2 = -0.43$ 5.
992 70 1	1867 71	0 217 8	(1011+122)	$0(12/M1) = +0.18$ 1 of -9.1 10 from $0_2a_2 = +0.02$ 2.
996 54 3	1871 61	0.365.8		
1000 50 8	1545 14	0 104 8		
1022 12 7	1656 12	0 061 6		
1022.12 /	1843 62	31 4 3	(M1 + E2)	$\delta(E_2/M_1) = +0.077$ 13 or -10.8 15 from U ₂ a ₂ =+0.146 21
1037.29 4	2265.29	0.636 20	(111:122)	0(22)M1)=+0.011 10 01 10.0 10 Hom 0 yuy=+0.110 21.
x1042.30 6		0.088 6		
×1053.02 5		0.109 6		
1087.98 3	1632.57	0.852 18		
1104.52 1	2071.42	0.707 7	(M1+E2)	$\delta(E2/M1) = -0.13$ 12 or +2.45 75 from $U_2a_2 = -0.25$ 11.
1122.48 3	1227.98	0.191 6		2 2
1126.57 3	1939.45	0.248 6		
1147.59 3	2114.62	0.185 5		
1167.952	1632.57	0.5257		
1179.634	1939.45	0.1124		
1196.42 2	2071 . 42	0.177 3		
1209.03 3	1753 . 32	1.95 3	(M1+E2)	Ey: poor fit, level-energy difference=1208.68. $\delta(\text{E2/M1})=-0.30 5 \text{ or } +4.0 75 \text{ from } U_2a_2=-0.08 5.$
1211.89 17	2086.10	0.79 13		Eγ: poor fit, level-energy difference=1211.10.
1233.2 6	1777.8	0.11 5		
1237.81 [§] <i>12</i>	1871.61	0.501 10	(M1+E2)	$\begin{split} &\delta(\text{E2/M1}) = +0.09 \ 6 \ \text{or} \ -5.3 \ 17 \ \text{for} \ J(634) = 3/2; \ \delta(\text{E2/M1}) = -0.65 \ 17 \ \text{or} \ -7 \\ & \text{to} \ +10 \ \text{for} \ J(634) = 5/2 \ \text{from} \ U_2 a_2 = +0.18 \ 10. \end{split}$
x1238.62				
1258.44 1	2071.42	0.834 8	(M1+E2)	$\delta(E2/M1)=-0.37$ 15 or -2.05 65 from $U_2a_2=-0.24$ 10.
1263.30 1	1727.95	1.887 19	(E1)	$U_2a_2=-0.43$ 6 consistent with E1.
1273.10 2	2086.10	0.341 7		
^1276.13 7	1001	0.213 19		
1281.72 1	1281.72	1.160 12	(M1+E2)	$\delta(E2/M1) = -0.10$ 7 or -2.45 45 from $U_2a_2 = +0.49$ 12.
1287.45 3	1921.30	0.208 5		
1298.7 4	2265.29	0.24 8		
1301.45 5	2114.62	0.419 16		

$^{129}_{52}$ Te $_{77}$ -26

$^{129}_{52}$ Te $_{77}$ -26

129 Sb β^{-} Decay (4.366 h) 1989WaZJ,1995StZZ (continued)

$\gamma(^{129}\text{Te})$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Ιγ‡@	Mult.#	Comments
1318.30 <i>1</i>	1318.23	0.958 10		$\delta(E2/M1) = +0.55 \ 8 \ or \ +4.8 \ 13 \ from \ U_0 a_0 = -0.49 \ 7.$
1326.98 1	1871.61	1.442 14	(M1+E2)	$\delta(E2/M1) = +0.30$ 15 or $+0.92$ 24 from $U_2 a_3 = -0.56$ 6.
1384.98 3	1384.96	0.208 5		2 2
1419.40 12	1600.05	0.818 10	(E2)	E2 from $U_{2}A_{2}=-0.36$ 8.
x1421.23		0.078		
1437.52 2	2071.42	0.655 10	(M1+E2)	$\delta(\text{E2/M1})=+0.03$ 8 or -4.1 13 for J(634)=3/2; $\delta(\text{E2/M1})=-1.0$ 4 or -2.2 to +45 for J(634)=5/2 from U_2a_2=+0.28 13.
1475.91 3	1656.12	$0.145 \ 3$		
1480.94 [§] 12	2114.62	0.774 11		
x1483.04		0.085		
1501.04 4	2134.89	0.1244		
1526.84 1	2071 . 42	1.136 <i>11</i>	(M1 + E2)	$\delta(E2/M1) = -0.10$ 9 or +2.1 5 from $U_2a_2 = -0.28$ 8.
1541.47 3	2086.10	0.1394		
1570.09 1	2114 . 62	1.810 18	(M1 + E2)	$\delta(E2/M1) = -0.10$ 5 or +2.1 3 from $U_2A_2 = -0.28$ 5.
1582.115	1762.46	0.070 3		
1600.13 <i>1</i>	1600.05	1.201 12	(M1 + E2)	$\delta(E2/M1) = +0.77$ 11 or $+2.7$ 6 from $U_2a_2 = -0.65$ 7.
1606.72 1	2071 . 42	0.0414		
1622.46 1	1727.95	0.4314	(E1(+M2))	$\delta(E2/M1)=-0.07$ 10 or -17 13 from $U_2a_2=+0.06$ 14; but $\Delta(J\pi)$ required E1.
1646.795	1753 . 32	0.0562	[E3]	Eγ: poor fit, level-energy difference=1647.83.
1656.10 1	1656.12	2.72 3	(M1+E2)	$\delta(E2/M1)=+0.02$ 3 or -3.65 40 from $U_2a_2=+0.29$ 5.
1669.16 7	2134.89	0.045 3		Eγ: poor fit, level-energy difference=1670.25.
1691.244	1871.61	0.088 3		
x1724.312		0.2764		
x1727.77 2		0.060 13		
1738.16 1	1843 . 62	15.46 15		$U_2A_2 = +0.114$ 19.
1762.425	1762.46	0.0662		
1779.784	1779.79	0.1624		
1843.49 ^{&} 1	1843 . 62	0.043 12	[M3]	
1871.58 1	1871.61	0.739 7	(M1 + E2)	$\delta(E2/M1) = -0.07$ 6 or -2.75 55 from $U_2a_2 = +0.43$ 10.
1891.10 7	2071 . 42	0.033 2		
x1917.36 3		0.112 3		
x1934.24 3		0.112 3		
x2002.36 6		0.065 3		
2071.36 1	2071 . 42	1.513 15	(M1+E2)	$\delta(E2/M1) = -0.29 \ 8 \text{ or } +1.55 \ 25 \text{ from } U_2a_2 = +0.74 \ 8.$
2086.11 2	2086.10	0.1122		
2114.67 1	2114 . 62	0.868 9	(M1 + E2)	$\delta(E2/M1)=+0.17$ 5 or -9.2 33 from $U_2a_2=+0.04$ 8.
2134.86 3	2134.89	0.0772		
x2223.42 5		0.0582		
2265.274	2265.29	0.0702		

[†] From 1989WaZJ. The evaluators assign minimum uncertainty of 0.1 keV for the purpose of least-squares fit. In Adopted dataset increased uncertainties are used when taken from this dataset. Values from 1970Ca23 and 1970Oh05 are listed in the dataset under 'documentation' records.

[‡] From 1989WaZJ unless otherwise stated. The evaluators assign minimum uncertainty of 1% for gamma-ray intensity in cases where 1989WaZJ quote an uncertainty lower than 1%. Values from 1970Ca23 and 1970Oh05 are listed in the dataset under 'documentation' records.

§ Doublet.

[#] From $\gamma(\theta)$ and other considerations as explained in 1995StZZ. Almost all mixing ratios are double values (a low δ and a high δ); these are given under comments.

[@] For absolute intensity per 100 decays, multiply by 0.482 6.

& Placement of transition in the level scheme is uncertain.

 $^{x}~\gamma$ ray not placed in level scheme.

7/2+	0.0 4.	366 h		Int	ensities: Ι(γ	+ce) per	r 100 parent d	lecays			
$^{129}_{51}{ m S}$	b ₇₈										
	%β-	=100									
$Q^{-=2}$	237621										
			ŝ								
			00. 0. 0.	200 200	200	,					
TB-	Log ft	\	\$\$^. \$?	~~~	°.°°		N.S.	8.9.9°			
0.46	4.8	(5/2+,7/2+)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 0.0.0 0.000	20,00 444,000 40,000 44,000	832- A	8	1879 8 1879 8		2265.29	
0 119	6 5	(5/2-,7/2+)		8-7-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	v v 34 2 30 v 53 4 2 30 v 6 4 4 0 0 0	.00.000	0.0 	470 70 70 70 70 70 70		2134.89	
0.216	6.3	7/2-	513	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10001000 100001000	N 749	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.37	40	2131.24	
2.06	5.4	5/2+		FT.		2222		<u></u>	<u> </u>	2114.62	
0.67 2.46	6.0 5.5	5/2+				HHT		 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2071.42	
0 174	7 18	(5/2,7/2,9/2)						2.2.2 2.2.2.2 2.2.2.2 2.2.2.2 2.2.2.2.2.2.2 2.	8 8 8 7	1939.45	
0.100	7.48	(5/2)+								<u>1921.30</u>	
1.533	6.45	5/2+							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1871.61	
0.105	7.62	(5/2,7/2+)								-\ <u>1867.71</u>	
0.053	8.2 5.53	(9/2)+								$=$ $\frac{1777.8}{1727.95}$	
20.0	0.00									1050.10	
1.410	7.02	5/2+								1656.12	
2.94	6.82	7/2+ 9/2+								1545 14	
0.050	8.69	1/2+,3/2+								1040.14	
0.192	8.26	(5/2,7/2,9/2+)								1460.82	
0.128	8.56	(3/2-,5/2,7/2+)									
4.02	7.17	7/2+								1318.23	
0.693	7.99	5/2+		L V					¥	1281.72	
2.07	7.59	(7/2-,9/2+)	¥							1227.98	
		\									
2 29	7 89	5/2+								966.86	
2.20	1.00										
		3/2+				<u> </u>	<u> </u>		↓ ↓	875.00	
3.1	7.93	7/2+			¥	<u> </u>	<u> </u>	.↓		812.96	
3.77	7.90	7/2-						k		759.83	
1.08	8.57	5/2+		<u> </u>	V		<u> </u>		<u> </u>	633.85	
0.74	0.00	\ \ \ ₩5/9+			v					544 64	
2.74	8.26	0/2+			¥	<u>v</u>	. v			544.04	
0.38	9.19	9/2(-)		k			¥			464.64	
) 1/9.								100.87	
		\ <u>1/2+</u>					_ ¥		V	180.37	
3	9.76 ¹ u	11/2-								105.49	33.6 d
		2/0.					,			0.0	
		3/2+	<u>v</u> v	_\	1	<u>v v</u>	<u> </u>	<u>v</u>		0.0	69.6 min

 $^{129}_{52}{
m Te}_{77}$

7/2+

 $^{129}\text{Sb}\ \beta^-$ Decay (4.366 h) 1989WaZJ,1995StZZ (continued)

Decay Scheme (continued)

Intensities: $I(\gamma+ce)$ per 100 parent decays

7/2+

 $^{129}\text{Sb}\ \beta^-$ Decay (4.366 h) 1989WaZJ,1995StZZ (continued)

Decay Scheme (continued)

Intensities: $I(\gamma+ce)$ per 100 parent decays

0.0 4.366 h

¹²⁹Sb β⁻ Decay (17.7 min) 1995Zh37,1987St23,1982Hu09

Parent ¹²⁹Sb: E=1850.31 6; $J\pi$ =(19/2-); $T_{1/2}$ =17.7 min 1; Q(g.s.)=2376 21; % β^- decay=85.0.

 $^{129}Sb{-}Q(\beta^{-}){:}$ From 2012Wa38.

 $^{129}\mathrm{Sb-E,J,T}_{1/2}\mathrm{:}$ From $^{129}\mathrm{Sb}$ Adopted Levels.

1988StZQ, 1987St23: ²³⁵U(n,f) E=th, on-line mass separator; Ge detector, Εγ, Ιγ, ce, γγ-coin, half-life.

1982Hu09: 235 U(n,F) E=th, on-line mass separator; Ge detector, $\gamma\gamma$ -coin, half-life. A total of 29 γ rays reported up to 1843 keV, but only a few are common with those from 1987St23.

1988Go19 assigned a 16.7-min isomer to ¹³¹Sb based on observation 433.8 and 642.3 gamma rays, but in an erratum (Phys. Rev. C 39, 1646 (1989) the authors revised its assignment to ¹²⁹Sb based on the work of 1982Hu09 and 1987St23; and also stated that 433.8 and 642.3 γ rays were in coin with a 759 γ . While 433.8 and 759 γ are confirmed in this decay, the origin of 642 γ is not known.

1995Zh37: 17.7-min isomer produced in 130 Te(64 Ni,X) at 275 MeV. The authors estimate that $\approx 68\%$ decay feeds the 1958, (21/2-) level in 129 Te which decays by 434-658-760 γ cascade to 11/2- isomer at 105 keV.

¹²⁹Te Levels

Since the gamma-ray data from 1982Hu09 and 1988StZQ are in severe disagreement, only those transitions are placed in a level scheme which are consistent with in-beam high-spin γ -ray data from 1998Zh09, 1995Zh37.

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
	2 / 2		
0.0	3/2+	69.6 min 3	
105.50 5	11/2-	33.6 d 1	$\%$ IT=63 17; $\%\beta^{-}$ =37 17.
865.3 1	15/2(-)		
1523.08 14	19/2(-)		
1654.0 1	(17/2-,19/2-)		
1956.84 16	(21/2-)		

† From Adopted Levels.

 β^- radiations

$E\beta^{-}$	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(2269 21)	1956.84	≈63	≈6.1	av $E\beta=903.8$ 96. IR ^{-:} 19957b37 estimate =68%
(2572 21)	1654.0	≈ 10	≈7.1	av E β =1042.9 97.

[†] From intensity balance. These feedings should be considered as approximate since the decay scheme is not well established. [‡] For β^- intensity per 100 decays, multiply by =1.0.

$\gamma(^{129}\text{Te})$

		Gamm	a-ray data	from 198	82Hu(9 0		
γ	Ιγ		Level	$E\gamma$	Iγ		Lev	vel
9.02	6.0	20	1548.5	583.3	4	1.5	5	
1.1 8	3.0	10		657.78	8 8 #	92 8	2	1417.6@
3.69	10.0	30		684.6	2 #	3.5	10	2102.1
0.91	6.0	20		759.8	1# 1	100.0	9	759.8@
6.02	1.8	5		788.7	2	4.0	15	1548.5@
6.04	1.7	5		793.5	3	5.0	15	
0.5 2	2.0	5	2102 . 1	825.4	3	8.5	30	
1.1 4	1.0	3		1063.2	4	2.0	10	
6.93	2.0	5		1068.8	2 #	4.0	15	1828.4
0.8 1#	8.5	20	1828.4	1091.4	2	3.0	10	1851.4
3.76 8	#73	8	1851.4@	1225 . 5	2	4.0	10	
5.63	1.8	5		1327 . 1	3	2.8	10	
8.02	1.8	5		1417.6	3	3.4	12	1417.6
3.0 4	1.4	5		1843.1	5	1.8	5	
3.5 2	4.0	12						

γ near this energy reported in 1988StZQ

 $Gamma-ray\ data\ from\ 1988StZQ\,,\ 1987St23$

			_	$\gamma(^{129}\text{Te})$ (continued)
Eγ	Level	$\mathbf{E}\gamma$	Level	
232	2190	544@	544	
239	2020	658#	1524	
257	1781	684#@	1228	
307	2109	752	2275	
320	2109	754	1621	
314&	1934	761#	857	
341	2275	814@	814	
405	1623	877	1744	
410#	1934	929	1796	
434	1958	1031	1845	
523	2157	1067#	1934	
& 314γ	shown incor	rectly from	n 1958 level	in Fig 6 of 1988StZQ
#γnea	r this ener	gy reported	l in 1982Hu0	9
@γmay of 17	be from de .7-min ¹²⁹ St	cay of 4.36	66-h ¹²⁹ Sb po	pulated by IT decay

$E\gamma^{\dagger}$	E(level)	Iγ [†] ‡	Mult.	α	Comments
105.50 5	105.50		M4		Eγ,Mult.: from Adopted Gammas.
130.9 1	1654.0	6.0 20	[M1]	0.32	
433.76 8	1956.84	738	[E2]	0.0123	
657.78 8	1523.08	92 8			
759.8 1	865.3	100.0 9			
788.7 2	1654.0	4.0 15			

[†] From 1982Hu09 unless otherwise stated.
[‡] For absolute intensity per 100 decays, multiply by ≈0.85.

$^{129}Sb\ \beta^{-}\ Decay\ (17.7\ min)$ 1995Zh37,1987St23,1982Hu09 (continued)

¹²⁹Te IT Decay (33.6 d) 1969Di01

Parent ¹²⁹Te: E=105.50 5; J\pi=11/2-; $T_{1/2}$ =33.6 d 1; %IT decay=63 17. 1969Di01: produced by ¹³⁰Te(n,2n), ¹²⁸Te(n,\gamma); Ge detector, $\gamma\gamma$ -coin. See also 129 Sb β^- decay.

¹²⁹Te Levels

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0 105.50 <i>5</i>	3/2+ 11/2-	69.6 min <i>3</i> 33.6 d <i>1</i>	%IT=63 17; % $\beta^{-}=37$ 17. %IT,% β^{-} : Deduced by the evaluators from the measured ratio I β (to g.s.)/I β (to 27 level in ¹²⁹ I)=0.58 18 in equilibrium od 33.6-d and 69.6-min ¹²⁹ Te activities (1964De10,1969Di01) along with the ¹²⁹ I level scheme from 1976Ma35.

[†] From Adopted Levels.

$\gamma(^{129}{ m Te})$

Eγ	E(level)	$\underline{ I\gamma^{\dagger}}$	Mult.	α	I(γ+ce) [†]	Comments
105.50 5	105.50	0.23 1	M4	429 7	100	$\begin{array}{l} {\rm ce}({\rm K})/(\gamma+{\rm ce})\!=\!0.505\ 8;\ {\rm ce}({\rm L})/(\gamma+{\rm ce})\!=\!0.384\ 6;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce})\!=\!0.0895\ 18;\ {\rm ce}({\rm N}+)/(\gamma+{\rm ce})\!=\!0.0188\ 4.\\ {\rm ce}({\rm N})/(\gamma+{\rm ce})\!=\!0.0173\ 4;\ {\rm ce}({\rm O})/(\gamma+{\rm ce})\!=\!0.00152\ 3.\\ {\rm \alpha}({\rm K})\!=\!217\ 3;\ {\rm \alpha}({\rm L})\!=\!165.3\ 24;\ {\rm \alpha}({\rm M})\!=\!38.5\ 6;\ {\rm \alpha}({\rm N})\!=\!7.43\ 11;\\ {\rm \alpha}({\rm O})\!=\!0.656\ 10.\\ \end{array}$
						Mult.: α(K)exp=213 10 (1977So06), ce(K)/(γ+ce)=0.503 7, ce(L)/(γ+ce)=0.383 7, ce(M+)/(γ+ce)=0.112 3, K:L:M:N+=1.29 4:1:<0.26:0.053 4 (1972Ka61), L1:L2:L3=0.767 39:0.166 18:1 (1972Ka61), M1/M23=1/1.84 53 (1972Ka61), (N+O)/L=0.053 4 (1972Ka31).

 † For absolute intensity per 100 decays, multiply by 0.63 17.

¹²⁹Te IT Decay (33.6 d) 1969Di01 (continued)

128 Te(n, γ) E=thermal 2003Wi02

2003Wi02 (also 1999Bo31): measured Ey, Iy, yy coin using two HPGe detectors.

- 1994SwZZ: measured $\gamma\gamma$, $\gamma\gamma(\theta)$. Two levels at 875,(3/2+) and 937,(1/2+) reported. No details are given in this paper. The level at 875 keV is confirmed in 2003Wi02 but the level at 937 keV has not been reported in any of the other
 - studies, thus omitted here.
- 1991StZX: measured Ey, Iy at NIST facility. A total of 18 excited states reported up to 2704 keV above the 105-keV isomer.
- 1981Bu02: enriched target, measured Ey, Iy for about 50 y rays; but report only eight excited states.

2007 ChZX; PGAA database: 23 γ rays listed in this database, mainly from 1981Bu02 and 1999Bo31. In Budapest

measurements with natural Te target, eight secondary $\boldsymbol{\gamma}$ rays were reported.

All data are taken from 2003Wi02 since this work is the most complete comprehensive. Partial data reported in 1991StZX and 1981Ho12 are generally in agreement with results from 2003Wi02. 1991StZX report ten primary γ rays and 31 secondary γ rays are listed in 1991StZX, but placements of eight γ rays are different from those given in 2003Wi02. 1981Ho12 mention observation of \approx 50 γ rays with I γ >0.3 per 100 n-captures; however, they report only on those γ rays to levels for which L=1 in (d,p). These data are in agreement with those from 2003Wi02.

¹²⁹Te Levels

Following levels proposed in 1991StZX have not been adopted here: tentative 936.8, 1717.6, 2229.7, 2443.7, 3995.5, and 3745.5. The γ transitions connected with these levels have been placed elsewhere by 2003Wi02.

E(level) [†]	Jπ§	$T_{1/2}$ §	Comments
0.0	3 / 2 +		
105.495	11/2-	33.6 d 1	
180.363 [‡] 15	1 / 2 +		
$464.62^{\ddagger}4$	9 / 2 (-)		
544.606 [‡] 25	5 / 2 +		
633.741 [‡] 22	5 / 2 +		
759.81 [‡] 4	7 / 2 -		
773.215 22	1 / 2 +		
812.93 7	7 / 2 +		
874.880 ± 21	3 / 2 +		Jπ: 3/2 from γγ(θ) (1994SwZZ).
966.86 [‡] 7	5 / 2 +		
1162.205	(7/2)-		
1221.25 [‡] 4	(5/2-,7/2+)		
1233.83 9	3 / 2 + , 5 / 2 +		
1281.56 6	5 / 2 +		
1303.39 6	1 / 2 +		
1317.854	7 / 2 +		
1421.34 9	5 / 2 +		
1559.84 4	(3/2)-		
1599.39 10	5 / 2 +		
1656.25 9	5 / 2 +		
1752.287	(5/2)-		
1851.53 6	5 / 2 - , 7 / 2 -		
1868.86 12	5 / 2+		

$^{129}_{52}\mathrm{Te}_{77}$ -34

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

¹²⁹Te Levels (continued)

E(level) [†]	Jπ§	Comments
2040 10 [±] 4	2/9	
2040.15 4	(3/2 - 5/2 +)	
2221.00 7	3/2_	
2201.25 4	3/2-	
$2379 557 \ddagger 23$	3/2-	
2493 05 11	3/2-	
2524 76 [‡] 3	1/2-	
2581 67 8	3/2-	
$2705 119^{\ddagger} 21$	1/2-	
$3355 46^{\ddagger} 10$	3/2-	
3429 8 3	(3/2) -	
3502.58 8	(3/2-)	
3528.28 10	(1/2-)	
3546.91 9	(3/2-)	
3564.51 9	1/2-	
3638.38 7	1/2-	
3648.77 11	1/2-	
3792.41 4	3/2-	
3852.71 12	3 / 2 -	
3865.37 7	3 / 2 -	
4032.59 16	3 / 2 -	
4087.54 11	3 / 2 -	
4121.19 8	1 / 2 -	
4133.50 9	3 / 2 -	
4175.3 3	(1/2)-	
4180.67 18	(3/2)-	
4204.3 3	1/2-	
4220.61 14	3 / 2 -	
4240.5 3	3 / 2 -	
4277.02 11	3 / 2 -	
4297.80 22	1/2-	
4356.13 8	1/2-	
4364.57 6	1/2-	
4374.0 3	(1/2,3/2,5/2+)	
4388.93 10	1 / 2 -	
4432.93 9	3 / 2 -	
4588.48 12	($1 \ / \ 2$, $3 \ / \ 2$, $5 \ / \ 2$ +)	
(6082.40 8)	1 / 2 +	Jπ: s-wave capture in 0+.
		E(level): statistical uncertainty=0.023 keV. According to statement in 2003Wi02 about

systematic uncertainty in calibration of singles spectra, 0.08 keV has been added in quadrature by evaluators. S(n)=6082.41~8~(2012Wa38).

 † From least-squares fit to E γ data. According to 2003Wi02, a systematic uncertainty of about 80 eV arising from calibration of singles γ spectra should be added in quadrature.

[‡] Level also reported in 1991StZX above the 105-keV isomer.
 § From Adopted Levels.

$$\gamma(^{129}\text{Te})$$

All placed gamma rays are from $\gamma\gamma$ coin data in 2003Wi02, unless stated otherwise.

Eγ	E(level)	Iγ ^{†§}	Comments
×149 65 5		0 310 12	
180.33 3	180.363	44.0 4	
x188.42 23		0.050 9	
x230.1 3		0.040 10	
295.274	759.81	1.23 3	
x300.81 14		0.100 12	
330.32 5	874.880	1.10 2	
338.65 8	1559.84	0.45 3	
344.55 10	2705.119	0.220 13	
359.195	464 . 62	7.60 8	

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

$\gamma(^{129}{ m Te})$ (continued)

Εγ	E(level)	Iㆧ	Comments
364 26 10	544 606	0 150 14	
x367 90 7	044.000	0.234	
x380.2 3		0.070 11	
x384.75.17		0.110 11	
x391.6 4		0.050 11	
x416.67 9		0.274	
427.7 3	4220.61	0.050 9	
437.4 4	2705.119	0.070 13	
^x 439.9 4		0.070 12	
x443.5 4		0.060 13	
453.33 3	633.741	1.01 2	
461.47 5	1221.25	0.65 3	
480.22 ± 21	2040.19	0.28 ± 4	
527.90 8	2379. 557	0.220 11	
x531.46 20		0.080 11	
544.61 3	544.606	5.375	
x546.98 16		0.110 11	
590.00 9	1752 . 28	0.200 12	
592.81 3	773 . 215	0.89 2	
x599.34 23		0.100 14	
623.87 20	2493.05	0.090 12	
633.78 3	633. 741	3.92 4	
x637.61 21		0.080 11	
641.84 17	2493.05	0.110 12	
648.11 10	1421.34	0.190 11	
654.30 3	759.81	2.85 3	
x666.98 14		0.180 14	
669.64 8	1303.39	0.250 13	
684.6 3	1317.85	0.170 12	
689.22# 9	1233.83	0.40 # 6	
	1851.53	1.01# 9	Iγ: 1.41 in Table 5 of 2003Wi02 is a misprint.
694.49 3	874.880	2.172	
697.59 3	1162.20	2.67 3	
704.40 18	2360.473	0.140 13	
707.21 15	2267.23	0.416	
723.227 14	2379.007	0.1172	
726 04 6	2001.07	0.190 13	
756 59 3	1201.00	0.38 Z 3 1 3	
773 22# 3	773 915	2 79# 20	
110.11 0	1317 85	0 10# 2	
$786 \ 45^{\#} \ 7$	966 86	0.15 ± 2	placement not confirmed in (n γ) coincidence data, but confirmed ¹²⁹ Sb B ⁻ decay
100110	000100	0.10 2	Iy: total intensity for doublet=0.42 3; split based on branching ratios from 129 Sb decay (same in Adopted dataset).
	1559.84	0.27 # 3	
	1599.39	0.27 # 3	
800.04.3	1559.84	0.63.7	
800.407 20	2360.473	0.487 7	
812.93 7	812.93	0.542	
818.86 6	2040.19	0.430 13	
×857.1 6		0.040 12	
*874.78 4		3.18 3	
874.78 4	874.880	3.18 3	
889.U 3	1991.93	0.110 14	
009.U 3		0.090 14	
-910.13 12 x027 4 2			
301.4 3 XQ15 7 1		0.100 14	
949.14 966 87 7	966 96	1 95 9	
×981 6 5	000.00	0 080 14	
×984 1 4		0 10 9	
992.52 8	1752.28	0.43 2	
x996 3 4	1102.20	0 09 2	

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

$\gamma(^{129}{ m Te})$ (continued)

Εγ	E(level)	Iㆧ	Comments
1000 96 10	0001 66	0 940 14	
1000.26 10 ×1024 07 0	2221.00	0.340 14 0.260 15	
1045 83 10	2267 23	0.36 2	
1053.36 19	1233.83	0.36 2	
1056.53 16	1162.20	0.210 15	
×1072.34 23		0.140 10	
1091.42 23	1851.53	0.14 2	
1095.47 18	1868.86	0.26 2	
1097.9 [‡] 3	2379.557	0.49 ± 4	
1105.46 11	2267 . 23	0.20 2	Eγ: poor fit; level-energy difference=1105.03.
1123.017	1303.39	0.572	
x1126.10 24		0.10 2	
1139.21 13	2360.473	0.39 3	
x1150.17 23		0.132	
×1155.57 15		0.23 2	
1158.37 12	2379.557	0.83 4	
×1208.3 3		0.12 2	
*1211.9 3	1001 05	0.13 2	
1221.23 13	1221.25	0.13 2	
1232.4 3	1969 96	0.21 2	
1254.5 5 ×1953 87 91	1000.00	0.20 2	
x1273 5 3		0.10 2	
1281 59 10	1281 56	0 39 3	
1287.62 18	1752.28	0.20 2	
x1301.5 4		0.18 2	
1303.6 4	1303.39	0.23 2	
1318.54 22	1317.85	0.16 2	Eγ: poor fit; level-energy difference=1317.84.
1324.6 3	1868.86	0.21 2	
×1338.8 3		0.152	
$^{x}1342.25$		0.10 2	
x1358.1 7		0.10 2	
1360.44	2581.67	0.17 3	
1379.33 19	1559.84	0.18 3	
1401.4 3	2705.119	0.13 2	
1412.4 5	2379.557	0.08 2	
1418.07 21	1491 94	0.33 2	
x1439 7 4	1421.04	0.15.2	
1470.9 4	2705.119	0.274	Ev: placement not unique: also in vy coin with 359v.
1485.48 16	2360.473	0.33 2	· · · · · · · · · · · · · · · · · · ·
1493.91# 12	2267.23	0.29# 4	
	(6082.40)	0.45 # 5	
1504.3 3	2379.557	0.57 9	
$^{x}1514.24$		0.16 2	
1526.4 6	2493.05	$0.11 \ 3$	
x1529.55 22		0.15 3	
×1541.1 3		0.16 2	
×1549.0 5		0.10 2	
*1556.53 5		0.11 2	
1559.66 21	1559.84	0.39 2	
*1569.84 23	9960 479	0.284	
1080.7 0	2360.473	0.14 4	
×1617 95 16	2010.001	0.52.5	
1619.5 4 6	2379 557	$0.34 \ddagger 4$	
1633.6 3	2267.23	0.26 5	
$1649.47^{\#}9$	2524.76	0.31#9	Eγ: poor fit; level-energy difference 1649.86.
	(6082.40)	0.48# 10	
1656.29 13	1656.25	0.52 5	
1677.29 15	2221 . 66	0.48 5	
x1682.50 23		0.315	
1693.45 10	(6082.40)	0.93 7	

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

$\gamma(^{129}{ m Te})$ (continued)

Εγ	E(level)	Iㆧ	Εγ	E(level)	Iγ [†] §
1708.4@ 3	4087.54	0.50@7	$2524.78^{\#}$ 3	2705.119	$4.8^{\#}$ 3
	(6082.40)	0.50@7	2535.47 9	(6082.40)	0.79 3
1717.80 5	(6082.40)	1.76 5	x2542.7 4		0.16 2
1726.24 7	(6082.40)	0.28 5	2554.0 ± 5	3429.8	0.26 ‡ 8
×1731.9 3		0.27 5	2554.06 10	(6082.40)	0.43 8
1745.7 3	2379.557	0.24 5	2579.78 7	(6082.40)	1.06 3
1752.64	1752.28	0.17 5	2581.5 \$ 9	2581.67	0.09‡ 2
×1770.41 20		0.252	x2606.89 20		0.33 2
1784.58 23	(6082.40)	0.224	2627.7 5	3502.58	0.122
1805.35 11	(6082.40)	0.40 2	2630.0 11	3852.71	0.08 3
1815.65	2360.473	0.08 2	$2652.3^{\#}4$	3528.28	$0.19^{\#}6$
1830.224	2705.119	2.122		(6082.40)	$0.65^{\#}6$
1834.9 3	2379.557	0.26 2	2670.4 6	3429.8	0.112
1842.1 3	(6082.40)	0.49 2	2705.07 4	2705.119	3.23 3
*1848.3 5	1051 50	0.14 2	*2721.6 5	(0000 10)	0.16 2
1851.28 18	1851.53	0.37 3	2726.70 12	(6082.40)	0.68 3
1809.64 8	2040.19		2741.4 11	3002.08	0.07 2
1001.00 10	(6082.40)	0.58 5	2704.07 X9827 25 20	3328.28	0.14 5
1978.1 5	(6082.40)	0.28 5	x2878 8 6		0.33 3
1906 9 3	(6082.40)	0.344 0.204	x2898 9 4		0.213
×1920.7 3	(0002.10)	0.214	x2989.3 5		0.31.3
1931.91 23	2705.119	0.31 5	x2994.0 6		0.23 3
1948.81 [‡] 10	(6082.40)	0.61 ± 13	3018.7 ‡ 10	3792.41	0.11 3
1961.16 [‡] 8	(6082.40)	0.63 ‡ 20	x3046.5 3		0.29 3
1987.6 ‡ 6	3546.91	$0.050^{\ddagger}12$	^x 3053.7 3		0.31 3
1994.92 12	(6082.40)	0.68 5	x3127.1 3		0.34 3
1999.5 3	4220 . 61	0.245	x3237.3 9		0.112
$^{x}2022.67$ 20		0.34 3	3250.0 10	3429.8	0.102
2040.38 7	2040.19	0.71 4	3322.04	3502.58	0.28 3
2041.67 7	2221.66	0.340 ∓ 14	3348.65	3528.28	0.64 3
2049.87 16	(6082.40)	0.51 3	3355.14 14	3355.46	0.73 4
x2059.6 4		0.17 3	3366.3 6	3546.91	0.22 3
*2066.7 3	0505 110	0.30 3	3377.26 4	(6082.40)	10.44 10
2071.03 23 X2070 5 2	2705.119	0.433	×2412 2 4		0.273
2079.5.5	9967 99	0.24 3	2457 6 2	2629 29	0.27 3
×2107 30 15	2207.23	0 44 4	3468 7 3	3648 77	0.33 5
x2134.5.3		0.18 3	3500.59 12	(6082.40)	0.86 4
x2164.9 4		0.14 3	3528.4 4	3528.28	0.54 8
2180.12 3	2360.473	17.2 5	x3545.1 5		$0.17 \ 3$
x2194.03 14		0.46 3	3546.6 ‡ 11	3546.91	$0.050^{\ddagger}12$
2199.21 3	2379.557	5.70 6	3557.60 9	(6082.40)	1.16 3
2216.96 7	(6082.40)	0.85 3	3564.71 14	3564 . 51	1.044
$2221.5^{\ddagger}4$	2221 . 66	$0.98^{\ddagger}14$	3589.41 17	(6082.40)	0.52 3
2229.63 13	(6082.40)	0.53 2	x3601.1 10		0.08 3
2267.1 9	2267.23	0.12 3	3612.02 6	3792.41	2.144
2289.99 4	(6082.40)	3.83 4	3638.36 13	3638.38	0.69 3
2312.7 8	2493.05	0.12 3	3672.2 3	3852.71	0.26 3
^2336.4 3	0504 50	0.25 2	3684.74 14	3865.37	0.55 3
2343.73	2024.70	0.19 2	3702.82 0	(6082.40)	10.33 10
2360.42 3 2371 1 7	2360.473	5.22 5 0 11 9	3721.07 J X2787 7 7	(0082.40)	19.54 20
×2374 71 20	0102.41	0.46.2	3792 4 3	3792 41	0 39 2
2379.51 4	2379.557	2.064	3815.14 6	(6082.40)	2,39,5
2401.74 22	2581.67	0.27 2	x3824.1 7	(0.12 2
x2410.0 5		0.12 2	x3849.8 6		0.24 3
2433.65 11	(6082.40)	0.56 3	3853.6 7	4032.59	0.50 3
2443.99 7	(6082.40)	0.97 3	3860.59 10	(6082.40)	1.00 3
x2480.44 24		0.25 2	x3876.7 7		0.13 2
2493.1 6	2493.05	0.14 3	x3882.2 4		0.30 2
2518.02 11	(6082.40)	1.14 2	x3888.7 6		0.14 2
2524.78 $^{\#}3$	2524 . 76	1.1# 3	x3902.14 <i>12</i>		0.85 3

$^{129}_{52}$ Te $_{77}$ -38

Eγ	E(level)	Iㆧ	Εγ	E(level)	Iㆧ
3907.2 5	4087.54	0.25 2	4364.38 15	4364.57	0.83 2
3940.4 4	4121.19	0.24 2	4374.6 12	4374.0	0.07 2
3952.8 4	4133.50	0.26 2	x4390.1 4		0.24 2
4001.5 8	4180.67	0.22 2	x4407.0 5		0.22 2
4042.11 7	(6082.40)	2.09 4	4426.8 7	(6082.40)	0.23 3
4060.5 5	4240.5	0.21 2	4433.65	4432.93	0.65 3
x4076.7 6		0.15 2	4523.0 5	(6082.40)	0.23 2
4096.5 ‡ 3	4277.02	0.10‡ 3	4588.5 5	4588.48	0.21 3
$4120.5^{\ddagger}4$	4121.19	0.060 ± 13	x4859.8 11		0.08 2
4133.23 19	4133.50	0.46 2	x4903.4 8		0.21 3
$4174.6^{@}6$	4175.3	0.32 [@] 3	x4919.6 10		0.11 2
	4356.13	0.32 [@] 3	x5049.7 9		0.12 2
4184.0 3	4364.57	0.44 3	x5133.8 8		0.17 2
4204.0 9	4204.3	0.21 4	5449.4 6	(6082.40)	0.22 2
4208.4 4	4388.93	0.44 4	5901.55 24	(6082.40)	0.59 3
x4246.0 8		0.24 3	6082.0 3	(6082.40)	0.39 2
4252.0 6	4432.93	0.23 2			
4297.7 6	4297.80	0.172			

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

 $\gamma(^{129}\text{Te})$ (continued)

[†] Intensities are per 100 neutron captures; a systematic uncertainty of 10% should be added in quadrature for absolute intensities, probably due to unplaced or missing γ rays. Intensities for 10 primary γ rays and 31 secondary γ rays are listed in 1991StZX, but several of these γ rays have not been reported in 2003Wi02. Relative intensities are listed in 1991StZX. To match these to absolute scale as in 2003Wi02, multiply by a factor of 30.5.

‡ From γγ coin spectra.

§ Absolute intensity per 100 neutron captures.

Multiply placed; intensity suitably divided.

Multiply placed; undivided intensity given.

 $x \gamma$ ray not placed in level scheme.

 $^{129}_{52}$ Te $_{77}$ -39

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

Level Scheme (continued)

Intensities: Ιγ per 100 neutron captures @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

Level Scheme (continued)

Intensities: Ιγ per 100 neutron captures @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

1/2+	(6082.40)
(1/2,3/2,5/2+)	4588.48
1/2-	4356.13
3/2-	4220.61
1/2-	4121.19
3/2-	 4032.59
3/2-	3792.41
1/2-	 3638.38
(3/2-)	 3502.58
3/2-	 3355.46

¹²⁸Te(n, γ) E=thermal 2003Wi02 (continued)

Level Scheme (continued)

Intensities: Ιγ per 100 neutron captures @ Multiply placed; intensity suitably divided & Multiply placed; undivided intensity given

1/2+	(6082.40)
(1/2, 3/2, 5/2+)	4588.48
1/2-	4356.13
3/2-	4220.61
1/2-	4121.19
3/2-	4032.59
3/2-	3792.41
1/2-	3638.38
(3/2-)	3502.58
3/2-	3355.46

¹²⁸Te(n, γ), (n, n): Resonances 2006MuZX

Measurements:

1973Br29: E=0.5-7000 eV; measured $\sigma(E),$ deduced resonances, level-widths.

All data are from 2006 MuZX evaluation.

¹²⁹Te Levels

E(level) [†]	Jπ	L	$g\Gamma_n\Gamma_\gamma/\Gamma$ (eV)	Comments
S(n) = 0 - 1692	1/9+	0		$\Gamma = (0.0325) \text{ eV}$
S(n) + 0.3481.5	1/21	[1]	0 00024 10	$\sigma \Gamma = 0.00226 \text{ eV}$ $T_0 \Gamma = 0.15 \text{ eV}$ T_0
S(n) + 0 4240 5	1/2	[0]	0 020 4	$g\Gamma = 0.0610 \text{ eV} 25 \Gamma = 0.029 \text{ eV} 10$
S(n) + 0 4355 5	1/2 -	1	0 0126 25	$g\Gamma_{n} = 0.01850 \text{ eV} 25, \Gamma = 0.158 \text{ eV} 20$
S(n) + 0.9410.5	1/2 -	1	0.0104 21	$g\Gamma = 0.0147 \text{ eV} 2$, $\Gamma = 0.19 \text{ eV} 6$.
S(n)+1.32055		[1]	0.0079 16	$g\Gamma_{n} = 0.0102 \text{ eV } 21.$
S(n)+1.459 1		[0]	0.032 6	$g\Gamma_{-}=0.115 \text{ eV} 5$, $\Gamma_{-}=0.044 \text{ eV} 9$.
S(n)+1.583 1		[1]	0.0085 17	$g\Gamma_{n} = 0.0105 \text{ eV } 10.$
S(n)+1.837 1		[0]	0.035 7	$g\Gamma_{n}=0.725$ eV 25, $\Gamma_{n}=0.037$ eV 7.
S(n)+2.971 3		[0]	0.030 6	$g\Gamma_n=2.10 \text{ eV } 12, \ \Gamma_n=0.030 \text{ eV } 6.$
S(n)+3.265 3	[3/2]	[1]	0.067 12	$g\Gamma_n = 0.095 \text{ eV} 15$, $\Gamma_n = 0.105 \text{ eV}$.
S(n)+3.544 3		[1]	0.038 8	$g\Gamma_{n} = 0.021 \text{ eV } 7.$
S(n)+4.080 4		[1]	0.034 7	$g\Gamma_{n} = 0.025 \text{ eV } 10.$
S(n)+5.330 5		[1]	0.24 10	$g\Gamma_n = 0.540 \text{ eV } 50.$
S(n)+6.108 1	[3/2]	[1]	0.055 22	$g\Gamma_n = 0.213 \text{ eV} 3$, $\Gamma_\gamma = 0.037 \text{ eV} 15$.
S(n) + 7.0767	[1/2]	[1]	0.055 22	$g\Gamma_n = 0.89 \text{ eV } 10, \ \Gamma_{\gamma} = 0.034 \text{ eV } 16.$
S(n) + 7.9368		[1]		$g\Gamma_n = 0.140 \text{ eV}.$
S(n) + 10.012 10		[1]		$g\Gamma_n = 0.86 \text{ eV } 8.$
S(n) + 10.355 10		[1]		$g\Gamma_n=0.100 \text{ eV}.$
S(n) + 10.656 10		[0]		$g\Gamma_n = 7.45 \text{ eV } 13.$
S(n)+10.830 11		[1]		$g\Gamma_n=2.0 \text{ eV } 1.$
S(n)+11.495 15		[0]		$g\Gamma_n = 12.40 \text{ eV } 13.$
S(n) + 12.098 15		[1]		$g\Gamma_n=0.300 \text{ eV}.$
S(n) + 12.828 15		[1]		$g\Gamma_n=0.500 \text{ eV}.$
S(n)+12.893 15		[0]		$g\Gamma_n = 4.98 \text{ eV } 25.$
S(n)+12.960 20		[1]		$g\Gamma_n=0.250 \text{ eV}.$
S(n)+13.080 20		[1]		$g\Gamma_n = 1.36 \text{ eV } 13.$
S(n)+14.600 20		[1]		$g\Gamma_n=3.2$ eV 3.
S(n)+15.330 20		[1]		$g\Gamma_n=0.500 \text{ eV}.$
S(n)+16.340 20		[1]		$g\Gamma_n=0.700 \text{ eV}.$
S(n)+17.010 20		[1]		$g\Gamma_n=4.1 \text{ eV } 4.$
S(n)+17.520 20		[1]		$g\Gamma_n=2.8$ eV 3.
S(n)+17.990 25		[1]		$g\Gamma_n = 1.69 \text{ eV } 25.$
S(n)+18.900 25		[1]		$g\Gamma_n = 1.000 \text{ eV}.$
S(n)+19.420 25		[1]		$g\Gamma_n=3.5 \text{ eV } 4.$
S(n)+19.700 25		[1]		$g\Gamma_n = 0.500 \text{ eV}.$
S(n) + 20.220 25		[1]		$gI_{n}^{*}=0.500 \text{ eV}.$
S(n) + 21.025 25		[1]		$g\Gamma_n = 0.500 \text{ eV}.$
S(n)+21.820 25		[0]		$g\Gamma_n=14.2 \text{ eV } 5.$

^{\dagger} S(n)(¹²⁹Te)=6082.41 8 (2012Wa38). Excitation energies are from 6082.25 to 6104.06 keV.

¹²⁸Te(d,p),(pol d,p) 2003Wi02

2003Wi02: E(d)=24, 18 MeV. Measured protons using a long multiwire proportional counter at ten different angles and a Q3D spectrograph. Measurements done with unpolarized deuteron beam energy of 18 MeV and 24 MeV and polarized deuteron beam energy of 18 MeV. Analyzing powers determined from the cross sections with different polarizations. These analyzing powers were used for unambiguous spin assignment. FWHM=4 keV at 18 MeV and 5 keV at 24 MeV. DWBA calculations.

2013Ka04: (d,p) E=15 MeV beam from Yale tandem accelerator of WNSL facility. Measured proton spectra, σ(θ) using a split-pole spectrograph. FWHM=30 keV for protons. Deduced levels, ground state configuration of ¹²⁸Te. DWBA analysis.

1967Mo22: E=7.5 MeV; magnetic spectrograph, $\sigma(\theta) \theta=7.5^{\circ}-172.5^{\circ}$, deduced spectroscopic factors; enriched target. Other: 1964Jo12.

All data are from 2003Wi02. Results from 1967Mo22 agrees with those from 2003Wi02 but are less precise and incomplete.

¹²⁸Te(d,p),(pol d,p) 2003Wi02 (continued)

 $d\,\sigma\,/\,d\Omega$ in $mb\,/\,s\,r$ from (d,p) at E(d)=15 MeV (2013KaZZ)

Level	7 °	18°	34°	4 2 °
0	0.48	1.35	0.44	0.61
106	0.040	0.14	0.17	0.18
180	2.22	0.095	0.69	0.29
545		0.016		0.007
634		0.032		0.013
813		0.012	0.014	0.009
872		0.031	0.017	0.014
967	0.099	0.29	0.12	0.12
1217			0.018	0.018
1281			0.036	0.048
1302			0.045	0.018
1655		0.092		0.035
1752	0.052	0.050		0.038
The s	tatisti	cal unc	ertaint	ies are less than 1% for strong
sta	tes and	less t	han 3%	for weaker ones. There is additional
sys	t ema t i c	uncert	ainty o	$f \approx 7\%$.

¹²⁹Te Levels

Cross sections (in μ b/sr) in terms of maximum value of $\sigma(\theta)$ distribution are given under comments. For multiple values, first value is for 24 MeV, the second for 18 MeV.

E(level) [†]	Jπ§	L§	S_1j.#	Comments
			0.005	
0.0+	3/2+	2	0.337	do/do=2331 µD/sr.
105.2 + 4	11/2-	5	0.188	$d\sigma/d\omega = 384 \mu b/sr.$
179.35+ 28		0	0.202	$d\sigma/d\omega = 1021 \ \mu b/sr.$
544.06+9	5 / 2 +	2	0.003	$d\sigma/d\omega=34 \ \mu b/sr.$
633.51÷ 7		2	0.007	$d\sigma/d\omega = 50 \ \mu b/sr.$
760.255	7/2-	3	0.012	$d\sigma/d\omega = 179 \ \mu b/sr.$
773.07 14		0	0.007	$d\sigma/d\omega = 40$.
812.93 # 8	7 / 2 +	4	0.008	$d\sigma/d\omega = 15$.
865.35 12	(7/2+)	(4)	(0.003)	$d\sigma/d\omega=8.$
$874.73^{\ddagger}21$		2	0.004	dσ/dω=33.
966.76 [‡] 4	5 / 2 +	2	0.034	$d\sigma/d\omega = 405$.
1162.14 15		3	0.001	$d\sigma/d\omega=8.$
$1211.8^{\ddagger}6$	7 / 2 +	4	0.017	dσ/dω=33.
				E(level): 1212.7 3 in (d,p) (2003Wi02), 1217 (2013Ka04,2013KaZZ).
				$J\pi$: 3/2+,5/2+ quoted by 2013Ka04, 2013KaZZ from earlier NDS.
1234.32 17		2	0.001	$d\sigma/d\omega = 7.$
1282 . 0 \ddagger 5	5 / 2+	2	0.010	$d\sigma/d\omega = 126$.
1303.32 [‡] <i>12</i>		0	0.011	$d\sigma/d\omega = 55.$
				E(level), J\pi: 1302 with J\pi=7/2+, 9/2+ given in 2013Ka04, which on the basis of J\pi
				assignment seems to correspond to 1319 level here.
1319.01 8	7 / 2 +	4	0.002	$d\sigma/d\omega = 4$.
1419.4 8	5 / 2 +	2	0.002	$d\sigma/d\omega=30.$
1483.56 16	7 / 2 +	4	0.002	$d\sigma/d\omega = 5.$
1559.98 23		1	0.002	$d\sigma/d\omega = 12.$
1582.14	7 / 2 +	4	0.001	$d\sigma/d\omega = 4$.
1599.65 20	5 / 2 +	2	0.0003	$d\sigma/d\omega = 5$.
1655.72 [‡] 22	5 / 2 +	2	0.009	$d\sigma/d\omega = 121$.
1752.68‡ 9		3	0.013	$d\sigma/d\omega = 146$.
				E(level), J π : 1752 with J π =5/2+ given in 2013Ka04, which on the basis of J π assignment
				seems to correspond to 1779.9 level here.
1779.95 <i>13</i>	5 / 2 +	2	0.003	$d\sigma/d\omega=35$.
$1812.80 \ 25$	7 / 2 +	4	0.001	$d\sigma/d\omega = 9.$
1839.2 4				$d\sigma/d\omega=6.$
1852.9 4		3	0.006	$d\sigma/d\omega=5$.
1869.57 6		3	0.006	$d\sigma/d\omega = 67.$
1992.44 14		(3)	0.001	$d\sigma/d\omega=8$.
2040.2 6	3/2-	1	0.008	$d\sigma/d\omega = 126, 112.$
				S _{1i} .: 0.00779.

$^{129}_{52}\mathrm{Te}_{77}\mathrm{-}45$

¹²⁸Te(d,p),(pol d,p) 2003Wi02 (continued)

¹²⁹Te Levels (continued)

E(level) [†]	Jπ§	L§	S _{1j} .#	Comments
		_		
2072.43 11	7/2-	3	0.009	$d\sigma/d\omega = 153,70.$
2106 60 7	7 / 9 _	9	0 120	S_{1j} : 0.00850. $d\sigma/d\sigma = 2146, 995$
2100.00 7	1/2-	5	0.120	S. : 0 11836
2132.69 11	7/2-	3	0.004	$d\sigma/d\omega = 70.35$.
				S ₁₁ .: 0.00383.
2221.28 8	7/2-	3	0.169	dσ/dω=3009,1361.
				S _{1j} .: 0.16329.
2232.23 7		3	0.029	$d\sigma/d\omega = 362,188.$
				S _{1j} : 0.03178.
2267.61 17	3/2-	1	0.010	$d\sigma/d\omega = 156,134.$
9919 17 19	7 / 9 -	2	0 003	S_{lj} : 0.00984. ds/do=58.28
2012.11 12	172	0	0.000	S: 0.00308.
2360.05 6	3/2-	1	0.092	$d\sigma/d\omega = 1302, 1199.$
				S ₁₁ .: 0.09303.
2379.958	3/2-	1	0.050	$d\sigma/d\omega = 711,640.$
				S _{lj} .: 0.05081.
2427.21 13	7/2-	3	0.002	$d\sigma/d\omega = 38, 23.$
9469 40 14	7 / 9	9	0 002	S_{lj} : 0.00223.
2402.49 14	1/2-	ъ	0.003	30/300=52,350.
2491.64 10	3/2-	1	0.002	$d\sigma/d\omega = 27.27.$
				S_{1i} : 0.00214.
2507.09 13		(3)	(0.002)	$d\sigma/d\omega=27,24.$
				S _{1j} .: (0.00270).
2511.04 13		(3)	(0.003)	$d\sigma/d\omega = 35, 18.$
				S_{lj} : (0.00270).
2524.39 32	1/2-	1	0.004	$d\sigma/d\omega = 30,32$.
2581 14 9	3/9_	1	0 003	S_{1j} : 0.00000. $d\sigma/dw=32,37$
2001.14 0	5/2-	1	0.005	S: 0.00299.
2612.43 10		(3)	(0.001)	$d\sigma/d\omega = 7.5.$
				S _{1i} .: (0.00065).
2641.34		(3)	(0.001)	$d\sigma/d\omega=4,4.$
				S _{lj} .: for 7/2
2705.76 6	1/2-	1	0.081	$d\sigma/d\omega = 610, 614.$
9799 91 10		1	0 002	S_{ij} : 0.09764.
2728.21 10		1	0.003	a0/aw=25,18.
2736.55 15	(3/2-)	(1)	(0.002)	$d\sigma/d\omega=20,18$.
				S _{1i} .: (0.00126).
2765.28 13		(3)	(0.002)	$d\sigma/d\omega = 33,8.$
				S _{lj} .: (0.00154).
2811.67 7		(5)	(0.011)	$d\sigma/d\omega = 19, 14.$
9910 45 19		(2)	(0,006)	S_{lj} : (0.01817).
2019.40 12		(3)	(0.000)	S., : (0.00617)
2835.22 13		(3)	(0.004)	$d\sigma/d\omega = 56,27.$
				S ₁₁ .: (0.00378).
2853.69 7		(3)	(0.007)	$d\sigma/d\omega = 102,49.$
				S _{lj} .: (0.00676).
2859.54 11		(3)	(0.002)	$d\sigma/d\omega = 39, 16.$
9971 91 7	(5/2)	(2)	(0,005)	S_{lj} : (0.00219). $d\sigma/d\sigma = 72.26$
4011.41 /	(0/2-)	()	(0.000)	S. · (0.00493)
2889.84 9		(3)	(0.003)	$d\sigma/d\omega = 44,26.$
				S _{1i} .: (0.00291).
2899.90 17		5	0.004	$d\sigma/d\omega = 16, 5.$
				S _{1j} .: 0.00771.
2919.63 9	(5/2-)	3	0.007	dσ/dω=103,50.
				δ _{li} .: 0.00704.

¹²⁸Te(d,p),(pol d,p) 2003Wi02 (continued)

¹²⁹Te Levels (continued)

E(level) [†]	$J\pi^{\S}$	L§	S_1j.#	Comments
2971.34 10	7 / 2 -	3	0.003	$d\sigma/d\omega = 62,28.$
2979.44 6	5 / 2-	3	0.046	$d\sigma/d\omega = 713,353.$
2999 62 27				
3009.43.9				$d\sigma/d\omega = 7$.
3023.78 26				$d\sigma/d\omega=3$.
3029.07 8				$d\sigma/d\omega = 23$.
3046.25 8				$d\sigma/d\omega = 15$
3056.36 13				$d\sigma/d\omega=6$.
3070.43 3				$d\sigma/d\omega=6$.
3089.26 9				$d\sigma/d\omega = 48$.
3102.75 9				$d\sigma/d\omega = 40$.
3128.47 29				$d\sigma/d\omega = 10$.
3133.45 6				$d\sigma/d\omega=35$.
3150.71 10				$d\sigma/d\omega = 16.$
3163.3 4				$d\sigma/d\omega=3$.
3182.02 18				$d\sigma/d\omega = 15.$
3202.32 26				$d\sigma/d\omega = 7$.
3211.79 29				$d\sigma/d\omega=4$.
3230.49 13				$d\sigma/d\omega = 61.$
3246.07 11				$d\sigma/d\omega=58.$
3253.08 10				$d\sigma/d\omega=23$.
3260.88 22				$d\sigma/d\omega=10.$
3277.15				$d\sigma/d\omega = 12$.
3281.58 18				$d\sigma/d\omega = 38.$
3295.7 5				$d\sigma/d\omega=3$.
3306.39 11				$d\sigma/d\omega = 15.$
3321.35 12				$d\sigma/d\omega=34$.
3326.60 18				$d\sigma/d\omega=9.$
3350.26 17				$d\sigma/d\omega=7.$
3355.63 10	3/2-	1	0.002	$d\sigma/d\omega = 27.$
3361.46 10				$d\sigma/d\omega = 48.$
3364.58 9				$d\sigma/d\omega = 98.$
3371.62 10				$d\sigma/d\omega=37$.
3379.29 9				$d\sigma/d\omega = 14$.
3384.75 8				dσ/dω=92.
3389.76 29				$d\sigma/d\omega = 12$.
2403.75 10 2414 21 15				
3419 88 12				$d\sigma/d\omega = 26$
3428 91 10	(3/2-)	1	0 011	$d\sigma/d\omega = 105$
3441.00 9	(0)2)	-	0.011	$d\sigma/d\omega = 350$
3452.75 14				$d\sigma/d\omega=9$.
3461.13 8				$d\sigma/d\omega = 126.$
3474.79 13				$d\sigma/d\omega = 66$.
3479.09 21				$d\sigma/d\omega=32$.
3489.57 14	1 / 2 -	1	0.003	$d\sigma/d\omega=19.$
3503.37 9	(3/2-)	(1)	(0.018)	$d\sigma/d\omega = 202.$
3511.99 8				$d\sigma/d\omega = 73$.
3524 . 24 15				$d\sigma/d\omega=36.$
3527.749	(1/2-)	(1)	(0.007)	$d\sigma/d\omega = 46$.
3545.827	(3/2-)	(1)	(0.010)	$d\sigma/d\omega = 102.$
3559.29 10				$d\sigma/d\omega = 19.$
3564.98 10	1 / 2 -	1	0.012	$d\sigma/d\omega = 80$.
3569.24 10				$d\sigma/d\omega = 53.$
3579.66 15				$d\sigma/d\omega=9.$
3587.43 6				$d\sigma/d\omega = 176.$
3593.73 17	(a (- ·	_	0 0	$d\sigma/d\omega=20$.
3600.49 7	(3/2-)	1	0.003	$d\sigma/d\omega=30.$
3615.20 7				
3022.88 26				
3028.08 <i>29</i>				uo/uw=0.

¹²⁸Te(d,p),(pol d,p) 2003Wi02 (continued)

¹²⁹Te Levels (continued)

E(level) [†]	Jπ§	L§	S_1j.#	Comments
3634 19 8				$d\sigma/dw = 57$
3638 44 6	1/2-	1	0 014	
3643.26 5	1, 2	-	0.011	$d\sigma/d\sigma = 56$.
3648.97 9	1/2-	1	0.010	$d\sigma/d\omega = 57$.
3655.05 10				$d\sigma/d\omega = 108.$
3666.42 19				$d\sigma/d\omega=6$.
3671.50 11	3/2-	1	0.002	$d\sigma/d\omega = 19$.
3677.85 6				$d\sigma/d\omega=62$.
3695.69 8				$d\sigma/d\omega = 147.$
3707.67 13	1 / 2 -	1	0.010	$d\sigma/d\omega$ =58.
3713.78 22				$d\sigma/d\omega = 19.$
3729.32 19				$d\sigma/d\omega$ =21.
3737.13 8				$d\sigma/d\omega$ =39.
3744.94 9	3/2-	1	0.003	$d\sigma/d\omega = 39$.
3752.27 18				$d\sigma/d\omega = 16$.
3764.98 9	(3/2-)	1	0.003	$d\sigma/d\omega$ =36.
3769.94 6				$d\sigma/d\sigma = 49$.
3777.52 14				
2702 58 6	2/9	1	0.040	uo/um=26.
3800 93 16	3/2-	1	0.040	$d\sigma/d\sigma = 24$
3811 7 4				
3818.90 11				$d\sigma/d\omega = 18$.
3826.71 11				$d\sigma/d\omega = 11.$
3837.66 6				$d\sigma/d\omega=38.$
3851.94 8	3/2-	1	0.003	$d\sigma/d\omega=35.$
3859.62 20				$d\sigma/d\omega=9.$
3865.73 4	3 / 2 -	1	0.008	$d\sigma/d\omega=95.$
3873.38 10				$d\sigma/d\omega = 182.$
3884.50 16				$d\sigma/d\omega = 16$.
3890.23 13				$d\sigma/d\omega = 165$.
3899.34 9	3 / 2 -	1	0.005	$d\sigma/d\omega = 51.$
3906.92 5				$d\sigma/d\omega = 66$.
3917.0 4				$d\sigma/d\omega = 11$.
3921.60 10				$d\sigma/d\sigma=24$.
3929.44 23				
3938.40 12				$d\sigma/d\omega=31$
3948 09 24	(3/2)	(1)	(0, 0.02)	$d\sigma/d\omega = 22$
3952 81 16	(0/2)	(1)	(0.002)	dσ/dσ=48
3962.33 15				$d\sigma/d\sigma = 12$.
3969.35 29	(3/2-)	(1)	(0.002)	$d\sigma/d\sigma = 20$.
3974.29 10	3/2-	1	0.009	$d\sigma/d\omega=95$.
3986.75 26				$d\sigma/d\omega=6.$
3993.70 17				$d\sigma/d\omega=21.$
3997.60 14				$d\sigma/d\omega=32.$
4002.4028				$d\sigma/d\omega$ =28.
4005.7624				$d\sigma/d\omega$ =48.
4017.11 11				$d\sigma/d\omega = 42$.
4024.93 14				$d\sigma/d\omega$ =31.
4032.54 10	3/2-	1	0.004	$d\sigma/d\omega=37$.
4043.32 12				$d\sigma/d\omega=24$.
4045.78 16				dσ/dω=52. dσ/dω=22
4003.70 20	(1/2)	1	0 009	$d\sigma/d\omega = 4.4$
4067 78 8	(1/2-)	1 1	0.008	dσ/dω=88
4072 22 21	5/2-	Ŧ	0.009	dσ/dm=36
4082.23 13	3/2-	1	0.005	$d\sigma/d\omega = 48$.
4086.77 9	3/2-	1	0.009	$d\sigma/d\omega$ =99.
4092.48 28		-		$d\sigma/d\omega = 13.$
4101.8 4				$d\sigma/d\omega = 16$.
4106.1 4				$d\sigma/d\omega$ =31.
4110.4 4				$d\sigma/d\omega=32$.

¹²⁸Te(d,p),(pol d,p) 2003Wi02 (continued)

¹²⁹Te Levels (continued)

E(level) [†]	Jπ§	L§	S _{1j} .#	Comments
4100 05 10	1 / 0		0.015	
4122.07 10	1/2-	1	0.015	$d\sigma/d\omega = 90.$
4128.98 12	2.42			$d\sigma/d\omega = 41$.
4132.81 15	3/2-	1	0.013	$d\sigma' d\omega = 133$.
4150.2 4				
4161.1 2				
4100.21 10	(1/2)	1	0 006	$a_0/a_0=47$. $a_0/a_0=22$
4175.10 19	(1/2-)	1	0.008	
4181.18 3	(3/2-)	1	0.007	
4200.84 12	1/9	1	0 010	
4205.85 0	1/2-	1	0.010	
4212.43 12	9/9	1	0 008	
4220.07 13	572-	1	0.000	$d\sigma/d\sigma = 38$
4239 79 9	3/2-	1	0 007	$d\sigma/d\sigma = 73$
4251 2 4	0/2	1	0.001	$d\sigma/d\sigma = 23$
4259 33 23				dσ/dm=25
4267 41 15	(1/2-)	1	0 003	$d\sigma/d\sigma = 19$
4277 37 10	3/2-	1	0.009	$d\sigma/d\omega = 105$
4291 21 29	0/2	1	0.000	
4298 46 22	1/2 -	1	0 007	$d\sigma/d\sigma = 42$
4306 73 19	1/2	1	0.001	$d\sigma/d\sigma = 18$
4311 74 9	(1/2-)	1	0 010	$d\sigma/d\sigma = 53$
4317 05 13	(1) 1 /	-	0.010	$d\sigma/d\sigma = 19$
4326 49 8				do/do=85
4336 16 19	(1/2-)	1	0 006	$d\sigma/d\sigma = 32$
4349 48 12	(1) 1 /	-	0.000	$d\sigma/d\sigma = 43$
4356 27 9	1/2-	1	0 021	$d\sigma/d\sigma = 105$
4365.34 11	1/2 -	1	0.043	dσ/dm=238.
4372.60 17		-		dσ/dm=99.
4380.55 12				$d\sigma/d\omega = 65$.
4389.09 20	1/2-	1	0.033	$d\sigma/d\omega = 168$.
4402.14 22				$d\sigma/d\omega = 47$.
4410.53 17				dσ/dω=59.
4425.13 10	(3/2-)	(1)	(0.005)	$d\sigma/d\omega = 65$.
4433.07 10	3/2-	1	0.014	$d\sigma/d\omega = 123$.
4444.04 15				$d\sigma/d\omega = 67.$
4456.37 12				$d\sigma/d\omega = 81$.
4467.43 15	(1/2-)	(1)	(0.024)	$d\sigma/d\omega = 106$.
4474.7 4				$d\sigma/d\omega = 62$.
4483.92 16				$d\sigma/d\omega = 99.$
4496.75 15				$d\sigma/d\omega = 76$.
4504.21 17				$d\sigma/d\omega = 40$.
4511.76 22				$d\sigma/d\omega = 28.$
4522.5 5				dσ/dω=53.
4543.28 25				$d\sigma/d\omega = 41.$
4558.21 29				$d\sigma/d\omega = 77.$
4572.6921				$d\sigma/d\omega = 64.$
4580.26 23				$d\sigma/d\omega = 62.$
4589.1625				$d\sigma/d\omega = 126$.
4595.2 5				$d\sigma/d\omega = 67.$
4608.4 4				$d\sigma/d\omega = 71.$
4621.96 21				$d\sigma/d\omega = 52$.
4634.7 5				$d\sigma/d\omega=30.$
4643.2 4		(1)	(0.010)	$d\sigma/d\omega = 47.$
4652.9 4		(1)	(0.007)	$d\sigma/d\omega = 42$.
4665.82 18		1	0.008	$d\sigma/d\omega=39.$
4682.0 3		1	0.004	$d\sigma/d\omega=20.$
4695.4 5				$d\sigma/d\omega=21.$
4711.80 25		1		$d\sigma/d\omega=30.$
4724.34 20				$d\sigma/d\omega=32.$
4743.5 4				$d\sigma/d\omega = bb.$
4766.2 5			(0.001)	$d\sigma/d\omega = 18.$
4777.94		(1)	(0.004)	$d\sigma/d\omega = 27$.

$^{129}_{52}\mathrm{Te}_{77}$ -49

¹²⁸Te(d,p),(pol d,p) 2003Wi02 (continued)

$^{129}\mathrm{Te}$ Levels (continued)

E(level) [†]	L§	S_1j.#	Comments
4794.33 24			$d\sigma/d\omega = 42$.
4807.86 29			$d\sigma/d\omega=33$.
4840.44			$d\sigma/d\omega$ =112.
4849.6 6			$d\sigma/d\omega = 18.$
4868.25			$d\sigma/d\omega$ =57.
4879.6624			$d\sigma/d\omega$ =38.
4907.45			$d\sigma/d\omega = 96$.
4917.0 5	(1)	(0.013)	$d\sigma/d\omega=86.$
4929.45			$d\sigma/d\omega = 112.$
4946.8 4			$d\sigma/d\omega=68.$
4958.3 3			$d\sigma/d\omega=88.$
4975.3 4			$d\sigma/d\omega = 56$.
5002.3 4			$d\sigma/d\omega$ =44.
5013.3 7			$d\sigma/d\omega$ =44.

 † The values are weighted averages of all measurements at different angles with independent energy calibrations from 128 Te(d,p), 128 Te(pol d,p) and 130 Te(pol d,t). Quoted uncertainty is statistical; a systematic uncertainty of 0.5 keV should be added in quadrature (2003Wi02).

[‡] Precise cross section measured by 2013Ka04 (also 2013KaZZ).
 [§] L from ¹²⁸Te(d,p), ¹²⁸Te(pol d,p) and/or ¹³⁰Te(pol d,t). J from L and analyzing power.

Authors give too many significant digits, the values have been rounded by evaluators. Two values are given when spin is either L-1/2 or L+1/2; the value for the latter choice is given under comments.

¹²⁸Te(t,d) 1981Sh02

1981Sh02: E=16 MeV; magnetic spectrograph, $\sigma(E, \theta)$, deduced spectroscopic factors; FWHM=13-15 keV, enriched target.

¹²⁹Te Levels

E(leve	el)	L	S‡‡	Comments
0.0		2	0.317	S: if 2d _{3/2} .
106 5		5	0.238	S: if 1h _{11/2} .
179 5		0	0.197	S: if $3s_{1/2}$.
542 5		2	0.004, 0.002	
635 5		2	0.008, 0.004	
7635		3	0.026, 0.015	
814 5		(4)	0.010, 0.005	
878 5		3	0.006, 0.003	
9675		2	0.032	S: if 2d _{5/2} .
1155 5		0	0.002	
1210 5		4	0.015, 0.006	
1284 5		2	0.015, 0.009	
1306 5		4	0.022, 0.011	
1435 5		(2)	0.003, 0.002	
1487 5		4	0.002,0.001	
1558 5		1	0.003,0.001	
1654 5		0	0.035	
1753 5		2	0.019,0.010	
1776 5		(2)	0.004,0.002	
1837 5		(0)	0.003	
1869 5		3	0.007,0.004	
2040 5		1	0.029,0.014	
2071 5		3	0.018,0.010	
2108 5		3	0.216,0.128	
2131 5		(0)	0.040	
2221 5		3	0.360,0.214	
2261 5		1	0.037,0.017	
2314 5		(0)	0.026	
2360 5		1	0.337,0.159	
$^{129}_{52}\mathrm{Te}_{77}\mathrm{-}50$

¹²⁸Te(t,d) 1981Sh02 (continued)

¹²⁹Te Levels (continued)

E(level)	\mathbf{L}	$\mathbf{S}^{\dagger \ddagger}$

2379 5 0.223,0.105 1 2491 5 0.0320

[†] C²s from DWBA.
 [‡] First value for L-1/2, second for L+1/2.

¹²⁸Te(a,³He) 2013Ka04

2013Ka04: $E(\alpha)=50$ MeV beam from Yale tandem accelerator of WNSL facility. Measured ³He spectra, $\sigma(\theta)$ using a split-pole spectrograph. FWHM \approx 70 keV. Deduced levels, ground state configuration of ¹²⁸Te. DWBA analysis. _____

d	σ / dΩ	Ω	i n	n	ıb	/ 5	s r	,	(2	0	13	K	a	ΖZ	()											
Le	v e l		5 °			22	2.	5 °	5																	
0						().	0 8	57																	
10	6	1	. 2	1		().	33	3																	
54	5	0	. 0	87	,																					
21	08					().	04	1 3																	
22	21					().	06	32																	
30	85	0	. 1	2		().	0 3	17																	
36	55	0	. 0	64	ł																					
37	90	0	. 0	90)																					
41	21	0	. 6	1																						
Τh	e s	t a	t i	s t	i	c a	ı 1	ι	ın	ce	e r	٠t	a	i n	ιt	i e	s	а	ı r	e		1 (e s	s		
	than	n	1%	f	0	r	\mathbf{s}	tı	r o	ng	g	\mathbf{s}	t	a t	е	\mathbf{s}	a	n ċ	ł	1	e	s	5	t	h	a n
	3%	f o	r	we	a	k e	e r	(o n	e	s .		Т	h e	r	e	i	\mathbf{s}	a	d	d	i	t i	0	n	a l
	sys	t ei	ma	t i	с	ι	ın	сe	e r	t a	a i	n	t	у	0	f	×	7%	6.							
													_							_						

¹²⁹Te Levels

E(level)	$J\pi^{\dagger}$	Comments
0.0	3/9+	
106	11/2 -	
545	5 / 2 +	
2108	7/2-	
2221	7/2-	
3085		E(level): 3077 15 with (3/2+,5/2+) assignment and 3089.3 5 with no J π assignment in Adopted Levels.
3655		
3790	3/2-	
4121	1 / 2 -	

[†] From Adopted Levels.

Coulomb Excitation 2005Yu07

2005Yu07: HRIBF facility provided A=129 radioactive beam hit 50 Ti target at 400 MeV. γ rays detected by 10 Ge detectors. Recoils detected by CsI detectors.

¹²⁹Te Levels

$J\pi^{\dagger}$	$\underline{}_{1/2}^{\dagger}$
3 / 2+	
11/2 -	33.6 d 1
1/2+	
9 / 2 (–)	
5 / 2 +	
5 / 2 +	
7/2-	
7 / 2 +	
(15/2-)	
3 / 2 +	
	$\begin{array}{c} J\pi^{\dagger} \\ 3/2+ \\ 11/2- \\ 1/2+ \\ 9/2(-) \\ 5/2+ \\ 5/2+ \\ 7/2- \\ 7/2+ \\ (15/2-) \\ 3/2+ \end{array}$

[†] From Adopted Levels.

 $\gamma(^{129}{
m Te})$

Eγ	E(level)
180	180
267	813
295	760
359	465
544	544
634	634
654	760
761	867
813	813
876	876

Coulomb Excitation 2005Yu07 (continued)

Level Scheme

¹³⁰Te(p,d) 1982Ga18

1982Ga18: E=42 MeV; measured deuteron spectra with a magnetic spectrometer, $\sigma(\theta)$ at 7°, 15°, 25°. FWHM=30-40 keV. DWBA analysis.

2013Ka04, 2013KaZZ: E(p)=23 MeV beam from Yale tandem accelerator of WNSL facility. Measured deuteron spectra, σ(θ) using a split-pole spectrograph. FWHM = 30 keV. Deduced levels, configuration of g.s. of ¹³⁰Te. DWBA analysis.
1971SeZH: E=17 MeV; magnetic spectrograph, FWHM=10-15 keV, θ=30 '; enriched target.

dσ/dΩ	02 in mb	/sr fro	m (p,d)	E=23 MeV	(2013KaZZ)
Level	5 °	20 °	35 $^\circ$	42 $^{\circ}$	
0	0.11	0.26	0.31	0.49	
106	0.36	0.30	0.56	0.61	
180	8.30	1.74	1.10	0.68	
360		0.015	0.004	0.008	
545	0.022	0.026	0.007	0.012	
760	0.045	0.064	0.042	0.045	
813			0.022	0.014	
872	0.045	0.066	0.028	0.041	
967	0.64	1.60	0.44	0.70	
1210	0.037	0.16	0.16	0.12	
1281	0.50	1.03	0.30	0.49	
1435	0.10	0.19	0.049	0.088	
1487	0.013	0.029	0.028	0.024	
1599	0.033	0.054	0.018	0.019	
1672	0.52	0.94	0.28	0.47	
1782	0.16	0.26	0.075	0.12	
1892	0.21	0.16	0.058	0.066	
2085	0.054	0.023	0.006	0.009	
2140	0.12	0.051	0.017	0.022	
2288	0.072	0.031	0.013	0.018	
2340	0.099	0.040	0.026	0.023	
2395	0.23	0.090	0.017	0.012	

¹²⁹Te Levels

E(level)	L	Comments
0.0†	2	
$107^{+}5$	5	
$181^{+}5$	0	
2505		

¹³⁰Te(p,d) 1982Ga18 (continued)

$^{129}\mathrm{Te}$ Levels (continued)

E(level)	L	Comments
÷ -		
360 5		
455 5	4	
539 5		
775 5	(0+2)	
8191 5	(2)	
8727 5	(2)	
971 5	2	
1217† 5	2	
1290† 5	(2+4)	
$1430^{\dagger} 5$		
$1490^{\dagger} 5$		
1599^{\dagger} 10	2 §	
1672^{\dagger} 10	2 §	
$1797^{\dagger} 10$		
1892^{\dagger} 10	(4+2)	
2085‡		
2140^{\dagger} 10	(0+2)	
2220 10	(0+2)	
2288 [†] 10	(0+2)	
2370 10	(4+2)	E(level): strong peak at 2370 in 1982Ga18 is assumed to correspond to 2340 in 2013Ka04, 2013KaZZ.
2395^{\ddagger}		
2450 10		
2524 15	(2)	
2620 15	(0+2)	
2735 15	(4+2)	
2891 15	(4+2)	
3077 15	(2)	
3240 15	(4+2)	
3310 15		
3395 15		
3450 15		
3520 15		
10		

[†] Level also reported in 2013Ka04, 2013KaZZ.

¹³⁰Te(d,t),(pol d,t) 2003Wi02

 $2003 Wi02; \ \texttt{E=24} \ \texttt{MeV}. \ \texttt{Measured tritons}, \ \sigma(\theta), \ A_v(\theta) \ \texttt{using Q3D spectrograph and a long multiwire proportional counter}$ at ten different angles. FWHM=5-6 keV. Analyzing powers determined from the cross sections with different polarizations. These analyzing powers were used for unambiguous spin assignment. DWBA calculations. All data are from 2003Wi02. 1964JO12 agrees with the results from 2003Wi02 but less precise and contains less data. 1964Jo12: E=14.8 MeV; magnetic spectrograph, $\sigma(\theta) \theta=45^{\circ}$ and 60° , enriched target.

¹²⁹Te Levels

Cross sections (in $\mu b/sr$) in terms of maximum value of $\sigma(\theta)$ distribution are given under comments.

E(level) [†]	$J\pi^{\ddagger}$	[‡]	(2J+1)s _{lj} .§	Comments
0.0	3 / 2 +	2	1.08	dσ/dω=7269.
105.24	11/2 -	5	3.020	$d\sigma/d\omega = 1340.$
				E(level): 106 in (d,t).
179.35 28	1 / 2 +	0	0.524	$d\sigma/d\omega = 7749.$
				E(level): 180 in (d,t).
544.06 9	5 / 2 +	2	0.007	$d\sigma/d\omega = 67.$
				E(level): 545 in (d,t).
760.255	7 / 2 -	3	0.082	$d\sigma/d\omega = 151.$
				E(level): 760.2 3 in (d,t).

¹³⁰Te(d,t),(pol d,t) 2003Wi02 (continued)

¹²⁹Te Levels (continued)

E(level) [†]	Jπ‡	[‡]	(2J+1)s _{1j} .§	Comments
812.93 8	7 / 2+	4	0.092	$d\sigma/d\omega = 60.$
865.35 12	(7/2+)	(4)	(0.032)	E(level): 812.9 3 in (d,t). dσ/dω=16.
874.73 21		2	0.006	E(level): 865.2 3 in (d,t). $d\sigma/d\omega=51$.
				(2J+1)s _{ij} .: 0.0046. E(level): 875.1 3 in (d,t).
966.76 4	5 / 2+	2	0.334	dσ/dω=3616. E(level): 966.7 3 in (d,t).
1211.8 6	7 / 2 +	4	0.537	dσ/dω=365. E(level): 1211.5 3 in (d,t).
1282.0 5	5 / 2+	2	0.176	dσ/dω=2047. E(level): 1282.4 3 in (d,t).
1303.32 <i>12</i>	1 / 2+	0	0.002	dσ/dω=55. E(level): 1303.2 3 in (d.t).
1319.01 8	7 / 2 +	4	0.021	$d\sigma/d\omega = 15$. E(level): 1319.0.3 in (d t)
1419.4 8	5 / 2+	2	0.035	$d\sigma/d\omega = 442.$
1483.56 16	7 / 2+	4	0.091	$d\sigma/d\omega = 66.$
1582.1 4	7 / 2+	4	0.049	$d\sigma/d\omega=36$.
1599.65 20	5 / 2+	2	0.005	E(1eve): 1582.1 3 in (d,t). d $\sigma/d\omega$ =57.
1655.72 22	5 / 2+	2	0.169	E(1eve1): 1599.7 3 in (d,t). d $\sigma/d\omega$ =2204.
1723.53 5	5/2+	2	0.004	E(level): 1656.0 3 in (d,t). $d\sigma/d\omega=46$.
1739.72 11		2	0.002	$d\sigma/d\omega=23.$
				$(2J+1)s_{1j}$: 0.0015.
1754.24 9	7/2+	4	0.084	$d\sigma/d\omega = 57.$
1779.95 13	5/2+	2	0.041	dơ/dω=559. E(level): 1779.9 3 in (d,t).
1812.80 25	7 / 2 +	4	0.050	dσ/dω=37. E(level): 1812.7 3 in (d,t).
1843.64 15		1 + 5		$d\sigma/d\omega = 16.$
1869.91 10	5 / 2 +	2	0.025	$d\sigma/d\omega=320.$
1887.52 25		(1,2)		$d\sigma/d\omega = 14.$
1918.75	(3/2+)	(2)	(0.001)	$d\sigma/d\omega = 16.$
2040.2 6	3 / 2 -	1	0.001	$d\sigma/d\omega=29.$
				E(level): 2038.4 3 in (d,t).
2059.31 9	1/2+	0	0.001	$d\sigma/d\omega = 40$.
2071.52 9	3/2+	2	0.003	$d\sigma/d\omega = 40$.
2089.90 10		(4)	(0.010)	$(2J+1)s_{1j}$: $0.0062\approx$ $d\sigma/d\omega=9$.
2106.60 7	7/2-	3	0.006	$d\sigma/d\omega = 55.$ v2f _{7/2} orbital.
0110 01 10	1 / 0	0	0.004	$E(1eve1): 2106.6 \ 3 \ in \ (d,t).$
2113.91 12	1/2+	0	0.004	$d\sigma/d\omega = 112$.
2132.95 10		ð	0.031	$a_{0/a_{0}=11}$ $(2J+1)s_{1j}$: 0.0172.
2141.81 15	7 / 2 +	4	0.023	$d\sigma/d\omega = 17.$
2182.62 8	3 / 2 +	2	0.003	$d\sigma/d\omega = 40.$
2197.7 5		(3)	≈0.007	$d\sigma/d\omega=16.$ (2J+1)s _{1j} .: 0.0054=
2220.15 13				$d\sigma/d\omega = 31.$
2255 . 05 25	1 / 2 +	0	0.002	$d\sigma/d\omega = 65.$
2266.61 19	(3/2+)	(2)	≈ 0 . 004	$d\sigma/d\omega = 57$.
2278.52 13	(7/2+)	4	0.017	$d\sigma/d\omega = 14.$
2303.7 4		5	0.037	$d\sigma/d\omega = 12.$
	- / -			$(2J+1)s_{1j}: 0.0202.$
2309.73 7	1 / 2 +	0	0.003	$d\sigma/d\omega = 86.$

¹³⁰Te(d,t),(pol d,t) 2003Wi02 (continued)

129 Te Levels (continued)

E(level) [†]	Jπ‡	L‡	(2J+1)s _{1j} .§	Comments
	(11(2))			
2316.60 12	(11/2-)	ð	0.041	$d\sigma/d\omega = 24$.
2353.75 23	1/2+	0	0.006	$d\sigma/d\omega = 199$.
2362.6 6	(1/2-)	1	0.001	$d\sigma/d\omega = 28$.
2370.5 5	(3/2+)	2	0.001	$d\sigma/d\omega = 20$.
2377.4 4	(1/2-)	1	0.001	$d\sigma/d\omega = 24.$
2416.12 7	5/2+	2	0.006	$d\sigma/d\omega = 94.$
2431.59 21	1/2+	0	0.001	$d\sigma/d\omega = 22$.
2454.28 13		4	0.009	$d\sigma/d\omega = 7$.
				$(2J+1)s_{1j}$: 0.0057.
2465.29 23		(2)	≈0.001	$d\sigma/d\omega=7$.
				$(2J+1)s_{1j}$: (0.0005).
2477.04		(2)	≈ 0.0010	$d\sigma/d\omega = 15.$
				$(2J+1)s_{1j}$: (0.0008).
2481.62 29		4	0.034	$d\sigma/d\omega = 28.$
				$(2J+1)s_{1j}$.: 0.0221.
2506.66 13	(3/2+)	2	0.002	$d\sigma/d\omega = 22.$
2518.61 16	3 / 2 +	2	0.002	$d\sigma/d\omega = 23.$
2555.75 18	5 / 2 +	2	0.003	$d\sigma/d\omega = 45$.
2584.3 3	(3/2+)	2	0.001	$d\sigma/d\omega = 14.$
2615 . 91 13		(2)	≈ 0 . 0 0 1	$d\sigma/d\omega = 13.$
				$(2J+1)s_{1j}$.: (0.0007).
2632 . 44 33	5 / 2 +	2	0.001	$d\sigma/d\omega = 22.$
2670.86 29		(2)	≈ 0 . 0003	$d\sigma/d\omega=5$.
				$(2J+1)s_{1i}$: (0.0003).
2680.64	9 / 2 +	4	0.006	$d\sigma/d\omega=9$.
2701.84	1 / 2 -	1	0.0003	$d\sigma/d\omega = 11.$
2710.79 28	5 / 2 +	2	0.002	$d\sigma/d\omega=34.$
2746.77 16		2	0.003	$d\sigma/d\omega = 42.$
				$(2J+1)s_{1i}: 0.0024.$
2756.749	(3/2+)	2	0.002	$d\sigma/d\omega = 33.$
2766.62 23	(5/2+)	2	0.001	$d\sigma/d\omega = 19.$
2823.60 24		4	0.019	$d\sigma/d\omega = 18.$
				$(2J+1)s_{1i}$.: 0.0123.
2831.1 6	(3/2+)	(2)	≈ 0 . 0 0 1	$d\sigma/d\omega = 12$.
2844.1 5		2	0.001	$d\sigma/d\omega=6$.
				$(2J+1)s_{lj}: 0.0004.$
2855.67 12	5 / 2 +	2	0.002	$d\sigma/d\omega = 36$.

[†] The values are weighted averages of all measurements at different angles with independent energy calibrations from ¹²⁸Te(d,p), ¹²⁸Te(pol d,p) and ¹³⁰Te(pol d,t). Quoted uncertainty is statistical. A systematic uncertainty of 0.5- keV increasing with excitation energy should be added in quadrature. From column 9 in Table 6 of 2003Wi02, these uncertainties are estimated as follows: 0.5 keV up to 2 MeV excitation; 1 keV from 2.0-2.2 MeV; 1.5 keV from 2.2-2.4 MeV; 2.0 keV from 2.4-2.5 MeV; 3 keV from 2.5-2.6 MeV; 4 keV from 2.6-2.8 MeV; 5 keV above 2.8 MeV.

[‡] L from ¹²⁸Te(d,p), ¹²⁸Te(pol d,p) and/or ¹³⁰Te(pol d,t). J from L and analyzing power.

Authors give too many significant digits, they are rounded by evaluators. Two values are given when spin is either L-1/2 or L+1/2; the value for the latter choice is given under comments.

¹³⁰Te(³He,α) 1982Ga18

1982Ga18: E=70 MeV; measured α spectra with a magnetic spectrometer, $\sigma(\theta)$ at 7°, 15°, 25°. FWHM=70 keV. DWBA analysis.

2013Ka04, 2013KaZZ: $E(^{3}He)=40$ MeV beam from Yale tandem accelerator of WNSL facility. Measured α spectra, $\sigma(\theta)$ using a split-pole. magnetic spectrograph. FWHM \approx 70 keV. Deduced cross section for 105, 11/2- level.

¹²⁹Te Levels

E(level)	L	\mathbf{s}^{\dagger}	Comments
0.0	2	2.1	S: if 2d _{3/2} .

¹³⁰Te(³He, α) 1982Ga18 (continued)

¹²⁹Te Levels (continued)

E(level)	L	\mathbf{S}^{\dagger}	Comments
105 10	5	7.2	E(level): level reported in 2013Ka04 and 2013KaZZ with $d\sigma/d\Omega$ =5.16 mb/sr at 5° and 1.11 mb/sr at 22.5°. S: if $1h_{11/2}$.
372 10	(2)		
461 10	4	0.21	S: if 1g _{7/2} .
783 10	(2)	0.26	
880 10	2	0.28	
970 10	2	1.7	S: if 2d _{5/2} .
1280 10	4	3.6	S: if $1g_{7/2}$.
1535 10	4	0.65	S: if $1g_{7/2}$.
1845 10	4	1.04	S: if $1g_{7/2}$.
1920 10	2	0.71	S: if 2d _{5/2} .
2180 25	(2+4)	0.2 + 0.3	S: <0.2 , <0.3 if $2d_{5/2}+1g_{7/2}$.
2370 25	4,5	0.8,0.4	S: if $1g_{7/2}$, $1h_{11/2}$.
2515 25	5	0.28	S: if 1h _{11/2} .
2745 25	(4)		
$2980 \ 25$	4	0.51	S: if 1g _{7/2} .
$3500 \ 25$	4	0.47	S: if 1g _{7/2} .

 $^\dagger~C^2s$ from DWBA.

¹³⁰Te(⁶⁴Ni,Xγ) 1998Zh09,1995Zh37

1998Zh09, 1995Zh37: E=275 MeV. Deep inelastic reaction. Measured γ , $\gamma\gamma$ using GASP array. Angular distribution of γ rays also determined. 19 γ transitions detected but level scheme is constructed for the yrast states only using 11 of the γ rays.

¹²⁹Te Levels

E(level)	$J\pi^{\dagger}$	T _{1/2}	Comments
0.0 106.0 <i>1</i>	3 / 2 + [‡] 1 1 / 2 - [‡]	33.6 d 1	T _{1/2} : from Adopted Levels.
866.0 1	(15/2-)		
1524.0 1	(19/2-)		
1655.0 1	(17/2-)		$J\pi$: three quasiparticle configuration= $\pi g_{7/2}^2 \otimes vh_{11/2}$.
1887.0 1	(21/2-)		
1958.0 1	(21/2-)		$J\pi$: from Adopted Levels.
			Configuration=π(g _{7/2} ,d _{5/2})⊗vh _{11/2} (1998Zh09).
2138.0 1	(23/2+)	33 ns 3	$T_{1/2}$: from $\gamma(t)$.
			$J\pi$: from level systematics with 128Te and 130Te by 1998Zh09.
2511.0 1	(23/2-)		$J\pi$: possible configuration= $\pi g_{7/2}^2 \otimes vh_{11/2}$.
3052.0 1			

[†] From 1998Zh09 for levels above 11/2- based on $\gamma(\theta)$ and high-spin cascade, consistent with similar structures in neighboring nuclides.

‡ From Adopted Levels.

$\gamma(^{129}{ m Te})$

Eγ	E(level)	Ιγ	Mult.	α	Comments
106.0 1	106.0		M4	419 7	Eγ: from level-energy difference. Mult.: from Adopted Gammas.
131.1 3	1655.0	2.52 25			
180.6 3	2138.0	1.56 16			
232.3 1	1887.0	3.6 4			
251.2 1	2138.0	4.6 5			
363.4 1	1887.0	18.2 18	(D)		Mult.: possible $\Delta J=1$, (M1) from $\gamma(\theta)$ in 1998Zh09.

		¹³⁰ Te(⁶⁴ Ni,Xγ)	1998Zh09,1995Zh37 (continued)	_
		-	$\gamma(^{129}{ m Te})$ (continued)	
level)	Ιγ	Mult.		

Eγ		E(level)	Ιγ	Mult.
433.7	1	1958.0	5.2 5	
657.8	1	1524.0	52 5	(Q) [†]
760.1	1	866.0	100 10	(Q) [†]
788.9	1	1655.0	3.0 3	
913.8	3	3052.0		
987.5	1	2511.0	6.3 6	

 † ΔJ =2, (E2) suggested from $\gamma(\theta)$ (1998Zh09), but no angular distribution coefficients are listed in the paper.

$^{130}{\rm Te}(^{64}{\rm Ni},{\rm Xy})$ 1998Zh09,1995Zh37 (continued) Level Scheme Intensities: relative Iy 9,3,8 3052.0 a & (23/2-) 2511.0 (23/2+)ō 2138.0 33 ns (21/2-)1958.0 1887.0 (21/2-) (17/2-) 1655.0 ره (19/2 -)1524.0(15/2-) 10:01 1007 866.0 11/2-106.0 33.6 d 3/2+ 0.0 $^{129}_{52}$ Te $_{77}$

238 U(12 C,F γ), 208 Pb(18 O,F γ) 2014AsAA

2014AsAA: E(¹²C)=90 MeV, E(¹⁸O=85 MeV. Targets=47 mg/cm² ²³⁸U and 100 mg/cm² ²⁰⁸Pb. Measured Eγ, Iγ, γγ-coin, level half-lives by delayed coincidence techniques using SAPhIR and Euroball arrays at Legnaro XTU accelerator for ¹²C beam and IReS Vivitron facility in Strasbourg. Deduced levels, J, π. Comparison with shell-model calculations.

¹²⁹Te Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments
0.0@	3/2+		
105 51# 3	11/2 -	336 d 1	E(level) JTT . from Adonted Levels
812 4@ 6	(7/2+)§	5515 u 1	
864 9# 2	15/2-		
1515 7@ 9	(11/2+)		
$1522.4^{\#}3$	19/2 -		
1653.6 4	(19/2-)		
1727.1@ 10	(15/2+)		
1885.3 4	21/2-		
1955.8 4	21/2-		
2135.8& 4	23/2+	33 ns 3	T _{1/2} : from Adopted Levels.
2509.9# 5	23/2-		
2840.3 # 6	27/2-		
2883.8 8			
3049.9& 6	27/2+		
3512.9# 7	29/2-		
3617.0 9	(31/2-)		
3636.7& 7	(29/2+)		
4033.1& 9	(31/2+)		
4155.6 9	(31/2+)		
$4435.3^{\#}10$	(33/2-)		
4696.8 10	(33/2+)		
4825.2 [#] 11	(35/2-)		

 † From least-squares fit to Ey data.

[‡] As proposed in 2014AsAA based on previous assignments for low-lying levels, and decay pattern.

§ From Adopted Levels.

 $^{\#}$ (A): γ sequence based on 11/2- isomer.

@ (B): γ sequence based on 3/2+.

& (C): γ sequence based on 23/2+ isomer.

$^{129}_{52}\mathrm{Te}_{77}\mathrm{-}59$

²³⁸U(¹²C,Fγ),²⁰⁸Pb(¹⁸O,Fγ) 2014AsAA (continued)

$\gamma(^{129}{ m Te})$

Eγ	E(level)	Ιγ	Mult. [†]	Comments
130.95	1653.6	4 2		
180.14	2135.8	9.4 28	D	
211.4 5	1727.1	1.4 7		
231.6 3	1885.3	8 2		
250.5 3	2135.8	17 4	D	
330.4 3	2840.3	19 5	Q	$(330.4\gamma)(759.4\gamma)(\theta)$: R(22°)=1.10 5, R(46°)=1.06 3, R(75°)=1.00.
				$(330.4\gamma)(987.5\gamma)(\theta): R(22^{\circ})=1.15 9, R(46^{\circ})=1.07 5, R(75^{\circ})=1.00.$
362.9 3	1885.3	23 5	D	
389.9 5	4825.2	1.4 7		
396.4 5	4033.1	2.7 13		
433.4 3	1955.8	$16 \ 4$	D	$(433.4\gamma)(759.4\gamma)(\theta): R(22^{\circ})=0.87 8, R(46^{\circ})=0.96 4, R(75^{\circ})=1.00.$
541.2 5	4696.8	$2 \ 1$		
586.8 4	3636.7	6.4 19		
657.5 2	1522.4	82 12	Q	
672.6 4	3512.9	10 3	D	$(672.6\gamma)(759.4\gamma)(\theta)$: R(22°)=0.8 1, R(46°)=0.90 7, R(75°)=1.00.
703.3 6	1515.7	>1.4		
748.0 6	2883.8	1.8 9		
759.4 2	864.9	100	Q	
776.7 6	3617.0	$2 \ 1$	•	
788.8 6	1653.6	5 2		
812.4 6	812.4	>1.4		
914.1.4	3049.9	13 3	Q	$(914, 1\gamma)(759, 4\gamma)(\theta)$; $R(22^{\circ})=1.17$ 8, $R(46^{\circ})=1.08$ 4, $R(75^{\circ})=1.00$.
			ч ч	$(914 1)(180 1)(0)$: $R(22^{\circ}=0.915 R(46^{\circ}=0.955 R(75^{\circ})=1.00)$
				$(914, 1_{y})(250, 5, 1_{y})(4)$, $R(22^{\circ})=0, 92, 6, R(46^{\circ})=0, 80, 8, R(45^{\circ})=1, 0, 0$
				$(014, 1)_{12}(20, 0.1)_{10}(0)$, $D(220)_{10}(0, 1, 1)_{10}(20, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$
				(514.17)(502.57)(0). $R(22) = 0.51$, $R(40) = 0.520$, $R(75) = 1.00$.
000 4 6	4495 9	0 1		$(314.17)(007.07)(0)$: $\Lambda(22)=1.10$ 0, $\Lambda(40)=1.00$ 4, $\Lambda(70)=1.00$.
922.4 6	4435.3	2 1	<u> </u>	
987.5 4	2509.9	22 4	Q	$(987.5\gamma)(759.4\gamma)(\theta)$: $K(22^{\circ})=1.12^{\circ}6$, $K(46^{\circ})=1.04^{\circ}3$, $K(75^{\circ})=1.00$.
1105.7 6	4155.6	3.0 12		

 † From $\gamma\gamma(\theta)$ data, mult=Q corresponds $\Delta J{=}2,$ most likely E2.

²³⁸U(¹²C,Fγ),²⁰⁸Pb(¹⁸O,Fγ) 2014AsAA (continued)

From NNDC(BNL) program ENSDAT

²³⁸U(¹²C,Fγ),²⁰⁸Pb(¹⁸O,Fγ) 2014AsAA (continued)

Level Scheme

Intensities: relative $I\gamma$

 $^{129}_{52}{
m Te}_{77}$

Adopted Levels, Gammas

 $Q(\beta^-)=189\ 3;\ S(n)=8840\ 5;\ S(p)=6802\ 3;\ Q(\alpha)=-2676\ 4\ 2012Wa38.$

S(2n)=15666 5, S(2p)=16386 6 (2012Wa38).

¹²⁹I identified by 1949Pa19, 1949Li09 and 1951Ka16; also an earlier preliminary report by S. Katcoff in Phys. Rev. 71, 826 (1947).

¹²⁹I Levels

Cross Reference (XREF) Flags

	$\begin{array}{c} A & {}^{129}T \\ B & {}^{129}T \\ C & {}^{124}S \\ D & {}^{128}T \end{array}$	e β ⁻ Decay (69.6 e β ⁻ Decay (33.6 n(⁷ Li,2nγ) e(p,p),(p,p') IAR	min) d)	E Coulomb Excitation F ¹²⁸ Te(³ He,d) G ¹²⁸ Te(α,t)		
E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2}	Comments		
0.0	7/2+	ABC EFG	1.57×10 ⁷ y 4	 %β⁻=100. μ=+2.6210 3 (1951Wa12,2014StZZ). Q=-0.488 8 (1953Li16,2013StZZ,2014StZZ). μ: From NMR (1951Wa12). Q: quadrupole resonance, microwave absorption (1953Li16). Value recommended by 2013StZZ evaluation of original value of -0.553 from 1953Li16. Others: -0.498 7 (2001Bi17, re-evaluated from measured Q(¹²⁹I)/Q(¹²⁷I)=0.701213 15 (1953LI16)); -0.482 10 (reanalysis of Q₀ for ¹²⁷I by 2000Ha64). 		
				Jπ: spin from microwave spectroscopy (1949Li09). Parity from L(³ He,d)=4. T _{1/2} : from specific activity (1972Em01). Others: 1.97×10^7 y 14 (1973Ku17), 1.56×10^7 y 6 (1957Ru65), 1.72×10^7 y 9 (1951Ka16), 3.0×10^7 y (1949Pa19), ≈ 10^8 y (S. Katcoff, Phys. Rev. 71, 826 (1947).		
27.793 20	5/2+	ABC EFG	16.8 ns 2	 μ=+2.8045 26 (1981De35,2014StZZ). μ=+2.8045 26 (1981De35,2014StZZ). μ: Mossbauer effect (1981De35). Q: Mossbauer effect, value recommended by 2013StZZ evaluation of original value of -0.685 from 1972Ro41. Others: -0.616 9 (2001Bi17 re-evaluated data from 1972Ro41); -0.598 13 (reanalysis of 1972Ro41 data and Q₂ for ¹²⁷I by 2000Ha64); -0.42 2 (1987Gr28, Mossbauer effect measurement). Jπ: L(³He,d)=2; M1+E2 γ to 7/2+. 		
278.381 <i>23</i>	3 / 2+	AB EFG	0.104 ns <i>12</i>	$\begin{array}{l} T_{1/2}: \mbox{ from } (\beta)(0.0278 \ ce(L))(t) \ (1966Sa06). \ Others \ (from \ \beta\gamma(t) \ or \ \gamma\gamma(t)): \ 16.4 \ ns \ 11 \ (1965Pa04), \ 14.4 \ ns \ 5 \ (1964Ka09), \ 14.4 \ ns \ 7 \ (1964Jh02), \ 15.9 \ ns \ 13 \ (1963Go17), \ 18.6 \ ns \ 11 \ (1962De18). \ J\pi: \ L(^{3}He,d)=2; \ E2 \ \gamma \ to \ 7/2+; \ \gamma \ from \ 1/2+. \ T_{1/2}: \ from \ delayed \ \gamma \ (1969BoZR). \ 0.27 \ ns \ is \ deduced \ from \ B(E2) \ in \ L(2) \ L(2$		
487.346 25	5 / 2 +	AB EFG	11.6 ps 27	Coulomb ex. $J\pi$: L(³ He,d)=2; M1+E2 gammas to 7/2+, 5/2+ and 3/2+. $T_{1/2}$: deduced by compilers from B(E2)(\uparrow)=0.016 3 in Coulomb excitation. Other: 0.05 ns (from γ)t),1969BoZR).		
559.61 3 695.89 5	1/2+ 11/2+	A FG BC E	4.3 ps 5	 Jπ: L(³He,d)=0. Jπ: ΔJ=2, (E2) g to 7/2+; Coulomb excited; population in (⁷Li,2nγ) supports 11/2 over 3/2. T₁₀₀: deduced by compilers from B(E2)=0.122 13 in Coulomb ex. 		
729.57 3	(9/2)+	ABC E	3.8 ps 4	$T_{1/2}$ log ft=9.9 from $11/2$ -; M1+E2 γ to 7/2+. T _{1/2} : deduced by compilers from B(E2)=0.078 8 in Coul. ex.		
768.75 3	(7/2)+	AB E		J π : log $f^{1u}t=11.6$ from 11/2-; M1+E2 γ to 5/2+.		
829.91 3	3 / 2 + , 5 / 2 +	A E		J π : log ft=7.2 from 3/2+; Coulomb excited.		
844.82 3	(7/2)+	ABC E G		J π : log $f^{Iu}t$ =11.9 from 11/2-; M1+E2 γ to 5/2+; Coulomb excited. J=(9/2) proposed in (⁷ Li,2n γ) is inconsistent with M1+E2 G to 5/2+.		
1047.35 4	3 / 2 + , 5 / 2 +	A FG		XREF: F(1052). Jπ: L(³ He,d)=2.		
1050.21 3	(7/2)+	AB E		J π : log $f^{1u}t=10.6$ from 11/2-; M1+E2 γ to 5/2+.		
$1111.645 \ 25$	5 / 2+	A FG		$J\pi$: L(³ He,d)=2; M1+E2 gammas to 7/2+.		
1196.65 13		A				
1203.71 9	(7/2+)	B		$J\pi$: log $f^{iu}t=11.8$ from 11/2-; gammas to 7/2+ and 3/2+.		
1209.80 10	1/2+	A FG		Jπ: L("ne,d)=0.		

Continued on next page (footnotes at end of table)

 $^{129}_{53}\mathrm{I}_{76}\mathrm{-1}$

Adopted Levels, Gammas (continued)

¹²⁹I Levels (continued)

E(level) [†]	Jπ‡	XRE	F	Comments
1000 05 0			D.C.	
1260.65 3	3/2+,5/2+	A	FG	$J\pi: L(^{\circ}He_{,d})=2.$
1281.99 4	(7/2+)	В	G	$J\pi$: log $f^{12}t = 11.4$ from $11/2-$; γ to $3/2+$.
1291.94 4	(3/2+,5/2+)	A		$J\pi$: log ft=6.3 from 3/2+; gammas to 1/2+ and 7/2+.
1376.2 2	(13/2+)	С	-	$J\pi$: $\Delta J=2$, $Q \gamma$ to $(9/2)+$; $\Delta J=1 \gamma$ to $11/2+$.
1401.43 3	(9/2)-	BC	FG	J π : L(α ,t)=5; Δ J=1, dipole γ to (7/2)+. J=(11/2) proposed in ('Li,2n γ) is not likely with (7/2) assignment for 845 level.
1469.7 3	(15/2+)	С		$J\pi$: $\Delta J=2$, $Q \gamma$ to $11/2+$.
1483 5	1 / 2 +		\mathbf{FG}	$J\pi$: $L(^{3}He,d)=0$.
15216	(7/2 to 11/2)		G	$J\pi$: $L(\alpha,t)=(4,5)$.
1566 10	3/2+,5/2+		FG	XREF: G(1569). Jπ: L(³ He,d)=2.
1621 10	3 / 2 + , 5 / 2 +		FG	XREF: $G(1619)$. Jr: $L(^{3}He.d)=2$.
1666.9 4	(13/2+)	С		$J\pi$: $\Delta J = (2) \gamma$ to $(9/2) +$.
1741 10			FG	E(level): possible doublet. $L(^{3}He.d)=0$: $L(\alpha,t)=(4+0)$.
1823 10	1/2+		F	$J\pi$: $L(^{3}He,d)=0$.
1833.5.3	(15/2+)	С	-	$J\pi$: $AJ=1 \gamma$ to $(13/2+)$: γ to $(15/2)+$.
1850.2 4	(15/2)	Č		$J\pi$: gammas to $(13/2+)$ and $(15/2+)$.
1861 10	3/2+5/2+	-	FG	XREF: G(1867).
1001 10	0/21,0/21		10	$J\pi$: $L(^{3}Hed)=2$
1909 8			G	on 2(10,0)-2.
1940 8			G	
1963 10			FG	
2002 8			G	
2012 10	1/2+		F	$J\pi: L(^{3}He d)=0$
2026 8	1/21		G	
2050 8			G	
2073 10	3/9+ 5/9+		FG	XEEF. C(2071)
2015 10	5/2+,5/2+		ru	$\pi_{\rm H} = 1 (^{3} H_{\rm e} d) - 2$
2099 3 5	(17/2+)	С		J_{π^*} $L_1 = 1 \lor t_0 (15/2_{\pm})$
2150 8	(11/21)	Ũ	G	
2208 10	1/2+		F	J_{π} · $L(^{3}H_{\theta}, d) = 0$
2324 7 4	(19/2+)	С	1	$J_{\pi^{+}}$ $\Lambda J_{-2} \sim t_{0} (15/2\pm)$
2400 10	1/2+	Ũ	F	$J_{\pi} = L_{1}^{(3)} + L_{2}^{(3)} + L_{2}^$
2529 6 5		С	•	$J_{\pi^{-}} \times I_{n}(1)(2_{+}) \approx 0.076555 = 10/2 = 21/2 = 23/2 \pm 0.01275 = 0.$
25692 1		c		5K. 1 (6 (10/21) Suggests 10/2, 21/2, 20/21.
2590 20	1/2+	Ũ	F	J_{π} · $L(^{3}H_{e}d)=0$
2633 1 4	(23/2+)	С	1	$J\pi^{-}$, $J=2$, γ to $(19/2+)$
2790 20	1/2+	-	F	$J\pi$: L(³ He, d)=0.
2850 20	3/2 + 5/2 +		F	$J\pi : L(^{3}Hed) = 2$
2882 3 7	0/21,0/21	С	-	on 2(10,0)-2.
2910 20	1/2+	Ũ	F	J_{π} : $L(^{3}H_{\theta}, d)=0$
2924? 1	-/	С	•	· <u>-</u> , <u></u> , ··
2933.8 5	(25/2+)	č		$J\pi: \Delta J=1 \gamma$ to (23/2+).
2950 20	1/2+	5	F	$J\pi$: L(³ He.d)=0.
3200 20	1/2+		F	$J\pi$: $L(^{3}Hed)=0$
3250 20	1/2+		F	$J\pi$: $L(^{3}Hed)=0$
3350 20	1/2+		F	$J\pi$: $L(^{3}Hed)=0$
34082 1		С	•	on 2(10,0)-0.
3450 20	1/2+	Ũ	F	J_{π} : $L(^{3}H_{\theta}, d)=0$
14666 20	3/2+ 5/2+	р	1	J_{π} , $L_{\tau} = 2$ in (n n') IAR
14854 20	1/2+	D D		$J\pi$: L=0 in (n n') IAR
15643 20	3/2+.5/2+	ם ח		$J\pi$: L=2 in (p,p') IAB.
15969 20	3/2+, 5/2+	ם ח		$J\pi$: L=2 in (p,p) IAR.
16759 20	5/2 - 7/2 - 5/2 - 7/2	ם ת		$J\pi$: L=2 in (p,p) IAR
16869 20	5/2 , 1/2 = 5/2 = 7/2	D D		$J\pi$: L=3 in (p,p) Int.
16015 20	1/9 3/9	ע		J_{π} : J_{-1} in (p,p) IAR.
16998 20	1/2 = .3/2 =	ם ת		$J\pi$: L-1 in (p,p) IAR
17344 20	1/2 - 3/2	ם ד		J_{π} : L-1 in (p,p) IAR
17699 90	1/2-,0/2- (5/9-7/9)	ע		J_{π} , J_{-1} in (p,p) into J_{π} .
18400 20	(0/2-, //2-) 1/9 9/9	ם ת		J_{π} , $L_{-}(J_{f})$ in (p, p) IAR.
10409 20	1/2-, 0/2-	D		$\mathbf{J}\mathbf{n}$. $\mathbf{L}=1$ III (\mathbf{p},\mathbf{p}) IAA.

 † From least-squares fit to the adopted Ey values for levels populated in γ -ray studies. For others weighted averages are taken.

Footnotes continued on next page

 $^{129}_{53}\mathrm{I}_{76}\text{--}2$

Adopted Levels, Gammas (continued)

¹²⁹I Levels (continued)

[‡] For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population.

				$\gamma^{(129I)}$		
		÷	÷.			
E(level)	Εγ'	Ιγ'	Mult. '	δ1	α	Comments
27.793	27.81 5	100	M1+E2	-0.045 14	4.9 4	$\begin{array}{l} \alpha(L)=3.9 \ 3; \ \alpha(M)=0.79 \ 6. \\ \alpha(N)=0.160 \ 11; \ \alpha(O)=0.0181 \ 10. \\ B(M1)(W.u.)=0.0103 \ 8; \\ B(E2)(W.u.)=18 \ 12. \end{array}$
278.381	250.62 5	68 2	M1+E2	+0.50 +19-13	0.0623 18	$\alpha(K)=0.0531 \ 12; \ \alpha(L)=0.0074 \ 5; \ \alpha(M)=0.00150 \ 11. \ \alpha(N)=0.000302 \ 21; \ \alpha(O)=3.43\times10^{-5} \ 18. \ B(M1)(W.u.)=0.0041 \ 8; \ B(E2)(W.u.)=11 \ 7. \ Context{}$
	278.43 5	100 3	E2		0.0512	B(E2)(W.u.)=47 6. $\alpha(K)=0.0422$ 6; $\alpha(L)=0.00723$ 11; $\alpha(M)=0.001483$ 21. $\alpha(N)=0.000293$ 5; $\alpha(O)=3.12\times10^{-5}$ 5.
487.346	208.96 <i>5</i>	2.34 7	M1+E2	-0.18 3	0.0983 15	$\begin{split} &\alpha(\mathbf{K}){=}0.0844 \ 13; \ \alpha(\mathbf{L}){=}0.01110 \ 20; \\ &\alpha(\mathbf{M}){=}0.00224 \ 4. \\ &\alpha(\mathbf{N}){=}0.000452 \ 8; \ \alpha(\mathbf{O}){=}5.27{\times}10^{-5} \ 9. \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.){=}0.0039 \ 10; \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.){=}1.9 \ 8. \end{split}$
	459.60 5	100 3	M1+E2	-0.12 4	0.01259	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.01089 \ 16; \ \alpha(\mathbf{L}) \!=\! 0.001369 \ 20; \\ &\alpha(\mathbf{M}) \!=\! 0.000275 \ 4. \\ &\alpha(\mathbf{N}) \!=\! 5.57 \!\times\! 10^{-5} \ 8; \ \alpha(\mathbf{O}) \!=\! 6.56 \!\times\! 10^{-6} \ 10. \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) \!=\! 0.016 \ 4; \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) \!=\! 0.7 \ 5. \end{split}$
	487.39 <i>5</i>	18.4 6	M1+E2	+0.50 +17-10	0.01057 24	$\begin{split} &\alpha(\mathbf{K}) = 0.00911 \ 22; \ \alpha(\mathbf{L}) = 0.001169 \ 18; \\ &\alpha(\mathbf{M}) = 0.000235 \ 4. \\ &\alpha(\mathbf{N}) = 4.75 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 5.55 \times 10^{-6} \ 10. \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = 0.0020 \ 6; \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 1.4 \ 9. \end{split}$
559.61	281.26 5	100 3	M1+E2	-0.08 4	0.0442	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0381 \ 6; \ \alpha(\mathbf{L}) = 0.00487 \ 7; \\ &\alpha(\mathbf{M}) = 0.000980 \ 15. \\ &\alpha(\mathbf{N}) = 0.000199 \ 3; \ \alpha(\mathbf{O}) = 2.33 \times 10^{-5} \ 4. \end{aligned}$
	531.83 5	532	[E2]			$\begin{split} &\alpha\!=\!0.00722 \ 11; \ \alpha(K)\!=\!0.00614 \ 9; \\ &\alpha(L)\!=\!0.000862 \ 12; \\ &\alpha(M)\!=\!0.0001745 \ 25. \\ &\alpha(N)\!=\!3.50\!\times\!10^{-5} \ 5; \ \alpha(O)\!=\!3.94\!\times\!10^{-6} \ 6. \end{split}$
695.89 729.57	695.88 6 242.2 1	100 0.094 <i>13</i>	(E2) [E2]		0.0812	B(E2)(W.u.)=20.8 25. α (K)=0.0661 10; α (L)=0.01207 17; α (M)=0.00248 4. α (N)=0.000490 7; α (O)=5.13×10 ⁻⁵ 8. B(E2)(W.u.)=4.2 8.
	701.765 729.575	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	[E2] M1+E2	-0.34 6		B(E2)(W.u.)=0.78 10. B(M1)(W.u.)=0.0129 16; B(E2)(W.u.)=1.9 7.
768.75	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	<0.34 <0.86 100 3	M1+E2	-0.27 10		
829.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
844.82	76.10 5	0.35 8	[M1+E2]		3.1 15	$ \begin{array}{l} \alpha(K) = 2.1 \ 7; \ \alpha(L) = 0.8 \ 7; \ \alpha(M) = 0.18 \ 15. \\ \alpha(N) = 0.03 \ 3; \ \alpha(O) = 0.0032 \ 24. \end{array} $
	115.30 16	0.29 9	[M1+E2]		0.8 3	$\begin{aligned} &\alpha(K)=0.59 \ 17; \ \alpha(L)=0.15 \ 10; \\ &\alpha(M)=0.031 \ 20. \\ &\alpha(N)=0.006 \ 4; \ \alpha(O)=0.0006 \ 4. \end{aligned}$
	357.48 20	≤ 0 . 15				

				$\gamma(^{129}I)$ (continued)	
					.)	
E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [†]	δ†	α	Comments
844.82	817.04 5	100 3	M1+E2	+0.46 4		
	844.81 5	37.6 21				
1047.35	560.05 6	100 6				
	769.015	11.8 11				
	1019.436	379				
1050.21	281.44 5	2.9 3	[M1+E2]		0.047 3	$\begin{split} &\alpha(\mathrm{K}){=}0.0394 \ 15; \ \alpha(\mathrm{L}){=}0.0059 \ 11; \\ &\alpha(\mathrm{M}){=}0.00120 \ 23. \\ &\alpha(\mathrm{N}){=}0.00024 \ 5; \ \alpha(\mathrm{O}){=}2.7{\times}10^{-5} \ 4. \end{split}$
	320.64 11	3.4 5	[M1+E2]		0.0319 7	$\begin{split} &\alpha({\rm K}){=}0.0271\ 4;\ \alpha({\rm L}){=}0.0039\ 5;\\ &\alpha({\rm M}){=}0.00079\ 11.\\ &\alpha({\rm N}){=}0.000159\ 19;\ \alpha({\rm O}){=}1.78{\times}10^{-5}\ 14. \end{split}$
	562.82 20	≤2.6				
	771.80 16	1.72				
	1022.435	97 5	M1(+E2)	-0.02 2		
	1050 . 21 5	100 8				
1111.645	281.7 1	0.31 6				
	342.88 5	10.0 1	[M1+E2]		0.0264	$\begin{split} &\alpha({\rm K}){=}0.0224~6;~\alpha({\rm L}){=}0.0032~3;\\ &\alpha({\rm M}){=}0.00065~7.\\ &\alpha({\rm N}){=}0.000129~12;~\alpha({\rm O}){=}1.46{\times}10^{-5}~8. \end{split}$
	382.08 14	0.13 5	[E2]		0.0188	$\alpha(K)=0.01579\ 23;\ \alpha(L)=0.00242\ 4;\ \alpha(M)=0.000492\ 7.\ \alpha(N)=9.81\times10^{-5}\ 14:\ \alpha(O)=1.077\times10^{-5}\ 16.$
	551.98 5	0.28 5	[E2]			$\alpha = 0.00652 \ 10; \ \alpha(K) = 0.00555 \ 8; \\ \alpha(L) = 0.000774 \ 11; \\ \alpha(M) = 0.0001565 \ 22. \\ \alpha(N) = 3.14 \times 10^{-5} \ 5; \ \alpha(\Omega) = 3.55 \times 10^{-6} \ 5$
	624.34 5	19.7 6	M1(+E2)	+0.10 26		$\begin{array}{l} \alpha(\mathbf{x}) = 511 + 116 + 66 \\ \alpha(\mathbf{x}) = 0.00595 \ 16; \ \alpha(\mathbf{K}) = 0.00515 \ 14; \\ \alpha(\mathbf{L}) = 0.000641 \ 14; \ \alpha(\mathbf{M}) = 0.000129 \ 3. \\ \alpha(\mathbf{N}) = 2.60 \times 10^{-5} \ 6; \ \alpha(\mathbf{O}) = 3.07 \times 10^{-6} \ 8. \end{array}$
	833.28 5	9.25 28				
	1083.85 5	100 3	M1+E2	+0.56 +24-14		
	1111.64 5	38.8 16	M1(+E2)	+0.06 5		
1196.65	918.29 15	100 25				
	1168.8 2	≤ 7 .5				
1203 . 71	716.60 16	< 1 0 0				
	924.520	≤ 2.6				
	1176.05	40 20				
	1203.59 11	100 20				
1209.80	722.52	$\leq 1 \ 0 \ 0$				
	931.57 25	90 40				
	1181.96 11	50 20				
1260.65	210.66 19	8.2 43	[M1+E2]		0.113 18	$\begin{array}{l} \alpha({\bf K}) \!=\! 0.093 12; \alpha({\bf L}) \!=\! 0.016 5; \\ \alpha({\bf M}) \!=\! 0.0032 11. \\ \alpha({\bf N}) \!=\! 0.00063 21; \alpha({\bf O}) \!=\! 6.8 \!\times\! 10^{-5} 18. \end{array}$
	415.88 14	3.8 14				
	491.93 14	7.2 14				
	701.10 16	8.2 19				
	773.54 17	1.4 10				
	982.27 5	100 3				
	1202.02 0	41 4 70 1				
1281 00	552 43 5	40 12				
1201.33	794 60 91	80 20				
	1003.65 9	100 20				
	1254.13 8	60 7				
	1281.96 11	31 5				
1291.94	462.04 20	<1				
	732.62 16	6.1 11				
	804.60 13	100 1				
	1013.57 8	6.1 14				
	1264.16 5	37.9 14				

Adopted Levels, Gammas (continued)

$\gamma(^{129}I)$ (continued) Iγ[†] $E\,\gamma^\dagger$ δŤ E(level) Mult.† Comments 1291.94 1291.50 13 1.29 18 Eγ: poor fit, level-energy difference=1291.94; quoted uncertainty may be underestimated. 1376.2646.5 3 29 5Q D+Q680.42 $100 \ 11$ 1401.43 (E1(+M2)) -0.06 2 556.65 5 100 3 671.84 5 $21 \ 8$ 705.52 7 4.4 4 1373.75 9 0.23 2 1401.36 6 2.94 8 1469.7 100 773.9 3 Q 1666.9 937.3 4 $1\,0\,0$ (Q) 1833.5 363.8 4 8.6 29 100 11 457.3 3 D+Q 1850.2 183.2421 7380.5 3 100 14 2099.3 265.8 3 $1\,0\,0$ D+Q2324.7 855.0 2 100 Q 204.9 4 2529.6 100 470^{\ddagger} 2569?308.4 2 $2\,6\,3\,3$. 1 100 Q 2882.3 352.74 $1\,0\,0$ 2924?825‡ 2933.8 300.7 3 100 D+Q 474‡ 3408?

Adopted Levels, Gammas (continued)

[†] From ¹²⁹Te β^- decays (1976Ma35) for low-spin (J \leq 11/2) states and from ¹²⁴Sn(⁷Li,2n\gamma) (2013De02) for high-spin (J \geq 13/2) states.

 \ddagger Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level

/2-,3/2-		18409
	<u>گ</u>	
	W	3408
+		3200
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	St S	
/2+)		$\frac{2933.8}{2924}$
		2882.3
2+		2790
3/2+)		2633.1
		2569
		2029.0
2+		2400
9/2+)		2324.7
2+	S [×]	2208
/2+)	<u>v v </u>	2099.3
		$= \frac{2026}{1963}$
5/2)		1850.2
5/2+)		1833.5
		1741
3/2+)		1666.9
2+,5/2+		1566
5/2+)		1469.7
2)-	22 28 28 28 28 28 28 28 28 28 28 28 28 2	1401.43
0/2+)		1901.04
2+,3/2+) 2+)		1291.94
+,5/2+		1260.65
+ 9)		1209.80
2+)	╜ <u>┌────────────────────────────────────</u>	1196.65
2)+		1050.21
$\frac{2}{+}$	<u></u>	844.82
2)+		768.75
2)+		729.57 3.8 ps
/2+		$\frac{695.89}{550.61}$ 4.3 ps
:+ !+		<u>487.346</u> 11.6 m
		11.6 p
2+		278.381 0.104
<b>.</b> .		97 709
2+ 2+		16.8  m
	190-	1.97×1

## Adopted Levels, Gammas (continued)

Level Scheme (continued)

## Intensities: relative photon branching from each level

1/2-,3/2-	 18409	
1/2+	3450	
1/2+	 3350	
1/2+	3200	
1/2+	2950	
	 2882.3	
1/2+	2790	
(23/2+)	2633.1	
	 2529.6	
1/2+	2400	
(19/2+)	2324.7	
	2150	
3/2+,5/2+	<u> </u>	
	<u> </u>	
1/2+	 = 1823	
	1741	
(13/2+)	1666.9	
3/2+,5/2+	1566	
(15/2+)	1469.7	
(13/2+)	 — 1376.2	
3/2 + 5/2 +	= 1260 65	
5/2+	= 1111.645	
(7/2)+	 1050.21	
3/2+,5/2+	/ 1047.35	
(7/2)+	844.82	
3/2+,5/2+	 829.91	
(7/2)+	768.75	
(9/2)+ 11/2+	729.57	3.8 ps
1/2+	 550.61	4.3 ps
5/2+	497 246	
5/2+	407.340	11.6 ps
3/2+	278.381	0.104 ns
	97 709	
5/2+	21.195	16 9 ~~~

 ${}^{129}_{53}I_{76}-8$ 

### ¹²⁹Te $\beta$ ⁻ Decay (69.6 min) 1976Ma35

Parent ¹²⁹Te: E=0.0;  $J\pi$ =3/2+;  $T_{1/2}$ =69.6 min 3; Q(g.s.)=1502 3; % $\beta^-$  decay=100.  $^{129}Te-Q(\beta^{-})$ : From 2012Wa38.

 $^{129}\mathrm{Te-J,T}_{1/2}\!\!:$  From  $^{129}\mathrm{Te}$  Adopted Levels.

1976Ma35: 105 mg enriched  128 Te (99.5%) was irradiated at the Pool Type Reactor, Livermore. Measured E $\gamma$ , I $\gamma$ , γγ-coincidences using two Ge(Li) detectors.

Others:

1964De10: 3 mg of enriched ¹²⁹Te (97%) irradiated with neutrons in the Apsara reactor and 10 mg of enriched ¹²⁸Te in the dido reactor, Harwell. NaI(Tl) used for detecting  $\gamma$  rays and determining relative intensities. Resolution was 8.5% at 662 keV. For  $\gamma-\gamma$  coincidence, two NaI(Tl) were used. Beta spectrum of 129mTE was studied with Siegbahn-Slatis spectrometer. Beta spectrum of short-lived activity was studied with  $4\pi$  scintillation  $\beta$  ray

spectrometer using plastic phosphors.  $\beta$ - $\gamma$  coincidence was measured. log ft values determined.

1969Di01: 100 mg enriched ¹³⁰Te (99.5%) used in (n,2n) reaction at Livermore 14 MeV neutron generator. 200 mg enriched  128 Te (99.46%) irradiated at Livermore pool-type reactor.  $\gamma$  radiation was detected by 6 cm³ and 20 cm³ Ge(Li) detectors. Coincidence measurements were performed with two NaI(Tl) detectors.

1973Si14: 20 mg enriched  128 Te irradiated with neutrons.  3 He $^{-4}$ He dilution refrigerator was used to perform the nuclear orientation measurement; the temperature of the radioactive source was kept between 14 mK and 50 mK. Two Ge(Li) detected the  $\gamma$  rays at 0 and 90 degrees with respect to the magnetic field.

1974De15:  129 Te source produced by (n, $\gamma$ ) reaction in the BR2 reactor at Mol, Belgium. Angular correlation measurements was done with two Ge(Li) and one NaI(Tl) detectors.

 $Other \ \gamma-ray\ measurements:\ 1968Bu 21,\ 1967Be 03,\ 1965Bu 08,\ 1965Bo 12,\ 1964Ra 04,\ 1963Ra 11,\ 1956Gr 10,\ 1955St 94,\ 1955Ma 54,\ 1955Ma\ 54,\ 1955Ma\ 54,\ 1955Ma\ 54,\ 1955Ma\ 54,\ 1955Ma$ 1955Da37.

Other  $\beta$  and ce measurements: 1968Go34, 1956Gr10.

γγ(θ) measurements: 1969Sa22, 1969Ma33, 1969Ma47, 1967Va37, 1965Gu07, 1964Ka09, 1963Ra11.

Low-temperature nuclear orientation  $\gamma(\text{temp}, \theta)$ : 1973Si06, 1973Si14, 1973Si26,

## ¹²⁹I Levels

E(level) [†]	$J\pi^{\dagger}$	T _{1/2}	Comments
0.0	7 / 2+	$1.57 \times 10^7$ y 4	
27.80 2	5 / 2+	16.8 ns 2	T _{1/2} : from (β)(0.0278 ce(L))(t) (1966Sa06). Others (from βγ(t) or γγ(t)): 16.4 ns <i>11</i> (1965Pa04), 14.4 ns 5 (1964Ka09), 14.4 ns 7 (1964Jh02), 15.9 ns 13 (1963Go17), 18.6 ns 11 (1962De18).
278.38 3	3 / 2 +	0.104 ns 12	(
487.35 3	5 / 2+	0.05 ns	
559.62 3	1 / 2 +		
729.57 3	(9/2)+		
768.76 3	(7/2)+		
829.92 3	3 / 2 + , 5 / 2 +		
844.82 3	(7/2)+		
1047.35 4	3 / 2 + , 5 / 2 +		
1050.21 3	(7/2)+		
1111.65 3	5 / 2+		
1196.65 13			
1209.80 10	1 / 2+		
1260.66 3	3 / 2 + , 5 / 2 +		
1291.94 4	(3/2+,5/2+)		

[†] From Adopted Levels.

 $\beta^-$  radiations

$E\beta^{-}$		E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(210	3)	1291.94	0.033 4	6.32 6	av Eβ=58.09 97.
(241)	3)	1260.66	0.039 3	6.44 4	av $E\beta = 67.61$ 99.
(292	3)	1209.80	0.00055 11	8.6 1	av $E\beta = 83.5$ 11.
(305	3)	1196.65	0.00066 16	8.5 1	av $E\beta = 87.7 \ 11.$
(390	3)	1111.65	0.88 6	5.774	av Eβ=115.7 11.
(455	3)	1047.35	0.0091 9	7.97 5	av $E\beta = 137.7$ 12.
(672	3)	829.92	0.213 16	7.18 4	av $E\beta = 216.7 \ 12.$
(772	3)	729.57	0.0007 4	9.93	av $E\beta = 255.1 \ 13.$
(942	3)	559.62	0.252 18	7.64 4	av $E\beta = 322.6 \ 13.$
(1015	3)	487.35	9.3 7	6.19 4	av $EB=352.0$ 14.
(1224	3)	278.38	0.56 5	7.71 4	av $EB=439.0$ 14.
(1474	3)	27.80	89 13	5.82 7	av $E\beta = 546.6$ 14.

Footnotes continued on next page

# $^{129}\text{Te}\ \beta^{-}$ Decay (69.6 min) 1976Ma35 (continued)

 $\beta^-$  radiations (continued)

 †  Absolute intensity per 100 decays.

				$\gamma$ ⁽¹²⁹ I)		
Iγ norm	alization: From	$\Sigma(\gamma+ce to ground s$	tate)=100.			
Eγ	E(level)	Ιγ&	Mult.#	δ#	α@	Comments
27.81 5	27.80	212 <i>21</i>	M1+E2	-0.045 14	4.9 4	$\alpha(L)=3.9$ 3; $\alpha(M)=0.79$ 6. $\alpha(N)=0.160$ 11; $\alpha(O)=0.0181$ 10. Iy: no data given in 1976Ma35. Deduced from the ratio $I(27\gamma)/I(209\gamma+$ $251\gamma+278\gamma+281\gamma)=12.6$ 12 in 1969Di01 by the evaluators.
208.96 5	487.35	2.34 7	M1+E2	-0.22 5	0.0988 16	$\alpha(\mathbf{K})=0.0848 \ 13; \ \alpha(\mathbf{L})=0.0113 \ 3; \\ \alpha(\mathbf{M})=0.00227 \ 6. \\ \alpha(\mathbf{N})=0.00459 \ 12; \ \alpha(\mathbf{O})=5 \ 32\times10^{-5} \ 11$
210.66 19	1260.66	0.017 9	[M1+E2]		0.113 18	$\alpha(\mathbf{N}) = 0.0030 \ 12, \ \alpha(\mathbf{O}) = 0.016 \ 5; \\ \alpha(\mathbf{M}) = 0.0032 \ 11. \\ \alpha(\mathbf{N}) = 0.0032 \ 11. \\ \alpha(\mathbf{N}) = 0.0032 \ 21. \\ \alpha(\mathbf{N}) = 0.0063 \ 21$
242.2 1	729.57	0.00002 1	[E2]		0.0812	α(N)=0.00063 21, α(D)=0.01207 17;         α(M)=0.00248 4.         α(N)=0.000490 7; α(O)=5.13×10-5 8.         Ιγ: from I(730γ) and I(242γ)/I(730γ) in         33.6 d decay.         ΔΙγ: Estimated by evaluators in 33.6 d         decay.
250.62 5	278.38	4.97 15	M1+E2	+0.50 +19-13	0.0623 18	$\alpha(\mathbf{K})=0.0031 \ 12; \ \alpha(\mathbf{L})=0.0074 \ 5; \ \alpha(\mathbf{M})=0.00150 \ 11. \ \alpha(\mathbf{M})=0.000302 \ 21; \ \alpha(\mathbf{O})=3.43\times10^{-5} \ 18$
270.37 6	829.92	0.060 4	[M1+E2]		0.053 4	$\alpha(\mathbf{N}) = 0.00433 \ 22; \ \alpha(\mathbf{L}) = 0.0067 \ 14; \\ \alpha(\mathbf{M}) = 0.0014 \ 3. \\ \alpha(\mathbf{N}) = 0.0027 \ 6; \ \alpha(\Omega) = 3.0 \times 10^{-5} \ 5.00000000000000000000000000000000000$
278.43 5	278.38	7.36 22	E2		0.0512	$\alpha(\mathbf{N})=0.0022 \ 6; \ \alpha(\mathbf{L})=0.00723 \ 11; \\ \alpha(\mathbf{M})=0.001483 \ 21. \\ \alpha(\mathbf{N})=0.000233 \ 5; \ \alpha(\mathbf{O})=3.12\times10^{-5} \ 5. $
281.26 5	559.62	2.14 7	M1+E2	-0.08 4	0.0442	$\begin{aligned} &\alpha(K) = 0.0381 \ 6; \ \alpha(L) = 0.00487 \ 7; \\ &\alpha(M) = 0.000980 \ 15. \\ &\alpha(N) = 0.000199 \ 3; \ \alpha(O) = 2.33 \times 10^{-5} \ 4. \end{aligned}$
281.38 20	768.76	<0.002				
	1111.65	0.020 + 4	MILEO	.1 0 0	0.0004	
342.34 3	829.92	0.11 1	M1+E2	+1.0 8	0.0264	$\alpha(\mathbf{X})=0.0224$ b; $\alpha(\mathbf{L})=0.0032$ 3; $\alpha(\mathbf{M})=0.00065$ 6. $\alpha(\mathbf{N})=0.000130$ 11; $\alpha(\mathbf{O})=1.47\times10^{-5}$ 8. $\delta$ : from 1974De15.
342.88 5	1111.65	0.640 5	[M1+E2]		0.0264	$\alpha(K)=0.0224$ 6; $\alpha(L)=0.0032$ 3; $\alpha(M)=0.00065$ 7. $\alpha(N)=0.000129$ 12; $\alpha(O)=1.46\times10^{-5}$ 8.
382.08 14	1111.65	0.008 3	[E2]		0.0188	$\begin{split} &\alpha(\mathbf{K}){=}0.01579~23;~\alpha(\mathbf{L}){=}0.00242~4;\\ &\alpha(\mathbf{M}){=}0.000492~7.\\ &\alpha(\mathbf{N}){=}9.81{\times}10^{-5}~14;~\alpha(\mathbf{O}){=}1.077{\times}10^{-5}~16. \end{split}$
415.88 14	1260.66	0.008 3				
459.60 5	487.35	<0 003	M1+E2	-0.08 4	0.01260	$\begin{split} &\alpha(\mathbf{K}){=}0.01090 \ 16; \ \alpha(\mathbf{L}){=}0.001369 \ 20; \\ &\alpha(\mathbf{M}){=}0.000275 \ 4. \\ &\alpha(\mathbf{N}){=}5.57{\times}10^{-5} \ 8; \ \alpha(\mathbf{O}){=}6.56{\times}10^{-6} \ 10. \\ &(460\gamma)(28\gamma)(\theta): \ \mathbf{A}_2{=}{-}0.015 \ 3, \ \mathbf{A}_4{=}{-}0.007 \ 4 \\ &(1969Sa22). \ Others: \ 1969Ma33, \\ &1965Gu07. \end{split}$
487.39 5	487.35	18.4 6	M1+E2	+0.50 +17-10	0.01057 24	$\alpha(K)=0.00911\ 22;\ \alpha(L)=0.001169\ 18;$ $\alpha(M)=0.000235\ 4.$
491.93 14	1260.66	0.015 3				$\alpha(10) = 4.75 \times 10^{-5} 8; \alpha(0) = 5.55 \times 10^{-5} 10.$

# $^{129}\text{Te}\ \beta^{-}$ Decay (69.6 min) 1976Ma35 (continued)

# $\gamma(^{129}I)$ (continued)

Eγ	E(level)	Ιγ&	Mult.#	δ#	Comments
531.83 5	559.62	1.14 4	[E2]		$\alpha = 0.00722 \ 11; \ \alpha(K) = 0.00614 \ 9; \ \alpha(L) = 0.000862 \ 12; \ \alpha(M) = 0.0001745 \ 25$
					$\alpha(\mathbf{N}) = 3.50 \times 10^{-5} 5$ ; $\alpha(\mathbf{O}) = 3.94 \times 10^{-6} 6$
551.50 5	829.92	$0.046^{\ddagger}5$	[M1+E2]		$ \begin{array}{c} \alpha(1)=0.0073 \ 8; \ \alpha(K)=0.0063 \ 7; \ \alpha(L)=0.00082 \ 5; \\ \alpha(M)=0.000166 \ 9. \end{array} $
					$\alpha(N)=3.34\times10^{-5}\ 20;\ \alpha(O)=3.9\times10^{-6}\ 4.$
551.98 5	1111.65	0.018‡ 3	[E2]		$ \begin{array}{l} \alpha \!=\! 0.00652 \ 10; \ \alpha(\mathrm{K}) \!=\! 0.00555 \ 8; \ \alpha(\mathrm{L}) \!=\! 0.000774 \ 11; \\ \alpha(\mathrm{M}) \!=\! 0.0001565 \ 22. \end{array} $
					$\alpha(N)=3.14\times10^{-5}$ 5; $\alpha(O)=3.55\times10^{-6}$ 5.
560.056	1047.35	0.0795			
624.34 5	1111.65	1.26 4	M1(+E2)	+0.10 26	$\alpha = 0.00595 \ 16; \ \alpha(K) = 0.00515 \ 14; \ \alpha(L) = 0.000641 \ 14; \ \alpha(M) = 0.000129 \ 3. \ \alpha(N) = 2.60 \times 10^{-5} \ 6; \ \alpha(O) = 3.07 \times 10^{-6} \ 8.$
701 10 16	1260 66	0 017 4			$u(1) - 2.00 \times 10^{-5}$ , $u(0) - 3.07 \times 10^{-5}$ .
701.76 5	729.57	0.0006 1	[E2]		$\alpha = 0.00350$ 5: $\alpha(K) = 0.00300$ 5: $\alpha(L) = 0.000399$ 6:
101.10 0	120.01	0.0000 1	[12]		$\alpha(\mathbf{M}) = 8.05 \times 10^{-5} \ 12.$ $\alpha(\mathbf{M}) = 8.05 \times 10^{-5} \ 12.$
					$I(1) = 1.020 \times 10^{-2.0}, I(0) = 1.00 \times 10^{-0.0}$
					Alv: Estimated by evaluators
722 5 2	1209 80	<0 003			Ail. Estimated by evaluators.
729.57 5	729.57	0.016 4	M1+E2	-0.34 6	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
					$\alpha(N)=1.76\times10^{-5}$ 3; $\alpha(O)=2.07\times10^{-6}$ 4.
732.62 16	1291.94	0.017 3			
740.96 5	768.76	0.486 17	M1+E2	-0.27 10	$\alpha$ =0.00390 8; $\alpha$ (K)=0.00338 7; $\alpha$ (L)=0.000419 8; $\alpha$ (M)=8.41×10 ⁻⁵ 15.
					$\alpha(N) = 1.70 \times 10^{-5} 3; \ \alpha(O) = 2.01 \times 10^{-6} 4.$
768.77 5	768.76	0.055 6			17: from $1(768.77\gamma+769.01\gamma)$ and $1(769.01\gamma)$ from $\gamma\gamma$ -coin. $\Delta$ I $\gamma$ : Estimated by evaluators.
769.01 5	1047.35	0.00931 9			
773.54 17	1260.66	0.003 2			
802.10 5	829.92	2.49 8			
817 0 2	844 82	0.28 3	M1+F9	+0 16 1	$\alpha = 0.00303.5$ ; $\alpha(K) = 0.00262.4$ ; $\alpha(L) = 0.000325.5$ ;
017.0 2	044.02	<b>VU</b> .0000	MIT + 122	TU. TU T	$\alpha(\mathbf{M}) = 6.52 \times 10^{-5} \ 10.$ $\alpha(\mathbf{N}) = 1.322 \times 10^{-5} \ 20.$ $\alpha(\mathbf{N}) = 1.322 \times 10^{-5} \ 20.$
829.93 5	829.92	0.083 3			u(1)=1.522×10 20, u(0)=1.550×10 21.
833.28 5	1111.65	0.590 18			
918.29 15	1196.65	0.008 2			
931.57 25	1209.80	0.0027 12			
982.27 5	1260.66	0.208 7			
1013.57 8	1291.94	0.0174			
1019.43 6	1047.35	0.029 7			
1022.43 5	1050.21	0.009 1	M1+E2	-0.02 2	$\alpha = 0.00188 \ 3; \ \alpha(K) = 0.001633 \ 23; \ \alpha(L) = 0.000200 \ 3; \ \alpha(M) = 4.00 \times 10^{-5} \ 6. \ \alpha(N) = 8.12 \times 10^{-6} \ 12; \ \alpha(O) = 9.60 \times 10^{-7} \ 14.$
1050.21 5	1050.21	0.009\$ 1			
1083.85 5	1111.65	6.4 2	M1+E2	+0.56 +24-14	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
					$\alpha(N)=6.76\times10^{-6}\ 24;\ \alpha(O)=8.0\times10^{-7}\ 3.$
1111.64 5	1111.65	2.48 10	M1(+E2)	+0.06 5	$\begin{split} &\alpha \!=\! 0.001557 \; 22; \; \alpha(\mathrm{K}) \!=\! 0.001351 \; 19; \; \alpha(\mathrm{L}) \!=\! 0.0001650 \; 24; \\ &\alpha(\mathrm{M}) \!=\! 3.30 \!\times\! 10^{-5} \; 5. \\ &\alpha(\mathrm{N}) \!=\! 6.70 \!\times\! 10^{-6} \; 10; \; \alpha(\mathrm{O}) \!=\! 7.92 \!\times\! 10^{-7} \; 12; \\ &\alpha(\mathrm{IPF}) \!=\! 5.96 \!\times\! 10^{-7} \; 9. \end{split}$
1168.8 2	1196.65	$\leq 0$ . 0006			
1181.96 11	1209 . $80$	0.0015 6			
1232.825	1260 . $66$	0.0974			
1260.63 5	1260.66	0.145 7			
1264.165	1291.94	0.1064			
1291.50 <i>13</i>	1291.94	0.0036 5			Eγ: poor fit, level-energy difference=1291.94; quoted uncertainty may be underestimated.

† From γγ-coin.

Footnotes continued on next page

#### $^{129}Te~\beta^{-}$ Decay (69.6 min) 1976Ma35 (continued)

 $\gamma(^{129}I)$  (continued)

- [±] From I(γ)/I(551.50γ+551.98γ) in γγ-coin, and I(551.50γ+551.98γ)=0.064 *6* in singles. § 1976Ma35 missed the data. Estimated from I(1022γ)/I(1050γ) in ¹²⁹Te β⁻ decay (33.6 d).
- # Form low-temperature nuclear orientation  $\gamma(\text{temp},\theta)$  (1973Si14, also 1973Si06, 1973Si26), unless otherwise stated. @ For [M1+E2]  $\gamma$  rays with no  $\delta$  value,  $\alpha$  covers M1 and E2.
- & For absolute intensity per 100 decays, multiply by 0.077 5.



 $^{129}\mathrm{Te}$ 

β⁻ Decay (69.6 min)

1976Ma35 (continued)

 $1\,3\,3$ 

 $^{1}_{53}^{29}\mathrm{I}_{76}\mathrm{-12}$ 

 ${}^{129}_{53}I_{76}-13$ 

#### ¹²⁹Te β⁻ Decay (33.6 d) 1976Ma35

Parent ¹²⁹Te: E=105.51 3;  $J\pi$ =11/2-;  $T_{1/2}$ =33.6 d 1; Q(g.s.)=1502 3; % $\beta^-$  decay=36 7.  $^{129}Te-Q(\beta^{-})$ : From 2012Wa38.

 $^{129}\mathrm{Te-E}$  ,J,T $_{1/2}$ : From  $^{129}\mathrm{Te}$  Adopted Levels.

 $^{129}\text{Te}-\%\beta^-$  decay: I $\beta$ (to g.s.)=32% 8 is deduced from the measured ratio I $\beta$ (to g.s.)/I $\beta$ (to 27 level)=0.58 12  $(1964 De10, 1969 Di01), \ I(105.5\gamma \ from \ ^{129} Te(33.6 \ d)) = 64\% \ and \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%. \ I\beta(to \ 27 \ level \ from \ ^{129} Te(69.6 \ min)) = 89\%.$ level) reported by 1964De10 was assumed as  $\Sigma I\beta$ (to 27 and 278 levels). Uncertainty in I $\beta$ (to g.s.)/I $\beta$ (to 27 levels) was estimated as 20% by the evaluators.

1976Ma35: 105 mg enriched ¹²⁸Te (99.5%) was irradiated at the Pool Type Reactor, Livermore. Measured Ey, Iy, γγ-coincidences using two Ge(Li) detectors.

Others:

1964De10: 3 mg of enriched  129 Te (97%) irradiated with neutrons in the Apsara reactor and 10 mg of enriched  128 Te in the dido reactor, Harwell. NaI(Tl) used for detecting  $\gamma$  rays and determining relative intensities. Resolution was 8.5% at 662 keV. For  $\gamma$ - $\gamma$  coincidence, two NaI(Tl) were used. Beta spectrum of 129mTE was studied with Siegbahn-Slatis spectrometer. Beta spectrum of short-lived activity was studied with  $4\pi$  scintillation  $\beta$  ray

spectrometer using plastic phosphors.  $\beta-\gamma$  coincidence was measured. log ft values determined.

1969Di01: 100 mg enriched ¹³⁰Te (99.5%) used in (n,2n) reaction at Livermore 14 MeV neutron generator. 200 mg enriched ¹²⁸Te (99.46%) irradiated at Livermore pool-type reactor.  $\gamma$  radiation was detected by 6 cm3 and 20 cm3 Ge(Li) detectors. Coincidence measurements were performed with two NaI(Tl) detectors.

1973Sil4: 20 mg enriched ¹²⁸Te irradiated with neutrons. ³He-4He dilution refrigerator was used to perform the nuclear orientation measurement; the temperature of the radioactive source was kept between 14 mK and 50 mK. Two Ge(Li) detected the  $\gamma$  rays at 0 and 90 degrees with respect to the magnetic field.

1974De15:  $^{129}\text{Te}$  source produced by  $(n,\gamma)$  reaction in the br2 reactor at Mol, Belgium. Angular correlation measurements was done with two Ge(Li) and one NaI(Tl) detectors.

Other y-ray measurments: 1967Be03, 1965Hu08, 1965Bo12, 1964Ra04, 1963Ra11.

Other  $\beta$  and ce measurements: 1968Go34, 1956Gr10.

γγ(θ) measurements: 1974De15, 1974Ro32 1965Gu07, 1964Ka09, 1963Ra11.

Low-temperature nuclear orientation  $\gamma(\text{temp},\theta)$ : 1973Si14.

#### ¹²⁹I Levels

E(level) [†]	$J\pi^{\dagger}$	T_1/2	E(level) [†]	$J\pi^{\dagger}$	E(level) [†]	$J\pi^{\dagger}$
$\begin{array}{c} 0.0\\ 27.80 \ 2\\ 278.38 \ 3\\ 487.35 \ 3\end{array}$	7 / 2 + 5 / 2 + 3 / 2 + 5 / 2 +	$1.57{ imes}10^7$ y 4	695.89 5 729.57 3 768.76 3 844.82 3	$\frac{11/2}{(9/2)} + \frac{(7/2)}{(7/2)} + \frac{(7/2)}{(7$	$1050.21 \ 3 \\ 1203.61 \ 11 \\ 1281.99 \ 4 \\ 1401.43 \ 3$	(7/2) + (7/2+) (7/2+) (9/2) -

[†] From Adopted Levels.

#### $\beta^{-}$ radiations

$E\beta^-$	E(level)	Ιβ-†	Log ft	Comments
(206 3)	1401.43	0.15 3	8.47 9	av Eβ=56.68 90.
(326 3)	1281.99	0.0022 5	10.7 ¹ u <i>1</i>	av Eβ=109.5 11.
(404 3)	1203.61	0.00048 13	11.8 ¹ u <i>1</i>	av Eβ=136.8 11.
(5573)	1050.21	0.037 8	10.6 ¹ u 1	av $E\beta = 191.4$ 11.
(763 3)	844.82	0.009 6	11.9 ¹ u 3	av $E\beta = 267.3$ 12.
(8393)	768.76	0.028 6	11.7 ¹ u <i>1</i>	av Eβ=296.2 12.
(878 3)	729.57	0.70 14	9.92 9	av Eβ=296.4 12.
(912 3)	695.89	3.0 6	9.35 9	av $E\beta = 309.9$ 12.
(1608 3)	0.0	32 8	10.2 ¹ u 1	av $E\beta = 609.0 \ 13.$
				$I\beta^-$ : IB(to g.s.)/IB(to 27.8 level)=0.58 <i>12</i> for equilibrium source.

Uncertainties are not given by the authors (1964De10,1996Di01).

[†] Absolute intensity per 100 decays.

#### $\gamma(^{129}I)$

Tγ	normalization	$I(\gamma + ce)$	normalization.	from	level	scheme
- 1 Y	normanzation	,1()+00)	normanzation.	num	16,61	scheme.

Εγ	E(level)	1γ&	Mult.#	δ#	α@	I(γ+ce)&	Comments
27.81 5	27.80	0.71	M1+E2	-0.045 14	4.9 4	3.5 1	$\alpha(L)=3.9 \ 3; \ \alpha(M)=0.79 \ 6.$ $\alpha(N)=0.160 \ 11;$ $\alpha(O)=0.0181 \ 10.$

		¹²⁹ Te	β- Decay (3	3.6 d) 1976M	a35 (continue	ed)
				$\gamma(^{129}\mathrm{I})$ (continue)	d)	
Eγ	E(level)	Ιγ&	Mult.#	δ#	α@	Comments
						<pre>ce(L)/(γ+ce)=0.663. Ey: from level energy difference. I(γ+ce): total Iγ+ce feeding the 27.8-keV level.</pre>
76.10 5	844.82	0.0068§ 15	[M1+E2]		3.1 15	1γ: deduced from $1(\gamma+ce)$ and α. $\alpha(K)=2.1$ 7; $\alpha(L)=0.8$ 7; $\alpha(M)=0.18$ 15. $\alpha(N)=0.03$ 3; $\alpha(O)=0.0032$ 24.
115.30 16	844.82	0.0058§ 17	[M1+E2]		0.8 3	Eγ: from energy level difference. $\alpha(K)=0.59$ 17; $\alpha(L)=0.15$ 10; $\alpha(M)=0.031$ 20.
208.96 5	487.35	0.0006 ± 1	M1+E2	-0.22 5	0.0988 16	$ \begin{aligned} &\alpha(N) = 0.006 \ 4; \ \alpha(O) = 0.0006 \ 4. \\ &\alpha(K) = 0.0848 \ 13; \ \alpha(L) = 0.0113 \ 3; \\ &\alpha(M) = 0.00227 \ 6. \end{aligned} $
242.2 1	729.57	0.014 § 2	[E2]		0.0812	$\begin{aligned} &\alpha(N) = 0.000459 \ 12; \ \alpha(O) = 5.32 \times 10^{-5} \ 11. \\ &\alpha(K) = 0.0661 \ 10; \ \alpha(L) = 0.01207 \ 17; \\ &\alpha(M) = 0.00248 \ 4. \end{aligned}$
250.62 5	278.38	0.0084† 17	M1+E2	+0.50 +19-13	0.0623 18	$ \begin{array}{l} \alpha(N) = 0.000490 \ 7; \ \alpha(O) = 5.13 \times 10^{-5} \ 8. \\ \alpha(K) = 0.0531 \ 12; \ \alpha(L) = 0.0074 \ 5; \\ \alpha(M) = 0.00150 \ 11. \end{array} $
278.43 5	278.38	$0.0124^{\dagger}$ 25	E2		0.0512	$\alpha(N) = 0.000302 \ 21; \ \alpha(O) = 3.43 \times 10^{-5} \ 18.$ $\alpha(K) = 0.0422 \ 6; \ \alpha(L) = 0.00723 \ 11;  \alpha(M) = 0.001483 \ 21.$ $\alpha(N) = 0.000293 \ 5; \ \alpha(O) = 3.12 \times 10^{-5} \ 5.$
281.38 20	768.76	<0.002				δ: from W(θ) (1974De15).
281.44 5	1050.21	0.011 1	[M1+E2]		0.047 3	$\alpha(\mathbf{K})=0.0394 \ 15; \ \alpha(\mathbf{L})=0.0059 \ 11; \\ \alpha(\mathbf{M})=0.00120 \ 23. \\ \alpha(\mathbf{N})=0.00024 \ 5; \ \alpha(\mathbf{O})=2 \ 7\times10^{-5} \ 4$
320.64 11	1050.21	0.013 \$ 2	[M1+E2]		0.0319 7	$\alpha(K)=0.0271$ 4; $\alpha(L)=0.0039$ 5; $\alpha(M)=0.00079$ 11. $\alpha(N)=0.000159$ 19: $\alpha(O)=1.78\times10^{-5}$ 14
357.48 20	844.82	$\leq 0$ . 0 0 3				
459.60 5	487.35	0.026 5	M1+E2	-0.08 4	0.01260	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01090 \ 16; \ \alpha(\mathbf{L}) = 0.001369 \ 20; \\ &\alpha(\mathbf{M}) = 0.000275 \ 4. \\ &\alpha(\mathbf{N}) = 5.57 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 6.56 \times 10^{-6} \ 10. \end{aligned}$
487.39 5	487.35	0.005 1	M1+E2	+0.50 +17-10	0.01057 24	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00911 \ 22; \ \alpha(\mathbf{L}) = 0.001169 \ 18; \\ &\alpha(\mathbf{M}) = 0.000235 \ 4. \\ &\alpha(\mathbf{N}) = 4.75 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 5.55 \times 10^{-6} \ 10. \end{aligned}$
490.34 20	768.76	< 0.005				
552.43 5	1281.99	0.006 \$ 2				
556.65 5	1401.43	2.528	(E1(+M2))	-0.062		
671.84 5	1401.43	$\leq 0.01^{\circ}$ 0.53 2				
695.88 6	695.89	63.9 19	E2			
701.7 3	729.57	0.53 2				
705.52 7	1401.43	0.11 1				
716.60 16	1203.61	≤0.005 ⁸	M1.E9	0.24 6		~_0.00409.7. ~(K)=0.00248.6.
740.96 5	768.76	0.58 2	M1+E2	-0.27 10		$\begin{array}{l} \alpha(\mathrm{L})=0.00402\ 7,\ \alpha(\mathrm{M})=0.00048\ 6,\\ \alpha(\mathrm{L})=0.000432\ 7;\ \alpha(\mathrm{M})=8.67\times10^{-5}\ 14.\\ \alpha(\mathrm{N})=1.76\times10^{-5}\ 3;\ \alpha(\mathrm{O})=2.07\times10^{-6}\ 4.\\ \alpha=0.00390\ 8;\ \alpha(\mathrm{K})=0.00338\ 7; \end{array}$
						$\alpha(L)=0.000419 \ 8; \ \alpha(M)=8.41\times10^{-5} \ 15.$
768.77 5	768.76	0.060 6				$u(n) = 1.70 \times 10^{-3}$ ; $u(0) = 2.01 \times 10^{-3}$ 4.
771.80 16	1050.21	0.0063 § 7				
794.60 21	1281.99	0.012 3				
817.04 5	844.82	1.94 6	M1+E2	+0.46 4		$\begin{split} &\alpha\!=\!0.00303\ 5;\ \alpha(\mathrm{K})\!=\!0.00262\ 4;\\ &\alpha(\mathrm{L})\!=\!0.000325\ 5;\ \alpha(\mathrm{M})\!=\!6.52\!\times\!10^{-5}\ 10.\\ &\alpha(\mathrm{N})\!=\!1.322\!\times\!10^{-5}\ 20;\ \alpha(\mathrm{O})\!=\!1.556\!\times\!10^{-6}\ 24. \end{split}$
844.81 5	844 . $82$	0.73 4				

		¹²⁹ T	eβ⁻ Decay	(33.6 d) 1976Ma	35 (continued)
				$\gamma(^{129}I)$ (continued)	
Eγ	E(level)	Iγ&	Mult.#	δ#	Comments
924.5 20	1203.61	<0.0013§			
1003.65 9	1281.99	0.015 3			
1022.43 5	1050.21	0.37 2	M1(+E2)	-0.02 2	$ \begin{array}{c} \alpha \! = \! 0.00188 \hspace{.1in} 3; \hspace{.1in} \alpha(K) \! = \! 0.001633 \hspace{.1in} 23; \hspace{.1in} \alpha(L) \! = \! 0.000200 \hspace{.1in} 3; \\ \alpha(M) \! = \! 4.00 \! \times \! 10^{-5} \hspace{.1in} 6. \end{array} $
					$\alpha(N)=8.12\times10^{-6}$ 12; $\alpha(O)=9.60\times10^{-7}$ 14.
1050.215	1050.21	0.38 3			
1176.05	1203 . $61$	0.002 1			
1203.59 11	1203.61	0.005 1			
1254.13 8	1281.99	0.009 1			
1281.96 11	1281.99	0.0046 8			
1373.75 9	1401.43	0.0057 6			
1401.36 6	1401.43	0.074 2			

[†] From I(250γ)/I(278γ) in ¹²⁹Te β⁻ decay (69.6 min). [‡] From I(209γ)/I(460γ)/I(487γ) in ¹²⁹Te β⁻ decay (69.6 min).

§ From  $\gamma\gamma$ -coin. # From low-temperature nuclear orientation  $\gamma(temp,\theta)$  (1973Si14), unless otherwise stated.

^(a) For [M1+E2]  $\gamma$  rays with no  $\delta$  value,  $\alpha$  covers M1 and E2. & For absolute intensity per 100 decays, multiply by 0.047 9.



#### $^{124}Sn(^{7}Li,2n\gamma)$ 2013De02

2013De02: E=23 MeV. Measured Eγ, Ιγ, γγ, DCO using an array of eight HPGe detectors and five LaBr₃(Ce) scintillation detectors at Bucharest Tandem Van de Graaff accelerator facility.

# ¹²⁹I Levels

E(level) [†]	$J\pi^{\ddagger}$	Comments
0.0	7/2+	
27.7	5 / 2 +	
695.7 2	11/2+	
729.6 2	9 / 2 +	
844.9 3	(9/2)+	$J\pi$ : (7/2)+ in Adopted Levels.
1376.1 5	13/2+	
1401.7 5	(11/2-)	$J\pi$ : (9/2)- in Adopted Levels.
1469.6 4	15/2+	
1666.9 4	(13/2+)	
1833.44	15/2(+)	
1850.1 5	(15/2)	
2099.15	17/2(+)	
2324.6 8	19/2+	
2529.5 6		
2569?		
2633.0 5	23/2+	
2882.2 6		
2924?		
2933.6 5	25/2+	
3408?		

 †  From least-squares fit to Ey data.

 ‡  As proposed in 2013De02 based on DCO ratios for selected transitions and decay patterns.

 $^{129}_{53}\mathrm{I}_{76}\mathrm{-16}$ 

# $^{129}_{53}\mathrm{I}_{76}\mathrm{-}17$

# ¹²⁴Sn(⁷Li,2nγ) 2013De02 (continued)

# $\gamma(^{129}I)$

$\mathbf{E}\gamma$	E(level)	Iγ	Mult. [†]	Comments
183.24	1850.1	3	1	
204.94	2529.5	7	2	
265.8 3	2099.1	26	14 D+Q	DCO=0.56 11 for $\Delta J=2$ , quadrupole gate.
				DCO=0.75 9 for △J=1, dipole gate.
300.7 3	2933.6	10	2 D+Q	DCO=0.68 27, 0.60 28 for $\Delta J$ =2, quadrupole gates.
308.4 2	2633.0	23	3 Q	DCO=1.10 34, 1.05 21 for $\Delta J=2$ , quadrupole gates.
352.7 4	2882.2	7	3	
363.8 4	1833.4	3	1	
380.5 3	1850.1	14	2	
457.3 3	1833.4	35	4 D+Q	DCO=0.55 13 for $\Delta J=2$ , quadrupole gate.
				DCO=1.11 51 for $\Delta J=1$ , dipole gate.
$470^{\ddagger}$	2569?			
474 [‡]	3408?			
556.72	1401.7	21	10 D	DCO=0.58 10 for $\Delta J=2$ , quadrupole gate.
				DCO=0.47 25 for $\Delta J=1$ , dipole gate.
646.5 3	1376.1	13	2 Q	DCO=2.62 79 for $\Delta J=1$ , dipole gate.
672.2 3	1401.7	5	2	
680.4 2	1376.1	45	5 D+Q	DCO=0.50 6 for △J=2, quadrupole gate.
				DCO=0.81 17 for $\Delta J=1$ , dipole gate.
695.7 2	695.7	100	Q	DCO=1.00 10 for $\Delta J=2$ , quadrupole gate.
				DCO=1.42 24 for $\Delta J=1$ , dipole gate.
729.62	729.6	40	7	
773.9 3	1469.6	66	6 Q	DCO=1.04 13 for $\Delta J=2$ , quadrupole gate.
817.2 2	844.9	22	2	
$825^{\ddagger}$	2924?			
844.9 3	844.9	8	2	Iγ: based on branching ratio in adopted gammas.
855.0 2	2324.6	44	2 Q	DCO=0.87 16, 1.03 19 for $\Delta J=2$ , quadrupole gates.
937.34	1666.9	8 2	2 (Q)	DCO=1.55 87 for $\Delta J=1$ , dipole gate.

[†] In 2013De02, mult=Q implies  $\Delta J$ =2, E2; mult=D+Q implies M1+E2, and mult=d implies possible E1. [‡] Placement of transition in the level scheme is uncertain.

## ¹²⁴Sn(⁷Li,2nγ) 2013De02 (continued)

#### Level Scheme

Intensities: relative  $I\gamma$ 



 $^{129}_{53}\mathrm{I}_{76}$ 

## ¹²⁸Te(p,p),(p,p') IAR 1970Bu01,1968Fo08

1970Bu01; E=7.66-11.87 MeV; Ge, enriched target. θ=90°, 125°, 160°. 1968Fo08; E=7.7-10.9 MeV; Ge, enriched target. θ=90.5°, 120.4°, 150.2°, 170.1°. 1967Jo08; E=7.7-8.3 MeV; enriched target. Measured polarization.

## ¹²⁹I Levels

E(level) ^{†‡}	Jπ	L	s	Comments
14670 20	3/2+,5/2+	2	0.23	E(level): IAR of g.s. $3/2+$ in ¹²⁹ Te. Γ(total)=40 keV 2, Γ(p)=4.0 keV 3. Jπ: from L=2.
14858 20	1/2+	0	0.15	E(level): IAR of 181-keV 1/2+ state in ¹²⁹ Te. $\Gamma(\text{total})=42$ keV 3, $\Gamma(p)=7.4$ keV 1.
15647 20	3 / 2 + , 5 / 2 +	2	0.045	E(level): IAR of 967-keV 5/2+ state in ¹²⁹ Te. $\Gamma$ (total)=64 keV 20, $\Gamma$ (p)=1.5 keV 5. Jr: from L-2
15973 20	3 / 2 + , 5 / 2 +	2	0.11	E(level): IAR of 1318-keV 5/2+ state in ¹²⁹ Te. $\Gamma$ (total)=60 keV 15. Jr. from 1-2
16763 20	5/2-,7/2-	3	0.11	E(level): IAR of 2108-keV 5/2-, 7/2- state in ¹²⁹ Te. Γ(total)=50 keV 5, Γ(p)=3.6 keV 5.
16873 20	5/2-,7/2-	3	0.11	Jπ: from L=3. E(level): IAR of 2221-keV 5/2-, 7/2- state in ¹²⁹ Te. Γ(total)=47 keV 5, Γ(p)=3.9 keV 6.
16915 25	1/2-,3/2-	1	0.02	J $\pi$ : from L=3. E(level): IAR of 2261 keV 1/2-, 3/2- state in ¹²⁹ Te. $\Gamma$ (total)=30 keV, $\Gamma$ (p)=1.0 keV. J $\pi$ : from L=1.
17002 20	1 / 2 - , 3 / 2 -	1	0.11	E(level): IAR of 2361-keV 1/2-, 3/2- state in ¹²⁹ Te. Γ(total)=95 keV 10, Γ(p)=10 keV 15.
17348 20	1/2-,3/2-	1	0.043	Jπ: from L=1. E(level): IAR of 2705-keV 1/2-, 3/2- state in ¹²⁹ Te. Γ(total)=88 keV 10, Γ(p)=4.3 keV 7. Jπ: from L=1.

#### ¹²⁸Te(p,p),(p,p') IAR 1970Bu01,1968Fo08 (continued)

# ¹²⁹I Levels (continued)

E(level) ^{†‡}	Jπ		s	Comments
17626 20	(5/2-,7/2-)	(3)	0.020	E(level): IAR of 2975-keV, 5/2-,7/2- state in ¹²⁹ Te. Γ(total)=35 keV 10, Γ(p)=1.0 keV 4.
18413 20	1/2-,3/2-	1		J $\pi$ : from L=(3). E(level): IAR of 3793-keV 1/2-, 3/2- state in ¹²⁹ Te. J $\pi$ : from L=1.

[†] From 1970Bu01; s(p)(6802 3)+E(p)(c.m.); s(p) from 2012Wa38.
 [‡] Coulomb displacement energy=13.949 MeV.

# ¹²⁸Te(³He,d) 1968Au01

1968Au01; E=25 MeV; magnetic spectrograph, FWHM $\approx$ 25 keV,  $\theta$ =5°-36°. DWBA analysis.

# ¹²⁹I Levels

E(lev	vel)	L	$C^2S^{\dagger}$	Comments
0	0	4	0 66	C ² C, if 1 _m
0. 99	5	4 9	0.00	C 25. if 197/2.
20	5	2	0.35	C 25. if 2d _{5/2} .
497	5	2	0.07	C 25. if 2d _{3/2} .
407	5	2	0.21	6 5. fr 2d _{5/2} .
1059	5	0	0.21	
1111	5	2	0.25, 0.14 0.25, 0.47	
1910	5	2	0.23,0.47	
1210	5	9	0.02	
1400	5	(5)	0.63	$C^{2S}$ if 1b
1483	5	0	0.21	0 0. n m _{11/2} .
1566	10	2	0.08.0.04	
1621	10	2	0 10 0 05	
1741	10	0	0.04	
1823	10	0	0 10	
1861	10	2	0 10 0 06	
1963	10	-	0.10,0.00	
2012	10	0	0.04	
2073	10	2	0.19.0.10	
2208	10	0	0.04	
2400	10	0	0.03	
2590	20	0	0.02	
2790	20	0	0.02	
2850	20	2	0.05,0.02	
2910	20	0	0.02	
2950	20	0	0.05	
3200	20	0	0.06	
3250	20	0	0.04	
3350	20	0	0.02	
3450	20	0	0.03	

[†] From DWBA analysis.

# ¹²⁸Te(a,t) 1979Sz05

1979Sz05; E=36 MeV; magnetic spectrograph, FWHM=13 keV,  $\theta{=}3^\circ{-}25^\circ{.}$ 

¹²⁹I Levels

E(level)	L	$C^2S^{\dagger}$	Comments
0.0	4	2.06	$C^2S$ : if $1g_{7/2}$ .
28 4	2	1.00	$C^2S: if 2d_{5/2}$ .
2804	2	0.19	$C^{2}S: \text{ if } 2d_{3/2}.$
489 4	2	0.44	$C^{2}S: if 2d_{5/2}$ .
5604	0	0.43	
843 4	(4)	0.04	$C^{2}S: \text{ if } 1g_{7/2}.$
1050 6	2	0.96	$C^{2}S: if 2d_{3/2}$ .
1112 6	2	0.50	$C^{2}S: if 2d_{5/2}$ .
1208 6	(0)	0.07	
1261 6	2	0.12	$C^2S:$ if $2d_{5/2}$ .
1283 6	(4,5)	0.28,0.10	
1401 6	5	1.31	$C^2S:$ if $1h_{11/2}$ .
1484 6	0	0.40	E(level): from $^{130}\text{Te}(^{3}\text{He,d})$ , no energy is given in ( $\alpha$ ,t) reaction.
1521 6	(4),(5)		
1569 6	2	0.08,0.04	
1619 6	2	0.11,0.06	
1743 6	(4) + (0)	0.17	$C^2S:$ if $(1g_{7/2}+3s_{1/2})$ .
1867 8	(2)	0.25, 0.12	
1909 8			
1940 8			
1963 8			
2002 8			
2026 8			
2050 8			
2071 8			
2150 8			

[†] Relative values from DWBA analysis.

#### Coulomb Excitation 1973Re08

1973Re08:  $^{129}I(\alpha,\alpha'\gamma)$  E=6.0–11.0 MeV.

# ¹²⁹I Levels

E(level	l)	Jπ [†]	Comments				
0.0	5	7/2+					
27.8	5 8	5/2+					
278.4	5 (	(3/2)+	$B(E2)^{=0.035}$ 4.				
487.8	5 (	(5/2)+	$B(E2)^{1}=0.016$ 3.				
696.2	5 1	11/2+	$B(E2)^{\uparrow}=0.122$ 13.				
729.8	5 (	(9/2)+	$B(E2)^{1}=0.078$ 8.				
769.4	5 (	(7/2)+	B(E2)↑=0.011 4.				
830 1	8	3/2+,5/2+	$B(E2)^{1}=0.004$ 2.				
845 1	5	7/2+,9/2+	B(E2)↑=0.015 3.				
1050 1		(7/2)+	B(E2)↑=0.008 3.				

[†] from Adopted Levels.

### $\gamma(^{129}I)$

E(level)	Εγ	Ιγ
278.4	250.65	41 1
	278.45	59 1
487.8	459.75	82 1

# Coulomb Excitation 1973Re08 (continued)

 $\gamma(^{129}I)$  (continued)

E(level)	Εγ	Ιγ
487.8	487.8 5	18 <i>1</i>
696.2	696.2 5	100
729.8	729.8 5	100
769.4	741.1 5	
830	802 1	
845	817 1	
1050	1022 1	52 12
	1050 1	48 12

# Coulomb Excitation 1973Re08 (continued) Level Scheme Intensities: % photon branching from each level



 $^{129}_{54}$ Xe $_{75}$ -1

#### Adopted Levels, Gammas

 $Q(\beta^-) = -1197 \ 5; \ S(n) = 6907.1 \ 11; \ S(p) = 8246 \ 4; \ Q(\alpha) = -2098.0 \ 15 \ 2012 Wa38.$ 

S(2n)=16517 4, S(2p)=14992.3 15 (2012Wa38).

Measurements (NMR, hyperfine structure, radii, etc.) related to nuclear moments: 2013In03, 2007Ki06, 2005Wo04,  $2003 Sa20,\ 2002 Ku15,\ 2001 Br28,\ 2000 Da33,\ 1999 Da22,\ 1998 Ja14,\ 1997 To10,\ 1996 Br22,\ 1996 Ma27,\ 1994 Da35,\ 1994 Ge03,\ 1994$  $1993Bo21,\ 1993Ga03,\ 1993Wa26,\ 1991Ze02,\ 1989Pl03,\ 1988Ge05,\ 1984Ab03,\ 1984It02,\ 1982Bi11,\ 1981Bo07,\ 1981Ge06,\ 1984Bo20,\ 1984Bb20,\ 1984Bb20,$ 1979Hu07, 1976Sc17, 1974VaYZ, 1972Pr02, 1969Le02, 1968Br12, 1964Pe06.

¹²⁹Xe isotope was identified through mass spectrographic technique by Aston, Nature 106, 468 (1920).

Precise mass measurements: 2009Re03, 2006He29, 2005Sh38. 1990Me08.

## ¹²⁹Xe Levels

#### Cross Reference (XREF) Flags

	A ¹²⁹ Ι β ⁻ Decay B ¹²⁹ Xe IT Decay C ¹²⁹ Cs ε Decay D ¹²⁶ Te(α,nγ)	(1.57E7 Y) y (8.88 d) (32.06 h)		E 128 Xe(n, $\gamma$ ),(n,n): Resonances F 129 Xe( $\gamma$ , $\gamma$ ') G Coulomb Excitation		
E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2}	Comments		
0.0#	1/2+	ABCD FG	stable	<ul> <li>μ=-0.7779763 84 (1968Br12,2014StZZ).</li> <li>μ: NMR (1968Br12).</li> <li>Evaluated rms charge radius=4.7775 fm 50 (2013An02).</li> <li>Charge radius measurement: 1989Bo03.</li> <li>Jπ: spin from optical spectroscopy         <ul> <li>(1950Ko09,1934Ko02,1934Jo01); parity from comparison of measured μ with predicted values.</li> </ul> </li> <li>Experimental search for atomic electric-dipole moment (EDM): 2013In03.</li> </ul>		
39.5774 ^{&amp;} 19	3/2+	ABCD G	0.97 ns 2	<ul> <li>μ=+0.58 8 (1974VaYZ,2014StZZ).</li> <li>Q=-0.393 10 (1964Pe06,2001Ke15,2014StZZ).</li> <li>Momel: Mossbauer effect (1974VaYZ).</li> <li>Momm2: Mossbauer effect (1964Pe06), 2001Ke15 re-evaluated data of -0.41 4 from 1964Pe06.</li> <li>Jπ: M1+E2 γ to 1/2+, γγ(θ) (1974Ma24).</li> <li>T_{1/2}: weighted average of 0.95 ns 3 (1979Be54), 1.01 ns 4 (1965Ke04) and 0.96 ns 5 (1965Ke01)</li> </ul>		
236.14 ^b 3	11/2-	B D	8.88 d 2	<ul> <li>(1000 μ=-0.891223 4 (1986Ki16,1974Si07,2014StZZ).</li> <li>Q=+0.63 2 (1990NeZY,2013StZZ,2014StZZ).</li> <li>μ: NMR and nuclear orientation (1986Ki16,1974Si07). Others: <ul> <li>-0.8906 12 (1990NeZY, collinear fast-beam laser spectroscopy), 0.8911 5 (1987Ed01,NMR).</li> </ul> </li> <li>Q: collinear fast-beam laser spectroscopy (1990NeZY); original value of 0.64 2 evaluated by 2013StZZ.</li> <li>Jπ: M4 - M1+E2 γ cascade to 1/2+. Shell model systematics in odd XE isotopes.</li> <li>T_{1/2}: weighted average of 8.89 d 2 (1973Mi08), 8.87 d 3 (1975Ho18) and 8.85 d 4 (1990Ta18).</li> </ul>		
274.29 ^c 18 318.1787 ^d 16	(9/2-) 3/2+	D CD G	67.5 ps 20	Jπ: shell model systematics in odd Xe isotopes. Jπ: M1+E2 γ to 1/2+.		
321.711 [@] 4	5 / 2 +	CD G	44.0 ps 19	$T_{1/2}$ : recoil-distance method (1990Na18). Jπ: M1+E2 γ to 3/2+, E2 γ to 1/2+ and linear pol in (HI,xnγ). $T_{1/2}$ : recoil-distance method (1990Na18).		
411.4959 16	1/2+	CD G	81 ps 26	$J_{\pi^2}^{1/2}$ log ft=5.6 from 1/2+, M1+E2 γ to 3/2+, M1 γ to 1/2+; γγ(θ) from 1974Ma24.		
442.20 14	(5/2+)	DF		$J\pi$ : $\Delta J=1 \gamma$ to $3/2+$ ; band structure.		
518.70& 12	7/2+	D G		$J\pi$ : stretched E2 $\gamma$ to $3/2+$ .		
525.26 17	(5/2+)	D		$J\pi$ : $\Delta J=1$ , (M1+E2) $\gamma$ to 3/2+.		
572.68# 3	(5/2)+	CD G	2.0 ps 2	J $\pi$ : strongly Coulomb excited from 1/2+.		
588.533 <i>3</i>	3 / 2 +	CD G	≤65 ps	$T_{1/2}$ : recoll-distance method (1990Nal8). J $\pi$ : M1+E2 $\gamma$ to 1/2+, log ft=6.4 from 1/2+. $T_{1/2}$ : delayed coin (1979Be54).		
624.332 25		С				
665.43a 11	7 / 2+	D G		$J\pi$ : stretched E2 $\gamma$ to 3/2+.		
692.96 18	(1/2+ to 7/2+)	D F		$J\pi$ : gammas to 3/2+ and (5/2+).		

Continued on next page (footnotes at end of table)

 $^{129}_{54}$ Xe₇₅-1
## $^{129}_{54} \rm Xe_{75}{-2}$

### Adopted Levels, Gammas (continued)

## ¹²⁹Xe Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	Comments
		_	
771.17 15	(13/2-)	D	$J\pi$ : $\Delta J=1$ , (M1+E2) $\gamma$ to 11/2-; band structure.
822.16 10	9/2+	D G	J $\pi$ : stretched E2 $\gamma$ to 5/2+; $\Delta$ J=1, M1+E2 $\gamma$ to 7/2+.
823.00 <i>17</i>	(5/2+)	D G	$J\pi: \Delta J = I, (M I + E2) \gamma$ to 3/2+.
823.29 ⁵ 16	(15/2-)	D	$J\pi$ : $\Delta J = (2) \gamma$ to $11/2-$ ; band structure.
868.064 13	2/2+	DG	$J\pi$ : $\Delta J=2 \gamma$ to $3/2+$ ; $\Delta J=1$ , M1+E2 $\gamma$ to $5/2+$ .
904.318 8	3/2+	D G	$J\pi$ : Coulomb excited. $\log ft = 1.4$ from $1/2+$ .
908.63 20	(9/2, 11/2, 13/2)		$J\pi$ : gammas to (9/2–) and 11/2–.
946.028 4	1/2+,3/2+		$J\pi$ : 10g /t=6.5 from 1/2+; gammas to 3/2+ and 1/2+.
965.74	(1/9.9/9)	DG	$I = x + x + 1/\theta$ , or $I = 1$
999.7 3	(1/2, 3/2)	D G	$J\pi$ : $\gamma$ to $1/2+$ only.
1022.30 23	(1/2+)	D	$J\pi$ : $\Delta J = 1$ , (M1+E2) $\gamma$ to (3/2+).
1032.02 18	(13/2-)		$J\pi$ : odd Xe systematics and band structure.
1059.58 20	(9/2+)		$J\pi$ : $\Delta J = 1$ , $D + Q$ $\gamma$ to $1/2 +$ ; $\gamma$ to $(9/2 -)$ .
1104 5 2	11/2+	DG	$3\pi$ : stretched E2 to $7/2+$ ; $\Delta 3=1$ $\gamma$ to $9/2+$ ; band structure.
1194.5 5	(0/2)	D	$I_{\pi}$ , $\alpha$ to $(5/2)_{12}$ possible hand structure
1194.0 $31107 11 91$	(5/2+)	D	$J_{\pi}$ , $\gamma$ to $(5/2)_{\pm}$ , possible balla structure.
197.11 21	7/9	D C	$J_{\pi}$ : $A = 0$ M1 $\alpha$ to $7/2$
1229.9 5	1/2+	D G	$3\pi$ . $\Delta 3=0$ , M1 $\gamma$ to $1/2+$ .
1233.0 10	$(1/9 \ 3/9 \ 5/9 \pm)$	D I	$I_{\pi}$ : $u \neq 0$ 1/2+
1336 128 23	(1/2, 3/2, 3/2+)	D	$J\pi$ : $\gamma$ to $7/2+$ : hand structure
1395 57 21	(15/2-)	D	$J_{\pi}$ : $AJ = 1$ (M1+E2) $\propto$ to (13/2)_
$1414 \ 27^{@} \ 19$	(10/2)	D G	$J\pi$ : stretched Q to $9/2+$ : $\gamma$ to $11/2+$ : hand structure
1414.21 10	(13/2, 15/2, 17/2)	D	$J\pi$ : $\chi$ to $(13/2)$
1490.20 22 1497 1d 3	(10/2, 10/2, 11/2)	D	$J\pi$ : $\gamma$ to $(7/2)_{\pm}$ ; hand structure
1507 19 22	(17/2-)	D	$J_{\pi}$ : $AJ = 1$ (M1+E2) $\times$ to (15/2-): $\times$ to (13/2-)
1539 4 3	$(15/2 \ 17/2 \ 19/2)$	D	$J\pi$ : $\pi$ to $(15/2)$
1570 0 10	1/2 3/2	F	5 <i>k</i> .   10 (15/2 ).
1576 0 ^b 3	(19/2-)	D	$J\pi$ : $\gamma$ to $(15/2-)$ : hand structure
1748.7 4	$(9/2 t_0 13/2+)$	D	$J\pi$ : $\gamma$ to $(9/2+)$ .
1755.3 4	(7/2  to  11/2+)	D	$J\pi$ : $\gamma$ to $(7/2+)$ .
1762.28& 22	(15/2+)	DG	$J\pi$ : $\Delta J=(2) \gamma$ to $11/2+$ : $\gamma$ to $13(+)$ : band structure.
1816.06 ^c 21	(17/2-)	D	J $\pi$ : gammas to (15/2-) and (13/2-); band structure.
1884.0 10	1/2,3/28	F	
1888.5? 4	(9/2  to  13/2+)	D	$J\pi$ : $\gamma$ to (9/2+).
1972.3 3	(17/2-)	D	$J\pi: \Delta J=1, (M1+E2) \gamma$ to $(15/2-).$
2036.3 3	(13/2  to  17/2 -)	D	$J\pi$ : gammas to (13/2-) and (15/2-).
2048.2 ^a 4	(15/2+)	D	$J\pi$ : $\gamma$ to (11/2+); band structure.
2064.7@ 3	(17/2+)	D	$J\pi$ : stretched Q to $13/2(+)$ ; band structure.
2172.2 3	(15/2 to 19/2-)	D	$J\pi$ : $\gamma$ to (15/2-).
2180.0 3	(19/2-)	D	$J\pi: \Delta J=0, (M1+E2) \gamma$ to $(19/2-).$
2186.0 10	1/2,3/2§	F	
2289.0 10	1/2,3/2§	F	
2293.1 3	(21/2-)	D	$J\pi: \Delta J=1$ , (M1+E2) $\gamma$ to (19/2-).
2307.34		D	
2343.0 10	$1 \ / \ 2 \ , \ 3 \ / \ 2 \ \$$	F	
2355.0 10	1 / 2 , 3 / 2 §	F	
2383.0 10	1/2,3/2§	F	
2394.0 10	$1 \ / \ 2 \ , \ 3 \ / \ 2 \ \$$	F	
2425.1 7	$1 \ / \ 2 \ , \ 3 \ / \ 2 \ \$$	F	
2433.5 ^{&amp;} 4	(15/2 to 19/2+)	D	$J\pi$ : $\gamma$ to (15/2+).
2446.3 ^b 3	(23/2-)	D	$J\pi$ : $\gamma$ to (19/2-); band structure.
2499.0 10	1/2,3/28	F	
2554.0 10	1/2,3/2§	F	
2586.2 4	(19/2 to 23/2-)	D	$J\pi: \gamma \text{ to } (19/2-).$
2592.0 10	1/2,3/28	F	
2674.0 10	1/2,3/28	F	
2724.0 10	1/2,3/28	F	
2744.0 7	1/2,3/28	F	
2767.0 10	1/2,3/28	F	
2776.0 10	1/2,3/28	F	
2793.0 10	1/2,3/28	F	
2854.0 10	1/2,3/28	F	

## $^{129}_{54} \rm Xe_{75}{-3}$

## Adopted Levels, Gammas (continued)

¹²⁹Xe Levels (continued)

	_ +		+	
E(level)!	Jπ÷	XREF	E(level)†	XREF_
2917.0 10	1/2,3/2§	F	6907.4 14	Е
2972.0 10	1  /  2 , $3  /  2  $$	F	6907.5 14	Е
3015.0 10	1  /  2 , $3  /  2  $$	F	6907.6 14	Е
3023.0 10	1/2,3/2§	F	6907.7 14	E
3215.0 10	1  /  2 , $3  /  2  $$	F	6908.4 14	Е
3783.1 10	1  /  2 , $3  /  2  $$	F	6908.4 14	Е
3805.1 10	1  /  2 , $3  /  2  $$	F	6908.6 14	Е
3829.1 10	1  /  2 , $3  /  2  $$	F	6909.2 14	Е
6907.1 14		E	6909.7 14	Е
6907.2 14		E	6909.7 14	Е
6907.3 14		Е	6910.4 14	Е

 †  From a least-squares fit to the adopted Ey values, 1 keV uncertainty for Ey assumed when not stated.

[±] For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population.

§ From dipole excitation in  $^{129}{\rm Xe}(\gamma,\gamma')$  from 1/2+ target.

* (A):  $vs_{1/2} \alpha = +1/2$ . (a):  $vd_{3/2} \alpha = +1/2$ . (b):  $vd_{3/2} \alpha = +1/2$ . (c):  $vd_{3/2} \alpha = -1/2$ .

a (D):  $vg_{7/2} \alpha = -1/2$ .

b (E):  $vh_{11/2} \alpha = -1/2$ . Possible projection=j band in triaxial-rotor model.

c (F):  $vh_{11/2}^{11/2} \alpha = +1/2$ . Possible projection=j-1 band in triaxial-rotor model.

d (G): vd_{5/2}.

### $\gamma(^{129}\text{Xe})$

E(level)	${f E}\gamma^{\dagger}$	$I\gamma^\dagger$	Mult.	δ§	α	Comments
39.5774	39.578 4	100	M1+E2	-0.027 5	12.03	$\alpha(\mathbf{K})=10.27 \ 15; \ \alpha(\mathbf{L})=1.408 \ 23; \\ \alpha(\mathbf{M})=0.286 \ 5. \\ \alpha(\mathbf{N})=0.651 \ 10; \ \alpha(\mathbf{Q})=0.00732 \ 11$
						δ: from L subshell ratios and γγ(θ) in ¹²⁹ Xe IT decay.
236.14	196.56 3	100	M4		20.3	$\alpha(K)=13.65\ 20;\ \alpha(L)=5.23\ 8;$
						$\alpha(M)=1.181$ 17.
						$\alpha(N)=0.242$ 4; $\alpha(O)=0.0268$ 4.
						Mult.: L subshell ratios in ¹²⁵ Xe IT decay.
						B(M4)(W.u.)=1.777 25.
274.29	(38.1)	100				$E\gamma:~\gamma$ not observed. Expected from odd
						Xe systematics. E $\gamma$ calculated from E(level) values.
318.1787	278.614 4	54 11	M1+E2	+0.8 +10-5	0.0509 16	$\alpha(K)=0.0429$ 7; $\alpha(L)=0.0063$ 9; $\alpha(M)=0.00130$ 18.
						$\alpha(N)=0.00027 \ 4; \ \alpha(O)=3.2\times 10^{-5} \ 3.$
						B(M1)(W.u.)=0.003 3;
	318.180 2	100 1	M1+E2	-1, 1 + 13 - 22	0.0348 6	B(E2)(W.u.)=17 + 27 - 17. $\alpha(K)=0.0293 - 9: \alpha(L)=0.0044 - 5:$
						$\alpha(M)=0.00090$ 11.
						$\alpha(N)=0.000183\ 20;\ \alpha(O)=2.19\times10^{-5}\ 15.$
						B(M1)(W.u.)=0.003 + 4-3;
						B(E2)(W.u.)=23 + 25-23.
321.711	282.131 6	100 13	M1+E2	-0.7 + 4 - 7	0.0489 13	$\alpha(K)=0.0414$ 7; $\alpha(L)=0.0060$ 7; $\alpha(M)=0.00122$ 15
						$\alpha(\mathbf{N})=0.00025$ 3: $\alpha(\mathbf{O})=3.03\times10^{-5}$ 25.
						B(M1)(W.u.)=0.011 5;
						$B(E2)(W.u.)=(50 \ 40).$
	321.700 25	29 3	E2		0.0335	$\alpha(K)=0.0277 \ 4; \ \alpha(L)=0.00461 \ 7;$
						$\alpha(M) = 0.000952 \ 14.$
						$\alpha(N)=0.000193 \ 3; \ \alpha(O)=2.24\times10^{-5} \ 4.$

Continued on next page (footnotes at end of table)

B(E2)(W.u.)=21 4.

 $\gamma(^{129}\mathrm{Xe})$  (continued)

E(level)	${f E}\gamma^{\dagger}$	Iγ [†]	Mult.	δ§	α	Comments
411.4959	89.79 8	0.008 2	[E2]		2.65	$\alpha(K)=1.675 \ 24; \ \alpha(L)=0.776 \ 12;$ $\alpha(M)=0.1664 \ 25.$ $\alpha(N)=0.0329 \ 5; \ \alpha(O)=0.00330 \ 5.$
	93.329 3	2.13 6	[M1 , E2 ] [‡]		1.7 7	B(E2)(W.u.)=1.4 6. B(M1)(W.u.)=0.0039 13. $\alpha$ (K)=1.2 4; $\alpha$ (L)=0.4 3; $\alpha$ (M)=0.08 6.
	371.918 2	100.0 3	M1+E2	+0.97 9	0.0224	$\begin{aligned} \alpha(N) = 0.016 \ 12; \ \alpha(O) = 0.0017 \ 11. \\ \alpha(K) = 0.0190 \ 3; \ \alpha(L) = 0.00269 \ 4; \\ \alpha(M) = 0.000549 \ 9. \\ \alpha(N) = 0.0001129 \ 17; \ \alpha(O) = 1.368 \times 10^{-5} \ 20. \\ \delta: \ from \ 1974 Ma24. \\ B(M1)(W.u.) = 0.0015 \ 5; \\ \alpha(M) = 0.00015 \ 5; $
	411.490 2	72.9 3	M1		0.0181	B(E2)(W.u.)=6.7 23. B(M1)(W.u.)=0.0016 5. $\alpha(K)=0.01563$ 22; $\alpha(L)=0.00199$ 3; $\alpha(M)=0.000402$ 6. $\alpha(M)=0.000402$ 6.
442.20	402.62	100 10	D(+Q)	0.0 +3-4		$\alpha(N) = 8.54 \times 10^{-5} 12; \ \alpha(O) = 1.046 \times 10^{-5} 15.$
518.70	196.9 5	10 1	M1 ( +E2 )	-0.03 11	0.1248 22	$\alpha(\mathbf{K})=0.1073 \ 18; \ \alpha(\mathbf{L})=0.0140 \ 4; \\ \alpha(\mathbf{M})=0.00284 \ 8. \\ \alpha(\mathbf{N})=0.000587 \ 15; \ \alpha(\mathbf{Q})=7.34 \times 10^{-5} \ 16.$
	479.1 2	100 10	E2		0.01012	$\alpha(\mathbf{M}) = 0.00855 \ 12; \ \alpha(\mathbf{L}) = 0.001254 \ 18; \\ \alpha(\mathbf{M}) = 0.000257 \ 4. \\ \alpha(\mathbf{N}) = 5.25 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 6.28 \times 10^{-6} \ 9. \\ \text{Iv: from } (1981 \text{He}) 4. \end{cases}$
525.26	485.7 2	100 10	(M1+E2)	-0.14 7	0.01192 18	$ α(\mathbf{K})=0.01029 \ 16; \ α(\mathbf{L})=0.001305 \ 19;  α(\mathbf{M})=0.000264 \ 4.  α(\mathbf{N})=6.47 \le 10^{-5} \ 8: \ α(\mathbf{O})=6.86 \le 10^{-6} \ 10 $
572.68	250.9 2 254.5 2 533.10 4	$\begin{array}{cccc} 4.9 & 12 \\ 2.5 & 12 \\ 100 & 3 \end{array}$				u(N)=5.47×10 8, u(O)=0.80×10 10.
	572.73 11	16 <i>1</i>	[E2]			$\alpha = 0.00620 \; 9; \; \alpha(K) = 0.00528 \; 8;$ $\alpha(L) = 0.000741 \; 11;$ $\alpha(M) = 0.0001512 \; 22.$ $\alpha(N) = 3.10 \times 10^{-5} \; 5; \; \alpha(O) = 3.75 \times 10^{-6} \; 6.$ B(F2)(W u) = 15 4 \; 19.
588.533	177.036 10	7.9 1	M1+E2	+0.44 13	0.179 7	$\alpha(K)=0.151 5; \ \alpha(L)=0.0227 21; \alpha(M)=0.0047 5. \alpha(N)=0.00095 9; \ \alpha(O)=0.000114 9. \delta: from 1974Ma24. P(M)(W = ) 0.0202 P(FD)(W = ) 5.0$
	266.820 7	8.0 1	(M1+E2) [‡]		0.058 3	B(M1)(W.1.)>0.0026; B(E2)(W.1.)>0.9 B(E2)(W.1.)>4.6; B(M1)(W.1.)>0.0005. $\alpha(K)=0.0488 \ 13; \ \alpha(L)=0.0076 \ 15; \ \alpha(M)=0.0016 \ 3.$ $\alpha(N)=0.00032 \ 6; \ \alpha(O)=3.8\times10^{-5} \ 6.$
	270.352 5	5.9 8	(M1+E2)‡		0.056 <i>3</i>	Mult: K/L in 120 s c decay. B(E2)(W.u.)>3.4; B(M1)(W.u.)>0.00037. $\alpha(K)=0.0470 \ 12; \ \alpha(L)=0.0073 \ 14;$ $\alpha(M)=0.0015 \ 3.$ $\alpha(N)=0.00030 \ 6; \ \alpha(O)=3.6\times10^{-5} \ 5.$
	548.945 8	100 1	(M1+E2) [‡]			Mult.: K/L in ¹²⁹ Cs $\varepsilon$ decay. B(E2) $\downarrow$ >1.6; B(M1)(W.u.)>0.00071. $\alpha$ =0.0079 10; $\alpha$ (K)=0.0068 9; $\alpha$ (L)=0.00090 7; $\alpha$ (M)=0.000183 13. $\alpha$ (N)=3.8×10 ⁻⁵ 3; $\alpha$ (O)=4.6×10 ⁻⁶ 5.
	588.549 8	17.7 4	(M1+E2) [‡]			Mult.: K/L in ¹²⁹ Cs $\varepsilon$ decay. B(E2)(W.u.)>0.2; B(M1)(W.u.)>0.0001. $\alpha$ =0.0066 9; $\alpha$ (K)=0.0057 8; $\alpha$ (L)=0.00075 7; $\alpha$ (M)=0.000152 13. $\alpha$ (N)=3.1×10 ⁻⁵ 3; $\alpha$ (O)=3.9×10 ⁻⁶ 4. Mult. K/L in ¹²⁹ Cs $\alpha$ decay
624.332	302.6# 2	≤67				Muit.: K/L III US E decay.

## $^{129}_{54} \mathrm{Xe_{75}-5}$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\mathrm{Xe})$ (continued)

E(level)	$\underline{} E \gamma^\dagger$	$\underline{  } I\gamma^{\dagger}$	Mult.	δ§	α	Comments
624.332	$585.0^{\#}2$	100				
665.43	146.8 3					
	343.7 2	74 22	M1+E2	+3.1 +13-9	0.0273	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0228 \ 4; \ \alpha(\mathbf{L}) = 0.00362 \ 7; \\ &\alpha(\mathbf{M}) = 0.000746 \ 14. \\ &\alpha(\mathbf{N}) = 0.000152 \ 3; \ \alpha(\mathbf{O}) = 1.78 \times 10^{-5} \ 3. \end{aligned}$
	347.3 2	100 10	E 2		0.0263	$\begin{split} &\alpha({\rm K})\!=\!0.0219 \ 3; \ \alpha({\rm L})\!=\!0.00354 \ 5; \\ &\alpha({\rm M})\!=\!0.000730 \ 11. \\ &\alpha({\rm N})\!=\!0.0001485 \ 21; \ \alpha({\rm O})\!=\!1.730\!\times\!10^{-5} \ 25. \end{split}$
	391.1 3					
692.96	167.7.3					
	250.8 3					
	653.4 3					
771.17	535.1 2	100	(M1+E2)	-0.5 +2-16		$\begin{aligned} &\alpha = 0.0090 \ 13; \ \alpha(\mathbf{K}) = 0.0078 \ 12; \\ &\alpha(\mathbf{L}) = 0.00100 \ 8; \ \alpha(\mathbf{M}) = 0.000203 \ 15. \\ &\alpha(\mathbf{N}) = 4.2 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 5.2 \times 10^{-6} \ 6. \end{aligned}$
822.16	156.72	2.17				
	249.52					
	303.5 2	21.8 21	M1+E2	-0.25 +9-10	0.0396	$\alpha(K)=0.0340 \ 5; \ \alpha(L)=0.00445 \ 9;$ $\alpha(M)=0.000903 \ 19.$ $\alpha(N)=0.000187 \ 4; \ \alpha(O)=2.33\times10^{-5} \ 4.$
	500.4 2	100 10	E2			$\begin{split} &\delta(M3/E2) = +0.09 \ 2 \ from \ (\alpha,n\gamma).\\ &\alpha = 0.00896 \ 13; \ \alpha(K) = 0.00758 \ 11;\\ &\alpha(L) = 0.001100 \ 16; \ \alpha(M) = 0.000225 \ 4.\\ &\alpha(N) = 4.61 \times 10^{-5} \ 7; \ \alpha(O) = 5.52 \times 10^{-6} \ 8. \end{split}$
823.00	234.3 3					
	411.6 3					
	504.4 3		(M1+E2)			
823.29	587.22	100	(Q)			
868.06	546.2 2	76.1 23	M1+E2			
004 010	550.0 2	100 37	Q			
904.318	492.78 4	35 3				
	582.60 11	3 2				
	586.11 4	40 4				
	864.740 8	100 3				
0.0.8 6.2	904.31 b	26 2				
908.03	679 2 2					
946 028	$321 \ 700 \# \ 25$	4 3				
540.020	357 52 6	264				
	373.36 15	6 6				
	534.546 15	9.64				
	624.312 9	12.8 3				
	627.88 9	0.78 16				
	906.425 6	100.0 7				
	946.046 6	31.6 3				
985.7	664.04	100				
995.7	584.2 3	100				
1022.30	580.1 2	100	(M1+E2)	-1.2 +9-7		$\begin{split} &\alpha \!=\! 0.0067 \; \; 9; \; \; \alpha(\mathrm{K}) \!=\! 0.0058 \; \; 8; \\ &\alpha(\mathrm{L}) \!=\! 0.00077 \; \; 7; \; \; \alpha(\mathrm{M}) \!=\! 0.000156 \; \; 13. \\ &\alpha(\mathrm{N}) \!=\! 3.2 \!\times\! 10^{-5} \; \; 3; \; \; \alpha(\mathrm{O}) \!=\! 4.0 \!\times\! 10^{-6} \; 5. \end{split}$
1032 . $02$	757.8 3					
	795.9 3					
1059.58	394.12		D+Q			
	785.4 3					
1089.48	267.3 2	5.5 16	D			
	570.8 2	100 10	Ε2			$\alpha = 0.00626 \ 9; \ \alpha(K) = 0.00532 \ 8;$ $\alpha(L) = 0.000749 \ 11;$ $\alpha(M) = 0.0001527 \ 22.$ $\alpha(N) = 3.13 \times 10^{-5} \ 5; \ \alpha(O) = 3.79 \times 10^{-6} \ 6$
1194.5	675.8 3	100				
1194.6	621.9 3	100				
1197.11	504.2 3					
	671.9 3					

# $^{129}_{54}\rm Xe_{75}{-}6$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\mathrm{Xe})$ (continued)

E(level)	${f E}\gamma^{\dagger}$	$I\gamma^\dagger$	Mult.	δ§	Comments
1197.11	754.8.3				
1229.9	711.2 3	100	M1		
1239.0	1239				
1241.2	829.7 3	100			
1336. 12	671.0 3				
	817.1 3				
1395.57	624.4 2	100 10	(M1+E2)	-1.2 +7-5	$\begin{aligned} &\alpha \!=\! 0.0056 \; 6; \; \alpha(\mathrm{K}) \!=\! 0.0048 \; 6; \; \alpha(\mathrm{L}) \!=\! 0.00063 \; 5; \\ &\alpha(\mathrm{M}) \!=\! 0.000128 \; 10. \\ &\alpha(\mathrm{N}) \!=\! 2.64 \!\times\! 10^{-5} \; 20; \; \alpha(\mathrm{O}) \!=\! 3.3 \!\times\! 10^{-6} \; 3. \end{aligned}$
1414.27	324.8 3				
	592.12		Q		
1430.28	398.4 3				
	521.3 3				
	659.3 3				
1497.1	629.0 3	100			
1507.19	683.9 2		(M1+E2)	-1.5 3	
1520 4	736.03	100			
1570 0	1570	100			
1576 0	752 7 2	100			
1748.7	689.1 3	100			
1755.3	733.0 3	100			
1762.28	348.0 3				
	672.8 2		(Q)		
1816.06	420.5 2				
	784.03				
	992.8 3				
1884.0	1884				
1888.5?	$694.0^{\#}3$	100			
1972.3	576.7 2	100	(M1+E2)	-2.6 + 17 - 45	$ \begin{array}{l} \alpha \!=\! 0.0063 \; 8; \; \alpha(\mathrm{K}) \!=\! 0.0054 \; 7; \; \alpha(\mathrm{L}) \!=\! 0.00074 \; 6; \\ \alpha(\mathrm{M}) \!=\! 0.000151 \; 11. \\ \alpha(\mathrm{N}) \!=\! 3.11 \!\times\! 10^{-5} \; 23; \; \alpha(\mathrm{O}) \!=\! 3.8 \!\times\! 10^{-6} \; 4. \end{array} $
2036.3	1213.1 3				
	1265.1 3				
2048.2	712.1 3	100			
2064.7	650.42	100	Q		
2172.2	1348.9 3	100		0.14 0.7	
2180.0	604.0 2	100	(M1+E2)	-0.14 +9-7	$ \begin{array}{l} \alpha = 0.00698 \ 11; \ \alpha(\text{K}) = 0.00604 \ 10; \ \alpha(\text{L}) = 0.000759 \ 11; \\ \alpha(\text{M}) = 0.0001534 \ 23. \\ \alpha(\text{N}) = 3.18 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 3.99 \times 10^{-6} \ 6. \end{array} $
2186 . 0	2186				
2289.0	2289				
2293.1	717.1 2	100	(M1+E2)	-1.9 5	
2307.3	1110.2 3	100			
2343.0	2343				
2355.0	2355				
2383.0	2303				
2394.0	1983	100 28			
2420.1	2425	93			
2433.5	671.2 3	100			
2446.3	870.3 2	100			
2499.0	2499				
2554 . 0	2554				
2586.2	406.2 2	100			
2592.0	2592				
2674.0	2674				
2724.0	2724				
2744.0	2051	100 3			
0545 0	2744	26			
2767.0	2767				
2793 0	2793				
2100.0	2100				

## $^{129}_{54}\rm Xe_{75}{-7}$

## Adopted Levels, Gammas (continued)

 $\gamma(^{129}\text{Xe})$  (continued)

E(level)	$E\gamma^{\dagger}$
2854.0	2854
2917.0	2917
2972.0	2972
3015.0	3015
3023.0	3023
3215.0	3215
3783.1	3783
3805.1	3805
3829.1	3829

[†] Mainly from ε decay and high-spin levels, gammas.
[‡] M1+E2 and δ=1.0 10 was assumed by the evaluators.
§ From (HI,xnγ) unless otherwise noted.
# Placement of transition in the level scheme is uncertain.

# $^{129}_{54}\mathrm{Xe}_{75}\mathrm{-7}$





 $^{129}_{54}\mathrm{Xe}_{75}$ 

## $^{129}_{54}\rm Xe_{75}{-9}$



 $^{12\,9}_{5\,4}\rm Xe_{75}$ 

Level Scheme

Intensities: relative photon branching from each level



 $^{12\,9}_{5\,4}\rm{Xe}_{75}$ 

Level Scheme (continued)

Intensities: relative photon branching from each level

6910.4 1/2, 3/23783.1 1/2, 3/23215.01/2, 3/22972.02854.01/2, 3/21507.19 (17/2-)(11/2+)1497.1 (13/2,15/2,17/2-) 1430.28 13/2(+)1414.27(15/2-)1395.57 (11/2+)1336.12 (1/2, 3/2, 5/2+)1241.21/2, 3/21239.0 7/2+ 1229.9 (5/2,7/2,9/2+) 1197.11 (9/2+)1194.6 1194.5 11/2 +1089.48 (9/2+)1059.58(13/2-)1032.02 2 8 (7/2+)1022.304 (czz+++ 200 995.7 (1/2, 3/2)0 985.7 C 1/2+,3/2+-0 946.028 (9/2,11/2,13/2-) 908.63 2 0 ~~~ ~~~ 3/2+ 8 904.318 88 -02 -007 7/2+ 868.06 Ŷ 12.018 (15/2-) 823.29 (5/2+)823.00 9/2+ 822.16 (13/2-)771.17 (1/2+ to 7/2+) 692.96 300 7/2 +665.43 624.3323/2 +588.533 $\leq 65 \ ps$ (5/2)+ 572.68V  $2.0 \ ps$ (5/2+)525.26Ý . . .  $\wedge +$ ./ 7/2 +518.70ゕ _/\$\/\$ (5/2+)442.20 $\int_{411.4959}$ 1/2+ 81 ps 5/2+ 321.711 44.0 ps AV γ¢γ 318.1787 3/2 +V V 67.5 ps (9/2-) 274.2911/2236.148.88 d 3/2+ 39.5774 0.97 ns 1/2 +0.0 stable

 $^{12\,9}_{5\,4}\mathrm{Xe}_{75}$ 

Level Scheme (continued)

Intensities: relative photon branching from each level

3215.0 1/2, 3/22972.0 1/2, 3/22854.01/2, 3/21/2, 3/22744.01/2, 3/22674.0(19/2 to 23/2-) 2586.21/2, 3/22499.0 1/2, 3/22383.0 1/2, 3/22289.0 (15/2 to 19/2-) 2172.2(15/2+)2048.21972.3 (17/2-)1/2, 3/21884.0(9/2 to 13/2+) 1748.71/2, 3/21570.0 (11/2+)1497.1 13/2(+)1414.27 (11/2+) 1336.12 1194.520 00 -v 9/2+ 822.16 (13/2-)771.17 35<u>*</u> -~ _



 $^{129}_{54}\mathrm{Xe}_{75}$ 

## $^{129}_{54}$ Xe $_{75}$ -13

## ¹²⁹Ιβ⁻ Decay (1.57E7 Y) 1985Ba73,1977Ra23

Parent ¹²⁹I: E=0.0;  $J\pi$ =7/2+;  $T_{1/2}$ =1.57×10⁷ y 4; Q(g.s.)=189 3; % $\beta$ ⁻ decay=100. ¹²⁹I-Q( $\beta$ ⁻): From 2012Wa38. ¹²⁹I-J,T_{1/2}: From ¹²⁹I Adopted Levels. ¹²⁹I-% $\beta$ ⁻ decay: Based on I( $\gamma$ +ce to g.s.)=100. 1985Ba73: ²³⁵U(n,F), E=th; HPGE detector, x-ray,  $\gamma$ . 1977Ra23: ²³⁵U(n,F), E=th; Ge, 4 $\pi$   $\beta$ , x-ray,  $\gamma$ ,  $\beta$ . Others: 1954De17, 1965Wa13, 1968ReZY, 1970SaZI. See also ¹²⁹Xe IT decay.

¹²⁹Xe Levels

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$
0.0	1/2+	stable
39.578 2	3/2+	0.97 ns 2

† From Adopted Levels.

 $\beta^-$  radiations

No  $\beta^-$  feeding to g.s. (<1%) (1954De17).

$\mathbf{E}\beta^{-}$	E(level)	$I\beta^{-\dagger}$	Log ft	Comments
(149 3)	39.578	100 1	13.46 4	av Eβ=40.03 92.

[†] Absolute intensity per 100 decays.

 $\gamma(^{129}\text{Xe})$ 

Εγ	E(level)	$\underline{ I\gamma^{\dagger}}$	Mult.	δ	α	Comments
39.578 4	39.578	7.51 23	M1+E2	-0.027 5	12.03	$\alpha(K) = 10.27$ 15; $\alpha(L) = 1.408$ 23; $\alpha(M) = 0.286$ 5.
						$\alpha(N) = 0.0591 \ 10; \ \alpha(O) = 0.00732 \ 11.$ Ev: from 1985Ba73
						$I_{\gamma}$ : from α(t) and $I(\gamma+ce)=100$ (1985Ba73).
						Mult.: from $\alpha(K)\text{exp=10.2}$ 5, $K/L{\approx}8.2$ (1977Ra23). Others:
						$\alpha(K)$ exp=10.60 44 (1985Ba73), 10.2 4 (1970SaZI), 10.6
						(1968ReZY), 21.0 <i>10</i> (1965Wa13), 22 <i>4</i> (1954De17); K/L≈10
						(1954De17).
						δ: from ¹²⁹ Cs ε decay (1965Ge04,1974Ma24).

 †  Absolute intensity per 100 decays.



## $^{129}I~\beta^{-}$ Decay (1.57E7 Y) ~~ 1985Ba73,1977Ra23 (continued)



Parent  $^{129} Xe: \ E=236.14$  3;  $J\pi=11/2-; \ T_{1/2}=8.88$  d 2; %IT decay=100.  $^{129} \rm Xe-\% IT$  decay: Based on I( $\gamma+ce$  to g.s.)=100. 1962Ge09: mag  $\beta$  spectrometer, ce(K), ce(L). 1965Ge04:  235 U(n,F) mass sep, mag  $\beta$  spectrometer, ce, scin, K x ray, (K x ray)(ce)(t). 1976Le23:  ${}^{127}I(n,\gamma){}^{128}I(\beta^{-}){}^{128}Xe(n,\gamma)$   $\gamma\gamma(\theta)$ . Others: 1954Th18, 1958Al98, 1970Gy01. See also  $^{129}\mathrm{I}~\beta^-$  decay.

## ¹²⁹Xe Levels

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$			
0.0	1/2+	stable			
39.578 2	3 / 2 +	0.97 ns 2			
236.14 3	11/2 -	8.88 d 2			

[†] From Adopted Levels.

## $\gamma(^{129}\text{Xe})$

Εγ	E(level)	$I\gamma^{\dagger\ddagger}$	Mult.	δ	α	I(γ+ce)‡	Comments
39.578 <i>4</i>	39.578	7.52	M1+E2	-0.027 5	12.03	100	<pre>ce(K)/(γ+ce)=0.786 18; ce(L)/(γ+ce)=0.109 3; ce(M)/(γ+ce)=0.022 1. ce(K)/(γ+ce)=0.788 6; ce(L)/(γ+ce)=0.1081 21; ce(M)/(γ+ce)=0.0220 5; ce(N+)/(γ+ce)=0.00510 11. ce(N)/(γ+ce)=0.00454 10; ce(O)/(γ+ce)=0.000562 12. Eγ: from 1985Ba73. δ: from ¹²⁹Cs ε decay (1965Ge04,1974Ma24).</pre>
196.56 3	236.14	4.59 14	M4		20.3	100	Mult.: from ¹²⁹ I $\beta^-$ decay. ce(K)/( $\gamma$ +ce)=0.640 12; ce(L)/( $\gamma$ +ce)=0.245 7; ce(M)/( $\gamma$ +ce)=0.055 2. ce(K)/( $\gamma$ +ce)=0.640 8; ce(L)/( $\gamma$ +ce)=0.245 4; ce(M)/( $\gamma$ +ce)=0.01554 11; ce(N+)/( $\gamma$ +ce)=0.01258 25. ce(N)/( $\gamma$ +ce)=0.01132 22; ce(O)/( $\gamma$ +ce)=0.001257 25. Mult.: from K:L1:L2:L3 ratios (1962Ge09), $\gamma\gamma(\theta)$ (1976Le23).

 †  From I(\gamma+ce) and  $\alpha(exp).$ 

 $\ddagger$  Absolute intensity per 100 decays.



## ¹²⁹Xe IT Decay (8.88 d) 1962Ge09,1965Ge04 (continued)

## ¹²⁹Cs **ɛ** Decay (32.06 h) 1976Me16

Parent  $^{129}Cs:$  E=0.0; J\pi=1/2+; T $_{1/2}$ =32.06 h 6; Q(g.s.)=1197 5; %  $\epsilon + \% \beta^+$  decay=100.  $^{129}Cs-Q(\epsilon)$ : From 2012Wa38.  $^{129}Cs-J, T_{1/2}$ : From  $^{129}Cs$  Adopted Levels.

 $^{129}\text{Cs}-\%\epsilon+\%\beta^+$  decay: I( $\epsilon+\beta$  to g.s.)=34% from K x-ray measurement (1976Me16).

1976Me16:  $^{127}I(\alpha, 2n)$ , chem, mass sep; Ge  $\gamma$ ,  $\gamma\gamma$ -coin.

Others: 1955Ni21, 1960Jh02, 1963Fr13, 1965Sh08, 1966Re10, 1967Gr05, 1967Wa11, 1971Ob03, 1972Ge20, 1974Ma24, 1976Me16, 1979Be54.

## ¹²⁹Xe Levels

The decay scheme is basically that proposed by 1967Gr05, modified by 1976Me16.

E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	1/2+	stable	
39.578 2	3 / 2 +	0.97 ns 2	
318.179 2	3 / 2 +	67.5 ps 20	
321.711 5	5 / 2 +	44.0 ps 19	
411.496 2	1/2+	81 ps 26	$T_{1/2}$ : delayed coin (1979Be54).
572.68 4	(5/2)+	2.0 ps 2	
588.5334	3 / 2 +	≤65 ps	$T_{1/2}$ : delayed coin (1979Be54).
624.52			
904.318 8	3 / 2 +		
946.029 4	1/2+,3/2+		

[†] From Adopted Levels, unless otherwise noted.

β⁺,ε Data

Eε	E(level)	Ιβ+†	Ιε†	Log ft	$I(\epsilon+\beta^+)^{\dagger}$	Comments
(251 5	) 946.029		0.355 23	6.80 4		εK=0.8224 9; εL=0.1387 7; εM+=0.03889 21.
(293 5	) 904.318		0.066 4	7.68 4		εK=0.8282 6; εL=0.1344 5; εM+=0.03749 15.
(573 5	) 624.5		$8. \times 10^{-4}$ 3	10.23 17		εK=0.8435 2; εL=0.1228 1; εM+=0.03376 4.
(608 5	) 588.533		4.9 3	6.50 3		εK=0.8443 2; εL=0.12212 9; εM+=0.03355 3.
(786 5	) 411.496		55 3	5.68 3		εK=0.8474; εL=0.11979 5; εM+=0.03281 2.
(879 5	) 318.179		2.40 14	7.14 3		εK=0.8485; εL=0.11896 4; εM+=0.03254 2.
(1157 5	) 39.578		2.9 13	7.3 2	2.9 13	εK=0.8507; εL=0.11730 3; εM+=0.032010 8.
(1197 5	) 0.0	0.0029 5	34 4	6.27 6	34 4	av Eβ=88.2 23; εK=0.8508; εL=0.11712 3; εM+=0.031954 7.

[†] Absolute intensity per 100 decays.

# $^{129}_{54}\rm Xe_{75}{-16}$

			γ( ¹²⁹ Xe)					
${f E}\gamma^{\dagger}$	E(level)	Iγ [@]	Mult.‡	δ§	α	Comments		
39.578 4	39.578	97 3	M1+E2	-0.027 5	12.03	<ul> <li>α(K)=10.27 15; α(L)=1.408 23; α(M)=0.286 5.</li> <li>α(N)=0.0591 10; α(O)=0.00732 11.</li> <li>Εγ: from 1985Ba73.</li> <li>δ: from L subshell ratios (1965Ge04), sign</li> </ul>		
89.79 <i>8</i>	411.496	0.08 2	[E2]		2.65	from $\gamma\gamma(\theta)$ and K/L (371.9 $\gamma$ ) (1974Ma24). $\alpha(K)=1.675 24; \alpha(L)=0.776 12;$ $\alpha(M)=0.1664 25.$		
93.329 3	411.496	21.3 6	[M1,E2]		1.7#7	$\alpha(N)=0.0329 5; \ \alpha(O)=0.00330 5.$ $\alpha(K)=1.2 4; \ \alpha(L)=0.4 3; \ \alpha(M)=0.08 6.$ $\alpha(N)=0.016 18 - \alpha(O) 0.0017 11$		
177.036 10	588.533	8.8 1	M1+E2	+0.44 13	0.179 7	$\begin{array}{l} \alpha(N)=0.016 \ 12; \ \alpha(O)=0.0017 \ 11. \\ \alpha(K)=0.151 \ 5; \ \alpha(L)=0.0227 \ 21; \\ \alpha(M)=0.0047 \ 5. \\ \alpha(N)=0.00095 \ 9; \ \alpha(O)=0.000114 \ 9. \end{array}$		
266.820 7	588.533	8.9 1	(M1+E2)		0.058# 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0488 \ 13; \ \alpha(\mathbf{L}) = 0.0076 \ 15; \\ &\alpha(\mathbf{M}) = 0.0016 \ 3. \\ &\alpha(\mathbf{N}) = 0.00032 \ 6; \ \alpha(\mathbf{O}) = 3.8 \times 10^{-5} \ 6. \end{aligned}$		
270.352 5	588.533	6.95 8	(M1+E2)		0.056 [#] 3	$\alpha(K)=0.0470$ 12; $\alpha(L)=0.0073$ 14; $\alpha(M)=0.0015$ 3. $\alpha(N)=0.00030$ 6; $\alpha(O)=3.6\times10^{-5}$ 5.		
278.614 4	318.179	43.2 9	M1+E2	+0.8 +10-5	0.0509 16	$\alpha(K)=0.0429$ 7; $\alpha(L)=0.0063$ 9; $\alpha(M)=0.00130$ 18. $\alpha(N)=0.00027$ 4; $\alpha(O)=3.2\times10^{-5}$ 3. $\delta$ : from 1981He04. Others: 0.3<(1974Ma24), $\pm 0.03 \pm 2 \pm 3$ (1979IrO1)		
282.131 6	321.711	7.9 1	M1+(E2)	-0.7 +4-7	0.0489 13	$ \begin{array}{l} \alpha({\rm K}) = 0.03 + 2 - 3 \ (1373 + 101), \\ \alpha({\rm K}) = 0.0414 \ 7; \ \alpha({\rm L}) = 0.0060 \ 7; \\ \alpha({\rm M}) = 0.00122 \ 15. \\ \alpha({\rm N}) = 0.00025 \ 3; \ \alpha({\rm O}) = 3.03 \times 10^{-5} \ 25. \\ \delta: \ from \ 1981 + 004. \ Other: \ +0.83 \ +8-7 \\ (1979 {\rm Ir}01). \end{array} $		
302.6 2 318.180 2	624.5 318.179	≤0.01 80 <i>I</i>	M1+E2	-1.1 +13-22	0.0348 6	$\alpha(K)=0.0293 \ 9; \ \alpha(L)=0.0044 \ 5; \ \alpha(M)=0.00090 \ 11. \ \alpha(N)=0.000183 \ 20; \ \alpha(O)=2.19\times10^{-5} \ 15. \ 5: \ from \ 1981He04. \ Others: \ 0.4 \ +6-4 \ (1974Ma^24) \ -2.11 \ +7-11 \ (1979Ir01)$		
321.700 25	321.711	2.3 2	E 2		0.0335	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0277 \ 4; \ \alpha(\mathbf{L}) = 0.00461 \ 7; \\ &\alpha(\mathbf{M}) = 0.000952 \ 14. \\ &\alpha(\mathbf{N}) = 0.000193 \ 3; \ \alpha(\mathbf{O}) = 2.24 \times 10^{-5} \ 4. \end{aligned} $		
357.52 6	946.029	0.19 3						
371.918 2	411.496	1000 3	M1+E2	+0.97 9	0.0224	$\alpha(K)=0.0190$ 3; $\alpha(L)=0.00269$ 4; $\alpha(M)=0.000549$ 9. $\alpha(N)=0.0001129$ 17; $\alpha(O)=1.368\times10^{-5}$ 20.		
373.36 15	946.029	0.4 4						
411.490 2	411.496	729 3	[M1]		0.0181	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.01563 \; 22; \; \alpha(\mathbf{L}) \!=\! 0.00199 \; 3; \\ &\alpha(\mathbf{M}) \!=\! 0.000402 \; 6. \\ &\alpha(\mathbf{N}) \!=\! 8.34 \!\times\! 10^{-5} \; 12; \; \alpha(\mathbf{O}) \!=\! 1.046 \!\times\! 10^{-5} \; 15. \end{split}$		
492.78 4	904.318	0.37 3						
533.10 4	572.68	0.31 2						
534.546 15	946.029	0.69 3						
548.945 8	588.533	111 1	(M1+E2)		#	$ \begin{split} &\alpha \!=\! 0.0079 \ 10; \ \alpha(K) \!=\! 0.0068 \ 9; \\ &\alpha(L) \!=\! 0.00090 \ 7; \ \alpha(M) \!=\! 0.000183 \ 13. \\ &\alpha(N) \!=\! 3.8 \!\times\! 10^{-5} \ 3; \ \alpha(O) \!=\! 4.6 \!\times\! 10^{-6} \ 5. \end{split} $		
572.73 11	572.68	0.05 12	[E2]			$\begin{split} &\alpha \!=\! 0.00620 \; g; \; \alpha(K) \!=\! 0.00528 \; g; \\ &\alpha(L) \!=\! 0.000741 \; 11; \; \alpha(M) \!=\! 0.0001512 \; 22. \\ &\alpha(N) \!=\! 3.10 \!\times\! 10^{-5} \; 5; \; \alpha(O) \!=\! 3.75 \!\times\! 10^{-6} \; 6. \end{split}$		
582.60 11	904.318	0.03 2						
585.0 ^{&amp;} 2	624.5	0.015 9						
586.11 4	904.318	0.424						
588.549 8	588.533	19.7 4	(M1+E2)		#	$\begin{split} &\alpha \!=\! 0.0066 \; 9; \; \alpha(\mathrm{K}) \!=\! 0.0057 \; 8; \; \alpha(\mathrm{L}) \!=\! 0.00075 \; 7; \\ &\alpha(\mathrm{M}) \!=\! 0.000152 \; 13. \\ &\alpha(\mathrm{N}) \!=\! 3.1 \!\times\! 10^{-5} \; 3; \; \alpha(\mathrm{O}) \!=\! 3.9 \!\times\! 10^{-6} \; 4. \end{split}$		
624.312 9	946.029	0.92 2						

¹²⁹Cs **ε** Decay (32.06 h) 1976Me16 (continued)

## $^{129}_{54}$ Xe $_{75}$ -17

#### ¹²⁹Cs & Decay (32.06 h) 1976Me16 (continued)

 $\gamma(^{129}\text{Xe})$  (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ@		
627.88 9	946.029	0.056 12		
864.740 8	904.318	1.05 3		
904.31 6	904.318	0.27 2		
906.425 6	946.029	7.19 5		
946.046 6	946.029	2.272		

 †  From 1976Me16 unless otherwise noted.

[‡] From K/L (1974Ma24).

From K/L (1974Ma24).
From γγ(θ) and K/L (1974Ma24) unless otherwise noted.
# M1+E2 and δ=1.0 10 was assumed by the evaluators.
@ For absolute intensity per 100 decays, multiply by 0.0306 17.
& Placement of transition in the level scheme is uncertain.



### ¹²⁶Te(α,nγ) 1988Zh10,1981He04

1988Zh10:  $^{126}Te(\alpha,n\gamma)$  E=16 MeV, Ge,  $\gamma\gamma\text{-coin, excit.}$ 

1983Lo08: ¹²⁶Te( $\alpha$ ,n $\gamma$ ) E=16.2 MeV, Ge,  $\gamma(\theta)$ .

1981He04: ¹²⁶Te( $\alpha,n\gamma$ ) E=18 MeV, ¹³⁰Te(³He,4n $\gamma$ ) E=24-27 MeV, Ge, ce,  $\gamma(\theta)$ ,  $\gamma\gamma$ -coin.

- 1979Ir01: ¹²⁶Te( $\alpha$ ,n $\gamma$ ) E=18 MeV, Ge,  $\gamma(\theta)$ ,  $\gamma(linear pol)$ .
- 1978Pa09:  $^{126}Te(\alpha,n\gamma)$  E=16 MeV, Ge.

1970Re01:  128 Te( $\alpha$ , 3n $\gamma$ ) E=28-43 MeV, Ge,  $\gamma(\theta)$ .

Evaluators adopt the level scheme from 1988Zh10, although it is a short note. Authors reported that they found as many as 180 transitions connecting 110 levels, but showed only a part of level scheme without values for  $I\gamma$  and  $\Delta E$ in E $\gamma$ . They also showed several band structures giving no detailed discussions. Evaluators consider the level scheme as tentative.

¹²⁹Xe Levels

Level scheme and band structures are those from 1988Zh10. According to the authors' comment, their results shown in 1988Zh10 are tentative ones.

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} §	Comments
0.0#	1/0.		
20.0" 20.6% 2	2/2	0.07 ng 2	
236 14 ^b 3	11/2_	8 88 d 2	%TT-100
274 28 ^C 19	(9/2)	0.00 u 2	//11-100.
318 179d 2	(3/2)	67 5 ns 20	
$321.711^{@}5$	5/2+	44.0 ps 19	$J\pi$ : 5/2+ from $\gamma(\theta)$ and linear polarization.
411.496 2	1/2+	81 ps 26	
442.20 15	(5/2)+		
518.7& 2	7 / 2 +		
525.3 3	(5/2)+		
572.7# 2	5 / 2 +	2.0 ps 2	
588.8 2	3 / 2 +	≤65 ps	J $\pi$ : 3/2, 5/2 from $\gamma(\theta)$ (1979Ir01).
665.5 ^a 2	7 / 2 +		
693.0 3	(5/2)		
771.14	13/2-		
822.2 [@] 2	9 / 2 +		
823.1 3	(3/2+)		
823.3 ^b 4	15/2 -		
868.2 ^d 2	7 / 2 +		
909.9 3	$7 \ / \ 2 \ , \ 9 \ / \ 2 \ , \ 1 \ 1 \ / \ 2$		
1022.3 4	7 / 2 +		
1032.0° 3	(13/2-)		
1059.6 3	9 / 2+		

## $^{129}_{54}$ Xe $_{75}$ -19

# $^{129}_{54}\mathrm{Xe}_{75}\mathrm{-19}$

## ¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)

## 129 Xe Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$			Comme	nts
1089 58 2	11/9+	$J_{\pi}$ : 7/2+ 11/2+ 13/2 fr.	om v(A) and li	inear polarization	
1194 5 3	(9/2, 11/2)	E(level): from Adopted	Levels	incui polulization.	
1194.55	(9/2,11/2)	E(level): from Adopted	Levels.		
1194.0 5	(372)	Ellevel). Hom Aubreu	Levels.		
1229.9 4	(7/2)+	E(level): from 1978Pa09	·.		
		$J\pi$ : from $\gamma(\theta)$ and linear	polarization	(1979Ir01).	
1241.2 3	(5/2)				
1336.5 ^a 3	(11/2)				
1395.56	15/2-				
$1414.3^{@}$ 3	13/2+				
1430.5 3	(9/2,11/2)				
1497.2 ^d 3	(11/2)				
1507.24	17/2 -				
1539.4 3	(13/2,15/2)				
1576.0 ^b 4	19/2-				
1748.7 3					
1755.3 3					
1762.5 ^{&amp;} 3	(15/2)+				
1816.0 ^c 5	(17/2,15/2)				
1888.5? 3		E(level): E(level)=1886.4	5 is given in rect	1988Zh10. Corrected	d by the evaluators assuming $\mathrm{E}\gamma$ =694.0
1972 2 5	17/2-	from the level as cor	1000.		
2036 2 3	$(15/2 \ 13/2)$				
2000.20	(15/2, 10/2)				
2040.0 0	17/2+				
2172 0 3	11/21				
2180 0 5	19/2-				
2293 1 5	21/2-				
2200.1 0	21/2				
2433 5& 3					
2446 3b 5	(23/2)				
2586.3 5	(23/2-)	E(level): from 1981He04	ł.		
<ul> <li>[†] From Add</li> <li>[‡] For band are descr.</li> <li>§ From Add</li> <li># (A): vs_{1/2}.</li> <li>@ (B): vd_{3/2}</li> <li>@ (C): vd_{3/2}</li> <li>a (D): vg_{7/2}</li> <li>b (E): vh_{11/}</li> <li>c (F): vh_{11/2}</li> <li>d (G): vd_{5/2}</li> </ul>	ppted Levels. structure, assignment ibed by core plus que ppted Levels. $\alpha = +1/2$ . $\alpha = +1/2$ . $\alpha = -1/2$ . $\alpha = -$	ents are from side feeding ex uasiparticle model and negat rojection=j band in triaxial- rojection=j-1 band in triaxia	ccitation funct ive-parity bas rotor model. 11-rotor model	tions and their slop nds are reproduced l.	es (1988Zh10). Positive-parity bands by triaxial-rotor model (1981He04).
			γ( ¹²⁹	Xe)	
$E\gamma^{\dagger}$	E(level)	Iγ [‡] Mult. [§]	δ#	α	Comments
(38.1)	274.28				Ey: $\gamma$ not observed. Expected from
(39.62)	39.6				systematics of odd Xe nuclei. Εγ: γ not observed. Deduced from Εγ differences deexciting 318.2 and 321.8 levels.
146.8 3	665.5				
156.72	822.2	1.2 4			
167.7 3	693.0				
177.3 2	588.8				$A_2 = -0.01 \ 3, \ A_4 = -0.02 \ 4.$
196.5 2	236.14	M4		20.4	α(K)=13.67 21; α(L)=5.24 8; α(M)=1.183 18. α(N)=0.242 4; α(O)=0.0269 4. Εγ: from 1981He04.

$\gamma(^{129}$ Xe) (continued)						
$E\gamma^{\dagger}$	E(level)	Iγ‡	Mult.§	δ#	α	Comments
196.9 2	518.7	10 1	(M1(+E2))	-0.03 11	0.1248 20	$\alpha(\mathbf{K})=0.1073 \ 16; \ \alpha(\mathbf{L})=0.0140 \ 4;$ $\alpha(\mathbf{M})=0.00284 \ 7.$ $\alpha(\mathbf{N})=0.000587 \ 14; \ \alpha(\mathbf{O})=7.34\times10^{-5} \ 15.$
234.3 3	823.1					A ₂ =-0.16 3, A ₄ =-0.05 4 (1981He04). Ey: Ey value missing in 1988Zh10. Deduced by the evaluators
249.5 2	822.2					by the evaluators.
250.8 3	693.0					
250.9 2	572.7					
254.52	572.7					
267.0 2	588.8		D+Q			Reported only by 1979Ir01 and 1978Pa09. A ₂ =-0.20 3, A ₄ =-0.06 4 (1979Ir01).
267.32	1089.5	3.0 9	D			$A_2$ is negative (1981He04).
270.6 2	588.8		D+Q			$\begin{array}{llllllllllllllllllllllllllllllllllll$
278.6 2	318.179	15.8 16	M1+E2	+0.8 +10-5	0.0509 16	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0429 \ 7; \ \alpha(\mathbf{L}) = 0.0063 \ 9; \\ &\alpha(\mathbf{M}) = 0.00130 \ 18. \\ &\alpha(\mathbf{N}) = 0.00027 \ 4; \ \alpha(\mathbf{O}) = 3.2 \times 10^{-5} \ 3. \\ &\mathbf{A}_2 = + 0.18 \ 16, \ \mathbf{A}_4 = -0.03 \ 2. \\ &\mathbf{A}_2 = + 0.13 \ 2, \ \mathbf{A}_4 = -0.01 \ 2 \ (1981\text{He}04). \\ &\mathbf{A}_2 = + 0.20 \ 2, \ \mathbf{A}_4 = 0.00 \ 2, \ \text{POL} = + 0.36 \ 3 \\ &(19791\text{r}01). \end{aligned}$
282.2 2	321.711	80 8	M1+E2	-0.7 +4-7	0.0488 <i>13</i>	$\begin{aligned} &\alpha(\mathbf{K})=0.0414\ 7;\ \alpha(\mathbf{L})=0.0060\ 7;\\ &\alpha(\mathbf{M})=0.00122\ 15.\\ &\alpha(\mathbf{N})=0.00025\ 3;\ \alpha(\mathbf{O})=3.03\times10^{-5}\ 25.\\ &\mathbf{A}_2=-0.39\ I,\ \mathbf{A}_4=+0.02\ 2.\\ &\mathbf{A}_2=-0.34\ 3,\ \mathbf{A}_4=-0.01\ 4\ (1981\mathrm{He}04).\\ &\mathbf{A}_2=-0.40\ I,\ \mathbf{A}_4=+0.02\ I,\ \mathrm{POL}=+0.09\ I\\ &(1979\mathrm{Ir}01). \end{aligned}$
x302.4 2		0.5				
303.5 <i>2</i>	822.2	12.2 12	M1+E2	-0.25 +9-10	0.0396	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0340 \; 5; \; \alpha(\mathbf{L}) \!=\! 0.00445 \; 9; \\ &\alpha(\mathbf{M}) \!=\! 0.000903 \; 19. \\ &\alpha(\mathbf{N}) \!=\! 0.000187 \; 4; \; \alpha(\mathbf{O}) \!=\! 2.33 \!\times\! 10^{-5} \; 4. \\ &\mathbf{A}_2 \!=\! -0.38 \; 3, \; \mathbf{A}_4 \!=\! -0.03 \; 5 \; (1981 \mathrm{He} 04). \\ &\mathbf{A}_2 \!=\! -0.52 \; 2, \; \mathbf{A}_4 \!=\! +0.05 \; 3, \; \mathrm{POL} \!=\! -0.23 \; 8 \\ &(1979 \mathrm{Ir} 01). \end{split}$
318.2 2	318.179	23.2 23	M1+E2	-1.1 +13-22	0.0348 6	$\begin{split} &\alpha(\mathbf{K})\!=\!0.0293 \; g;\; \alpha(\mathbf{L})\!=\!0.0044 \; 5;\\ &\alpha(\mathbf{M})\!=\!0.00090 \; 11.\\ &\alpha(\mathbf{N})\!=\!0.000183 \; 20;\; \alpha(\mathbf{O})\!=\!2.19\!\times\!10^{-5} \; 15.\\ &\mathbf{A}_2\!=\!-0.12 \; 13,\; \mathbf{A}_4\!=\!0.00 \; 2.\\ &\mathbf{A}_2\!=\!-0.10 \; 4,\; \mathbf{A}_4\!=\!+0.02 \; 6 \; (1981\mathrm{He}04).\\ &\mathbf{A}_2\!=\!-0.12 \; 2,\; \mathbf{A}_4\!=\!0.00 \; 2,\; \mathrm{POL}\!=\!+0.26 \; 3\\ &(1979\mathrm{Ir}01). \end{split}$
321.8 <i>2</i> 324.8 <i>3</i>	321.711	23.4 23	E2		0.0334	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0277 \; 4;\; \alpha(\mathbf{L}) \!=\! 0.00460 \; 7;\\ &\alpha(\mathbf{M}) \!=\! 0.000951 \; 14.\\ &\alpha(\mathbf{N}) \!=\! 0.000193 \; 3;\; \alpha(\mathbf{O}) \!=\! 2.23 \!\times\! 10^{-5} \; 4.\\ &\mathbf{A}_2 \!=\! 0.+19 \; 1,\; \mathbf{A}_4 \!=\! -0.02 \; 1.\\ &\mathbf{A}_2 \!=\! +0.17 \; 4,\; \mathbf{A}_4 \!=\! -0.01 \; 5 \; (1981\mathrm{He04}).\\ &\mathbf{A}_2 \!=\! +0.18 \; 1,\; \mathbf{A}_4 \!=\! 0.00 \; 1,\; \mathrm{POL} \!=\! +0.26 \; 5,\\ &\delta(\mathbf{M}3/\mathbf{E}2) \!=\! +0.03 \; +5 \!-\! 4 \; (1979\mathrm{Ir01}). \end{split}$
343.7 2	665.5	9.2 28	M1+E2	+3.1 +13-9	0.0273	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0228 \; 4; \; \alpha(\mathbf{L}) \!=\! 0.00362 \; 7; \\ &\alpha(\mathbf{M}) \!=\! 0.000746 \; 14. \\ &\alpha(\mathbf{N}) \!=\! 0.000152 \; 3; \; \alpha(\mathbf{O}) \!=\! 1.78 \!\times\! 10^{-5} \; 3. \\ &\mathbf{A}_2 \!=\! +0.53 \; 2, \; \mathbf{A}_4 \!=\! -0.01 \; 3. \\ &\mathbf{A}_2 \!=\! +0.25 \; 2, \; \mathbf{A}_4 \!=\! +0.09 \; 3 \; (1981\mathrm{He04}). \\ &\mathbf{A}_2 \!=\! +0.46 \; 2, \; \mathbf{A}_4 \!=\! +0.03 \; 2, \; \mathrm{POL} \!=\! -0.22 \; 9 \\ &(1979\mathrm{Ir}01). \end{split}$

¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)

## $^{129}_{54} \rm Xe_{75}{-}21$

			$120$ Te( $\alpha$ ,n $\gamma$ )	1988Zh10,19	81He04 (contin	nued)
				$\gamma(^{129}{ m Xe})$ (cor	ntinued)	
$E\gamma^{\dagger}$	E(level)	Iγ‡	Mult.§	δ#	α	Comments
347.3 2	665.5	12.4 12	E2		0.0263	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0219 \; 3; \; \alpha(\mathbf{L}) \!=\! 0.00354 \; 5; \\ &\alpha(\mathbf{M}) \!=\! 0.000730 \; 11. \\ &\alpha(\mathbf{N}) \!=\! 0.0001485 \; 21; \; \alpha(\mathbf{O}) \!=\! 1.730 \!\times\! 10^{-5} \; 25. \\ &\mathbf{A}_2 \!=\! \! +\! 0.26 \; 3, \; \mathbf{A}_4 \!=\! \! -\! 0.08 \; 4. \\ &\mathbf{A}_2 \!=\! \! +\! 0.17 \; 5, \; \mathbf{A}_4 \!=\! 0.06 \; 6 \; (1981\mathrm{He}04). \\ &\mathbf{A}_2 \!=\! \! +\! 0.21 \; 2, \; \mathbf{A}_4 \!=\! -0.04 \; 2, \; \mathrm{POL} \!=\! \! +\! 0.43 \; 6, \\ &\delta(\mathbf{M}3/\mathrm{E}2) \!=\! 0.11 \; \! +\! 3\! -\! 9 \; (1979\mathrm{Iro}1). \end{split}$
348.0 3	1762.5					
371.9 2	411.496					$\begin{array}{llllllllllllllllllllllllllllllllllll$
391.1.3	665.5	4 0 19	D.O			A = 0.12, 2, A = 0.10, 4
394.1 2	1430.5	4.0 12	D+Q			$A_2 = -0.15 2, A_4 = +0.10 4.$
402.6 2	442.20	16.1 16	D(+Q)	0.0 +3-4		$A_2 = -0.06 \ 2$ , $A_4 = 0.00 \ 3$ . $A_2 = -0.08 \ 8$ , $A_4 = 0.00 \ 11$ (1981He04).
406.2 2 411.5 2	2586.3 411.496	10.6 11	M1			E _{$\gamma$} : from 1981He04. A ₂ =-0.41 5, A ₄ =-0.28 8. For 1/2+, A ₂ and A ₄ are incorrect. A ₂ =-0.01 4, A ₄ =+0.01 4, POL=-0.05 2 (1972Hr01)
411.6 3	823.1					(10101101).
420.5 2	1816.0	4.3 13				
442.2 3	442 . $20$					
479.1 2	518.7	100 10	E2		0.01012	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00855 \ 12; \ \alpha(\mathbf{L}) = 0.001254 \ 18; \\ &\alpha(\mathbf{M}) = 0.000257 \ 4. \\ &\alpha(\mathbf{N}) = 5.25 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 6.28 \times 10^{-6} \ 9. \\ &A_2 = + 0.21 \ 3, \ A_4 = -0.02 \ 4 \ (1981 \text{He} 04). \\ &A_2 = + 0.27 \ I, \ A_4 = -0.08 \ I, \ \text{POL} = + 0.42 \ 2, \\ &\delta(\mathbf{M}_3/\mathbf{E} 2) = + 0.01 \ + 2 - 4 \ (19791701) \end{aligned}$
485.7 2	525.3	19.2 19	(M1+E2)	-0.14 7	0.01192 18	$A_2 = -0.38 \ 3, \ A_4 = +0.2 \ 4.$ $A_2 = -0.18 \ 2, \ A_4 = -0.01 \ 2 \ (1981He04).$
500.4 2	822.2	566	E2			$ \begin{array}{c} \textbf{A}_{2}^{2} = + 0.18 \ 3, \ \textbf{A}_{4}^{2} = - 0.03 \ 5 \ (1981 \text{He04}). \\ \textbf{A}_{2} = + 0.26 \ 1, \ \textbf{A}_{4} = - 0.06 \ 1, \ \text{POL} = + 0.47 \ 3, \\ \delta(\text{M3/E2}) = + 0.09 \ 2 \ (1979 \text{Ir01}). \end{array} $
504.23 504 9 3	823 1		(M1 + E2)			$A_{a} = -0.11.6$ $A_{a} = -0.09.9$ POL = +0.32.7
591 9 9	1430 5		(111 + 112 )			(1979Ir01).
533.1 2	572.7					
535.1 2	771.1	727	(M1+E2)	-0.5 + 2 - 16		$A_0 = -0.65$ 5, $A_4 = -0.09$ 8 (1981He04).
546.2 2	868.2	11 3	M1+E2			$\begin{array}{c} A_2 = -0.05 \ 2, \ A_4 = -0.07 \ 2. \\ A_2 = -0.11 \ 2, \ A_4 = -0.01 \ 2, \ \text{POL} = +0.42 \ 9 \\ (1979 \text{Ir}01). \end{array}$
549.2 2	588.8		0			
550.02 570.82	868.2 1089.5	$\begin{array}{ccc} 14 & 5 \\ 55 & 6 \end{array}$	Q E2			$\begin{array}{l} {\rm A_2=+0.21\ 2,\ A_4=-0.04\ 2.}\\ {\rm A_2=+0.27\ 3,\ A_4=-0.06\ 4\ (1981{\rm He04}).}\\ {\rm A_2=+0.27\ 1,\ A_4=-0.07\ 1,\ POL=0.42\ 6}\\ (1979{\rm Ir01}). \end{array}$
572.72	572.7					
576.72	1972.2	5.5 17	(M1+E2)	-2.6 + 17 - 45		$A_2 = -0.57 \ 15, \ A_4 = +0.15 \ 24 \ (1981 He04).$
580.1 2	1022.3	5.9 18	(M1+E2)	-1.2 +9-7		$A_2=-0.68 \ 3, \ A_4=+0.11 \ 4.$ $A_2=-0.43 \ 3, \ A_4=+0.12 \ 5 \ (1981\text{He}04).$
*585.0 2	000 0	6.0				
001.22 588 89	823.3 588.8	229 23	(Q)			A ₂ =+0.20 4, A ₄ =-0.02 6 (1981He04).
592.1.2	1414 3	41 4	Q			$A_{a} = +0.29$ 2. $A_{a} = -0.07$ 3 (1981He04)
604.0 2	2180.0	18.4 18	ч (M1+E2)	-0.14 + 9 - 7		$A_0 = +0.32$ 2, $A_4 = -0.01$ 2 (1981He04).
621.9 3	1194.6		/			2 , 4 , (,
624.4 2	1395.5	32 3	(M1+E2)	-1.2 + 7 - 5		$A_2 = -0.80 5$ , $A_4 = +0.12 8$ (1981He04).
629.0 3	1497.2					
634.2 3	909.9					
650.4 2	2064.7	22.2 <i>22</i>	Q			$A_2 = +0.24 \ 4$ , $A_4 = -0.07 \ 6$ (1981He04).
653.4 3	693.0					

## ¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)

## $^{129}_{54}$ Xe $_{75}$ -22

$E\gamma^{\dagger}$	E(level)	Ιγ‡	Mult.§	δ#	Comments
659.3.3	1430.5				
671.0.3	1336.5				
671.2.3	2433.5				
671.9.3	1197.7				
672.3 3	909.9				
672.8 2	1762.5	24.0 24	(Q)		$A_0 = +0.11$ 6, $A_4 = +0.05$ 8 (1981He04).
675.8 3	1194.5				2
683.9 <i>2</i>	1507.2	29 3	(M1+E2)	-1.5 3	$A_0 = -0.77$ 3, $A_4 = +0.08$ 4 (1981He04).
689.1 3	1748.7				2 , 4
$694.0^{@}3$	1888.5?				
711.2 3	1229.9		M1		Ey: from 1978Pa09.
					$A_{2} = +0.36$ 6, $A_{4} = -0.08$ 6, POL=-0.36 8 (1979Ir01).
712.1 3	2048.6				
716.1 3	1539.4				
717.1 2	2293.1	9.1 27	(M1+E2)	-1.9 5	$A_{2} = -0.76$ 5, $A_{4} = +0.20$ 7 (1981He04).
733.0 3	1755.3				<u> </u>
736.0 3	1507.2				
752.72	1576.0	737			
754.8 3	1197.7				
757.8 3	1032.0				
784.0 3	1816.0				
785.4 3	1059.6				
795.9 3	1032.0				
817.1 3	1336.5				
829.7 3	1241.2				
x864.7 2		4.6			
870.4 2	2446.3	26.2 26	(Q)		A ₂ =+0.11 9, A ₄ =+0.05 13 (1981He04).
^x 906.4 2		4.7			
^x 946.0 2		7.1			
992.8 3	1816.0				
1110.2 3	2307.4				
1213.1 3	2036.2				
1265.1 3	2036.2				$\mathrm{E}\gamma$ : missing in 1988Zh10. Deduced by the evaluators.
1348.9 3	2172.0				

¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)

 †  From 1988Zh10 unless otherwise noted. Unplaced  $\gamma$  rays are from 1983Lo08.

 $\ddagger$  From 1981He04 at angle  $125^\circ$  to the beam.

§ Multipolarities were deduced from  $\gamma(\theta)$ (1983Lo08); and linear polarization data from 1979Ir01, unless otherwise noted. Mult=(M1+E2) is assigned based on RUL when there is significant mixture of dipole and quadrupole transitions, and (E2) is expected for most quadrupole transitions.

# From 1981He04, unless otherwise noted. Because 1979Ir01 adopted Rose-Brink convention, their sign was reversed by the evaluators.

Placement of transition in the level scheme is uncertain.

 $^{x}\;\;\gamma$  ray not placed in level scheme.

 $[\]gamma(^{129}$ Xe) (continued)



## ¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)



## $^{129}_{54} \rm Xe_{75} {-} 24$



## ¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)

#### Level Scheme

Intensities: relative  $\mathrm{I}\gamma$ 



¹²⁶Te(α,nγ) 1988Zh10,1981He04 (continued)

Level Scheme (continued)

Intensities: relative  $\mathrm{I}\gamma$ 



### ¹²⁸Xe(n, $\gamma$ ),(n,n): Resonances 2006MuZX

All data are from 2006MuZX evaluation.

## ¹²⁹Xe Levels

Comments

E(level) [†]	Jπ	Г	L	
			_	
S(n) = 0.0297?	1 / 2 +		0	E(level): fictitious level.
S(n)+0.10017 10	1 / 2 +		0	gΓ _n =0.0063 eV 25.
S(n)+0.23800 24	1 / 2 +	0.39 eV 8	0	$g\Gamma_{n}=0.320 \text{ eV } 20.$
S(n)+0.3415 3	1/2+		0	$g\Gamma_{n}^{'}=0.038 \text{ eV } 4.$
S(n)+0.3708 4	1 / 2 +		0	$g\Gamma_n = 0.046 \text{ eV} 10.$
S(n)+0.5174 5				
S(n)+0.5545 6	1 / 2 +		0	$g\Gamma_n = 0.152 \text{ eV } 17.$
S(n)+0.7160 7	1 / 2 +		0	$g\Gamma_n = 3.60 \text{ eV } 15.$
S(n)+1.3650 14	1 / 2 +		0	$g\Gamma_{n} = 0.17 \text{ eV } 3.$
S(n)+1.4084 14	1 / 2 +		0	$g\Gamma_n=0.17$ eV 7.
S(n)+1.6099 16	1 / 2 +		0	$g\Gamma_{n}=0.39 \text{ eV } 8.$
S(n)+2.2076 22	1 / 2 +		0	$g\Gamma_{n} = 0.34 \text{ eV } 5.$
S(n)+2.756 3	1 / 2 +		0	$g\Gamma_n = 0.99 \text{ eV } 25.$
S(n)+2.771 3	1 / 2 +		0	$g\Gamma_n = 1.00 \text{ eV } 25.$
S(n)+3.441 3	1 / 2 +		0	$g\Gamma_n=2.4 \text{ eV } 4.$

 $^{\dagger}~S(n)(^{129}Xe){=}6907.1~{\it 11}$  (2012Wa38). Excitation energies are from 6906.97 to 6910.41 keV.

## ¹²⁹Xe(**γ**,**γ**') 2006Vo04

2006Vo04: bremsstrahlung radiation with endpoint energy of 4.1 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$  at 90°, 127° and 150° using three Ge detectors. One detector with an anti-Compton shield. J $\pi$ (¹²⁹Xe target)=1/2+ from Adopted Levels.

### ¹²⁹Xe Levels

g=(2J+1)/(2J_0+1), where  $J_0=1/2$ , J=1/2,3/2.

E(level)	$J\pi^\dagger$	gΓ ₀	I _{s,0} ‡	Comments
0.0	1/9			
449.9.2	1/2+			
442.2 3				
1939 0 10	1/9 3/9	$0.82 \times 10^{-3}$ eV 18	201	$R(M1)^{+}-0.111.24$ $R(F1)^{+}-1.2\times10^{-5}.3$
1200.0 10	1/2,0/2	0.02/10 ev 10	2.0 4	$r red = 0.42 \times 10^{-3} \text{ eV/MeV}^3 \text{ e}$
1570 0 10	1/9 9/9	$2 4 \times 10^{-3}$ oV 2	5 4 5	$g_{10} = 0.43 \times 10^{-10} e_{V/MeV} = 3.$ $P(M(1)^{+} = 0.920, 92, P(F(1)^{+} = 9.6 \times 10^{-5}, 2)$
1570.0 10	1/2,3/2	5.4×10 ev 5	5.4 5	$D(M1)^{+}=0.250^{-}25, D(E1)^{+}=2.0\times10^{-5}5.$
1001 0 10	1/0 9/0	1 2 1 0 - 3 . 17 2	1 4 9	$g_{10}^{=0.09\times10^{-5}} e_{V/MeV}^{-9}$
1004.0 10	1/2,3/2	1.5×10 ev 5	1.4 5	$B(M1) = 0.052 \ 11, \ B(E1) = 0.57 \times 10^{-5} \ 12.$
0100 0 10	1/0 0/0	1 110-3	0 0 0	$g_{10}^{-1} = 0.20 \times 10^{-5} \text{ eV/MeV}^{-4}$
2186.0 10	1/2,3/2	1.1×10 ° ev 3	0.8 2	$B(M1) = 0.026$ 6, $B(E1) = 0.29 \times 10^{-5}$ 7.
0000 0 10	1/0 0/0	1 010=3	1 4 9	$g_{10}^{-1} = 0.10 \times 10^{-5} \text{ eV/MeV}^{-2}$
2289.0 10	1/2,3/2	1.9×10 ° ev 4	1.4 3	$B(M1) = 0.040 \ 8, \ B(E1) = 0.44 \times 10^{-5} \ 9.$
		²		$g1_0^{164}=0.15\times10^{-6} \text{ eV/MeV}^{-3}$
2343.0 10	1/2,3/2	5.8×10 ⁻⁵ eV 6	4.1 4	$B(M1) = 0.117 II, B(E1) = 1.30 \times 10^{-6} I3.$
				$g1_0^{-1}e^{4}=0.45\times10^{-3} e^{7}/Me^{7}$
2355.0 10	1/2,3/2	$9.2 \times 10^{-3}$ eV 7	6.4 5	$B(M1) = 0.183 \ 14, \ B(E1) = 2.03 \times 10^{-3} \ 16.$
		2		$g\Gamma_0^{1ed} = 0.71 \times 10^{-3} \text{ eV/MeV}^3 5.$
2383.0 10	1  /  2  ,  3  /  2	$2.2 \times 10^{-3}$ eV 4	1.52	$B(M1)^{T}=0.042$ 7, $B(E1)^{T}=0.46\times10^{-5}$ 8.
				$g\Gamma_0^{\text{red}} = 0.16 \times 10^{-3} \text{ eV/MeV}^3 3.$
2394.0 10	1  /  2  ,  3  /  2	$7.4 \times 10^{-3}$ eV 7	4.9 5	$B(M1)\uparrow=0.139$ 13, $B(E1)\uparrow=1.54\times10^{-5}$ 14.
				$g\Gamma_0^{red} = 0.54 \times 10^{-3} \text{ eV/MeV}^3 5.$
2425.1 7	1  /  2 , $3  /  2$	$6.3 imes10^{-3}$ eV $9$	2.0 3	$B(M1)\uparrow=0.115 \ 16, \ B(E1)\uparrow=1.268\times10^{-5} \ 18.$
				$g\Gamma_0^{red} = 0.44 \times 10^{-3} \text{ eV/MeV}^3 6.$
2499.0 10	1  /  2 , $3  /  2$	$4.0 \times 10^{-3}$ eV $4$	2.5 3	$B(M1)\uparrow=0.067$ 7, $B(E1)\uparrow=0.74\times10^{-5}$ 8.
				$g\Gamma_0^{red} = 0.26 \times 10^{-3} eV/MeV^3 3.$
2554.0 10	$1 \ / \ 2 \ , \ 3 \ / \ 2$	$2.2  imes 10^{-3}$ eV $4$	1.3 2	$B(M1)\uparrow=0.035$ 6, $B(E1)\uparrow=0.38\times10^{-5}$ 6.
				$g\Gamma_0^{\text{red}}=0.13\times10^{-3} \text{ eV/MeV}^3 2.$
2592.0 10	$1 \: / \: 2$ , $3 \: / \: 2$	$5.3 \times 10^{-3}$ eV $5$	3.0 3	$B(M1)\uparrow=0.078\ 8,\ B(E1)\uparrow=0.86\times10^{-5}\ 9.$
				$g\Gamma_0^{red} = 0.30 \times 10^{-3} \text{ eV/MeV}^3 3.$

## $^{129}_{54} \rm Xe_{75} - 28$

#### 129 Xe( $\gamma, \gamma'$ ) 2006Vo04 (continued)

## ¹²⁹Xe Levels (continued)

E(level)	$J\pi^{\dagger}$	gΓ ₀	[‡]	Comments
9674 0 10	1/9 9/9	$2.2 \times 10^{-3}$ oV 4	1 9 9	$P(M1)^{+}_{-0.020} = P(P1)^{+}_{-0.24 \times 10^{-5}} =$
2074.0 10	1/2,3/2	2.2×10 ev 4	1.22	$\sigma\Gamma^{\text{red}} = 0.030 \ \text{J}, \ \sigma\Gamma^{\text{red}} = 0.12 \times 10^{-3} \ \sigmaV/M_{\Theta}V^{3} \ \text{g}$
2724 0 10	1/2 3/2	$2 3 \times 10^{-3} \text{ eV} 4$	1 2 2	$B(M1)^{-0.12\times10} = 6 B(E1)^{-0.32\times10^{-5}} 6$
2124.0 10	1/2,0/2	2.0/10 01 1	1.2 2	$\sigma \Gamma_{a}^{red} = 0.11 \times 10^{-3} \text{ eV/MeV}^{3} 2$
2744.0 7	1/2.3/2	$6.3 \times 10^{-3}$ eV 11	0.72	$B(M1)^{+}=0.079$ 14. $B(E1)^{+}=0.874\times10^{-5}$ 16.
				$g\Gamma_0^{red} = 0.30 \times 10^{-3} eV/MeV^3 5.$
2767.0 10	1/2, 3/2	$2.2 \times 10^{-3}$ eV 5	$1.1 \ 3$	$B(M1)\uparrow=0.026\ 6,\ B(E1)\uparrow=0.29\times10^{-5}\ 7.$
	<i>,</i>			$g\Gamma_0^{red} = 0.10 \times 10^{-3} eV/MeV^3 2.$
2776.0 10	1/2, 3/2	$2.5 \times 10^{-3}$ eV 4	1.2 2	$B(M1)\uparrow=0.030\ 5,\ B(E1)\uparrow=0.34\times10^{-5}\ 6.$
				$g\Gamma_0^{red} = 0.12 \times 10^{-3} \text{ eV/MeV}^3 2.$
2793.0 10	1  /  2 , $3  /  2$	$4.7  imes 10^{-3}$ eV $5$	2.3 3	$B(M1)\uparrow=0.056\ 6,\ B(E1)\uparrow=0.62\times10^{-5}\ 7.$
				$g\Gamma_0^{\text{red}}=0.21\times10^{-3} \text{ eV/MeV}^3 2.$
2854 . 0 10	1  /  2 , $3  /  2$	$3.6 \times 10^{-3}$ eV 5	1.72	$B(M1)\uparrow=0.040~5, B(E1)\uparrow=0.45\times10^{-5}~6.$
				$g\Gamma_0^{red}=0.16\times10^{-3} eV/MeV^3 2.$
2917.0 10	$1 \mathbin{/} 2$ , $3 \mathbin{/} 2$	$1.5 \times 10^{-3}$ eV 4	0.72	$B(M1)\uparrow=0.015$ 4, $B(E1)\uparrow=0.17\times10^{-5}$ 4.
				$g\Gamma_0^{red} = 0.06 \times 10^{-3} eV/MeV^3 2.$
2972.0 10	$1 \ / \ 2 \ , \ 3 \ / \ 2$	$2.2 imes10^{-3}$ eV 5	0.92	$B(M1)\uparrow=0.021 \ 4, \ B(E1)\uparrow=0.24\times10^{-5} \ 5.$
				$g\Gamma_0^{\text{red}} = 0.08 \times 10^{-3} \text{ eV/MeV}^3 2.$
3015.0 10	1  /  2 , $3  /  2$	$2.2  imes 10^{-3}$ eV $4$	0.92	$B(M1)\uparrow=0.021$ 4, $B(E1)\uparrow=0.23\times10^{-5}$ 5.
				$g\Gamma_0^{red} = 0.08 \times 10^{-3} \text{ eV/MeV}^3 2.$
3023.0 10	1  /  2 , $3  /  2$	$2.0 \times 10^{-3}$ eV 5	0.8 2	$B(M1)\uparrow=0.018\ 5,\ B(E1)\uparrow=0.20\times10^{-5}\ 5.$
		0		$g\Gamma_0^{\text{red}} = 0.07 \times 10^{-3} \text{ eV/MeV}^3 2.$
3215.0 10	1/2,3/2	4.6×10 ⁻³ eV 9	1.7 3	$B(M1)^{T}=0.036$ 7, $B(E1)^{T}=0.40 \times 10^{-5}$ 7.
		9		$g\Gamma_0^{\text{red}}=0.14\times10^{-5} \text{ eV/MeV}^3$ 3.
3783.1 10	1/2,3/2	4.5×10 ⁻³ eV 13	1.24	$B(M1) = 0.021$ 6, $B(E1) = 0.24 \times 10^{-5}$ 7.
		( a t a - 3 TT t a		$g\Gamma_0^{\text{red}} = 0.08 \times 10^{-3} \text{ eV/MeV}^3 2.$
3805.1 10	1/2,3/2	$4.6 \times 10^{-3}$ eV 13	1.2 3	$B(M1) = 0.0216$ , $B(E1) = 0.24 \times 10^{-6}$ 7.
2000 1 10	1/0 0/0	4 5.10-3 . 11 14	1.0.4	$gI_0^{-\infty} = 0.08 \times 10^{-\infty} eV/MeV^{-2}$
3829.1 10	1/2,3/2	4.0×10 ° eV 14	1.24	$B(MI) = 0.021 /, B(E1) = 0.23 \times 10^{\circ} 7.$
				$g_{10}^{=0.00\times10} = e_{10}^{=0.00\times10}$

† 1/2,3/2 from dipole excitation in 1/2+ target.
‡ Integrated cross section in eV.b units.

### $\gamma(^{129}{ m Xe})$

E(level)	$\mathbf{E} \gamma^{\dagger}$	Ιγ	Comments
442.2	442.273		
693.0	250.8‡ 3		
1239.0	1239		
1570.0	1570		
1884.0	1884		
2186.0	2186		
2289.0	2289		
2343 . 0	2343		
2355.0	2355		
2383.0	2383		
2394.0	2394		
2425 . 1	1983	108 30	Iy: Deduced by the evaluators from R(expt) value listed by 2006Vo04.
	2425	100	
2499.0	2499		
2554 . 0	2554		
2592.0	2592		
2674.0	2674		
2724.0	2724		
2744.0	2051	380 120	Iy: Deduced by the evaluators from R(expt) value listed by 2006Vo04.
	2744	100	
2767.0	2767		
2776.0	2776		
2793.0	2793		
2854.0	2854		

## $^{129}_{54} \rm Xe_{75} - 29$

## $^{129}_{54}\rm Xe_{75}{-29}$

#### 129 Xe( $\gamma,\gamma'$ ) 2006Vo04 (continued)

 $\gamma(^{129}\mathrm{Xe})$  (continued)

E(level)	$E\gamma^{\dagger}$
2917.0	2917
2972.0	2972
3015.0	3015
3023.0	3023
3215.0	3215
3783.1	3783
3805.1	3805
3829.1	3829

[†] No uncertainty on the gamma ray energies given in 2006Vo04, 1 keV is assumed by evaluators.
 [‡] From Adopted Gammas.

## 129 Xe( $\gamma,\gamma'$ ) 2006Vo04 (continued)

#### Level Scheme

Intensities: relative photon branching from each level



#### Coulomb Excitation 1978Pa09,1990Na18

1978Pa09: ¹²⁹Xe(α,α') E=8,10 MeV, ¹²⁹Xe(¹⁶O,¹⁶O') E=42 MeV, Ge γ, γγ-coin, B(E2). 1990Na18: Ni(¹²⁹Xe,¹²⁹Xe') E=440 MeV, Ge, γ(θ), t, B(λ), recoil-distance. B(E2) values are those from 1978Pa09.

### ¹²⁹Xe Levels

E(level)	Jπ‡	T _{1/2} †	Comments
0.0	1/9+	stable	
3962	3/2+	stable	
318.2 1	3/2+	67.5 ps 20	$B(E2)^{\uparrow}=0.23 \ 2.$
321.7 1	(5/2+)	44.0 ps 19	$B(E2)^{=0.23}$ 2.
411.5 1	1 / 2 +		
518.7 2	7 / 2 +		
572.6 2	5 / 2 +	2.0 ps 2	$B(E2)^{=0.17}$ 1.
588.72	3 / 2 +		$B(E2)^{=0.0062}$ 4.
665.0 2	(7/2)+		
822.1 2	(9/2)+		
823.00 17	(5/2+)		E(level), J $\pi$ : level and placement of 504 $\gamma$ based on Adopted dataset.
867.9 3	(7/2)+		

## $^{129}_{54} \mathrm{Xe}_{75} \mathrm{-} 31$

#### 1978Pa09,1990Na18 (continued) **Coulomb** Excitation

## $^{129}\mathrm{Xe}$ Levels (continued)

E(level)	$J\pi^{\ddagger}$	Comments
904.2 2	3 / 2+	B(E2) [↑] =0.0042 3.
		B(E2) is based on the data of 1978Pa09 who do not report the two strongest $\gamma$ rays from this level, 586 and 865 keV reported by 1979Ir01.
946.0 2	1/2+,3/2+	B(E2) [↑] =0.0010 3.
985.7 3		
995.7 3	(1/2,3/2)	$J\pi$ : $\gamma$ to $1/2$ + only.
1058.9 3		
1089.3 3	(11/2)+	
1229.9 4		
1414.4 4	(13/2)+	
1761.8 4	(15/2)+	

[†] From recoil-distance method (1990Na18).
 [‡] From Adopted Levels unless otherwise noted.

## $\gamma(^{129}\text{Xe})$

E(level)	Eγ	Ιγ	Comments
39 6	3962	100	
318.2	278.6 1	35 1	
	318.2 1	65 1	
321.7	282.1 1	78 1	
	321.7.1	22 1	
411.5	372.0.1	57 2	
	411.5 1	43 2	
518.7	196.7 5		
	479.1 1		
572.6	250.9 2	4 1	
	254.72	$2 \ 1$	
	533.12	81 2	
	572.6 2	13 1	
588.7	177.12	6 1	
	267.02	6 1	
	270.52	4 1	
	548.92	722	
	588.6 3	$12 \ 2$	
665.0	343 . 2 2	38 12	
	346.82	62 2	
822.1	303.4 1	15 2	
	500.4 1	$72 \ 1$	
823.00	504.03	13 <i>1</i>	
867.9	546.2 3	37 17	
	$549.8_{-3}$	45 18	
	868.2† <i>4</i>	18 14	E $\gamma$ : transition to 1/2+ g.s. requiring M3 is unlikely; evaluators consider the placement of this $\gamma$ suspect since not confirmed in in $(\alpha, n\gamma)$ study. It is not listed in Adopted dataset.
904.2	492.62		
	904.2 3		
946.0	533.95	7 4	
	906.54	70 13	
	946.02	23 8	
985.7	664.0 3	100	
995.7	584.2 3	100	
1058.9	393.92	100	
1089.3	570.62	100	
1229.9	711.2 3	100	
1414.4	592.3 3	100	
1761.8	672.5 3	100	

 †  Placement of transition in the level scheme is uncertain.

Coulomb Excitation 1978Pa09,1990Na18 (continued)

### Level Scheme

Intensities: % photon branching from each level



 $^{129}_{55}$ Cs₇₄-1

### Adopted Levels, Gammas

 $Q(\beta^-)=-2436 \ 11; \ S(n)=9639 \ 7; \ S(p)=4928 \ 5; \ Q(\alpha)=-1087 \ 5 \ 2012Wa38.$ 

S(2n)=17402 7, S(2p)=13093 6 (2012Wa38).

1950Fi16: ¹²⁹Cs produced and identified in bombardment of ¹²⁷I by ³He beam followed by chemical separation and half-life measurement.

Later decay studies: 1955Ni21, 1960Jh02, 1963Fr13, 1965Sh08, 1966Re10, 1967Gr05, 1967Wa11, 1971Ob03, 1972Ge20, 1974Ma24, 1976Me16, 1979Be54.

Precise mass measurement by Penning trap method: 1999Am04, 1990St25.

1969Ma04: measured isotope shift, atomic beam magnetic resonance.

## ¹²⁹Cs Levels

#### Cross Reference (XREF) Flags

	A ¹²⁹ Ba ε Decay (2 B ¹²⁹ Ba ε Decay (2 C ¹²⁹ Cs IT Decay (	2.23 h) 1.135 h) 0.718 μs)		D 122 Sn $(^{11}$ B,4n $\gamma$ ), 124 Sn $(^{11}$ B,6n $\gamma$ ) E 116 Cd $(^{18}$ O,4np $\gamma$ ) F 127 I $(\alpha, 2n\gamma)$		
E(level) [†]	Jπ‡	XREF	T _{1/2} §	Comments		
0.0	1/2+	ABCDEF	32.06 h 6	<ul> <li>%ε+%β⁺=100.</li> <li>μ=+1.491 8 (1981Th06,2014StZZ).</li> <li>μ: atomic-beam laser spectroscopy (1981Th06).</li> <li>Evaluated rms charge radius=4.7981 fm 50 (2013An02).</li> <li>Jπ: spin from atomic beam (1956Ni16,1958Ni27) and hyperfine structure (1981Th06); parity from log ft=5.57 from 1/2+ parent.</li> <li>Charge radius and isotope-shift measurements: 1981Th06, 1978Hu08, 1969Am04.</li> <li>T_{1/2}: from 1965Sh08. Others: 33.3 h 6 (1971Ob03), 32.35 h 10 (1967Wa11), 32.4 h 3 (1963Fr13), 30.7 h 5 (1955Ni21) 31 h 1 (1950Fi16)</li> </ul>		
6.5450 ^c 10	5 / 2 +	ABCDEF	72 ns 6	J. E2 $\gamma$ to 1/2+; 3/2+ is not likely since in that case transition is expected to be dominantly M1; bandhead. T _{1/2} : from (ce+x ray) $\gamma$ (t) in ¹²⁹ Ba $\varepsilon$ decay.		
135.59 7	3 / 2 +	ABC		$J_{\pi}^{1/2}$ : M1+E2 $\gamma$ to 5/2+; M1(+E2) $\gamma$ to 1/2+; log ft=6.39 from 1/2+.		
188.91 ^b 6	7 / 2 +	BCDEF	2.26 ns 6	$T_{1/2};$ from yce(t) in $^{129}Ba$ $\epsilon$ decay. Jp: E2 $\gamma$ to 3/2+; $\Delta J{=}1,~M1{+}E2~\gamma$ to 5/2+; band member.		
208.81 ^a 6	(5/2)+	ABCDEF		XREF: C(?). J $\pi$ : $\Delta J=(0)$ , M1(+E2) $\gamma$ to 5/2+.		
220.78 6	3 / 2 +	ABC		XREF: C(?). J $\pi$ : M1(+E2) gammas to 5/2+ and 1/2+; log ft=6.1 from 1/2+.		
426.47 ^c 8	(9/2)+	BCDEF		J \pi: $\Delta J=1$ , M1 $\gamma$ to 7/2+; (E2) $\gamma$ to 5/2+; band member.		
551.59 15	(5/2+)	В		J $\pi$ : gammas to 1/2+ and 3/2+; possible $\epsilon$ feeding from 7/2+.		
554.05 13	(1/2,3/2)+	Α		$J\pi$ : log ft=6.59 from 1/2+; M1,E2 $\gamma$ to 3/2+.		
555.10 9	(5/2,7/2)+	В		$J\pi \colon$ M1,E2 $\gamma$ to 7/2+ and 3/2+; possible $\epsilon$ feeding from 7/2+.		
575.40 ^d 14	(11/2-)	BCDEF	0.718 µs 21	<ul> <li>%IT=100.</li> <li>μ=+6.55 10 (1978De29,2014StZZ).</li> <li>Jπ: ΔJ=1 (E1) γ to (9/2)+; (M2) γ to 7/2+; systematics of h_{11/2} isomers in this mass region and band member.</li> <li>μ: TDPAD method (1978De29).</li> <li>T_{1/2}: from γγ(t) in ¹²⁷I(α,2nγ); weighted average of 0.734 μs 23 (1978De29), and 0.69 μs 3 (1977Ch23).</li> <li>Other: 0.73 μs 7 (1979Ga01, same group as 1978De29).</li> </ul>		
603.36 ^{&amp;} 6	(7/2+)	B DE		$J\pi$ : (M1) $\gamma$ to (9/2)+; $\gamma$ to 3/2+.		
648.41 ^b 8	(11/2+)	B DEF		J $\pi$ : $\Delta J=2$ , (E2) $\gamma$ to 7/2+; band member.		
690.32a 8	(9/2+)	B DEF		J $\pi$ : $\Delta J=2$ , (E2) $\gamma$ to (5/2)+; $\Delta J=1$ , (M1) $\gamma$ to 7/2+.		
755.26 7	(5/2,7/2)+	в		$J\pi$ : M1,E2 $\gamma$ to (9/2)+; (M1) $\gamma$ to 3/2+.		
879.31 10	(5/2+,7/2+)	В		$J\pi:$ (M1,E2) $\gamma$ to 5/2+; $\gamma$ from (9/2)+; $\gamma$ to 3/2+.		
969.23 7	(5/2+,7/2+)	В		J $\pi$ : (M1,E2) $\gamma$ to (9/2)+; $\gamma$ to 3/2+.		
991.97 9	(7/2+, 9/2+, 11/2+)	в		$J\pi$ : (M1,E2) $\gamma$ to 7/2+; $\gamma$ to (11/2+).		
1023.3 ^d 4	(15/2-)	DEF		$J\pi$ : $\Delta J=2$ , E2 $\gamma$ to (11/2-) in band.		
1032.9 ^c 4	(13/2+)	DEF		$J\pi$ : $\Delta J=2 \gamma$ to $9/2+$ ; $\Delta J=1,(M1+E2) \gamma$ to $(11/2+)$ .		
1150.4 ^e 6	(13/2-)	DEF		J $\pi$ : $\Delta J=1 \gamma$ to (11/2-); band member.		
1156.23 12	(5/2+,7/2+)	В		J $\pi$ : $\gamma$ to 3/2+; weak $\gamma$ to (9/2)+.		
1164.68 17	(1/2,3/2)+	Α		$J\pi$ : log ft=6.65 from 1/2+; (M1,E2) $\gamma$ to 1/2+.		

Continued on next page (footnotes at end of table)

 $^{129}_{55}$ Cs₇₄-1

## $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}2$

# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}2$

## Adopted Levels, Gammas (continued)

## ¹²⁹Cs Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2} §	Comments
1931 7 & 5	$(11/9_{\pm})$	DF		In: common to $0/2+$ and $7/2+$ ; hand member
1251.1 0	(5/2+7/2+)	B		$J_{\pi}$ : (M1 F2) w to 3/2+; w to (9/2)+
1255.08 7	(3/2+, 1/2+)	DEE	0 52 mg 119 11	$J\pi$ . (M1,E2) $\gamma$ to $J/2+$ , $\gamma$ to $(J/2)+$ .
1279.5~ 5	(15/2+)	DEF	0.55 ps +12-11	Q(transition)=6.0 + 8-6.
1339.8 ^a 4	(13/2+)	DEF		$J\pi$ : $\Delta J=2 \gamma$ to $9/2+$ ; $\Delta J=1 \gamma$ to $(11/2+)$ .
1609.64 22	(1/2, 3/2)	Α		$J\pi$ : log ft=6.95 from 1/2+; $\gamma$ to 3/2+.
1627.6 ^d 5	(19/2-)	DEF	1.64 ps +53-35	Q(transition)=3.6+5-4.
				$J\pi$ : $\Lambda J=2$ . E2 $\gamma$ to (15/2-); band member.
1648 01 6	(9/2) +	в		$J\pi$ : (M1) $\gamma$ to (5/2 7/2)+: gammas to 5/2+ (11/2-) and
1010101 0	(0,2):	2		$(11/2_{\pm})$ ; s feeding from $7/2_{\pm}$ is most likely allowed
1618 56 99	(1/2 + 3/2)	Δ		$I_{\pi}$ log ft-7.6 from 1/2+; gammas to 3/2+ and (5/2)+
1691 60 0	(5/2, 7/2, 0/2)	P		$I_{\pi}$ common to $5/2$ , and $9/2$ ; (M1) or to $(5/2)$ , $7/2$ .
1601 68 5	(3/2+, 1/2+, 3/2+)	DEE		$J\pi$ : A I = 1 or to (15/2 + and 5/2 +, (M1) y to (5/2 +, 1/2 +).
1604 18 92	(1/2 -)	A		$I_{\pi}$ : log ft-7 58 from 1/2+; v to 2/2+
1094.10 20	(1/2, 3/2)	A .		$J_{\pi}$ log $f_{t} = 7.58$ from $1/2+$ , $\gamma$ to $3/2+$ .
1700.95 22	(1/2+,3/2)	A		$J_{\pi}$ : log $l = 1.0$ from $1/2+$ ; gammas to $1/2+$ and $3/2+$ .
1718.05 5	(15/2-)	DEE		$J_{\pi}$ : $\gamma$ to $(11/2-)$ ; band member:
1793.0° 4	(17/2+)	DEF		$J\pi: \Delta J=2 \gamma to (13/2+); \gamma to (15/2+).$
1812.00 8	(9/2)+	в		$J\pi$ : gammas to $J/2+$ , $(11/2-)$ and $(11/2+)$ ; $\varepsilon$ feeding from
1000 40 10	(1/0 0/0)			1/2 + 1s most likely allowed.
1830.49 16	(1/2,3/2)	A		$J\pi$ : log $ft$ =5.99 from 1/2+; $\gamma$ to 1/2+.
1890.80 5	15/2+	DE		$J\pi$ : $\Delta J=2$ , E2 $\gamma$ to 11/2+; band member.
1922.83 16	(1/2+,3/2)	A		$J\pi$ : log $ft=6.7$ from 1/2+; $\gamma$ to 1/2+ and 5/2+.
1941.02 14	(7/2+,9/2,11/2+)	В		$J\pi$ : gammas to 7/2+ and (11/2+).
1954.03 14	(1/2+,3/2+)	A		$J\pi$ : log ft=5.8 from 1/2+; gammas to 1/2+ and 5/2+.
2019.12 <i>19</i>	(9/2,11/2+)	В		$J\pi$ : gammas to 7/2+, (11/2-) and (11/2+).
2047.45 4	(19/2+)	DEF	0.30 ps +12-8	Q(transition)=4.7 + 8-7.
				$J\pi$ : $\Delta J=2$ , $E2 \gamma$ to (15/2+); band member.
2077.66 22	(1/2+,3/2)	Α		$J\pi$ : gammas to 3/2+ and 5/2+; log ft=8.23 from 1/2+.
2123.2ª 4	(17/2+)	DEF		$J\pi$ : $\Delta J=2 \gamma$ to $(13/2+)$ ; band member.
2214.48 6	(19/2-)	D F		$J\pi: \Delta J = 2 \gamma$ to $(15/2-); \Delta J = 1 \gamma$ to $(17/2-).$
2254.8? 3		А		$J\pi$ : $\gamma$ to $3/2$ + suggests $1/2$ to $7/2$ +; possible $\varepsilon$ feeding
	( ) ( )	555		from $1/2+$ gives $1/2,3/2$ .
2319.5° 5	(21/2-)	DEF	0.40 15.14	$J\pi: \Delta J = 2 \gamma$ to $(17/2-); \Delta J = 1 \gamma$ to $(19/2-).$
2396.0° 6	(23/2-)	DE	0.49  ps + 15 - 14	Q(transition)=3.6 + 7-5.
				$J\pi$ : $\Delta J=2$ , E2 $\gamma$ to (19/2-); band member.
2500.6 6	(19/2+)	D		$J\pi$ : $\Delta J=2 \gamma$ to (15/2+).
2633.10 5	(21/2+)	DE	0.15 ps +4-6	Q(transition)=5.2 + 13-6.
0005 18 5	(10/0)	DE		$J\pi: \Delta J=2, EZ \gamma$ to $(17/2+); \gamma$ to $(19/2+).$
2667.1 5	(19/2+)	DE		$J\pi$ : $\Delta J=2$ gammas to (15/2+); $\gamma$ to (19/2+).
$2676.5^{\#} 4$	(19/2+)	DE		$J\pi: \Delta J = 2 \gamma$ to $(15/2+); \gamma$ to $(19/2+).$
2812.7 5	(21/2+)	DE		$J\pi: \Delta J=2 \gamma$ to $(17/2+); \Delta J=1, (M1+E2) \gamma$ to $(19/2+).$
2842.15 6	(23/2-)	D	0.15 10.5	$J\pi: \Delta J = 2 \gamma$ to (19/2-); $\gamma$ to (21/2-).
2908.35 5	(23/2+)	DE	0.15  ps + 10 - 7	Q(transition) = 5.0 + 14 - 13.
and the sha		P		$J\pi: \Delta J=2, EZ \gamma$ to $(19/2+).$
2942.5" 6	(21/2+)	D		$J\pi$ : $\Delta J = 1 \gamma$ to $(19/2+)$ ; band member.
2952.64 6	(21/2+)	DE		$J\pi: \Delta J = 2 \gamma to (17/2+); \gamma to (19/2+).$
2981.2 7	(19/2+,21/2+)	D		$J\pi$ : $\gamma$ to $(17/2+)$ ; $\gamma$ irom $(23/2+)$ .
3042.8" 6	(23/2+)	DE		$J\pi: \Delta J = 1, (M1+E2) \gamma$ to $(21/2+); \gamma$ to $(19/2+).$
3095.9° 6	(25/2-)	DE		$J\pi: \Delta J = 2 \gamma$ to $(21/2-); \Delta J = 1 \gamma$ to $(23/2-).$
3157.34 b	(23/2+)	D	0 99 10	$J\pi: \Delta J=2 \gamma$ to $(19/2+); \Delta J=1, (M1+E2) \gamma$ to $(21/2+).$
3235.94 6	(21/2-)	DE	0.33 ps 10	$Q(\text{transition})=3.5 \pm 7-5.$
2201 4 0	(95 (9.))	D		$J_{\pi}: \Delta J = 2, EZ \neq to (23/2+);$ band member.
3291.4 9	(25/2+)	DE	10 19 55	$J\pi: \Delta J=2 \gamma$ to $(21/2+)$ .
0400.0: 9	20/2T	DE	<0.10 hs	$q_{(1)}$ and $1 > 0.0.$ $I_{\pi} \cdot \Lambda I_{-9} = F_{-9} + f_{0} (91/9_{+}) \cdot h_{0} h_{0} + h_{0} h_{0}$
2406 4@ 6	(95/9.)	DE		$J_{\pi}: \Delta J = 2, E Z \neq to (21/2+); band member.$
0400.4° 0	(20/2+)	DE		$J_{\pi} = \Delta J = 1, (M1 + E2) \gamma = 0 (23/2+); \gamma = 0 (21/2+).$
2519 of 7	20/2+ (95/9)	Ц		$\sigma_{R}$ , $\Delta \sigma = 1, (M1 + E2) \gamma$ to $(2\delta/2+);$ band member.
2500 78 6	(20/2-)	Ц		$\sigma_{R}$ , $\Delta \sigma = 1$ $\gamma$ to $(2\sigma/2-)$ ; $\gamma$ to $(2\sigma/2-)$ .
2689 1b 6	(21/2-)	Ц		$\sigma_{R}$ , gammas to $(2\delta/2-)$ and $(2\ell/2-)$ ; band member.
2082.1" b	(2//2+)	D		$J\pi$ : gammas to (23/2+) and (25/2+); band member.
3730 0b 7	(21/2-)	D DF	<0.11 ng	$\sigma_{R.} \Delta \sigma = 2 \gamma to (20/2-); \Delta \sigma = 1, (M1+EZ) \gamma to (20/2-).$
0100.07 /	(21/2+)	DE	ZO.II PS	$v_{1}$ (1 and 10 11 / 20.4. $I_{\pi}$ , $\Lambda I_{-9}$ , $F_{9}$ (1 a (92 / 9.1), here $J_{-m}$ are been
				on. $\Delta \sigma = 2$ , $\Delta 2 \gamma$ to $(\Delta 3/2 \pm 7)$ , band member.

## $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}3$

#### Adopted Levels, Gammas (continued)

### 129 Cs Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2} §	Comments
3733.3 9	(23/2 to 27/2+)	D		$J\pi$ : $\gamma$ to (23/2+).
$3734.2^{\#}6$	(27/2+)	DE		J $\pi$ : $\Delta J=1,(M1+E2) \gamma$ to (25/2+); $\gamma$ to (23/2+); band member.
3810.3 ^a 7	(25/2+)	D		$J\pi: \Delta J=2 \gamma \text{ to } (21/2+); \gamma \text{ to } (2/2+).$
3919.9 9	(25/2)	D		$J\pi: \Delta J=1 \gamma$ to $(23/2+)$ .
3924.5° 7	(29/2-)	DE		$J\pi: \Delta J=2 \gamma$ to (25/2-); $\Delta J=1 \gamma$ to (27/2-).
3949.4° 11	(29/2+)	DE		$J\pi$ : $\Delta J=2 \gamma$ to $(25/2+)$ ; band member.
3993.6 ^h 8	(29/2+)	D		$J\pi$ : gammas to (25/2+) and (27/2+).
4026.9 ^f 9	(29/2-)	D		J $\pi$ : $\Delta J=1,(M1+E2) \gamma$ to $(27/2-)$ ; band member.
4114.7 ^d 7	(31/2-)	DE	0.139 ps +49-20	Q(transition) = 4.7 + 6-7.
			-	$J\pi$ : $\Delta J=2$ , E2 $\gamma$ to (27/2-); band member.
4130.0@ 7	(29/2+)	DE		$J\pi: \Delta J=1, (M1+E2) \gamma$ to $(27/2+); \gamma$ to $(25/2+).$
4199.4 10	(29/2)	D		$J\pi: \Delta J=1 \gamma$ to $(27/2+)$ .
4366.9h 8	(31/2+)	D		$J\pi: \Delta J=2$ to $(27/2+); \gamma$ to $(29/2+).$
4420 . 6 f 8	(31/2-)	D		$J\pi: \Delta J=1, (M1+E2) \gamma$ to $(29/2-); \gamma$ to $(31/2-).$
4437.1 ^b 10	(31/2+)	DE		$J\pi: \Delta J=2 \gamma$ to $(27/2+)$ .
4445.3g 7	(31/2-)	D		J $\pi$ : $\gamma$ to (27/2-); band member.
4599.0# 7	(31/2+)	D		$J\pi: \Delta J=1 \gamma$ to (29/2+); $\gamma$ to (27/2+).
4764.4 ^e 8	(33/2-)	D		$J\pi: \Delta J=1 \gamma$ to $(31/2-)$ .
4900.0 ^f 11	(33/2-)	D		$J\pi: \Delta J=1 \gamma \text{ to } (31/2-).$
5024.4 8	(33/2+)	D		$J\pi$ : gammas to (29/2+) and (31/2+).
5032.6d 8	(35/2-)	DE	<0.40 ps	Q(transition)>2.5.
				$J\pi$ : $\Delta J=2$ , E2 $\gamma$ to (31/2-) in band.
5067.2@ 8	(33/2+)	D		J $\pi$ : gammas to (29/2+) and (31/2+); band member.
5212.5 ^h 11	(35/2+)	D		J $\pi$ : $\gamma$ to (31/2+); band member.
5282.4 ^b 12	(35/2+)	D		$J\pi$ : $\Delta J=2 \gamma$ to $(31/2+)$ ; band member.
5402 . 1 ^f 13	(35/2-)	D		$J\pi$ : $\Delta J=1 \gamma$ to (33/2-); band member.
5547.2 # 9	(35/2+)	D		J $\pi$ : gammas to (31/2+) and (33/2+); band member.
5566.7 ^a 8	(35/2+)	D		J $\pi$ : gammas to (31/2+) and (33/2+); band member.
5692.3 ^e 9	(37/2-)	D		$J\pi$ : gammas to (33/2-) and (35/2-); band member.
5989.6d 9	(39/2-)	DE		$J\pi$ : $\Delta J=2 \gamma$ to $(35/2-)$ ; band member.
6050.7 10	(35/2 to 39/2+)	D		$J\pi: \gamma \text{ to } (35/2+).$
6200.4 ^h 13	(39/2+)	D		J $\pi$ : $\gamma$ to (35/2+); band member.
6271.4 ^b 13	(39/2+)	D		$J\pi$ : $\gamma$ to (35/2+); band member.
7000.8 ^d 12	(43/2-)	DE		$J\pi$ : $\Delta J=2 \gamma$ to $(39/2-)$ ; band member.
7380.4 ^b 14	(43/2+)	D		$J\pi$ : $\gamma$ to (39/2+); band member.
8099.5 ^d 14	(47/2-)	D		$J\pi$ : $\gamma$ to $(43/2-)$ : band member.

[†] From least-squares fit to the adopted E $\gamma$  values, assuming 0.5 keV uncertainty when not given. Reduced  $\chi^2$ =1.5 somewhat greater than critical  $\chi^2$ =1.3.

[‡] From in-beam γ-ray studies, unless otherwise noted, based on M1+E2 and stretched quadrupole cascade-crossover relations observed. Band structures are based on the cranked-shell model calculation and systematics of neighboring nuclei. Most band assignments have been proposed by 2009Si08 and 2009Zh20 in ¹²²Sn(¹¹B,4nγ), ¹²⁴Sn(¹¹B,6nγ). For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population.

 $\ensuremath{\$}$  From DSAM (2010Wa01) in ( $^{11}\text{B},xn\gamma),$  unless otherwise noted.

 $\label{eq:alpha} \mbox{${}^{\#}$} (A): \mbox{Possible 3-qp band,} \mbox{$\alpha=-1/2$. Possible configuration=$\pi$h$_{11/2}$ $\otimes$ $\nu$h$_{11/2}$ $\otimes$ $\nu$($g_{7/2}/s_{1/2}/d_{3/2})$.$ 

@ (B): Possible 3-qp band,  $\alpha = +1/2$ . Possible configuration =  $\pi h_{11/2} \otimes v h_{11/2} \otimes v (g_{7/2}/s_{1/2}/d_{3/2})$ .

& (C):  $\pi g_{7/2} + \gamma$  vibration.

a (D):  $\pi g_{7/2}, \alpha = +1/2$ . Favored signature partner, band crossing due to  $h_{11/2}$  proton pair at h $\omega = 0.41$  MeV.

b (E):  $\pi g_{7/2}, \alpha = -1/2$ . Unfavored signature partner, band crossing due to  $h_{11/2}$  proton pair at h $\omega = 0.37$  MeV.

c (F):  $\pi d_{5/2} \alpha = +1/2$ . Favored signature partner, band crossing due to  $h_{11/2}$  proton pair at h $\omega = 0.37$  MeV.

d (G):  $\pi h_{11/2}^{0/2}, \alpha = -1/2$ . Favored signature partner, band crossing due to  $h_{11/2}^{0/2}$  neutron pair at h $\omega = 0.43$  MeV.

e (H):  $\pi h_{11/2}$ ,  $\alpha$ =+1/2. Unfavored signature partner, band crossing due to  $h_{11/2}$  neutron pair at  $\hbar\omega$ =0.41 MeV.

f (I): Possible magnetic-rotational band. Possible configuration= $\pi h_{11/2} \otimes v h_{11/2}^2$ .

g (J):  $\pi h_{11/2} + \gamma$  vibration. The  $\gamma$  vibration refers to that of a triaxial core.

h (K): Possible 3-qp,  $\Delta J$ =1 band. Possible configuration= $\pi h_{11/2} \otimes \nu h_{11/2} \otimes \nu (g_{7/2}/s_{1/2}/d_{3/2})$ .

#### $\gamma(^{129}Cs)$

E(level)	$E\gamma^{\dagger}$	$I\gamma^\dagger$	Mult. [‡]	δ‡	α§	Comments
6.5450	6.545 1	100	E2		432000	B(E2)(W.u.)=39 4. Mult.: from L subshell ratio.

 $\gamma(^{129}Cs)$  (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.‡	δ‡	α§	Comments
135.59	129.14 10	100 5	M1+E2	0.20 5	0.449 10	$\begin{aligned} &\alpha(\mathbf{K}) = 0.381 \ 7; \ \alpha(\mathbf{L}) = 0.054 \ 3; \\ &\alpha(\mathbf{M}) = 0.0112 \ 6. \\ &\alpha(\mathbf{N}) = 0.00236 \ 12; \ \alpha(\mathbf{O}) = 0.000322 \ 13; \\ &\alpha(\mathbf{P}) = 1.477 \times 10^{-5} \ 21. \end{aligned}$
	135.61 20	13.9 14	M1(+E2)	<0.4	0.399 19	Mult.: from $\alpha(\exp)$ ratio. $\alpha(K)=0.336$ 11; $\alpha(L)=0.050$ 7; $\alpha(M)=0.0103$ 15. $\alpha(N)=0.0022$ 3; $\alpha(O)=0.00029$ 4; $\alpha(D)=1.290\times 10^{-5}$ 20
188.91	53.2 <i>3</i>	0.23 2	E2		18.6 5	B(E2)(W.u.)=29 3. $\alpha(K)=6.53 12; \ \alpha(L)=9.5 3; \ \alpha(M)=2.08 7.$ $\alpha(N)=0.419 13; \ \alpha(O)=0.0474 15;$ $\alpha(P)=0.000174 4.$
	182.3 <i>1</i>	100 5	M1+E2	0.25 2	0.1718 25	$\begin{aligned} \alpha(K) = 0.1463 \ 21; \ \alpha(L) = 0.0203 \ 4; \\ \alpha(M) = 0.00418 \ 8. \\ \alpha(N) = 0.000880 \ 16; \ \alpha(O) = 0.0001210 \ 20; \\ \alpha(P) = 5.65 \times 10^{-6} \ 8. \\ \\ Mult.: \ from \ \alpha(exp) \ and \ \gamma(\theta). \\ B(M1)(W.u.) = 0.00124 \ 4; \\ B(F2)(W.u.) = 1.55 \ 24 \end{aligned}$
208.81	73.2 3	1.8 2	M1 ( +E2 )	<0.3	2.35 16	$\begin{array}{l} \alpha({\rm K})=1.93 \ 6; \ \alpha({\rm L})=0.33 \ 8; \ \alpha({\rm M})=0.069 \ 17. \\ \alpha({\rm N})=0.014 \ 4; \ \alpha({\rm O})=0.0019 \ 4; \\ \alpha({\rm P})=7.45 \times 10^{-5} \ 14. \end{array}$
	202.38 10	100 5	M1(+E2)	0.22	0.128 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1094 \ 23; \ \alpha(\mathbf{L}) = 0.0148 \ 14; \\ &\alpha(\mathbf{M}) = 0.0030 \ 3. \\ &\alpha(\mathbf{N}) = 0.00064 \ 6; \ \alpha(\mathbf{O}) = 8.8 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{P}) = 4.25 \times 10^{-6} \ 7. \end{aligned}$ Mult: from $\alpha(\exp)$ and $\gamma(\theta)$ .
220.78	85.1 3	1.7 3	[M1 , E2 ]		2.4 10	$\alpha(K)=1.6\ 4;\ \alpha(L)=0.6\ 5;\ \alpha(M)=0.13\ 10.$ $\alpha(N)=0.027\ 20;\ \alpha(O)=0.0032\ 23;$ $\alpha(P)=5.1\times10^{-5}\ 3.$ Iy: From $\epsilon$ decay of 2.135-h activity. Other: 0.40 4 in 2.23-h activity.
	214.30 10	100 5	M1(+E2)	0.5 <i>5</i>	0.113 8	$\alpha(K)=0.095 \ 4; \ \alpha(L)=0.014 \ 3; \alpha(M)=0.0029 \ 7. \alpha(N)=0.00061 \ 13; \ \alpha(O)=8.3\times10^{-5} \ 14; \alpha(P)=3.59\times10^{-6} \ 11$
	220.83 10	653	M1(+E2)	<0.9	0.104 5	
426.47	238.0 2	12.9 <i>13</i>	M1		0.0819	
	420.0# 2	100#6	(E2)		0.01548	$\begin{split} &\alpha(K) = 0.01295 \ I9; \ \alpha(L) = 0.00201 \ 3; \\ &\alpha(M) = 0.000417 \ 6. \\ &\alpha(N) = 8.70 \times 10^{-5} \ I3; \ \alpha(O) = 1.157 \times 10^{-5} \ I7; \\ &\alpha(P) = 4.58 \times 10^{-7} \ 7. \end{split}$
551.59	416.1 2	61 7				
554.05	333.9 3	15.0 14	M1 , E2		0.0323 14	$\begin{split} &\alpha(\mathbf{K}) {=} 0.0273 \ 18; \ \alpha(\mathbf{L}) {=} 0.0040 \ 3; \\ &\alpha(\mathbf{M}) {=} 0.00083 \ 7. \\ &\alpha(\mathbf{N}) {=} 0.000174 \ 13; \ \alpha(\mathbf{O}) {=} 2.35 {\times} 10^{-5} \ 10; \\ &\alpha(\mathbf{P}) {=} 1.00 {\times} 10^{-6} \ 13. \end{split}$

## $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}5$

### Adopted Levels, Gammas (continued)

## $\gamma(^{129}\mathrm{Cs})$ (continued)

E(level)	${f E}\gamma^{\dagger}$	Iγ [†]	Mult.‡	α§	Comments
554.05	554.0 2	100 10	(M1,E2)	0.0083 12	$\alpha(\mathbf{K}) = 0.0071 \ 11; \ \alpha(\mathbf{L}) = 0.00095 \ 9; \ \alpha(\mathbf{M}) = 0.000194 \ 16.$
555.10	334.0 3	23.0 24	M1 , E2	0.0323 14	$\begin{aligned} \alpha(N) &= 4.1 \times 10^{-4}, \ \alpha(L) &= 0.0040 \ 3; \ \alpha(M) &= 0.00083 \ 7. \\ \alpha(N) &= 0.000174 \ 13; \ \alpha(L) &= 0.35 \times 10^{-5} \ 10; \\ \alpha(P) &= 1.00 \times 10^{-6} \ 13. \end{aligned}$
	345.3 3 $366.1^{@}$ 2 $420.0^{\#}$ 2	4.85 475 $91^{\#}10$	M1 , E2	0.0250 17	Eγ: poor fit, level-energy difference=346.3. $\alpha(K)=0.0211$ 18; $\alpha(L)=0.00305$ 12; $\alpha(M)=0.00063$ 3. $\alpha(N)=0.000132$ 5; $\alpha(O)=1.79\times10^{-5}$ 3; $\alpha(P)=7.8\times10^{-7}$ 11.
	549.02	100 11			
575.40	149.1 <i>3</i>	100 10	(E1)	0.0722	Iy: branching ratios are from in-beam $\gamma$ -ray data where this level is populated more intensely than in $\epsilon$ decay. Values from $\epsilon$ decay are in general agreement. $\alpha(K)=0.0620 \ 10; \ \alpha(L)=0.00810 \ 13; \ \alpha(M)=0.001647 \ 25.$ $\alpha(N)=0.000344 \ 6; \ \alpha(O)=4.65 \times 10^{-5} \ 7; \ \alpha(P)=2.03 \times 10^{-6} \ 3.$
					$B(E1)(W.u.)=5.8\times10^{-8}$ 5.
	354.8&		[M4]	1.369	Eγ: γ reported only by 1983TaZI in ε decay with an upper limit of intensity. It is neither seen in any other decay study (1972Ta02, 1973Is04) nor in in-beam γ-ray data; thus it is considered as questionable by the evaluators. $\alpha(K)=1.045$ 15; $\alpha(L)=0.255$ 4; $\alpha(M)=0.0558$ 8.
	366.1 [@] & 2		[E3]	0.0787	$ α(N)=0.01173 17; α(O)=0.001542 22; α(P)=5.80×10-5 9. $ Eγ: γ not reported in in-beam γ-ray data; B(E3)(W.u.)=400 50 is a factor of 4 larger than RUL, thus this transition is considered suspect. $α(K)=0.0592 9; α(L)=0.01542 22; α(M)=0.00331 5. $ $α(N)=0.000681 10; α(O)=8.49×10^{-5} 12; $ $α(P)=2.09×10^{-6} 3.$
	386.6 3	677	(M2)	0.0863	$I_{Y}: 82 \ 9 \ in \ \varepsilon \ decay.$ $\alpha(K)=0.0728 \ 11; \ \alpha(L)=0.01074 \ 16; \ \alpha(M)=0.00223 \ 4.$ $\alpha(N)=0.000471 \ 7; \ \alpha(O)=6.52\times10^{-5} \ 10; \ \alpha(P)=3.12\times10^{-6} \ 5.$ $B(M2)(W.u.)=0.067 \ 7.$
	569.2 3	12.7 13	[E3]	0.01751	Iγ: ≈11 in ε decay. $\alpha(K)=0.01419 \ 20; \ \alpha(L)=0.00264 \ 4; \ \alpha(M)=0.000554 \ 8.$ $\alpha(N)=0.0001153 \ 17; \ \alpha(O)=1.506\times10^{-5} \ 22;$ $\alpha(P)=5.29\times10^{-7} \ 8.$ B(E3)(W, u,)=5.9.9.
603.36	177.02 10	100 5	(M1)	0.182	$\begin{aligned} &\alpha(K) = 0.1565\ 22;\ \alpha(L) = 0.0206\ 3;\ \alpha(M) = 0.00422\ 6.\\ &\alpha(N) = 0.000892\ 13;\ \alpha(O) = 0.0001242\ 18;\\ &\alpha(P) = 6.14 \times 10^{-6}\ 9. \end{aligned}$
	382.9 3	12.9 <i>13</i>			
	394.5 2	87 4			
	414.0 2	596			
	467.9 20 596.78 8	70.020	(M1,E2)	0.0068 10	$\alpha(\mathbf{K}) = 0.0059 \ 9; \ \alpha(\mathbf{L}) = 0.00078 \ 8; \ \alpha(\mathbf{M}) = 0.000160 \ 16.$ $\alpha(\mathbf{N}) = 3 \ 4 \times 10^{-5} \ 4; \ \alpha(\mathbf{Q}) = 4 \ 6 \times 10^{-6} \ 6; \ \alpha(\mathbf{P}) = 2 \ \times 10^{-7} \ 4$
648.41	459.5 1	100	(E2)	0.01193	$\alpha(\mathbf{K}) = 0.01003 \ I4; \ \alpha(\mathbf{L}) = 0.001517 \ 22; \ \alpha(\mathbf{M}) = 0.000314 \ 5. \\ \alpha(\mathbf{N}) = 6.55 \times 10^{-5} \ I0; \ \alpha(\mathbf{O}) = 8.77 \times 10^{-6} \ I3; \\ \alpha(\mathbf{P}) = 3.58 \times 10^{-7} \ 5. $
690.32	263.9 [#] 3	7.8 [#] 10	(M1,E2)	0.0641 21	
	481.4 1	100 5	(E2)	0.01046	$\begin{aligned} &\alpha(\mathbf{K}) = 0.00881 \ I3; \ \alpha(\mathbf{L}) = 0.001315 \ I9; \ \alpha(\mathbf{M}) = 0.000272 \ 4. \\ &\alpha(\mathbf{N}) = 5.68 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 7.62 \times 10^{-6} \ II; \\ &\alpha(\mathbf{P}) = 3.16 \times 10^{-7} \ 5. \end{aligned}$
	501.4 <i>1</i>	72 3	(M1)	0.01203	$\begin{split} &\alpha(\mathbf{K}) = 0.01037 \ 15; \ \alpha(\mathbf{L}) = 0.001322 \ 19; \ \alpha(\mathbf{M}) = 0.000270 \ 4. \\ &\alpha(\mathbf{N}) = 5.70 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 7.98 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{P}) = 4.01 \times 10^{-7} \ 6. \\ &I\gamma: \ 10.4 \ 10 \ in \ ^{122} \mathrm{Sn}(^{11}\mathrm{B}, 4n\gamma), ^{124} \mathrm{Sn}(^{11}\mathrm{B}, 6n\gamma) \ is \\ &\mathrm{discrepant.} \end{split}$
### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\mathrm{Cs})$ (continued)

E(level)	$\mathbf{E}\gamma^{\dagger}$	$_ I \gamma^\dagger$	Mult. [‡]	α§	Comments
755.26	151.9 3	2.7 3	[M1+E2]	0.35 8	$\alpha(\mathbf{K})=0.28$ 4; $\alpha(\mathbf{L})=0.06$ 3; $\alpha(\mathbf{M})=0.012$ 6.
	328.4 3	4.75	M1 , E2	0.0339 14	$\begin{aligned} \alpha(N) = 0.00286 \ 12; \ \alpha(L) = 0.0042 \ 4; \ \alpha(M) = 0.00088 \ 8. \\ \alpha(N) = 0.00183 \ 15; \ \alpha(D) = 2.47 \times 10^{-5} \ 12; \\ \alpha(P) = 1.05 \times 10^{-6} \ 13. \end{aligned}$
	534.4 2	28.4 26	(M1)	0.01028	$\begin{aligned} &\alpha(\mathbf{K})=0.00886 \ 13; \ \alpha(\mathbf{L})=0.001127 \ 16; \ \alpha(\mathbf{M})=0.000230 \ 4. \\ &\alpha(\mathbf{N})=4.86\times 10^{-5} \ 7; \ \alpha(\mathbf{O})=6.80\times 10^{-6} \ 10; \\ &\alpha(\mathbf{P})=3.42\times 10^{-7} \ 5. \end{aligned}$
	546.6 1	100 5	(M1)	0.00972	$ \begin{array}{l} \alpha({\rm K}){=}0.00839 \ 12; \ \alpha({\rm L}){=}0.001066 \ 15; \ \alpha({\rm M}){=}0.000217 \ 3. \\ \alpha({\rm N}){=}4.60{\times}10^{-5} \ 7; \ \alpha({\rm O}){=}6.43{\times}10^{-6} \ 9; \ \alpha({\rm P}){=}3.24{\times}10^{-7} \ 5. \end{array} $
	566.21 10	66 3			
	619.8 3	6.57			
	748.5 ^a 2	<59a	(M1,E2)		
879.31	658.9 3	15.5 16			
	670.4 3	15.7 16			
	690.32	798			
	744.4 3	8.5 10			
	872.5 2	100 9	(M1,E2)		
969.23	542.92	61 6	(M1,E2)	0.0087 12	$ \begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.0074 \ 11; \ \alpha(\mathbf{L}) \!=\! 0.00100 \ 9; \ \alpha(\mathbf{M}) \!=\! 0.00205 \ 16. \\ &\alpha(\mathbf{N}) \!=\! 4.3 \!\times\! 10^{-5} \ 4; \ \alpha(\mathbf{O}) \!=\! 6.0 \!\times\! 10^{-6} \ 6; \ \alpha(\mathbf{P}) \!=\! 2.8 \!\times\! 10^{-7} \ 5. \end{aligned} $
	748.5 ^a 2	< 1 0 8 a			
	759.92	20.8 20			
	780.4 2	100 5			
	833.5 2	41 5			
	962.6 2	44 5			
991.97	343.4 3	3.1 4			
	437.0 3	6.57			
	803.0 1	100 5	(M1,E2)		
1023.3	447.9 4	100	E2	0.01284	$\begin{aligned} &\alpha(\mathbf{K})=0.01078 \ 16; \ \alpha(\mathbf{L})=0.001642 \ 24; \ \alpha(\mathbf{M})=0.000340 \ 5. \\ &\alpha(\mathbf{N})=7.10\times10^{-5} \ 11; \ \alpha(\mathbf{O})=9.48\times10^{-6} \ 14; \\ &\alpha(\mathbf{P})=3.84\times10^{-7} \ 6. \end{aligned}$
1032.9	384.9 7		(M1+E2)	0.0217 17	$ \begin{array}{l} \alpha({\rm K}) = 0.0184 \ 18; \ \alpha({\rm L}) = 0.00263 \ 6; \ \alpha({\rm M}) = 0.000541 \ 16. \\ \alpha({\rm N}) = 0.000114 \ 3; \ \alpha({\rm O}) = 1.54 \times 10^{-5} \ 3; \ \alpha({\rm P}) = 6.8 \times 10^{-7} \ 10. \end{array} $
	606.1 4		Q		
1150.4	575.3 7	100	D+Q		
1156.23	601.0 3	13.3 13			
	730.2 3				Iγ: weak transition.
	935.22	100 11			
	947.6 ^a 3	<21 ^a			
1164.68	944.5 3	10.2 10			
	1164.4 2	100 10	(M1,E2)		
1231.7	628.0 7	100 12			
	805.5 7	60 8			
1255.68	263.9# 3	13.0# 19			
	286.2 2	293	(M1,E2)	0.0504 8	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0423 \ 12; \ \alpha(\mathrm{L}) = 0.0065 \ 9; \ \alpha(\mathrm{M}) = 0.00135 \ 21. \\ \alpha(\mathrm{N}) = 0.00028 \ 4; \ \alpha(\mathrm{O}) = 3.8 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.54 \times 10^{-6} \ 15. \end{array}$
	700.62	33 4			
	828.9 3	13.2 13			
	1034.8 1	100 5	(M1,E2)		
	1047.1 1	96 5	_		
1279.3	631.3 4	100	E2	0.00506	B(E2)(W.u.)=280 +60-70. $\alpha$ (K)=0.00430 6; $\alpha$ (L)=0.000602 9; $\alpha$ (M)=0.0001236 18. $\alpha$ (N)=2.60×10 ⁻⁵ 4; $\alpha$ (O)=3.53×10 ⁻⁶ 5; $\alpha$ (P)=1.571×10 ⁻⁷ 23.
1339.8	648.9 4	100	Q		
	$692.5^{\#}$ 7	15.6#	D+Q		
1609.64	1389.3 3	25.826			
	1473.6 3	100 10			
1627.6	604.3 4	100	E2	0.00566	$\begin{split} &B(E2)(W.u.){=}111 ~+24{-}36, \\ &\alpha(K){=}0.00481 ~7; ~\alpha(L){=}0.000679 ~10; ~\alpha(M){=}0.0001396 ~20, \\ &\alpha(N){=}2.93{\times}10^{-5} ~5; ~\alpha(O){=}3.98{\times}10^{-6} ~6; \\ &\alpha(P){=}1.751{\times}10^{-7} ~25. \end{split}$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\mathrm{Cs})$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.‡	α§	Comments
1648.01	392.33 10	44.0 22	(M1)	0.0223	$\begin{split} &\alpha(K){=}0.0192 \ 3; \ \alpha(L){=}0.00246 \ 4; \ \alpha(M){=}0.000503 \ 7. \\ &\alpha(N){=}0.0001064 \ 15; \ \alpha(O){=}1.487{\times}10^{-5} \ 21; \\ &\alpha(P){=}7.44{\times}10^{-7} \ 11. \end{split}$
	491.8 3	1.80 18			
	656.22	7.6 8			
	678.8 1	27.6 14	(M1)	0.00574	$ \begin{array}{l} \alpha(\mathrm{K}){=}0.00496 \ 7; \ \alpha(\mathrm{L}){=}0.000626 \ 9; \ \alpha(\mathrm{M}){=}0.0001275 \ 18. \\ \alpha(\mathrm{N}){=}2.70{\times}10^{-5} \ 4; \ \alpha(\mathrm{O}){=}3.78{\times}10^{-6} \ 6; \ \alpha(\mathrm{P}){=}1.91{\times}10^{-7} \ 3. \end{array} $
	768.8 2	5.96	(M1)		
	892.6 1	42.4 22	(M1)		
	957.5 2	8.2 8			
	999.5 1	15.6 8			
	1044.7 1	27.6 14			
	1221 7 2	12 8 6			
	1459 2 1	100 5			
	1641.1.3	2.10.20			
1648 56	1439 8 3	100 11			
	1512.9 3				
1681.60	426.2 2	374	(M1)	0.0181	$\alpha(K)=0.01556\ 22;\ \alpha(L)=0.00199\ 3;\ \alpha(M)=0.000407\ 6.$ $\alpha(N)=8.61\times10^{-5}\ 12;\ \alpha(O)=1.203\times10^{-5}\ 17;$ $\alpha(P)=6.03\times10^{-7}\ 9.$
	525.3 3	24.5 25			
	689.2 2	100 10			
	712.1 2	69 7			
	927.0 3	30 3			
	991.3 2	39 4			
	1077.7 3	33 3			
	1126.72	62 7			
	1473.3 3	17.3 17			
	1492.4 3	11.7 12			
	1675.1 3	6.9 7			
1691.6	541.5 7				
	668.0 4	100 6	D+Q		
1694.18	1140.3 3	63 6			
1500 00	1558.4 3	100 11			
1700.93	1693.8 3	93 9			
1718 0	1149 5	100 10			
1718.0	514 0 7	2 1 4			
1155.0	759 8 4	100 8	0		
1812 56	164 6 3	667	પ		
1012100	556.9 2	30 3			
	820.5 2	26 3			
	933.2 2	41 5			
	1122.3 2	47 3			
	1164.4 3	9.0 10			
	1209.12	61 3			
	1237.3 3	7.2 7			
	1385.7 3	5.35			
	1604.0 3	$2.8 \ 3$			
	1623.7 1	100 6			
	1805.5 3	5.56			
1830.49	1276.6 3	18.2 18			
	1610.3 3	51 5			
	1694.3 3	12.3 12			
1800 9	1830.3 3	100 11	<b>F</b> 9		
1990.9	009.07 1949.07	100 <i>13</i>	EZ F9		
1922 83	1368 6 2	83 0	15.2		
1022.00	1787 5 9	33 13			
	1916 4 3	20 2			
	1922.6 3	100 11			
1941.02	947.6 ^a 3	< 5 8 a			Eγ: poor fit, level-energy difference=948.7.

# $^{129}_{55}\rm Cs_{74}{-8}$

			γ(1	¹²⁹ Cs) (continue)	d)
E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [‡]	α§	Comments
1941 02	1250 5 2	77 8			
1011.02	1292.8 2	100 10			
	1752.1 3	45 4			
1954.03	1400.3 3	1.9 2			
	1744.7 3	$13.4 \ 14$			
	1818.8 3	12.5 <i>13</i>			
	1947.5 3	45 5			
	1953.83	100 9			
2019.12	1026.1 ^{&amp;} 3	36 4			
	1370.4 3	100 10			
	1444.03	83 9			
	1830.2 3	4.3 15			
2047.4	768.3 4	100	E2		B(E2)(W.u.)=180 + 50-80.
2077.66	1856.7 3	100 9			
0100 0	1869.0 3	100 9	0		
2123.2	783.1 4	100 6	Q		
0014 4	844.6 /				
2214.4	496 1	100# 8	D.O		
	587 1	100 8	D+A		
	1191 5 7	66 5	Q		
2254 82	2034 0& 3	00 5	ય		
2319 5	627 8 4	93 5	A		Ly: from 122 Sn $(^{11}$ B 4ny) Other: 16.2 in
2010.0		00 0	4		¹¹⁶ Cd( ¹⁸ O,4npG) is in severe disagreement.
	692.1 4	100 6	D+Q		
2396.0	768.2 4	100	E2		$B(E2)(W.u.)=110\ 40.$
2500.6	1222.3 7	100	Q		
2633.1	586.8 7	2.2.3	•		
	839.7 4	100 8	E2		B(E2)(W.u.)=230 + 100-70.
2667.1	166.0 7	10.0 17			
	775.9 7	100 13	Q		
	1388.4 7	61 9	Q		
2676.5	177.5 7	12.4 22			
	786.5 7	100 19	Q		
	1396.0				
2812.7	136.5 7	12.5 12	(M1+E2)	0.50 13	<ul> <li>α(K)=0.39 7; α(L)=0.09 5; α(M)=0.019 11.</li> <li>α(N)=0.0039 21; α(O)=0.00049 23; α(P)=1.30×10⁻⁵ 5.</li> <li>Iγ: from ¹²²Sn(¹¹B,4nγ). Other: 24 3 in ¹¹⁶Cd(¹⁸O,4npγ) is in severe disagreement.</li> </ul>
	145.3 7	49 6	(M1+E2)	0.41 10	$ \begin{split} &\alpha({\rm K}){=}0.32 \ 5; \ \alpha({\rm L}){=}0.07 \ 4; \ \alpha({\rm M}){=}0.015 \ 8. \\ &\alpha({\rm N}){=}0.0030 \ 15; \ \alpha({\rm O}){=}0.00038 \ 17; \ \alpha({\rm P}){=}1.08{\times}10^{-5} \ 4. \end{split} $
	1020.57	100 9	Q		
2842.1	446	,,			
	$522.8^{\#}$ 7	75# 7			
	628.0 7	39 5	0		
9009 9	1214.3 7	100 7	Q Fo		$P(F_{2})(W_{1}) = 910 + 100 - 140$
2908.3 2042 =	800.04 965 5 7	100	ЕZ		D(E2)(W.U.)=210 +100-140.
2342.0	400.0 / 805 9 7	04 10	D+O		
2052 6	890 2 7	100 19	D+Q O		
2952.0	905 5 7	11 8 20	લ		
2981 2	858	11.0 20			
3042 8	230 3 7	100	(M1 + E2)	0 096 8	
001210	366.5 7	7.8 13	(111112)	0.000 0	
3095.9	699.9 7	757	D+Q		Iy: from 122 Sn( 11 B,4ny). Other: 44 4 in 116 Cd( 18 O,4npG) is in disagreement.
	776.5 4	100 8	Q		. ,
3157.3	205.5 7	33 4	(M1+E2)	0.137 16	$\begin{array}{l} \alpha(K){=}0.112 \ 8; \ \alpha(L){=}0.020 \ 6; \ \alpha(M){=}0.0041 \ 14. \\ \alpha(N){=}0.0009 \ 3; \ \alpha(O){=}0.00011 \ 3; \ \alpha(P){=}3.95{\times}10^{-6} \ 16. \end{array}$
	214.5 7	18.2 <i>21</i>	(M1+E2)	0.120 12	$\begin{array}{l} \alpha(K){=}0.098 \ 6; \ \alpha(L){=}0.017 \ 5; \ \alpha(M){=}0.0035 \ 11. \\ \alpha(N){=}0.00074 \ 21; \ \alpha(O){=}9.6{\times}10^{-5} \ 23; \ \alpha(P){=}3.49{\times}10^{-6} \ 16. \end{array}$
	1109.4 7	100 12	Q		
3235.9	840.1 4	100	E2		B(E2)(W.u.)=110 40.

### Adopted Levels, Gammas (continued)

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}Cs)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [‡]	α§	Comments
2201 4	650 9 7	100	0		
2291.4	662 7 7	100	Q E 9		P(F2)(W,y) > 620 factor of $-2$ higher than PUL
3406.4	363.6 7	100 14	(M1+E2)	0.0254 17	$\alpha(K)=0.0215$ 18; $\alpha(L)=0.00311$ 13; $\alpha(M)=0.00064$ 3. $\alpha(N)=0.000135$ 6: $\alpha(O)=1.82\times10^{-5}$ 4: $\alpha(P)=8.0\times10^{-7}$ 11.
	594.5 7	4.5 9			
3419.0	262.1 7	100 27	(M1 + E2)	0.0654 23	$ \begin{split} &\alpha(K) {=} 0.0545 \ 9; \ \alpha(L) {=} 0.0087 \ 16; \ \alpha(M) {=} 0.0018 \ 4. \\ &\alpha(N) {=} 0.00038 \ 7; \ \alpha(O) {=} 5.0 {\times} 10^{-5} \ 7; \ \alpha(P) {=} 1.97 {\times} 10^{-6} \ 16. \end{split} $
	375.5 7	38 8			
3518.2	422.5				
	1122.07	100 9	D+Q		
3590.7	354.5				
	748.5				
	1194.5				
3682.1	262.8 7	83 20			
	524.5 7	47 8			
0.005 0	774.5 7	100 17		0.00.5	
3685.3	167.1 7	30 4	(M1+E2)	0.26 5	$\alpha(K)=0.21$ 3; $\alpha(L)=0.041$ 18; $\alpha(M)=0.009$ 4. $\alpha(N)=0.0018$ 8; $\alpha(O)=0.00023$ 9; $\alpha(P)=7.20\times10^{-6}$ 14.
	449.57	87 8	D+Q		
	589.57	705	D+Q		
	840.0 7	100 6	0		
2720 0	1289.1 7	100 6	Q Fo		$P(F_2)(W_{12}) > 250$
3733.0	690 5 7	100	112		$D(E_2)(W.U.)>350.$
3734 9	327 9 7	88 16	(M1+F2)	0 0341 14	$\alpha(\mathbf{K}) = 0.0287 \ 18 \cdot \alpha(\mathbf{L}) = 0.0043 \ 4 \cdot \alpha(\mathbf{M}) = 0.00088 \ 8$
5154.2	521.57	00 10	(1111112)	0.0041 14	$\alpha(N)=0.000184 \ 15; \ \alpha(O)=2.48\times10^{-5} \ 12; \\ \alpha(P)=1.06\times10^{-6} \ 13.$
	692.5 [#] 7 825	100# 16			
3810.3	857.27	100 18	Q		
	902.5 7	22 4			
3919.9	1011.6 7	100	D		
3924.5	688.2 7	$100 \ 9$	D+Q		
	828.7 7	70 8	Q		
3949.4		100	Q		
3993.6	311.77	100 18			
4026.9	341.37	100	(M1+E2)	0.0304 15	$\alpha(K)=0.0257$ 18; $\alpha(L)=0.00377$ 24; $\alpha(M)=0.00078$ 6. $\alpha(N)=0.000163$ 11; $\alpha(O)=2.20\times10^{-5}$ 8; $\alpha(P)=9.5\times10^{-7}$ 12.
4114.7	879.0 4	100	E2		B(E2)(W.u.)=200 + 30-70.
4130.0	395.7 7	100 19	(M1+E2)	0.0201 17	$\alpha(K)=0.0171\ 17;\ \alpha(L)=0.00243\ 4;\ \alpha(M)=0.000499\ 11.$ $\alpha(N)=0.0001048\ 17;\ \alpha(O)=1.43\times10^{-5}\ 4;$ $\alpha(D)=6.2\times10^{-7}\ 10$
	400 0				$u(1) = 0.0 \land 10 = 10.$
	724 3 7	39 <i>6</i>			
4199.4	469.4 7	100	D		
4366.9	373.5 7	68 <i>8</i>			
	684.6 7	100 16	Q		
4420.6	306.0		-		
	393.5 7	100 11	(M1+E2)	0.0204 17	$\alpha(K)=0.0173 \ 18; \ \alpha(L)=0.00246 \ 5; \ \alpha(M)=0.000507 \ 11.$ $\alpha(N)=0.0001065 \ 19; \ \alpha(O)=1.45\times10^{-5} \ 4; \ \alpha(P)=6.4\times10^{-7} \ 10$
4437.1	707.1 7	100	Q		
4445.3	854		7		
	1210				
4599.0	468.5# 9	100# 21	D+Q		
	864.5 7	53 11			
4764.4	650.6 7	100 12	D+Q		
	839.6 7	567			
4900.0	479.4 7	100	D+Q		
5024.4	425				
	895.5 7	100 18			
5032.6	917.7 4	100	E2		B(E2)(W.u.) > 56.

E(level)	Eγ [†]	Iγ [†]	Mult.‡	E(level)	$\mathbf{E} \gamma^{\dagger}$	Iγ [†]	Mult.‡
5067.2	468.5# 7	100# 30		5692.3	659.2 7	100	
	936.5 7	100 20			928.5 7		
5212.5	845.6 7	100		5989.6	957.0 4	100	Q
5282.4	845.3 7	100	Q	6050.7	484		
5402.1	502.1 7	100	D+Q	6200.4	987.9 7	100	
5547.2	479.7 7	100 18		6271.4	989.0		
	948.5 7	45 9		7000.8	1011.2 7	100	Q
5566.7	542.5			7380.4	1109.0		-
	967.5			8099.5	1098.7 7	100	

### $\gamma(^{129}Cs)$ (continued)

[†] From  $(^{11}B,xn\gamma)$  for  $\gamma$  rays from high-spin states, and from  $^{129}Ba$   $\epsilon$  decay for  $\gamma$  rays from low-spin states, unless otherwise noted. [‡] From (HI,xn $\gamma$ ) based on  $\gamma(\theta)$  for  $\gamma$  rays from high-spin states, and from  $^{129}Ba$   $\epsilon$  decay for  $\gamma$  rays from low-spin states, unless

otherwise noted. § Value overlaps M1 and E2 for M1+E2 or M1,E2 transitions.

# Multiply placed; intensity suitably divided.

@ Multiply placed.

& Placement of transition in the level scheme is uncertain.

^a Multiply placed; undivided intensity given.

(A) Possible 3-qp band, $\alpha = -1/2$ .

(B) Possible 3-qp band, $\alpha$ =+1/2.

(C)  $\pi g_{7/2} + \gamma$  vibration.



 $^{129}_{55}\mathrm{Cs}_{74}$ 



## $^{129}_{55}\mathrm{Cs}_{74}\text{--}13$

#### Adopted Levels, Gammas (continued)

(H)  $\pi h_{11/2}, \alpha = +1/2.$ 

(I) Possible magnetic-rotational band. (J)  $\pi h_{11/2}\text{+}\gamma$  vibration.



 $^{12\,9}_{5\,5}\mathrm{Cs}_{74}$ 

(K) Possible 3-qp,  $\Delta J=1$  band.



 $^{129}_{55}\mathrm{Cs}_{74}$ 





 $^{129}_{55}\mathrm{Cs}_{74}$ 

#### Adopted Levels, Gammas (continued)



 $^{12\,9}_{5\,5}\mathrm{Cs}_{74}$ 

	Adopted Levels, Gammas (continued)		
	Level Scheme (continued)		
	Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided * Multiply placed & Multiply placed; undivided intensity given		
(47/2-)		8099.5	
(43/2+)		7380.4	
(43/2-)		7000.8	
(39/2+)		- 6200.4	
(39/2–)		- 5989.6	
(37/2–)		5692.3	
(35/2+)		5547.2	
(35/2-)		5402.1	
(35/2+)		- 5212.5	
(33/2+)		- 5024.4	
(33/2-)		4764.4	
(27/2-)		-3685.3	
(27/2-)	<u> </u>	3590.7	
(25/2-)		3518.2	
25/2+		3419.0	
25/2+	3, 4, 6, 7, 8, 4, 9, 9, - 8, 4, 6, - 6, 9, 9, 9, 8,	3296.8	<0.19 mg
(25/2+)		3291.4	<0.18 ps
		3235.9	0.33 ps
(23/2+)	<u> </u>	3095.9	
(23/2+)		3042.8	
(19/2+,21/2+)		2981.2	
		2952.6	
(23/2+)		2942.5	0.15 mg
(23/2-)		2842.1	0.15 ps
		2812.7	
(19/2+)		2676.5	
(21/2+)		2633.1	0 15 ng
(19/2+)		2500.6	0.10 hg
(23/2-)		2396.0	0.49 ps
(21/2-)		2319.5	
(17/2+)		2123.2	
(19/2+)		2047.4	0.30 ns
<u>15/2+</u>		1890.8	P5
(17/2+)		1793.0	
(19/2-)		1627.6	1.04
(15/2+)		1279.3	1.04 ps 0.53 ps
1/2+		0.0	32.06 h

 $^{129}_{55}\mathrm{Cs}_{74}$ 

	Adopted Levels, Gammas (continued)	
	Level Scheme (continued)	
	Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided * Multiply placed & Multiply placed; undivided intensity given	
_(47/2-)		8099.5
(43/2+)		7380.4
(43/2-)		7000.8
(39/2+)		- 6200.4
(39/2-)		- 5989.6
(37/2-)		5692.3
(35/2+)		_ 5547.2
(19/2–)		- 2254.8 -/ 2214.4
(17/2+)		2123.2
(1/2+,3/2) (19/2+)		2077.66
(9/2,11/2+)		<u>2019.12</u> 0.30 ps
(1/2+,3/2+)		1954.03
(7/2+,9/2,11/2+) (1/2+,3/2)		1941.02
15/2+		1890.8
(1/2,3/2)		1830.49
(9/2)+ (17/2+)		1793.0
(15/2-)		1718.0
(1/2+,3/2) (1/2-3/2)		1700.93
(17/2-)		1691.6
(9/2)+		1648.01
(19/2-)		1627.6 1.64 ps
(15/2+)		<u>1279.3</u> 0.53 ns
(5/2+,7/2+)	222338 0 - 0 - 4 - 2 - 2 - 2	1255.68
$\frac{(11/2+)}{(13/2+)}$	111111111 A 44 8 8 9 9 20 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1032.9
(15/2-)		1023.3
(7/2+,9/2+,11/2+)		991.97
$\frac{(5/2+,7/2+)}{(9/2+)}$		<u>879.31</u> 690.32
(11/2+)		648.41
(7/2+)		603.36
(11/2-) (1/2,3/2)+		$\frac{575.40}{554.05}$ 0.718 µs
(9/2)+		426.47
3/2+		220.78
$\frac{(5/2)+}{7/2+}$	╷║╙ <del>┊╶────┤╞╎╩──┼┼┼╝╡──┼┼╝</del> ┤┼╋━━━┤┼╋━━━╝╎	188.91
3/2+		135.59 2.26 ns
5/2+	∖╙╧──────────┼┼╅──┼╅╧┼ヤᠩ╚──────┼┼╅────┴┼╅────┴┼╅────┴	$\frac{1}{6.5450}$ 72 ns
1/2+		<u>/0.0</u> 32.06 h

 $^{129}_{55}\mathrm{Cs}_{74}$ 

(11/2+)

(7/2+)

(11/2 - )

(9/2)+

3/2 +(5/2)+

7/2 +

3/2+

5/2 +

1/2+

(5/2,7/2)+

1

<u>*</u>*

#### Adopted Levels, Gammas (continued) Level Scheme (continued) Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided * Multiply placed & Multiply placed; undivided intensity given (47/2-) 8099.5 7380.4 (43/2+)(43/2-) 7000.8 (39/2+)6200.4 (39/2-) 5989.6 (37/2 -)5692.3 (35/2+)5547.2(35/2-) 5402.15212.5(35/2+)(33/2+)5024.44764.4 (33/2 -)(31/2+)4599.0 (31/2-) 4420.6 1691.6 (17/2 -)(5/2+,7/2+,9/2+) 1681.60 (1/2+,3/2)1648.56(9/2)+ 1648.01 1627.6 (19/2 -)1.64 ps (1/2, 3/2)1609.64 (13/2+)1339.8 (15/2+)1279.3 0.53 ps (5/2+,7/2+)1255.68(11/2+)1231.7 1164.68 (1/2, 3/2) +1156.23 (5/2+,7/2+)(13/2-)1150.4 (13/2+)1032.9 8 (15/2-)1023.3 \$_____ -------(7/2+, 9/2+, 11/2+)991.97 (5/2+,7/2+)969.23 ¢ ,0 N 39 9 (5/2+,7/2+)879.31 8 32429 (5/2,7/2)+ 755.26 13.91 M 690 | 6465 | 6469 | (9/2+)690.32 648.41

 $^{129}_{55}$ Cs₇₄

-1

 $0.718\ \mu s$ 

2.26 ns

72 ns

32.06 h

603.36

575.40

555.10

426.47 220.78

208.81

188.91

135.59

6.5450

0.0

N0,0 C

 $\mathbb{Z}$ 

<u>k</u>W

<del></del> ∓ ∓ ∓

 $\overline{\mathcal{T}}$ 

	Adopted Levels, Gammas (continued)		
	Level Scheme (continued)		
	Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided * Multiply placed & Multiply placed; undivided intensity given		
(47/2-)		8099.5	
(43/2+)		7380.4	
(43/2-)		7000.8	
(39/2+)		- 6200.4	
(39/2-)		5989.6	
(37/2-)		5692.3	
(35/2+)		5547.2	
(35/2-)		5402.1	
(35/2+)		5024 4	
(33/2+)		- 3024.4	
(33/2-)		4764.4	
(31/2+)		4599.0	
(31/2+)		4366.9	
(31/2-)		4114.7	0.139 ps
(25/2)		3919.9	
(23/2 to 27/2+)		3733.3	
(27/2-)		3590.7	
(25/2+)		<u>. 3406.4</u>	
(23/2+)		3157.3	
(19/2+,21/2+)		2981.2	
(21/2+)		2633.1	0.15 mg
(7/9+0/9+11/9+)		001.07	0.15 ps
(7/2+,9/2+,11/2+) (5/2+,7/2+)		969.23	
(5/2+,7/2+)		879.31	
(5/2,7/2)+		755.26	
(9/2+) (11/2+)		690.32	
(7/2+)		603.36	
(11/2-)	Same Sa and Sa and Same	575.40	0.718 µs
(5/2,7/2)+		555.10	1
(1/2, 3/2)+ (5/2+)	1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	551.59	
(9/2)+	↓∭₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	426.47	
3/2+		220.78	
(5/2)+		208.81	
<u>//2+</u> 3/2+		135 59	2.26 ns
5/2+	<u>\\\\m</u>	6.5450	72. ne
1/2+		/ 0.0	32.06 h

 $^{129}_{55}$ Cs $_{74}$ 

Adopted Levels, Gammas (continued)	Adopted Levels, Gammas (continued)	

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided * Multiply placed & Multiply placed; undivided intensity given

_(47/2_)	8099.5
(43/2+)	7380.4
(43/2-)	7000.8

(39/2+)	 6200.4	
(39/2-)	 - 5989.6	
(37/2-)	5692.3	
(35/2+)	 5547.2	
(35/2-)	5402.1	
(35/2+)	- 5212.5	
(33/2+)	 _ 5024.4	
(33/2-)	4764.4	
(31/2+)	4599.0	
(31/2+)	 <b>=</b> 4366.9	
(31/2-)	- 4114.7	0.190
(25/2)	= 3919.9	0.139 ps
(23/2  to  27/2+)	- 3733.3	
(27/2-)	3590.7	
(25/2+)	3406.4	
(23/2+)	= _{3157.3}	
(19/2+,21/2+)	= 2981.2	
(21/2+)	2812.7	
(19/2+)	2667.1	
(19/2+)	2500.6	
(21/2-)	 2319.5	
(17/2+)	 2123.2	
(7/2+,9/2,11/2+)	1941.02	
(17/2+)	1793.0	
(1/2+,3/2)	1648.56	•
(13/2+)	1339.8	
(13/2-)	1150.4	
(5/2+,7/2+)	 969.23	
(5/2,7/2)+	 755.26	
(11/2-)	575.40	0 718
7/2+	188.91	226  ns
3/2+	 135.59	
5/2+	6.5450	72 ns
1/2+	] 0.0	32.06 h

 $^{129}_{55}$ Cs₇₄-23

#### ¹²⁹Ba ε Decay (2.23 h) 1983TaZI,1973Is04,1972Ta02

Parent  $^{129}Ba:$  E=0.0; J\pi=1/2+; T $_{1/2}$ =2.23 h 11; Q(g.s.)=2436 11; %  $\epsilon + \% \beta^+$  decay=100.  $^{129}Ba-Q(\epsilon):$  From 2012Wa38.

 $^{129}\mathrm{Ba-J,T}_{1/2}\mathrm{:}$  From  $^{129}\mathrm{Ba}$  Adopted Levels.

- The decay schemes of the g.s. and isomer of ¹²⁹Cs seem complex, especially for the isomer decay. First level scheme was proposed in 1970Is02, later expanded by 1972Ta02 and 1973Is04. First attempt to tentatively separate the decay schemes was made in 1972-NDS (1972Ho55). Based on detailed  $\gamma\gamma$  coincidences with two Ge detectors and producing the source in different reactions producing different composition of low-spin and high-spin activities, 1983TaZI present evidence for two separate decay schemes, which are adopted here, although labeled as tentative by 1983TaZI. For the isomer decay, the gamma-ray energies and the decay scheme are almost identical to those given in 1973Is04. There is good agreement of gamma-ray energies between 1973Is04 (and 1983TaZI) and 1972Ta02, but a large number of differences exist in the placement of transitions and levels. The evaluators prefer to adopt level schemes from 1983TaZI and 1973Is04 due to better  $\gamma\gamma$  coincidence data with two Ge(Li) detectors. However, in the opinion of the evaluators, none of the studies cited above can be considered as well established, since many  $\gamma$ -ray remain either unplaced or unconfirmed. Further experiments are recommended to improve knowledge of these decay schemes using state-of-the-art detector systems and better source production methods to avoid large number of impurities present in previous studies.
- 1983TaZI: ¹²⁹Ba source formed in three reactions: ¹²⁰Sn(¹²C,3n)¹²⁹Ba, ¹²¹Sb(¹²C,4n)¹²⁹La followed by ε decay of ¹²⁹La to ¹²⁹Ba g.s. and isomer, ¹³⁰Ba(γ,n). The other two reactions also form both the g.s. and isomer of ¹²⁹Ba, albeit in different proportions, thus facilitating separation of gamma rays and their intensities into separate decay schemes. Measured Eγ, Iγ, γγ-coin using two Ge detectors. 1983TaZI is a short note in an annual laboratory report. In July 2011, the evaluators, on communication with T. Tamura (first author of 1983TaZI), were informed that there was no further report or follow-up of this work. work reported in 1983TaZI. Note that many features of the data presented in this short report are common with those in 1973IsO4.
- 1973Is04 (also 1971Is02,1970Is04): mixed (g.s. and isomer) source from  $^{133}Cs(p,5n)$ ; measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin with two Ge detectors, ce, ce $\gamma(t)$  with  $\pi\sqrt{2}$  air-core  $\beta$ -ray magnetic spectrometer. In 1971Is02, lifetime of 188-keV level was measured by (ce-L)( $\gamma$ )(t) method. In 1970Is04, a first detailed decay scheme of  $^{129}Ba$  was proposed with with 15 excited states and 49  $\gamma$  rays. In 1973Is04, a total of 176  $\gamma$  rays were reported with 107  $\gamma$  rays placed in a composite level scheme from both activities, thus no  $\epsilon,\beta^+$  feedings and log *ft* values were deduced. Half-lives of the two activities were measured.
- 1972Ta02: mixed source from  130 Ba( $\gamma$ ,n) with dominant activity from  129 Ba g.s. decay in contrast to other studies where dominant activity in the source material was from the decay of  129 Ba isomer. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin using Ge and NaI(Tl) detector. A total of 118  $\gamma$  rays reported with 100 placed in a proposed decay scheme of  129 Ba. Conversion coefficients were deduced by using  $\gamma$ -ray data from this work and ce data from 1961Ar05. Since a composite decay scheme was proposed for g.s. and isomer decay of  129 Ba, no  $\epsilon$ , $\beta^+$  feedings and log ft values were deduced. Several levels and many placements differ from those in 1983TaZI and 1973Is04. Half-lives of the two activities were measured. Low-spin activity composition in the source material was about four times higher than in the source material used in 1973Is04.
- 1961Ar05: mixed source. Measured positron spectra, ce data. A total of about 62 transition energies were deduced up to 1624 keV from K-, L- and subshell lines. Another 45 lines in the ce-energy region of 49-1143 keV with half-life of =2 h were unassigned. Deduced intensities of three positron branches. Half-lives of most of the observed transitions were measured. No level scheme was proposed, however strong  $\beta^+$  branch feeding the g.s. of ¹²⁹Cs was indicated. Half-lives of the two activities were measured.
- Others:

1976Bell: measured lifetime of 6.5-keV level by  $\gamma(ce)(t)$ .

1966Li05: measured half-lives of the two activities from  $\gamma$  rays.

1963Ya05: measured half-life of the composite source.

1959He45: measured E $\gamma$ ,  $\beta\gamma$  coin, half-life, eight  $\gamma$  rays reported with a proposed 1450-182  $\gamma$  cascade. 1950Th08, 1950Fi11: identification and production of ¹²⁹Ba isotope in proton bombardment of ¹³³Cs.

#### ¹²⁹Cs Levels

- In a composite level scheme for g.s. and isomer decay, 1970Is04 (earlier paper from authors of 1973Is04) reported 15 levels at 129,1, 182.3, 202.3, 214.3, 419.8, 595.9, 641.3, 683.8, 748.6, 962.6, 985.3, 1248.7, 1640.8, 1674.5, 1805.2. In their later paper 1971Is02, first excited state was indicates at 6.5 keV. Thus all level energies in in 1970Is04 should be increased upwards by 6.5 keV. A total of 49 transitions were placed amongst these levels.
- In a composite level scheme for g.s. and isomer decay, 1972Ta02 report 31 levels at 6.48, 135.6, 188.8, 208.8, 220.8, 426.8, 554.4, 603.6, 648.4, 690.5, 755.3, 969.6, 992.4, 1165.0, 1208.4, 1256.1, 1299.4, 1450.8, 1459.1, 1487.3, 1648.2, 1681.5, 1682.7, 1812.5, 1830.5, 1922.8, 1954.0, 2076.0, 2143.8, 2178.8, 2422.2. Nine of these at 1208.4, 1299.4, 1450.8, 1459.1, 1487.3, 1682.7, 2143.8, 2178.8 and 2422.3 have been omitted here since these are not confirmed in 1983TaZI and 1973Si04. The gamma rays from these levels have either not been confirmed or placed elsewhere in the level schemes based on γγ coin data with two Ge detectors in 1983TaZI and 1973Is04.
- In a composite level scheme for g.s. and isomer decay, 1973Is04 report 24 levels at 6.54, 135.5, 188.9, 209.1, 220.8, 426.5, 551.6, 554.9, 575.4, 603.4, 648.4, 690.3, 755.2, 879.1, 969.2, 991.9, 1156.2, 1255.6, 1647.9, 1681.4, 1812.5, 1940.4, 1953.8, 2018.9. All The level scheme for the isomer decay is essentially the same as in 1983TaZI.

### ¹²⁹Ba ε Decay (2.23 h) 1983TaZI,1973Is04,1972Ta02 (continued)

## ¹²⁹Cs Levels (continued)

1983TaZI report 16 levels populated in the decay of g.s. of  129 Ba and 23 levels from the decay of isomer in  129 Ba; five low-lying levels amongst these are populated in the decay of both the activities. A 2308.6 level reported in 1983TaZI is discarded due to poor fit of of the two  $\gamma$  rays 2105.8 and 2086.2 from this level. Their level scheme for isomer decay is almost identical to that given in 1973Is04.

E(level) [†]	$J\pi^{\ddagger}$	$T_{1/2}$	Comments
0.0	1/2+	32.06 h 6	T _{1/9} : from Adopted Levels.
6.5450 10	5 / 2 +	72 ns 6	$T_{1/2}$ : from (129.1–214.3 keV $\gamma$ )(6.54 ce(M)+ce(N))(t) (1976Be11).
135.69 8	3 / 2 +		A) M
208.87 10	(5/2)+		
220.74 7	3 / 2 +		
554.09 13	(1/2,3/2)+		Level from 1983TaZI and 1972Ta02; not in 1973Is04.
1164.66 17	(1/2,3/2)+		Level from 1983TaZI and 1972Ta02; not in 1973Is04.
1609.67 22	(1/2,3/2)		Level from 1983TaZI; not in 1972Ta02 and 1973Is04.
1648.64 22	(1/2+,3/2)		
1694.25 23	(1/2,3/2)		Level from 1983TaZI; not in 1972Ta02 and 1973Is04.
1700.93 22	(1/2+,3/2)		Level from 1983TaZI; not in 1972Ta02 and 1973Is04.
1830.52 16	(1/2,3/2)		Level from 1983TaZI and 1972Ta02; not in 1973Is04.
1922.87 16	(1/2+,3/2)		Level from 1983TaZI and 1972Ta02; not in 1973Is04.
1954.03 14	(1/2+,3/2+)		
2077.67 22	(1/2+,3/2)		Level from 1983TaZI and 1972Ta02, but different $\gamma$ rays are assigned in 1972Ta02
			from this level. Level not in 1973Is04.
2254.8 3			Level from 1983TaZI; not in 1972Ta02 and 1973Is04.

 †  From least-squares fit to Ey data.

‡ From Adopted Levels.

β⁺,ε Data

Total measured positron intensity=6% (1961Ar05).

Eε		E(level)	Iβ+§	Ie†§	Log ft‡	$\mathrm{I}(\epsilon{+}\beta^{+})^{\dagger} \$$	Comments
(181#	11)	2254 8					
(358	11)	2077 67		0 0022 2	8 2 3 6		sK-0 8313 9 sL-0 1316 7 sM+-0 03712 22
(482	11)	1954 03		1 11 7	5 80 4		$\kappa = 0.8382$ 5; $\kappa = 0.1264$ 4; $\kappa = 0.03543$ 11
(513	11)	1922 87		0 16 1	6 70 4		$\epsilon K = 0.8393 4$ ; $\epsilon L = 0.1255 3$ ; $\epsilon M + = 0.03514 10$
(605	11)	1830.52		1.18.8	5.99 4		$\epsilon K = 0.8420 \ 3; \ \epsilon L = 0.12350 \ 21; \ \epsilon M + = 0.03448 \ 7.$
(735	11)	1700 93		0 17 1	7 01 4		$\kappa K = 0.8446$ 2; $\kappa L = 0.12157$ 14; $\kappa M + = 0.03385$ 5
(742	11)	1694.25		0.046 4	7.58.5		$\epsilon K = 0.8447$ 2; $\epsilon L = 0.12149$ 14; $\epsilon M + = 0.03383$ 5.
(787	11)	1648.64		0.047 5	7.63 6		$\epsilon K=0.8454$ 2; $\epsilon L=0.1210$ 2; $\epsilon M=0.03366$ 4.
(826	11)	1609.67		0.25 2	6.95 5		$\epsilon K=0.8459$ 2; $\epsilon L=0.1206$ 1; $\epsilon M=0.03354$ 4.
(1271	11)	1164.66		1.21 11	6.65 5	1.21 11	$\epsilon K=0.8491; \epsilon L=0.11786 6; \epsilon M+=0.03265 2.$
(1882	11)	554.09	0.152	3.0 3	6.59 5	3.2 3	av EB=390.0 49: EK=0.8110 18: EL=0.1108 3:
							$\epsilon M + = 0.03062 8.$
							Ez: 975 60 ( $\beta^+$ end-point energy), relative $\beta^+$
							intensity=60 (measured in 1961Ar05).
(2215	11)	220.74	3.14 15	20.4 8	5.91 3	23.5 9	av Eβ=536.8 49; εK=0.738 3; εL=0.1004 5;
							$\epsilon M + = 0.02772 \ 12.$
							Eε: 1243 35 ( $\beta^+$ end-point energy), relative $\beta^+$
							intensity=240 (measured in 1961Ar05).
(2227#	11)	208.87	< 0.04	< 0.20	>8.0	< 0.24	av Eβ=542.0 49; εK=0.735 3; εL=0.0999 5;
							$\epsilon M + = 0.02759$ 12.
(2300	11)	135.69	1.4 1	7.4 4	6.39 4	8.8 5	av Eβ=574.5 49; εK=0.714 4; εL=0.0969 5;
							$\epsilon M + = 0.02677 \ 13.$
(2436	11)	0.0	13 1	47 1	5.63 3	60 1	av Eβ=634.9 50; εK=0.671 4; εL=0.0910 5;
							$\epsilon M + = 0.02512$ 14.
							Eε: 1425 15 ( $β^+$ end-point energy), relative $β^+$
							intensity=780 (measured in 1961Ar05).
							$I(\epsilon+\beta^+)$ : from intensity balance. 1983TaZI give
							69 6.

 †  From  $\gamma$ -ray intensity balance. Weak feedings (<2% or so) are considered as tentative since there still remain many unplaced  $\gamma$ 

rays.  ‡  For weak (<2% or so)  $\epsilon$  feedings, values are considered as approximate.

Footnotes continued on next page

## $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}25$

#### 129 Ba $\epsilon$ Decay (2.23 h) 1983TaZI,1973Is04,1972Ta02 (continued)

 $\beta^+,\epsilon$  Data (continued)

§ Absolute intensity per 100 decays.
# Existence of this branch is questionable.

## $\gamma(^{129}{\rm Cs})$

All the unplaced  $\gamma$  rays are listed with the decay of the isomer. I $\gamma$  normalization: Absolute intensities per 100 decays of  129 Ba are given by 1983TaZI.

.... . . .

EγŦ	E(level)	Ιγ§&	Mult.#	δ	ά†	I(γ+ce)&	Comments
6.545 1	6.5450		Ε2		3.98×10 ⁵ 6	23.6 9	α(L)=3.15E5 5; α(M)=6.82×104 10; α(N)=1.355E4 19; α(O)=1498 21; α(P)=0.373 6. Εγ: from ce(L2), ce(L3) measurements (1973Is04) relative to the ce(K) line of 182.32 5 γ. Other: 6.48 15 from differences of pairs γ-ray transitions feeding g.s. and 6.54-keV isomer (1972Ta02).
							I(γ+ce): from total 1γ+ce feeding this level from higher levels, no direct ε or β feeding is expected due to Jπ difference. Mult: 1.3/1.2-1.79.28
85.1 3	220.74	0.054 5	[M1,E2]		2.4 10		$\begin{aligned} \alpha(\mathbf{K}) = 1.6 \ 4; \ \alpha(\mathbf{L}) = 0.6 \ 5; \\ \alpha(\mathbf{M}) = 0.13 \ 10. \\ \alpha(\mathbf{N}) = 0.027 \ 20; \ \alpha(\mathbf{O}) = 0.0032 \ 23; \\ \alpha(\mathbf{P}) = 5.1 \times 10^{-5} \ 3. \end{aligned}$
129.14 10	135.69	5.51 28	M1+E2	0.20 5	0.449 10		$\begin{aligned} &\alpha(K) = 0.381 \ 7; \ \alpha(L) = 0.054 \ 3; \\ &\alpha(M) = 0.0112 \ 6. \\ &\alpha(N) = 0.00236 \ 12; \\ &\alpha(O) = 0.000322 \ 13; \\ &\alpha(P) = 1.477 \times 10^{-5} \ 21. \\ &\text{Mult.:} \ L1:L2:L3::100.0 \ 26:13.4 \ 13: \\ &5.4 \ 11. \ Other: \ K/\Sigma L>5.6 \\ &(196!LAr(5), \ gives \ \delta K^2/ML < 0.5 \\ \end{aligned}$
135.61 20	135.69	1.00 10	M1 ( +E2 )	<0.4	0.399 <i>19</i>		$\begin{aligned} &\alpha(\mathbf{K}) = 0.336 \ 11; \ \alpha(\mathbf{L}) = 0.050 \ 7; \\ &\alpha(\mathbf{M}) = 0.0103 \ 15. \\ &\alpha(\mathbf{N}) = 0.0022 \ 3; \ \alpha(\mathbf{O}) = 0.00029 \ 4; \\ &\alpha(\mathbf{P}) = 1.290 \times 10^{-5} \ 20. \\ &\text{Mult.,} \delta: \ \text{from } \mathbf{K} / \Sigma \mathbf{L} > 6.1 \\ &(1961 \mathrm{Ar} 05). \end{aligned}$
202.3 1	208.87	0.30 3	M1 ( +E2 )	0.2 2	0.128 4		<ul> <li>(13011105).</li> <li>α(K)=0.1095 23; α(L)=0.0148 14;</li> <li>α(M)=0.0030 3.</li> <li>α(N)=0.00064 6; α(O)=8.9×10⁻⁵ 7;</li> <li>α(P)=4.25×10⁻⁶ 7.</li> <li>Εγ: uncertainty based on γ intensity in isomer decay.</li> <li>Mult.: L1:L2:L3::100.0 44:7.0 19:</li> <li>4.5 16.</li> </ul>
214.30 10	220.74	13.4 7	M1(+E2)	0.5 5	0.113 8		$\begin{aligned} &\alpha(K) = 0.095 \ 4; \ \alpha(L) = 0.014 \ 3; \\ &\alpha(M) = 0.0029 \ 7. \\ &\alpha(N) = 0.00061 \ 13; \\ &\alpha(O) = 8.3 \times 10^{-5} \ 14; \\ &\alpha(P) = 3.59 \times 10^{-6} \ 11. \\ &\text{Mult.:} \ \alpha(K) \exp = 0.097 \ 3. \ \text{Other:} \\ &K/\Sigma L = 6.9 \ (1961 \text{Ar} 05) \ \text{gives} \end{aligned}$

05) giv  $\delta(E2/M1) < 0.75.$ 

### $^{129}_{55}$ Cs₇₄-26

## $^{129}_{55}\mathrm{Cs}_{74}\mathrm{--26}$

			1	$(^{129}Cs)$ (c	ontinued)		
Eγ‡	E(level)	<u>Ι</u> γ§&	Mult.#	δ	α†	Comments	
220.83 10	220.74	8.5 4	M1 ( +E2 )	<0.9	0.104 5	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0879 \ 23; \ \alpha(\mathbf{L}) \!=\! 0.0131 \ 19; \\ &\alpha(\mathbf{M}) \!=\! 0.0027 \ 4. \\ &\alpha(\mathbf{N}) \!=\! 0.00057 \ 8; \ \alpha(\mathbf{O}) \!=\! 7.7 \!\times\! 10^{-5} \ 9; \\ &\alpha(\mathbf{P}) \!=\! 3.30 \!\times\! 10^{-6} \ 9. \end{split}$	
333.9 3	554.09	0.44 4	M1 , E2		0.0323 14	Mult., $\delta$ : from EKC AND K/ $\Sigma$ L=6.7 (1961Ar05). $\alpha(K)=0.0273$ 18; $\alpha(L)=0.0040$ 3; $\alpha(M)=0.00083$ 7. $\alpha(N)=0.000174$ 13; $\alpha(O)=2.35\times10^{-5}$ 10; $\alpha(P)=1.00\times10^{-6}$ 13. M bit for (W) = 0.005 (10014 05)	
554.0 2	554.09	2.94 29	(M1,E2)		0.0083 12	Mult.: from $\alpha(K)\exp=0.035$ (1961Ar05). $\alpha(K)=0.0071 \ 11; \ \alpha(L)=0.00095 \ 9;$ $\alpha(M)=0.000194 \ 16.$ $\alpha(N)=4.1\times10^{-5} \ 4; \ \alpha(O)=5.6\times10^{-6} \ 6;$ $\alpha(P)=2.7\times10^{-7} \ 5.$ Mult : from $\alpha(K)\exp=0.016$ (1961Ar05)	
944.5 3	1164.66	0.112 11					
1140.3 3	1694.25	0.0176 18					
1164.4 2	1164.66	1.10 11	(M1, E2)			Mult.: from α(K)exp=0.0024 (1961Ar05).	
1276.6 3	1830 . $52$	0.118 12					
1368.6 3	1922.87	0.055 6					
1389.3 3	1609.67	0.0515					
1400.1 3	1954.03	0.0121 12					
1439.8 3	1648.64	0.0475					
1473.6 3	1609.67	0.198 20					
1512.9 3	1648.64						
1558.4 3	1694.25	0.028 3					
1610.3 3	1830.52	0.33 3					
1693.8 3	100.93	0.080 8					
1094.5.5 1701.5.3	1700 93	0.086 9					
1701.5 5	1954 03	0.086 9					
1787 5 3	1922 87	0.022.2					
1818.8 3	1954.03	0.080 8					
1830.3 3	1830.52	0.65 7					
1856.7 3	2077.67	0.0011 1					
1869.0 3	2077.67	0.0011 1					
1916.4 3	1922.87	0.0132 13					
1922.6 3	1922.87	0.066 7					
1947.5 3	1954.03	0.29 3					
1953.8 3	1954.03	0.64 6					
2034.0 3	2254 . 8						
$^{x}2086.2^{@}$							
x2105.8 [@]							

¹²⁹Ba ε Decay (2.23 h) 1983TaZI,1973Is04,1972Ta02 (continued)

 †  Overlaps M1 and E2 values for M1+E2, or M1,E2 transitions.

[‡] From unweighted average of values from 1972Ta02 and 1973Is04 (or 1983TaZI). Uncertainties are provided only by 1972Ta02. In 1983TaZI, most energies are the same as in 1973Is04. Based on comparison of values in three studies, evaluators assign the uncertainties as follows:  $\Delta(E\gamma)=0.10$  keV for I $\gamma\geq3\%$ , 0.20 keV for I $\gamma=0.5-3\%$ , and 0.3 keV or I $\gamma<0.5\%$ . Document records in the ENSDF database provide compiled E $\gamma$  values from 1973Is04, 1972Ta02, and 1961Ar05.

From 1983TaZI unless otherwise noted. Uncertainties are not given by 1983TaZI. The evaluators assign the uncertainties as follows:  $\Delta(I\gamma)=5\%$  for  $I\gamma\geq5\%$ , 10% for  $I\gamma<5\%$  Document records in the ENSDF database provide compiled I $\gamma$ , Ice(K), K/L ratios from 1973Is04, 1972Ta02, and 1961Ar05.

[#] From 1973Is04 unless otherwise noted. Values  $\alpha(K)exp$ , K/L and L-subshell ratios are from private communication to 1996Te01 from 1973Is04. Other multipolarities are deduced by evaluators of current evaluation using I $\gamma$  values from 1973Is04 and Ice(K) and/or K/L ratios from 1961Ar05. For  $\gamma$  rays above 350 keV or so, such assignments are tentative since the agreement between deduced  $\alpha(K)exp$  values and theoretical values from BrIcc code is poor.

@ γ from 1983TaZI only. 2105.8γ and 2086.2γ placed from a 2308.6 level, but the energy fit is poor, thus the evaluators have kept these as unplaced. None of the two γ rays was reported in 1973Is04 and 1972Ta02.

& Absolute intensity per 100 decays.

 x   $\gamma$  ray not placed in level scheme.



#### ¹²⁹Ba ε Decay (2.23 h) 1983TaZI,1973Is04,1972Ta02 (continued)

#### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02

 $Parent \ ^{129}Ba: \ E=8.42 \ 6; \ J\pi=7/2+; \ T_{1/2}=2.135 \ h \ 10; \ Q(g.s.)=2436 \ 11; \ \%\epsilon+\%\beta^+ \ decay\approx 100.$ 

¹²⁹Ba-Q(ε): From 2012Wa38.

¹²⁹Ba-E,J,T_{1/2}: From ¹²⁹Ba Adopted Levels.

 $^{129}\text{Ba}-\%\epsilon+\%\beta^+$  decay:  $\%\beta^-\approx100$  assumed; %IT is unknown.

- The decay schemes of the g.s. and isomer of  129 Cs seem complex, especially for the isomer decay. First level scheme was proposed in 1970Is02, later expanded by 1972Ta02 and 1973Is04. First attempt to tentatively separate the decay schemes was made in 1972-NDS (1972Ho55). Based on detailed  $\gamma\gamma$  coincidences with two Ge detectors and producing the source in different reactions producing different composition of low-spin and high-spin activities, 1983TaZI present evidence for two separate decay schemes, which are adopted here, although labeled as tentative by 1983TaZI. For the isomer decay, the gamma-ray energies and the decay scheme are almost identical to those given in 1973Is04. There is good agreement of gamma-ray energies between 1973Is04 (and 1983TaZI) and 1972Ta02, but a large number of differences exist in the placement of transitions and levels. The evaluators prefer to adopt level schemes from 1983TaZI and 1973Is04 due to better  $\gamma\gamma$  coincidence data with two Ge(Li) detectors. However, in the opinion of the evaluators, none of the studies cited above can be considered as well established, since many  $\gamma$ -ray remain either unplaced or unconfirmed. Further experiments are recommended to improve knowledge of these decay schemes using state-of-the-art detector systems and better source production methods to avoid large number of impurities present in previous studies.
- 1983TaZI: ¹²⁹Ba source formed in three reactions: ¹²⁰Sn(¹²C, 3n)¹²⁹Ba, ¹²¹Sb(¹²C, 4n)¹²⁹La followed by ε decay of ¹²⁹La to ¹²⁹Ba g.s. and isomer, ¹³⁰Ba(γ,n). The other two reactions also form both the g.s. and isomer of ¹²⁹Ba, albeit in different proportions, thus facilitating separation of gamma rays and their intensities into separate decay schemes. Measured Eγ, Iγ, γγ-coin using two Ge detectors. 1983TaZI is a short note in an annual laboratory report. In July 2011, the evaluators, on communication with T. Tamura (first author of 1983TaZI), were informed that there was no further report or follow-up of this work. work reported in 1983TaZI. Note that many features of the data presented in this short report are common with those in 1973Is04.
- 1973Is04 (also 1971Is02,1970Is04): mixed (g.s. and isomer) source from  $^{133}Cs(p,5n)$ ; measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin with two Ge detectors, ce, ce $\gamma(t)$  with  $\pi\sqrt{2}$  air-core  $\beta$ -ray magnetic spectrometer. In 1971Is02, lifetime of 188-keV level was measured by (ce-L)( $\gamma$ )(t) method. In 1970Is04, a first detailed decay scheme of  $^{129}Ba$  was proposed with with 15 excited states and 49  $\gamma$  rays. In 1973Is04, a total of 176  $\gamma$  rays were reported with 107  $\gamma$  rays placed in a composite level scheme from both activities, thus no  $\epsilon,\beta^+$  feedings and log *ft* values were deduced. Half-lives of the two activities were measured.

#### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

- 1972Ta02: mixed source from  130 Ba( $\gamma$ ,n) with dominant activity from  129 Ba g.s. decay in contrast to other studies where dominant activity in the source material was from the decay of  129 Ba isomer. Measured E $\gamma$ , I $\gamma$ , V $\gamma$  coin using Ge and NaI(Tl) detector. A total of 118  $\gamma$  rays reported with 100 placed in a proposed decay scheme of  129 Ba. Conversion coefficients were deduced by using  $\gamma$ -ray data from this work and ce data from 1961Ar05. Since a composite decay scheme was proposed for g.s. and isomer decay of  129 Ba, no  $\epsilon$ , $\beta^+$  feedings and log ft values were deduced. Several levels and many placements differ from those in 1983TaZI and 1973Is04. Half-lives of the two activities were measured. Low-spin activity composition in the source material was about four times higher than in the source material used in 1973Is04.
- 1961Ar05: mixed source. Measured positron spectra, ce data. A total of about 62 transition energies were deduced up to 1624 keV from K-, L- and subshell lines. Another 45 lines in the ce-energy region of 49-1143 keV with half-life of =2 h were unassigned. Deduced intensities of three positron branches. Half-lives of most of the observed transitions were measured. No level scheme was proposed, however strong  $\beta^+$  branch feeding the g.s. of ¹²⁹Cs was indicated. Half-lives of the two activities were measured.

Others:

1976Bell: measured lifetime of 6.5-keV level by  $\gamma(ce)(t)$ .

1966Li05: measured half-lives of the two activities from  $\gamma$  rays.

1963Ya05: measured half-life of the composite source.

1959He45: measured Ey,  $\beta\gamma$  coin, half-life, eight  $\gamma$  rays reported with a proposed 1450-182  $\gamma$  cascade.

1950Th08, 1950Fi11: identification and production of ¹²⁹Ba isotope in proton bombardment of ¹³³Cs.

### ¹²⁹Cs Levels

1959He45, based on γγ coincidences proposed a cascade of 182-1450 cascade, establishing levels at 182 and 1632 keV. These are now defined at 189 and 1648 keV, respectively.

- In a composite level scheme for g.s. and isomer decay, 1970Is04 (earlier paper from authors of 1973Is04) reported 15 levels at 129,1, 182.3, 202.3, 214.3, 419.8, 595.9, 641.3, 683.8, 748.6, 962.6, 985.3, 1248.7, 1640.8, 1674.5, 1805.2. In their later paper 1971Is02, first excited state was indicates at 6.5 keV. Thus all level energies in in 1970Is04 should be increased upwards by 6.5 keV. A total of 49 transitions were placed amongst these levels.
- In a composite level scheme for g.s. and isomer decay, 1972Ta02 report 31 levels at 6.48, 135.6, 188.8, 208.8, 220.8, 426.8, 554.4, 603.6, 648.4, 690.5, 755.3, 969.6, 992.4, 1165.0, 1208.4, 1256.1, 1299.4, 1450.8, 1459.1, 1487.3, 1648.2, 1681.5, 1682.7, 1812.5, 1830.5, 1922.8, 1954.0, 2076.0, 2143.8, 2178.8, 2422.2. Nine of these at 1208.4, 1299.4, 1450.8, 1459.1, 1487.3, 1682.7, 2143.8, 2178.8 and 2422.3 have been omitted here since these are not confirmed in 1983TaZI and 1973Si04. The gamma rays from these levels have either not been confirmed or placed elsewhere in the level schemes based on γγ coin data with two Ge detectors in 1983TaZI and 1973Is04.
- In a composite level scheme for g.s. and isomer decay, 1973Is04 report 24 levels at 6.54, 135.5, 188.9, 209.1, 220.8, 426.5, 551.6, 554.9, 575.4, 603.4, 648.4, 690.3, 755.2, 879.1, 969.2, 991.9, 1156.2, 1255.6, 1647.9, 1681.4, 1812.5, 1940.4, 1953.8, 2018.9. All The level scheme for the isomer decay is essentially the same as in 1983TaZI.
- 1983TaZI report 16 levels populated in the decay of g.s. of ¹²⁹Ba and 23 levels from the decay of isomer in ¹²⁹Ba; five low-lying levels amongst these are populated in the decay of both the activities.

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0 0	1/2+	32 06 h 6	T . from Adopted Levels
6 5450 10	E / 9 .	52.00 fi 0	$T_{1/2}$ . from Adopted Levels. The form (120.1.214.2 heV w)/6.54 ee(M) (ee(N))(4) (1076 De11)
6.5450 10	3/2+	72 HS 0	$1_{1/2}$ : 170 III (129.1-214.5 KeV $\gamma$ )(6.54 Ce(M)+Ce(N))(1) (1976 Be11).
135.56 7	3/2+	0.00	
188.92 6	7/2+	2.26 ns 6	$T_{1/2}$ : from $\gamma(ce)(t)$ (19731s04).
208.82 6	(5/2)+		
220.85 6	3 / 2 +		
426.49 8	(9/2)+		
551.58 15	(5/2+)		Level from 1983TaZI and 1973Is04; not in 1972Ta02.
555.13 9	(5/2,7/2)+		
575.44 14	(11/2-)	0.718 μs <i>21</i>	Level from 1983TaZI and 1973Is04, not in 1972TA02.
			T _{1/0} : from Adopted Levels.
603.40 7	(7/2+)		1/2 -
648.46 8	(11/2+)		
690.33 8	(9/2+)		
755.28 7	(5/2,7/2)+		
879.33 10	(5/2+,7/2+)		Level from 1983TaZI and 1973IS04, not in 1972Ta02.
969.25 7	(5/2+,7/2+)		
992.09 9	(7/2+,9/2+,11/2+)		
1156.27 12	(5/2+,7/2+)		Level from 1983TaZI and 1973Is04; not in 1972Ta02.
1255.71 7	(5/2+,7/2+)		
1648.04 6	(9/2)+		
1681.63 9	(5/2+,7/2+,9/2+)		
1812.59 8	(9/2)+		
1941.05 13	(7/2+,9/2,11/2+)		Level from 1983TaZI and 1973Is04; not in 1972Ta02.
2019.15 19	(9/2,11/2+)		Level from 1983TaZI and 1973Is04; not in 1972Ta02.

Footnotes continued on next page

### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

### 129 Cs Levels (continued)

 †  From least-squares fit to Ey data. The 947.6 doublet y from 1941 level was omitted in the fitting procedure.

‡ From Adopted Levels.

### $\beta^+,\epsilon$ Data

No log ft values are deduced since direct  $\epsilon + \beta^+$  feeding to 6.5-keV level is unknown, as well as possible %IT decay is unknown.

Eε		E(level)	Ιε [†]	$\mathrm{I}(\epsilon{+}\beta^{+})^{\dagger}$	Comments
(425	11)	2019.15	0.52 4		
(503	11)	1941.05	1.51		
(632	11)	1812.59	15.04		Most likely an allowed $\epsilon$ transition.
(763	11)	1681.63	7.2.3		
(796	11)	1648.04	59.5 13		Most probably an allowed $\varepsilon$ transition.
(1288	11)	1156.27		1.72	
(1475)	11)	969.25		1.9 5	
(1565	11)	879.33		1.74	
(1689	11)	755.28		3.66	
(1754)	11)	690.33		2.24	
(1796‡	11)	648.46		1.8 4	
(1841	11)	603.40		3.4 5	
(1889	11)	555.13		2.34	
(1893	11)	551.58		3.0 3	
(2018‡	11)	426.49		<2	

[†] Only the apparent feedings are given from intensity balance. For some levels there is non-physical negative feeding: -1.3 6 for 135.56 level, -3.7 4 for 220.85 level, -1.0 3 for 992.09 level, and -1.8 6 for 1255.7 level, implying thereby that level scheme is not known fully.

[‡] Existence of this branch is questionable.

### $\gamma(^{129}{\rm Cs})$

I $\gamma$  normalization: 1983TaZI give I $\gamma$ =40 as the absolute intensity of 182.3-keV  $\gamma$  ray, assuming the isomer decays 100% by  $\varepsilon$  decay, and no  $\varepsilon$  feeding to 6.5-keV level. Both these assumption may not be valid, thus no normalization is carried out here, only apparent  $\varepsilon$ + $\beta$ ⁺ feedings are given from intensity balances.

$\Xi \gamma^{\ddagger}$	E(level)	Iγ§	Mult.#	δ	α†	I(γ+ce)	Comments
6.545 1	6.5450		E2		3.98×10 ⁵ 6	232 7	$\begin{split} &\alpha(L){=}3.15E5~5;~\alpha(M){=}6.82{\times}10^4~{\it I0};~\alpha(N) \\ &={}1.355E4~19;~\alpha(O){=}1498~{\it 21}; \\ &\alpha(P){=}0.373~6. \end{split}$
							E $\gamma$ : from ce(L2), ce(L3) (1973Is04) measurements relative to the ce(K) line of 182.32 5 $\gamma$ .
							I( $\gamma$ +ce): from total I $\gamma$ +ce feeding the 6.5-keV level, assuming no direct $\epsilon$ + $\beta$ ⁺ feeding.
							Mult.: L3/L2=1.79 28.
53.2 3	188.92	0.23 2	E2		18.6 5		$\begin{split} &\alpha(\mathbf{K}){=}6.53 \ 12; \ \alpha(\mathbf{L}){=}9.5 \ 3; \\ &\alpha(\mathbf{M}){=}2.08 \ 7. \\ &\alpha(\mathbf{N}){=}0.419 \ 13; \ \alpha(\mathbf{O}){=}0.0474 \ 15; \end{split}$
							α(P)=0.000174 4. Mult.: L1:L2:L3=14.9 29:81.9 42: 100 5. Also E2 from K/ΣL=0.5 (1961Ar05).
73.2 3	208.82	0.59 6	M1(+E2)	<0.3	2.35 16		$\alpha(K)=1.93 \ 6; \ \alpha(L)=0.33 \ 8; \ \alpha(M)=0.069 \ 17. \ \alpha(N)=0.014 \ 4; \ \alpha(O)=0.0019 \ 4;$
							$\alpha(P)=7.45\times10^{-5}$ 14.
							Mult.,δ: from EKC=2.1, K/ΣL=5.5 (1961Ar05).
x75.2		0.202					

			γ	( ¹²⁹ Cs) (con		
$E\gamma^{\ddagger}$	E(level)	Iγ§	Mult.#	δ	α†	Comments
85.1 3	220.85	0.15 2	[M1 , E2 ]		2.4 10	$\begin{aligned} &\alpha(\mathbf{K})=1.6 \ 4; \ \alpha(\mathbf{L})=0.6 \ 5; \ \alpha(\mathbf{M})=0.13 \ 10, \\ &\alpha(\mathbf{N})=0.027 \ 20; \ \alpha(\mathbf{O})=0.0032 \ 23; \\ &\alpha(\mathbf{P})=5.1\times 10^{-5} \ 3. \end{aligned}$
^x 88.6		≤0.1				
x118.3		$\leq 0$ . 1				
×119.7		$\leq 0$ . 1				
129.14 10	135.56	11.8 6	M1+E2	0.20 5	0.449 10	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.381 \ 7; \ \alpha(\mathbf{L}) \!=\! 0.054 \ 3; \ \alpha(\mathbf{M}) \!=\! 0.0112 \ 6. \\ &\alpha(\mathbf{N}) \!=\! 0.00236 \ 12; \ \alpha(\mathbf{O}) \!=\! 0.000322 \ 13; \\ &\alpha(\mathbf{P}) \!=\! 1.477 \!\times\! 10^{-5} \ 21. \\ &\mathbf{M}ult.: \ L1:L2:L3 \!=\! 100.0 \ 26:13.4 \ 13:5.4 \ 11. \\ &\mathbf{Other}: \ \mathbf{K}/\Sigma \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
135.61 20	135.56	1.64 16	M1(+E2)	<0.4	0.399 19	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.336 \ 11; \ \alpha(\mathbf{L}) \!=\! 0.050 \ 7; \ \alpha(\mathbf{M}) \!=\! 0.0103 \ 15. \\ &\alpha(\mathbf{N}) \!=\! 0.0022 \ 3; \ \alpha(\mathbf{O}) \!=\! 0.00029 \ 4; \\ &\alpha(\mathbf{P}) \!=\! 1.290 \!\times\! 10^{-5} \ 20. \\ &\mathbf{Mult.}, \delta: \ \alpha(\mathbf{K}) \!\exp\! \!=\! 0.39, \ \mathbf{K} \!/ \Sigma \mathbf{L} \!>\! 6.1 \ (1961 \mathrm{Ar} 05). \end{split}$
x140.1		$\leq 0$ . 1				
x142.8		$\leq 0$ . 1				
x145.5		$\leq 0$ . 1				
149.1 3	575.44	1.03 10	(E1)		0.0722	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0620 \ 10; \ \alpha(\mathbf{L}) = 0.00810 \ 13; \\ &\alpha(\mathbf{M}) = 0.001647 \ 25. \\ &\alpha(\mathbf{N}) = 0.000344 \ 6; \ \alpha(\mathbf{O}) = 4.65 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{P}) = 2.03 \times 10^{-6} \ 3. \\ &\text{Mult: from Adopted Gammas.} \end{aligned}$
151.9 3	755.28	0.31 3	[M1+E2]		0.35 8	$\begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.28 \; 4; \; \alpha(\mathbf{L}) \!=\! 0.06 \; 3; \; \alpha(\mathbf{M}) \!=\! 0.012 \; 6. \\ &\alpha(\mathbf{N}) \!=\! 0.0026 \; 12; \; \alpha(\mathbf{O}) \!=\! 0.00033 \; 14; \\ &\alpha(\mathbf{P}) \!=\! 9.50 \!\times\! 10^{-6} \; 21. \end{aligned}$
$^{x}155.2$		$\leq 0$ . 1				
x159.9		$\leq 0$ . 1				
164.6 3	1812.59	0.73 7				
177.02 10	603.40	7.5 4	(M1)		0.182	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1565 \ 22; \ \alpha(\mathbf{L}) = 0.0206 \ 3; \\ &\alpha(\mathbf{M}) = 0.00422 \ 6. \\ &\alpha(\mathbf{N}) = 0.000892 \ 13; \ \alpha(\mathbf{O}) = 0.0001242 \ 18; \\ &\alpha(\mathbf{P}) = 6.14 \times 10^{-6} \ 9. \\ &\mathbf{Mult}: \ \alpha(\mathbf{K}) \exp = 0.126, \ \mathbf{K} / \Sigma \mathbf{L} = 7.0 \ (1961 \mathrm{Ar} 05). \end{aligned}$
182.3 <i>1</i>	188.92	100 5	M1+E2	0.25 2	0.1718 25	$\begin{split} &\alpha(K) = 0.1463\ 21;\ \alpha(L) = 0.0203\ 4;\\ &\alpha(M) = 0.00418\ 8.\\ &\alpha(N) = 0.000880\ 16;\ \alpha(O) = 0.0001210\ 20;\\ &\alpha(P) = 5.65 \times 10^{-6}\ 8.\\ & E\gamma:\ from\ ce\ data\ in\ 19731804.\\ & Mult.:\ L1:L2:L3 = 100.0\ 9:9.79\ 42:5.41\ 39.\\ & Other:\ K/\Sigma L = 7.0\ (1961Ar05)\ gives\\ &\delta(E2/M1) < 0.5.\\ &\delta:\ 0.32\ 5\ if\ penetration\ effect\ is\ included\\ &(19731804). \end{split}$
×193.7 202.38 <i>10</i>	208.82	≤0.15 33.7 <i>1</i> 7	M1 ( +E2 )	0.22	0.128 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1094 \ 23; \ \alpha(\mathbf{L}) = 0.0148 \ 14; \\ &\alpha(\mathbf{M}) = 0.0030 \ 3. \\ &\alpha(\mathbf{N}) = 0.00064 \ 6; \ \alpha(\mathbf{O}) = 8.8 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{P}) = 4.25 \times 10^{-6} \ 7. \\ &\mathbf{Mult.:} \ L1: L2: L3 = 100.0 \ 44: 7.0 \ 19: 4.5 \ 16. \\ &\mathbf{Other:} \ \mathbf{K}/ \Sigma L = 6.9 \ (1961 \mathrm{Ar05}) \ \mathrm{gives} \end{aligned}$
214.30 10	220.85	8.74	M1 ( +E2 )	0.5 5	0.113 8	$\begin{aligned} &\alpha(\text{K})=0.095 \ 4; \ \alpha(\text{L})=0.014 \ 3; \ \alpha(\text{M})=0.0029 \ 7. \\ &\alpha(\text{N})=0.00061 \ 13; \ \alpha(\text{O})=8.3\times10^{-5} \ 14; \\ &\alpha(\text{P})=3.59\times10^{-6} \ 11. \end{aligned}$ Mult: $&\alpha(\text{K})\exp=0.097 \ 3. \ \text{Other: } \text{K}\Sigma\text{L}=6.9 \\ &(1961\text{Ar05}) \ \text{gives } \delta(\text{E}2/\text{M}1)<0.75. \end{aligned}$

¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

		¹²⁹ Ba ε Decay (2	2.135 h)	1983TaZI	[,1973Is04,1972]	Fa02 (continued)
				$(^{129}Cs)$ (c		
$E\gamma^{\ddagger}$	E(level)	Ιγ§	Mult.#	δ	α†	Comments
220.83 10	220.85	5.7 3	M1(+E2)	<0.9	0.104 5	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0879 \ 23; \ \alpha(\mathbf{L}) = 0.0131 \ 19; \\ &\alpha(\mathbf{M}) = 0.0027 \ 4. \\ &\alpha(\mathbf{N}) = 0.00057 \ 8; \ \alpha(\mathbf{O}) = 7.7 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{P}) = 3.30 \times 10^{-6} \ 9. \\ &\mathbf{Mult}, \delta: \ \text{from EKC} = 0.073, \ \mathbf{K} / \Sigma \mathbf{L} = 6.7 \\ &(1961 \mathrm{Ar} 05). \end{aligned}$
x 2 2 5 . 2		$\leq\!0$ . 15				
x228.0		≤0.15				
238.0 <i>2</i>	426.49	2.93	М1		0.0819	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0704 \ 10; \ \alpha(\mathbf{L}) = 0.00919 \ 13; \\ &\alpha(\mathbf{M}) = 0.00188 \ 3. \\ &\alpha(\mathbf{N}) = 0.000398 \ 6; \ \alpha(\mathbf{O}) = 5.54 \times 10^{-5} \ 8; \\ &\alpha(\mathbf{P}) = 2.75 \times 10^{-6} \ 4. \end{aligned}$ Mult: $\mathbf{K} / \Sigma \mathbf{L} = 9, \ \alpha(\mathbf{K}) \exp = 0.098 \ (1961 \mathrm{Ar} 05); \\ &\alpha(\mathbf{M}) = 0.003 \ (1961 \mathrm{Ar} 05); \end{aligned}$
x 2 4 3 . 5		$\leq 0$ . 15				and f(0) in in seam f ray sources.
x252.7		≤0.15				
263.9 ^{&amp;} 3	690.33	1.20 ^{&amp;} 12	(M1,E2)		0.0641 <i>21</i>	$\begin{split} &\alpha({\rm K}){=}0.0534 \; 8;\; \alpha({\rm L}){=}0.0085 \; 15;\\ &\alpha({\rm M}){=}0.0018 \; 4.\\ &\alpha({\rm N}){=}0.00037 \; 7;\; \alpha({\rm O}){=}4.9{\times}10^{-5} \; 7;\\ &\alpha({\rm P}){=}1.93{\times}10^{-6} \; 16.\\ &{\rm I}\gamma:\; total\; intensity\; of \; 1.80 \; 9 \; based\; on\\ &{\rm branching\; ratios\; in\; Adopted\; Gammas.}\\ &\delta:\; \alpha({\rm K}){=}x{=}0.062\; (1961{\rm Ar05}). \end{split}$
	1255 . $71$	1.05& 15				
x284.0	1055 51	0.24 3	(M1 E0)		0 0504 0	$-(T_{1}) = 0.000 + 10 + -(T_{1}) = 0.0007 + 0.0007 = 0.0007 + 0.0007 = 0.0007 + 0.0007 = 0.0007 = 0.0007 + 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.0007 = 0.$
286.2 2	1255.71	2.32 23	(M1,E2)		0.0504 8	$\begin{split} &\alpha(\mathbf{K}) = 0.0423 \ 12; \ \alpha(\mathbf{L}) = 0.0065 \ 9; \\ &\alpha(\mathbf{M}) = 0.00135 \ 21. \\ &\alpha(\mathbf{N}) = 0.00028 \ 4; \ \alpha(\mathbf{O}) = 3.8 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.54 \times 10^{-6} \ 15. \\ &\text{Mult.:} \ \alpha(\mathbf{K}) \exp = 0.027 \ (1961 \text{Ar} 05). \end{split}$
x293.0		0.29 3	(M1,E2)		0.0471	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0395 \ 13; \ \alpha(\mathbf{L}) = 0.0060 \ 8; \\ &\alpha(\mathbf{M}) = 0.00125 \ 18. \\ &\alpha(\mathbf{N}) = 0.00026 \ 4; \ \alpha(\mathbf{O}) = 3.5 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.44 \times 10^{-6} \ 15. \end{aligned}$
^x 297.9		0.29 3				
x307.2		≤0.15				
×324.1	755 28	0.515 0.545	M1 E9		0 0339 11	$\alpha(\mathbf{K}) = 0.0286.17; \alpha(\mathbf{L}) = 0.0042.4;$
525.4 5	100.20	0.04 0			0.0000 11	$\begin{array}{l} \alpha(M) = 0.00088 \ 8.\\ \alpha(N) = 0.000183 \ 15; \ \alpha(O) = 2.47 \times 10^{-5} \ 12; \\ \alpha(P) = 1.05 \times 10^{-6} \ 13. \end{array}$
334.0 3	555.13	1.06 11	M1 , E2		0.0323 14	Mult.: $\alpha(K)\exp=0.027$ (1961Ar05). $\alpha(K)=0.0273$ 18; $\alpha(L)=0.0040$ 3; $\alpha(M)=0.00083$ 7. $\alpha(N)=0.000174$ 13; $\alpha(O)=2.35\times10^{-5}$ 10; $\alpha(P)=1.00\times10^{-6}$ 13.
						Mult.: $\alpha(K) \exp[=0.035]$ (1961Ar05).
^x 337.8		1.28 13	(M1,E2)		0.0313 15	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0264 \ 18; \ \alpha(\mathbf{L}) = 0.0039 \ 3; \\ &\alpha(\mathbf{M}) = 0.00080 \ 7. \\ &\alpha(\mathbf{N}) = 0.000168 \ 12; \ \alpha(\mathbf{O}) = 2.27 \times 10^{-5} \ 9; \end{aligned}$
949 4 9	000 00	0.00.0				$\alpha(P)=9.7\times10^{-7}$ 13.
343.4 3 345.3 3	992.09 555.13	0.263 0.222				Eγ: poor fit, level-energy difference=346 3
354.8b	575.44	0.22 2	[M4]		1.369	<ul> <li>α(K)=1.045 15; α(L)=0.255 4; α(M)=0.0558 8.</li> <li>α(K)=0.01173 17; α(O)=0.001542 22; α(P)=5.80×10⁻⁵ 9.</li> <li>Ιγ: 1983TaZI report ≤2.7. γ not seen in 1972Ta02 and 1961Ar05. RI≤0.15 in 1973Is04. Based on decay data and in-beam γ-ray studies, the evaluators consider this α range integrate construct</li> </ul>

Continued on next page (footnotes at end of table)

or very weak.

			γ	( ¹²⁹ Cs) (contin	ued)
₽~‡	F(level)	τν§	Mult #	a‡	Commonts
E1.	Ellevel)			u	Comments
^x 356.4 366.1 ^a 2	555.13	≤0.15 2.15 22	M1 , E2	0.0250 17	$\alpha(K)=0.0211$ 18; $\alpha(L)=0.00305$ 12; $\alpha(M)=0.00063$ 3. $\alpha(N)=0.000132$ 5; $\alpha(O)=1.79\times10^{-5}$ 3; $\alpha(P)=7.8\times10^{-7}$ 11. Iy: 1.65 from 366 level and 0.50 from 575 level added.
	575.44		[E3]	0.0787	Mult.: $\alpha(K)=0.0592$ 9; $\alpha(L)=0.01542$ 22; $\alpha(M)=0.00331$ 5. $\alpha(N)=0.000681$ 10; $\alpha(O)=8.49\times10^{-5}$ 12; $\alpha(P)=2.09\times10^{-6}$ 3. E $\gamma$ ,I $\gamma$ : this $\gamma$ is not reported in any of the three in-beam $\gamma$ -ray studies, even though the 575, (11/2-) isomer is very strongly populated in these studies. It is possible that a small component of $366\gamma$ belongs in this location.
x376.3		0.75 8			
382.9 3	603.40	0.97 10			
x 3 8 4 . 5		0.30 3			
386.7 3	575.44	0.85 9	(M2)	0.0862	$\alpha(K)=0.0727$ 11; $\alpha(L)=0.01073$ 16; $\alpha(M)=0.00223$ 4. $\alpha(N)=0.000471$ 7; $\alpha(O)=6.51\times10^{-5}$ 10; $\alpha(P)=3.12\times10^{-6}$ 5. Mult.: $\alpha(K)\exp=0.116$ (1961Ar05).
392.33 10	1648.04	22.2 11	(M1)	0.0223	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0192 \; 3; \; \alpha(\mathbf{L}) \!=\! 0.00246 \; 4; \; \alpha(\mathbf{M}) \!=\! 0.000503 \; 7. \\ &\alpha(\mathbf{N}) \!=\! 0.0001064 \; 15; \; \alpha(\mathbf{O}) \!=\! 1.487 \!\times\! 10^{-5} \; 21; \\ &\alpha(\mathbf{P}) \!=\! 7.44 \!\times\! 10^{-7} \; 11. \\ & \text{Mult.: } \; \alpha(\mathbf{K}) \!\exp\! \!=\! 0.024, \; \mathbf{K} \! / \! \Sigma \! \mathbf{L} \!=\! 8.0 \; (1961 \mathrm{Ar} 05). \end{split}$
394.52	603.40	6.5 3			
x407.6		0.70 7			
414.0 2	603.40	4.4 4			
416.1 2	551.58	2.8 3			
420.0& 2	426.49	22.5 ^{&amp;} 25	(E2)	0.01548	$\begin{split} &\alpha(K) \!=\! 0.01295 \ 19; \ \alpha(L) \!=\! 0.00201 \ 3; \ \alpha(M) \!=\! 0.000417 \ 6. \\ &\alpha(N) \!=\! 8.70 \!\times\! 10^{-5} \ 13; \ \alpha(O) \!=\! 1.157 \!\times\! 10^{-5} \ 17; \\ &\alpha(P) \!=\! 4.58 \!\times\! 10^{-7} \ 7. \\ &I\gamma: \ total \ IG \!=\! 26.7 \ 13 \ divided \ based \ on \ branching \ ratios \ in \ Adopted \ Gammas. \\ &Mult.: \ \alpha(K) \!exp \!=\! 0.016, \ K/\SigmaL \!=\! 6.4 \ (1961Ar05). \end{split}$
496 9 9	000.10	4.200 4	(M1)	0 0191	$\alpha(\mathbf{K}) = 0.01556, 22, \alpha(\mathbf{L}) = 0.00100, 2, \alpha(\mathbf{M}) = 0.000407, 6$
420.2 2	1001.03	1.55 16	(M1)	0.0181	$\alpha(\mathbf{R}) = 0.01356 \ 22; \ \alpha(\mathbf{L}) = 0.00199 \ 3; \ \alpha(\mathbf{M}) = 0.000407 \ 6.$ $\alpha(\mathbf{R}) = 8.61 \times 10^{-5} \ 12; \ \alpha(\mathbf{O}) = 1.203 \times 10^{-5} \ 17;$ $\alpha(\mathbf{P}) = 6.03 \times 10^{-7} \ 9.$ Mult.: $\alpha(\mathbf{K}) \approx n = 0.018 \ (1961 \text{Ar} 05).$
x432.3		0.26 3			
^x 4 3 4 . 5		0.74 7	(M1,E2)	0.0156 16	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
437.0 3	992.09	0.55 6			
^{459.5} 1	648.46	$\begin{array}{c} 0.37 & 4 \\ 15.7 & 8 \end{array}$	(E2)	0.01193	$\begin{split} &\alpha(K){=}0.01003 \ 14; \ \alpha(L){=}0.001517 \ 22; \ \alpha(M){=}0.000314 \ 5. \\ &\alpha(N){=}6.55{\times}10^{-5} \ 10; \ \alpha(O){=}8.77{\times}10^{-6} \ 13; \ \alpha(P){=}3.58{\times}10^{-7} \ 5. \\ &\text{Mult.:} \ \alpha(K){exp{=}0.013} \ \text{gives} \ M1{,}E2 \ (1961{Ar05}). \end{split}$
467.9 2	603.40	4.9 5			
$^{x}475.5$		0.46 5			
481.4 1	690.33	9.5 5	(E2)	0.01046	$\begin{split} &\alpha({\rm K}){=}0.00881 \ 13; \ \alpha({\rm L}){=}0.001315 \ 19; \ \alpha({\rm M}){=}0.000272 \ 4. \\ &\alpha({\rm N}){=}5.68{\times}10^{-5} \ 8; \ \alpha({\rm O}){=}7.62{\times}10^{-6} \ 11; \ \alpha({\rm P}){=}3.16{\times}10^{-7} \ 5. \\ &{\rm Mult.:} \ \alpha({\rm K}){\rm exp}{=}0.016, \ {\rm K}/{\Sigma}{\rm L}{=}6.3 \ (1961{\rm Ar}05). \end{split}$
491.8 3	1648.04	0.88 9			
501.4 1	690.33	6.83	(M1)	0.01203	$ \begin{split} &\alpha({\bf K}){=}0.01037 \ 15; \ \alpha({\bf L}){=}0.001322 \ 19; \ \alpha({\bf M}){=}0.000270 \ 4. \\ &\alpha({\bf N}){=}5.70{\times}10^{-5} \ 8; \ \alpha({\bf O}){=}7.98{\times}10^{-6} \ 12; \ \alpha({\bf P}){=}4.01{\times}10^{-7} \ 6. \\ &{\rm Mult.:} \ \alpha({\bf K}){\rm exp}{=}0.013 \ (1961{\rm Ar}05). \end{split} $
×517.6		0.48 5			
*519.6	1001 55	0.53 5			
525.3 3	1681.63	1.03 10			
528.5	7 E E 0 0	U.86 9	(M1)	0 01099	$\alpha(\mathbf{T}) = 0.0000000000000000000000000000000000$
034.4 Z	100.28	<b>ð.</b> ð ð	(111)	0.01028	$\alpha(K) = 0.00886 \ I_3; \ \alpha(L) = 0.001127 \ I_6; \ \alpha(M) = 0.000230 \ 4.$ $\alpha(N) = 4.86 \times 10^{-5} \ 7; \ \alpha(O) = 6.80 \times 10^{-6} \ I_0; \ \alpha(P) = 3.42 \times 10^{-7} \ 5.$ Mult.: $\alpha(K) \exp = 0.011 \ (1961 Ar 05).$

### ¹²⁹Ba & Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

			γ	( ¹²⁹ Cs) (continu	ued)
Eγ‡	E(level)	Iγ§	Mult.#	$\alpha^{\dagger}$	Comments
542.9 2	969.25	3.9 4	(M1,E2)	0.0087 12	$\alpha(K)=0.0074 \ 11; \ \alpha(L)=0.00100 \ 9; \ \alpha(M)=0.000205 \ 16.$ $\alpha(N)=4.3\times10^{-5} \ 4; \ \alpha(D)=6.0\times10^{-6} \ 6; \ \alpha(P)=2.8\times10^{-7} \ 5.$
546.6 1	755.28	11.6 6	(M1)	0.00972	Mult.: $\alpha(\mathbf{k}) \exp = 0.013$ (1961Ar05). $\alpha(\mathbf{k}) = 0.00839$ 12; $\alpha(\mathbf{L}) = 0.001066$ 15; $\alpha(\mathbf{M}) = 0.000217$ 3. $\alpha(\mathbf{N}) = 4.60 \times 10^{-5}$ 7; $\alpha(\mathbf{O}) = 6.43 \times 10^{-6}$ 9; $\alpha(\mathbf{P}) = 3.24 \times 10^{-7}$ 5. Mult.: $\alpha(\mathbf{k}) \exp = 0.014$ , $\mathbf{K} \Sigma \mathbf{L} = 8$ (1961Ar05).
549.02	555.13	4.6 5			
551.52	551.58	4.6 5			
556.9 2	1812.59	3.3 3			
566.21 10	755.28	7.6 4			
569.2 3	575.44	≈0.10	[E3]	0.01751	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01419 \ 20; \ \alpha(\mathbf{L}) = 0.00264 \ 4; \ \alpha(\mathbf{M}) = 0.000554 \ 8. \\ &\alpha(\mathbf{N}) = 0.0001153 \ 17; \ \alpha(\mathbf{O}) = 1.506 \times 10^{-5} \ 22; \\ &\alpha(\mathbf{P}) = 5.29 \times 10^{-7} \ 8. \end{aligned}$
					I $\gamma$ : from branching in-beam $\gamma$ -ray study (1977Ch23), where this $\gamma$ is seen very weakly with only 7% branching ratio, consistent with its high multipolarity. In 1983TaZI, with I $\gamma$ =1.19, branching is 34%. In 1972Ta02 this $\gamma$ was not placed. Main component of this $\gamma$ ray must belong somewhere else.
^x 577.9		≤0.15			
×589.8	000 10	0.70 7		0 0000 10	
596.78 20	603.40	5.3 5	(M1,E2)	0.0068 10	
601.0 3	1156 . $27$	0.60 6			
x606.3		0.40 4			
^x 610.0		0.06 1			
x614.9		0.556			
619.8 3	755.28	0.75 8			
×628.0		0.313			
*631.3	1010 01	0.38 4			
656.2 2	1648.04	3.84			
658.9 3 XCC0 7	819.33	0.82 8			
670 4 3	879 33	0.83.8			
×670 8 [@] 7	015.55	0.68 7			
678.8 1	1648.04	13.8 7	(M1)	0.00574	$\alpha$ (K)=0.00496 7; $\alpha$ (L)=0.000626 9; $\alpha$ (M)=0.0001275 18. $\alpha$ (N)=2.70×10 ⁻⁵ 4; $\alpha$ (O)=3.78×10 ⁻⁶ 6; $\alpha$ (P)=1.91×10 ⁻⁷ 3.
XGQA A 7		0 65 7			Mult.: $\alpha(K)\exp=0.0075$ , $K/2L=0.5$ (1961Ar05).
×685 7		0.05 7			
689.2 2	1681.63	4.2.4			
690.3 2	879.33	4.24			
x698.8		0.29 3			
700.6 2	1255.71	2.7 3			
x706.0		0.515			
712.12	1681 . $63$	2.9 3			
x713.5		0.31 3			
730.2 3	1156. $27$				
x737.9		0.535			
744.4 3	879.33	0.45 5			
748.5°2	755.28	6.9 ^c 3	(M1,E2)		Eγ: placement from 1972Ta02 and 1973Is04; not given in level-scheme figure 1 of 1983TaZI. Mult.: α(K)exp=0.0064 (1961Ar05).
	969.25	6.9° 3			
759.92	969.25	1.33 13			
x761.7		0.20 2			
*766.4	1010	0.31 3	(344)		
768.8 2	1648.04	2.95 30	(M1)		Mult.: α(K)exp=0.0053 (1961Ar05).
~776.4	0.00 07	0.32 3			
180.4 2 x789 1	909.25	0.43 19979			
x780 9		1.00 10 <0 1			
100.2		20.1			

### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

			γ	( ¹²⁹ Cs) (continued)
Eγ [‡]	E(level)	Iγ§	Mult.#	Comments
x792 1		< 0 1		
x793.4		≟0.1 ≤0.1		
803.2 1	992.09	8.5 4	(M1,E2)	Mult.: α(K)exp=0.0051 (1961Ar05).
^x 8 0 5 . 2		0.61 6		
x816.3		0.59 6		
x818.4		0.64 6		
820.52	1812.59	$2.8 \ 3$		
x822.7		0.33 3		
^x 826.6		0.11 1		
828.9 3	1255.71	1.07 11		
833.5 2	969.25	2.63		
*869.1 979.5.9	870 22	0.51 5	(M1 E9)	$M_{y}$ = $\alpha(K)_{0yy} = 0.0041 (10614y05)$
883 2	019.33	0.56 G	(M1,E2)	Mult.: $\alpha(\mathbf{K})\exp=0.0041$ (1901AF05).
892 6 1	1648 04	21 2 11	(M1)	Mult : $\alpha(K) \exp = 0.0032$ K/ $\Sigma L = 6.4$ (1961Ar05)
×911.1	1010.01	0.30 3	(111)	naion ((i))np=0.0002, ii)22=0.1 (10011100).
×923.8 [@] 4		0.45 5		
927.0 3	1681.63	1.26 13		
933.2 2	1812.59	4.5 5		
935.2 2	1156 . $27$	4.5 5		
947.6° 3	1156 . $27$	0.96° 10		
	1941.05	0.96 ^c 10		Eγ: poor fit, level-energy difference=948.7.
×955.4		0.93 9		
957.5 2	1648.04	4.1 4		
962.6 2 x070 7 [@] 7	969.25	2.83		
*970.7°7	1691 69	0.28 3		
991.5 2	1648 04	1.62 16 7 8 4		
×1019 3 [@] 4	1040.04	0 45 5		
1026.1 ^b 3	2019.15	0.25 3		Eγ: $\gamma$ reported only in 1973Is05.
1034.8 1	1255.71	8.1 4	(M1,E2)	Mult.: $\alpha(K) \exp = 0.0024$ , $K/\Sigma L = 7.4$ (1961Ar05).
1044.7 1	1648.04	13.8 7		
1047.1 1	1255 . $71$	7.8 4		Ey: from 1973Is04; large uncertainty of 0.6 keV in 1972Ta02.
x1051.2		0.404		
1072.8 3	1648.04	0.75 8		
1077.73	1681.63	1.40 14		
x1080.7 ^w 5		0.37 4		
×1112.0% 5		0.48 5		
1110.0 1100.2 0	1919 50	0.95 10		
1122.52 112672	1612.55	263		
1164.4.3	1812.59	0.99 10		
×1180.2		1.00 10		
^x 1181.8 [@] 5		0.56 6		
1209.1 2	1812.59	6.7 3		
1221.7 2	1648 . $04$	6.4 3		Mult.: $\alpha(K)exp=0.0016$ (1961Ar05).
1237.3 3	1812.59	0.79 8		
1250.52	1941.05	1.27 13		
x1255.6 [@] 4		0.56 6		
×1266.4 [®] 4		0.31 3		
-1286.0	10/1 05	0.778		
1292.8 2 x1905 4@ 4	1941.05	1.66 17		
1470.47 4 X1302 9		0.40 4		
1370.4 3	2019.15	0,69 7		
1385.7 3	1812.59	0.58 6		
×1421.6 [@] 4		0.28 3		
^x 1429.6 [@] 6		0.13 2		
1444.0 3	2019.15	0.57 6		
1459.2 1	1648.04	50.0 25		Mult.: from $\alpha(K)\exp=4\times10^{-4}$ 1 (in figure 7 of 1973Is04) suggests E1, but (M1,E2) from $\alpha(K)\exp=0.0013$ and $K/\Sigma L=6.3$ (1961Ar05).
1473.3 3	1681.63	0.73 7		
1492.4 3	1681.63	0.49 5		

### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

Eγ‡	E(level)	Iγ§	<u>Εγ[‡]</u> Ε(1	evel) Ιγ§
x1553.2		0.22 2	^x 1810.1 [@] 4	0.20 2
1604.0 3	1812.59	0.31 3	1830.2 3 2019.1	15 0.03 1
1623.7 1	1812.59	11.0 6	^x 1890.7	$\leq 0$ .15
1641.1 3	1648 . $04$	1.04 10	x1934.9 [@] 5	0.14 2
1675.1 3	1681.63	0.29 3	×1969.6 [@] 3	0.17 2
1752.1 3	1941.05	0.74 7	×2069.7 [@] 3	0.28 3
1805.5 3	1812.59	0.60 6	x2287.1 [@] 10	0.08 1

#### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

 $\gamma(^{129}Cs)$  (continued)

 †  Overlaps M1 and E2 values for M1+E2, or M1,E2 transitions.

[‡] From unweighted average of values from 1972Ta02 and 1973Is04 (or 1983TaZI). Uncertainties are provided only by 1972Ta02. In 1983TaZI, most energies are the same as in 1973Is04. Based on comparison of values in three studies, evaluators assign the uncertainties as follows:  $\Delta(E\gamma)=0.10$  keV for  $I\gamma\geq3\%$ , 0.20 keV for  $I\gamma=0.5-3\%$ , and 0.3 keV or  $I\gamma<0.5\%$ . Document records in the ENSDF database provide compiled  $E\gamma$  values from 1973Is04, 1972Ta02, and 1961Ar05. Unplaced  $\gamma$  rays are from 1973Is04 unless otherwise stated.

§ Values are from 1983TaZI relative to 100 for 182.3 $\gamma$ , i.e. each value in 1983TaZI is multiplied by a factor of 2.5. 1983TaZI quoted absolute intensities but lack of knowledge about direct  $\epsilon$  feeding to 6.5-keV, 5/2+ level does not allow normalization of the decay scheme. Uncertainties are not given by 1983TaZI. The evaluators assign the uncertainties as follows:  $\Delta(I\gamma)=5\%$  for  $I\gamma\geq5$ , 10% for  $I\gamma<5$ . There is in general poor agreement of intensities listed by 1983TaZI, 1973Is04 and 1972Ta02; with factor of 2 difference in many cases. Values are adopted here from 1983TaZI, since they probably used more efficient Ge detectors resulting in better statistics. Document records in the ENSDF database provide compiled I $\gamma$  data from 1973Is04 and 1972Ta02, and Ice(K), K/L ratios from 1961Ar05.

# From 1973Is04 unless otherwise noted. Values α(K)exp, K/L and L-subshell ratios are from private communication to evaluator of 1996Te01 from 1973Is04. Other multipolarities are deduced by evaluators of current evaluation using Iγ values from 1973Is04 and Ice(K) and/or K/L ratios from 1961Ar05. For γ rays above 400 keV or so, such assignments are tentative since the agreement between deduced α(K)exp values and theoretical values from BrIcc code is poor.

- @ This γ from 1972Ta02 only.
- & Multiply placed; intensity suitably divided.
- a Multiply placed.
- ^b Placement of transition in the level scheme is uncertain.
- c Multiply placed; undivided intensity given.
- $x \gamma$  ray not placed in level scheme.

 $^{129}_{55}$ Cs₇₄-36

8.42 2.135 h

7/2 +



¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued) Decay Scheme

Intensities: relative  $I(\gamma+ce)$ 

 $^{129}_{55}$ Cs $_{74}$ 

### ¹²⁹Ba ε Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

Decay Scheme	(continued)
Intensities: relative I(y+ce	)
@ Multiply placed; intensity suita	bly divided
* Multiply placed	
& Multiply placed; undivided inter	nsity given







### ¹²⁹Ba & Decay (2.135 h) 1983TaZI,1973Is04,1972Ta02 (continued)

	Decay Scheme (continued)
	Intensities: relative $I(\gamma+ce)$
@	Multiply placed; intensity suitably divided
	* Multiply placed
&	Multiply placed; undivided intensity given







## ¹²⁹Cs IT Decay (0.718 μs) 1978Da29

Parent  $^{129}{\rm Cs}\colon$  E=575.45 5; J\pi=(11/2-); T $_{1/2}$ =0.718 µs 21; %IT decay=100. 1978Da29: measured E7, I7, half-life, g factor.

### ¹²⁹Cs Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	1/2+	32.06 h 6	$\%\epsilon + \%\beta^{+}=100.$
6.57 4	5 / 2 +	72 ns 6	
135.584	3 / 2 +		
188.94 5	7 / 2 +	2.26 ns 6	
209.08? 5	(5/2)+		
220.75?4	3 / 2 +		
426.49 5	(9/2+)		
575.45 5	(11/2-)	0.718 μs <i>21</i>	%IT=100.
			μ=+6.55 10 (1978De29).
			μ: TDPAD method (1978De29).
			$T_{1/2}^{}:$ from $\gamma\gamma(t);$ weighted average of 0.734 $\mu s$ 23 (1978De29), and 0.69 $\mu s$ 3 (1977Ch23).

Other: 0.73 µs 7 (1979Ga01, same group as 1978De29).

 $^{\dagger}\,$  From Adopted Levels unless otherwise stated.

### $\gamma(^{129}{\rm Cs})$

 $I\gamma$  normalization: Summed transition intensity=100 for  $\gamma$  rays from 575-keV isomer.

$E\gamma^{\dagger}$	E(level)	I㇧	Mult. [†]	δ†	α	I(γ+ce)§	Comments
6.55 5	6.57		E2		432000	189 10	
53.2 1	188.94	0.15 2	E2		18.6		$\alpha(K)=6.53 \ 10; \ \alpha(L)=9.52 \ 16; \alpha(M)=2.08 \ 4. \alpha(N)=0.419 \ 7; \ \alpha(O)=0.0474 \ 8;$
73 2# 1	209 082		[M1 E2]		4 0 18		$\alpha(P)=0.000174 \ 3.$ $\alpha(K)=2.5.6: \alpha(L)=1.2.10: \alpha(M)=0.26.21$
1012 1	200.001		[,		1.0 10		$\alpha(N)=0.05 \ 5; \ \alpha(O)=0.006 \ 5; \\ \alpha(P)=7.7\times 10^{-5} \ 3.$
85.1# 1	220.75?		[M1 , E2 ]		2.4 10		$\alpha(K)=1.6$ 4; $\alpha(L)=0.6$ 5; $\alpha(M)=0.13$ 10. $\alpha(N)=0.027$ 20; $\alpha(O)=0.0032$ 23; $\alpha(P)=5.05\times10^{-5}$ 25
129.14 9	135.58	1.7 2	M1+E2	0.20 5	0.449 9		$\alpha(K)=0.381$ 7; $\alpha(L)=0.054$ 3; $\alpha(M)=0.0112$ 6.
							$\alpha(N)=0.00236 \ 12; \ \alpha(O)=0.000322 \ 13;$ $\alpha(P)=1.477\times10^{-5} \ 21.$
135.61 9	135.58	0.24 4	[M1,E2]		0.51 13		α(K)=0.39 7; α(L)=0.09 5; α(M)=0.019 11.
							$\alpha(N)=0.0040 \ 21; \ \alpha(O)=0.00050 \ 24;$ $\alpha(P)=1.32 \times 10^{-5} \ 5.$
149.05 8	575.45	100 5	(E1)		0.0722		$\alpha(K)=0.0621 \ 9; \ \alpha(L)=0.00811 \ 12; \ \alpha(M)=0.001649 \ 24.$
							$\alpha(N)=0.000344 5; \alpha(O)=4.65\times10^{-5} 7;$ $\alpha(P)=2.03\times10^{-6} 3.$
182.32 5	188.94	68 <i>8</i>	M1+E2	0.25 2	0.1718 25		$\alpha(K)=0.1463\ 21;\ \alpha(L)=0.0203\ 4;$ $\alpha(M)=0.00417\ 8.$
							$\alpha$ (N)=0.000879 16; $\alpha$ (O)=0.0001209 20; $\alpha$ (P)=5.65×10 ⁻⁶ 8.
202.38 [#] 7	209.08?		M1(+E2)	0.2 2	0.128 4		$\alpha(K)=0.1094 \ 23; \ \alpha(L)=0.0148 \ 14; \ \alpha(M)=0.0030 \ 3.$
							$\alpha(N)=0.00064$ 6; $\alpha(O)=8.8\times10^{-5}$ 7; $\alpha(P)=4.25\times10^{-6}$ 7.
214.30# 7	220.75?		M1(+E2)	0.5 5	0.113 8		α(K)=0.095 4; α(L)=0.014 3; α(M)=0.0029 7.
							$\alpha(N)=0.00061 \ 13; \ \alpha(O)=8.3\times10^{-5} \ 14;$ $\alpha(P)=3.59\times10^{-6} \ 11.$
220.83 [#] 7	220.75?		[M1,E2]		0.110 10		α(K)=0.090 5; α(L)=0.015 5; α(M)=0.0032 9.
							$\alpha(N)=0.00067 \ 18; \ \alpha(O)=8.7\times10^{-5} \ 20;$ $\alpha(P)=3.21\times10^{-6} \ 16.$

			²⁹ Cs IT Deca	y (0.718 μs)	1978Da29 (continued)
				γ( ¹²⁹ Cs) (c	ontinued)
$E\gamma^{\dagger}$	E(level)	Ι㇧	Mult. [†]	α	Comments
237.65 9	426.49	12.1 12	(M1)	0.0822	
354.8#	575.45		[M4]	1.369	Eγ: γ reported only by 1983TaZI in ε decay with an upper limit of intensity. It is neither seen in any other decay study (1972Ta02, 1973Is04) nor in in-beam γ-ray data; thus it is considered as questionable by the evaluators. $\alpha(K)=1.045$ 15; $\alpha(L)=0.255$ 4; $\alpha(M)=0.0558$ 8. $\alpha(N)=0.01173$ 17; $\alpha(O)=0.001542$ 22; $\alpha(P)=5.80\times10^{-5}$ 9.
365.86# 8	575.45		[E3]	0.0789	Eγ: γ not reported in in-beam γ-ray data; B(E3)(W.u.)=400 50 is a factor of 4 larger than RUL, thus this transition is considered suspect. $\alpha(K)=0.0594$ 9; $\alpha(L)=0.01547$ 22; $\alpha(M)=0.00332$ 5. $\alpha(N)=0.000683$ 10; $\alpha(O)=8.52\times10^{-5}$ 12; $\alpha(P)=2.10\times10^{-6}$ 3.
386.7 1	575.45	64 5	[M2]	0.0862	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0727 \ 11; \ \alpha({\rm L}) \!=\! 0.01073 \ 15; \ \alpha({\rm M}) \!=\! 0.00223 \ 4. \\ \alpha({\rm N}) \!=\! 0.000471 \ 7; \ \alpha({\rm O}) \!=\! 6.51 \!\times\! 10^{-5} \ 10; \ \alpha({\rm P}) \!=\! 3.12 \!\times\! 10^{-6} \ 5. \end{array} $
419.83 7	426.49	94 7			
569.3 1	575.45	$12.7 \ 18$	[E3]	0.01750	

[†] From Adopted dataset for ¹²⁹Cs. [‡] Branching ratios of  $\gamma$  rays from 575-keV isomer taken from Adopted dataset. Based on these values, intensities for  $\gamma$  rays from lower levels are deduced. § For absolute intensity per 100 decays, multiply by 0.526 20. # Placement of transition in the level scheme is uncertain.



#### 122 Sn( 11 B,4n $\gamma$ ), 124 Sn( 11 B,6n $\gamma$ ) 2009Si08,2009Zh20,2010Wa01

2009Si08:  122 Sn( 11 B,4n $\gamma$ ) E=60 MeV, enriched thick target, 12 Compton-suppressed HPGe detectors plus 14 BGO multiplicity filter; measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ (DCO); deduced levels, J,  $\pi$ , bands.

2009Zh20:  122 Sn( 11 B,4n $\gamma$ ) E=55,60 MeV, enriched thick target, 14 Compton-suppressed HPGe detectors; measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ (DCO); deduced levels, J,  $\pi$ , bands. Gamma-ray intensities and DCO ratios are not listed in the paper. 2010Wa01:  124 Sn( 11 B,6n $\gamma$ ) E=65 MeV, 14 Compton-suppressed HPGe detectors; measured lifetimes by Doppler-shift

attenuation method; deduced transition quadrupole moments.

The level scheme and the most data are from 2009Si08, except when stated otherwise.

#### ¹²⁹Cs Levels

E(level) [†]	$J\pi$	$T_{1/2}$ §	Comments
		. #	
0.0	1/2+	$32.06 h^{\#} 6$	
6.55° 5	5 / 2 +	72 ns# 6	
188.8° 3	7 / 2 +	2.26 ns# 6	
209.5 ^{‡b} 4	5 / 2 +		
426.4 ^d 3	9 / 2 +		
575.4 ^e 3	11/2 -	0.718 µs 21	%IT=100.
			T _{1/2} : from Adopted Levels.
604.0 ^a 4	7 / 2 +		The $\gamma$ -ray branching ratios differ significantly from those in Adopted dataset taken from $^{129}Ba\ \epsilon$ decay.
647.7 ^c 4	11/2+		
690.6 ^b 4	9 / 2+		The $\gamma$ -ray branching ratios differ significantly from those in Adopted dataset taken from $^{129}\text{Ba}$ $\epsilon$ decay.
1023.3 ^e 5	15/2-		
1032.7 ^d 4	13/2+		
$1150.4^{f}$ 6	13/2-		
1231.8 ^a 5	11/2+		
1278.7 ^c 4	15/2+	0.53 ps +12-11	Q(transition)=6.0 +8-6.
1339.7 ^b 5	13/2+		
1627.6 ^e 6	19/2-	1.64 ps +53-35	Q(transition)=3.6 +5-4.
1691.6 ^f 6	17/2 -		
1718.2 ^{‡h} 8	(15/2-)		$E(level), J\pi$ : assumed by the evaluators.
1792.7d 5	17/2+		
1890.6 ^a 5	15/2+		
2046.9 ^c 5	19/2+	0.30 ps +12-8	Q(transition)=4.7 + 8-7.
$2122.9^{b}5$	17/2+		
$2214.5^{h}6$	19/2-		
$2319$ . 4 $^{ m f}$ 6	21/2-		
2395.7 ^e 6	23 / 2 -	0.49 ps +15-14	Q(transition)=3.6 +7-5.
# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}42$

### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

¹²⁹Cs Levels (continued)

E(level) [†]	Jπ	T _{1/2} §	Comments
2500.3 6	19/2+		
2632.7 ^d 6	21/2+	0.15  ps + 4 - 6	Q(transition)=5.2 + 13-6.
$2666.8^{\circ} 6$ $2676.7^{\circ} 5$	19/2+ 19/2+		
2812.7& 6	21/2+		
$2842.6^{h}$ 7	23 / 2 –		
2907.6° 6	23/2+	0.15  ps + 10 - 7	Q(transition)=5.0 + 14-13.
2942.31 6 2952 2b 6	21/2+ 21/2+		
$2980.9^{\ddagger}$ 11	(21/2+)		
3042.9@ 6	23/2+		
3095.7 ^f 7	25/2-		
$3156.9^{1} 6$	23/2+	0.22 pc 10	$O(transition) = 2.5 \pm 7.5$
3291.0 9	$\frac{27}{2} = \frac{25}{2} + \frac{25}{2} = \frac{25}{2} = \frac{25}{2} + \frac{25}{2} = \frac{25}{2} $	0.35 ps 10	Q(transition)=5.0 + 7-5.
3296.4d 9	25/2+	<0.18 ps	Q(transition)>8.6.
3406.9& 7	25/2+		
$3418.8^{i}$ 7	25/2+		
3517.98 8	25/2-		
3681 7 ⁱ 7	(27/2-) 27/2+		
3684.1? 7	(27/2-)		This level was suggested only by 2009Si08. The depopulating two strong $\gamma$ rays (589.1 and 1289.3) have the same energies within the experimental uncertainty as the corresponding $\gamma$ rays from the next level and feed the same levels. The 840.0 keV $\gamma$ is probably weak with no intensity given. The existence of the level is not discussed in 2009Si08. Evaluators do not see enough evidence for the existence of this level.
3685.1 ^g 7	27/2-		
3729 . 1 ^c 9	27/2+	<0.11 ps	Q(transition)>6.4.
3732.6 8	(27/2+)		
3734.9 ^w 7	27/2+		
3919.2 9	(25/2+)		
3924.3 ^f 8	29/2-		
3949.0 ^d 11	29/2+		
3993.2 ⁱ 8	29/2+		
4026.6 ^g 9	29/2(-)	0.120 pc $1.40.28$	$O(transition) = 4.7 \pm 6.7$
4131.1& 8	$\frac{31}{2} = \frac{29}{2} + \frac{29}{2} = \frac{29}{2} = \frac{29}{2} + \frac{29}{2} = \frac{29}{2} + \frac{29}{2} = \frac{29}{2} $	0.139 ps +49-28	Q(transition)=4.7 + 6-7.
4198.5 12	29/2(+)		
$4366.5^{i}8$	31/2+		
4420.2 ^g 10	31/2(-)		
$4436.2^{\circ}$ 12	31/2+		
4599 7 [@] 8	(31/2) 31/2+		
4764.3f 9	33/2-		
4899.6 ^g 12	33/2(-)		
5025.8 <i>9</i>	(33/2+)		In 2009Zh20 this level is proposed as the 33/2+ member of band B. In 2009Si08 it is the 5068.0 keV level. The configurations of these levels are not firmly determined, both can belong to band B. In this evaluation the suggestion of 2009Si08 is accepted tentatively.
5032.5 ^e 9	35/2-	<0.40 ps	Q(transition)>2.5.
5068.0 ^{&amp;} 9	33/2+		
5212.1 ¹ 11	(35/2+) 35/2+		
5401.7g 14	35/2+		
5548.0@ 10	35/2+		
5567.8 [‡] 11	(35/2+)		In 2009Zh20 this level is proposed as the 35/2+ member of band A. In 2009Si08 it is the 5548.0 keV level. The configurations of these levels are not firmly determined, both can belong to band A. In this evaluation the suggestion of 2009Si08 is accepted tentatively.
5692.2f 9	(37/2-)		
5989.5 ^e 9	39/2-		

#### 122 Sn $(^{11}$ B,4n $\gamma$ ), 124 Sn $(^{11}$ B,6n $\gamma$ ) 2009Si08,2009Zh20,2010Wa01 (continued)

		¹²⁹ Cs Levels (continued)
E(level) [†]	Jπ	Comments
6051.8 [‡] 15		In 2009Zh20 this level is proposed as the $37/2$ + member of band $\beta$ . In this evaluation the suggestion of 2009Si08 has been accepted tentatively for the highest-spin states of this band. See the comments in levels 5025.8 keV and 5567.8 keV.
6200.0 ⁱ 13	(39/2+)	
6270.5 [‡] c 17	(39/2+)	
7000.7e 12	43/2-	
7379.5 [‡] c 20	(43/2+)	
8099.4 ^e 14	(47/2-)	
† From least ‡ Level from	-squares fit to 2009Zh20.	ο Eγ data.
% From 2010 #	Wa01 unless o	therwise noted.
# From Adop	ted Levels.	
@ (A): Possib	le 3-qp band,	$\alpha = -1/2. \text{ Possible configuration} = \pi h_{11/2} \otimes \nu h_{11/2} \otimes \nu (g_{7/2}/s_{1/2}/d_{3/2}).$
& (B): Possib	le 3-qp band,	x=+1/2. Possible configuration= $\pi h_{11/2} \otimes v h_{11/2} \otimes v (g_{7/2}/s_{1/2}/d_{3/2})$ .
a (C): πg _{7/2} +γ	vibration.	
h (D)	1/0 1	

b (D):  $\pi g_{7/2} \alpha = +1/2$ . Favored signature partner, band crossing due to  $h_{11/2}$  proton pair at  $\hbar \omega = 0.41$  MeV.

^c (E):  $\pi g_{7/2}^{-1/2}, \alpha = -1/2$ . Unfavored signature partner, band crossing due to  $h_{11/2}$  proton pair at  $\hbar \omega = 0.37$  MeV.

d (F):  $\pi d_{5/2}, \alpha = +1/2$ . Favored signature partner, band crossing due to  $h_{11/2}$  proton pair at  $\hbar \omega = 0.37$  MeV.

e (G):  $\pi h_{11/2}^{-1/2}, \alpha = -1/2$ . Favored signature partner, band crossing due to  $h_{11/2}$  neutron pair at h $\omega = 0.43$  MeV.

f (H):  $\pi h_{11/2}^{11/2}, \alpha = +1/2$ . Unfavored signature partner, band crossing due to  $h_{11/2}$  neutron pair at h $\omega = 0.41$  MeV.

g (I): Possible magnetic-rotational band. Possible configuration= $\pi h_{11/2} \otimes v h_{11/2}^{1/2}^2$ .

 $\begin{array}{l} h \hspace{0.1cm} (J): \hspace{0.1cm} \pi h_{11/2} + \gamma \hspace{0.1cm} vibration. \hspace{0.1cm} The \hspace{0.1cm} \gamma \hspace{0.1cm} vibration \hspace{0.1cm} refers \hspace{0.1cm} to \hspace{0.1cm} that \hspace{0.1cm} of \hspace{0.1cm} a \hspace{0.1cm} triaxial \hspace{0.1cm} core. \hspace{0.1cm} i \hspace{0.1cm} (K): \hspace{0.1cm} Possible \hspace{0.1cm} 3-qp, \hspace{0.1cm} \Delta J=1 \hspace{0.1cm} band. \hspace{0.1cm} Possible \hspace{0.1cm} configuration=\pi h_{11/2} \otimes \nu h_{11/2} \otimes (g_{7/2}/s_{1/2}/d_{3/2}). \end{array}$ 

### $\gamma(^{129}{\rm Cs})$

The DCO ratios were deduced from coincidence spectra with gates on transitions of known  $\Delta J=2$  quadrupole multipolarity (2009Si08). Expected ratios are 1.0 for  $\Delta J=2$ , quadrupole and  $\approx 0.6$  for  $\Delta J=1$ , dipole transitions.

$E\gamma^{\dagger}$	E(level)	Iγ [†]	Mult.	α	Comments
6 55 5	6 55				
0.00 0	0.00	0.04.0		0 50 10	
136.5 7	2812.7	0.84 8	[M1+E2]	0.50 13	$\alpha(\mathbf{K})=0.39$ 7; $\alpha(\mathbf{L})=0.09$ 5; $\alpha(\mathbf{M})=0.019$ 11.
					$\alpha(N)=0.0039\ 21;\ \alpha(O)=0.00049\ 23;\ \alpha(P)=1.30\times10^{-3}\ 5.$
145.3 7	2812.7	3.34	(M1+E2)	0.41 10	DCO=0.62 12.
					$\alpha(K)=0.32$ 5; $\alpha(L)=0.07$ 4; $\alpha(M)=0.015$ 8.
					$\alpha(N)=0.0030 \ 15; \ \alpha(O)=0.00038 \ 17; \ \alpha(P)=1.08\times 10^{-5} \ 4.$
149.14	575.4	656	(E1)	0.0722 12	DCO=0.64 5.
					$\alpha(K)=0.0620 \ 10; \ \alpha(L)=0.00810 \ 13; \ \alpha(M)=0.00165 \ 3.$
					$\alpha(N)=0.000344$ 6; $\alpha(O)=4.65\times10^{-5}$ 8; $\alpha(P)=2.03\times10^{-6}$ 4.
166.0 7	2666.8	0.234			
167.1 7	3685.1	2.9 4	(M1+E2)	0.26 5	DCO=0.58 12.
					$\alpha(K)=0.21$ 3; $\alpha(L)=0.041$ 18; $\alpha(M)=0.009$ 4.
					$\alpha(N)=0.0018 \ 8; \ \alpha(O)=0.00023 \ 9; \ \alpha(P)=7.20\times 10^{-6} \ 14.$
177.5 7	2676.7	0.11 2			
182.3 4	188.8	109 8	(M1+E2)	0.20 3	DCO=0.62 5.
					$\alpha(K)=0.160\ 17;\ \alpha(L)=0.030\ 12;\ \alpha(M)=0.0063\ 25.$
					$\alpha(N)=0.0013$ 5; $\alpha(O)=0.00017$ 6; $\alpha(P)=5.59\times10^{-6}$ 12.
202.8 7	209.5	5.1 5	(M1+E2)	0.142 17	DCO=0.54 8.
					$\alpha(K)=0.116 \ 9; \ \alpha(L)=0.021 \ 7; \ \alpha(M)=0.0043 \ 15.$
					$\alpha(N)=0.0009$ 3; $\alpha(O)=0.00012$ 4; $\alpha(P)=4.10\times10^{-6}$ 15.
					DCO value contradicts 5/2+ to 5/2+ assignment (evaluators).
205.5 7	3156.9	1.11 14	(M1+E2)	0.137 16	DCO=0.52 11.
					$\alpha(K)=0.112 \ 8; \ \alpha(L)=0.020 \ 6; \ \alpha(M)=0.0041 \ 14.$
					$\alpha(N)=0.0009$ 3; $\alpha(O)=0.00011$ 3; $\alpha(P)=3.95\times10^{-6}$ 16.
214.5 7	3156.9	0.62 7	(M1 + E2)	0.120 12	DCO=0.52 14.
					$\alpha(K)=0.098$ 6; $\alpha(L)=0.017$ 5; $\alpha(M)=0.0035$ 11.
					$\alpha(N)=0.00074\ 21;\ \alpha(O)=9.6\times10^{-5}\ 23;\ \alpha(P)=3.49\times10^{-6}\ 16.$
230.3 7	3042.9	3.24	(M1 + E2)	0.096 8	DCO=0.54 11.
					$\alpha(K)=0.080$ 4; $\alpha(L)=0.013$ 4; $\alpha(M)=0.0028$ 8.
					$\alpha(N)=0.00058 \ 15; \ \alpha(O)=7.6\times 10^{-5} \ 16; \ \alpha(P)=2.85\times 10^{-6} \ 17.$

# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}44$

# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}44$

				$\gamma$ ⁽¹²⁹ Cs)	(continued)
${\bf E}\gamma^{\dagger}$	E(level)	Iγ [†]	Mult.	α	Comments
237 6 7	426 4	4 7 5	(M1 + E2)	0 088 6	DCO=0.52.11
201.07	120.1	4.1 0	(1111122)	0.000 0	$\alpha(K)=0.0727 \ 23; \ \alpha(L)=0.012 \ 3; \ \alpha(M)=0.0025 \ 6.$
969 1 7	2/10 0	0 27 10	(M1 + F9 )	0 0654 99	$\alpha(N)=0.00052$ 12; $\alpha(O)=6.9\times10^{-5}$ 13; $\alpha(P)=2.60\times10^{-6}$ 17.
202.1 /	3410.0	0.57 10	(1011+122)	0.0034 25	$\alpha(K)=0.0545 \ 9; \ \alpha(L)=0.0087 \ 16; \ \alpha(M)=0.0018 \ 4.$
					$\alpha(N)=0.00038$ 7; $\alpha(O)=5.0\times10^{-5}$ 7; $\alpha(P)=1.97\times10^{-6}$ 16.
262.8 7	3681.7	0.83 20			DCO value for $262.1\gamma+262.8\gamma$ .
263.9 7	690.6	1.18 15			
265.57	2942.3	0.27 5			
$306.0^+$	4420.2	0 80 14			
311.77 327.97	3734.9	$0.80 14 \\ 0.22 4$	(M1 + E2)	0.0341 14	DCO=0.54 15.
341.3 7	4026.6	5.6 5	(M1+E2)	0.0304 15	DCO=0.62 10.
354.5‡	3590.7				
363.6 7	3406.9	2.23	(M1+E2)	0.0254 17	DCO=0.59 12.
366.57 37357	3042.9 4366 5	0.254 0.658			
375.5 7	3418.8	0.14 3			
384.9 7	1032.7	3.9 4	D+Q		DCO=0.62 10.
386.4 4	575.4	45 4	[M2]	0.0864	DCO=0.62 5.
					$\alpha(K)=0.0729$ 11; $\alpha(L)=0.01076$ 16; $\alpha(M)=0.00223$ 4. $\alpha(N)=0.000472$ 7; $\alpha(O)=6.52\times10^{-5}$ 10; $\alpha(P)=2.12\times10^{-6}$ 5
					$u(N)=0.000472$ 7; $u(O)=0.05\times10^{\circ}$ 10; $u(P)=0.12\times10^{\circ}$ 5. The DCO value contradicts with the multipolarity assignment.
393.5 7	4420 . 2	3.8 4	(M1+E2)	0.0204 17	DCO=0.52 14.
394.6 7	604.0	$0.81 \ 14$			
395.77	4131.1	0.31 6	(M1+E2)	0.0201 17	DCO=0.52 14.
400.0+	4131.1	0 35 5			
419.7 4	426.4	88 5			
422.5	3517 . 9				
$425^{\ddagger}$	5025.8				
446	2842.6	100 1			
449.5 7	3685.1	8.5 8	D+Q		DCO=0.82 16.
459.2 4	647.7	57 3	·		
468.5 [§] 7	4599.7	$0.19$ $^{\$}$ 4	D+Q		DCO=0.58 14.
	5068 0	0 10 \$ 3			DCO value for 468.5 doublet.
469.4 7	4198.5	1.33 18	D		DCO=0.62 16.
479.4 7	4899.6	3.7 5	D+Q		DCO=0.45 14.
479.7 7	5548.0	0.22 4			DCO=0.45 14.
481.0 4 484 [‡]	690.6 6051 8	15.2 9			
496 1	2214.5				
501.6 7	690.6	1.58 16			
502.1 7	5401.7	2.8 4	D+Q		DCO=0.65 12.
514.0 7		0.397	D O		DCO_0 59 9
322.8% /	2214.5	5.13 7	D+Q		DCO value for 522.8 doublet.
	2842.6	4.28 4			
$524.5_{"}7$	3681.7	0.47 8			
$541.5^{\#}$ 7	1691.6				
042.5+ 569.27	οουι. 5754		[E3]	0.0175	
574.5 7	3993.2	0.12 2	[ 20]	0.0110	
575.3 7	1150.4	4.1 4			
586.8 7	2632.7	0.38 6			
587 1 589 1 [#] 7	2214.5 3684 12	5 2 5	D+0		DCO=0 47 9
500.1 /	0004.1:	0.20	1.4		DCO value for 589.1γ+589.5γ.
589.5 7	3685.1	1.7 2	D+Q		DCO=0.47 9.
					DCO value for 589.17+589.57.

### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}45$

 $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}45$ 

### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

 $\gamma(^{129}\mathrm{Cs})$  (continued)

$E\gamma^{\dagger}$	E(level)	Iγ†	Mult.	Comments
594.5 7	3406.9	0.10 2		
597.5 7	604.0	2.5 3	FO	
604.34	1627.6	93 5	E2	DCO=1.05 8.
600.1 4	1032.7	15 9 9	Q O	DCO=0.92 10.
021.0 4	2315.4	15.2 8	Q	DCO-0.35 12. DCO value for 627.8y+628.0y.
628.0§ 7	1231.8	2.5 \$ 3		
	2842.6	2.2 § 3		
631.3 4	1278.7	27.1 16	E2	DCO=1.12 9.
648.9 4	1339.7	14.1 8	Q	DCO=0.95 9.
650.6 7	4764.3	4.3 5	D+Q	DCO=0.68 11.
652.6 7	3949.0	2.94	Q	DCO=0.94 17.
658.3 7	3291.0	3.24	Q	DCO=0.92 16.
659.0 7	1890.6	2.3 3	Q	DCO=0.94 17.
659.2 7	5692.2	2.5 3		
663.7 7	3296.4	4.5 5	E2	DCO=0.92 17.
668.0 4	1691.6	12.8 8	D+Q	
684.6 7	4300.0	0.95 15	Q D.O	DCO=0.45 8
600 5 7	3924.3 2729 6	0.07	D+Q	DC0=0.45 8.
692 1 4	2319 4	16 4 10	D+0	DCO-0.46.5
692.5 7	1339 7	2 2 8 2	D+Q	DCO=0.43 5.
002.00	3734.9	0.25 4	2.4	DCO=0.62 14.
699.9 7	3095.7	9.8 9	D+Q	DCO=0.43 7.
707.1 7	4436.2	3.5 4	Q	DCO=0.92 16.
724.3 7	4131.1	0.12 2	-	
748.5‡	3590.7			
759.8 4	1792.7	18.2 14	Q	DCO=0.97 9.
768.24	2395.7	72 5	E2	DCO=1.12 10.
768.34	2046.9	20.3 12	E2	DCO=1.02 12.
774.5 7	3681.7	1.00 17		
775.9 7	2666.8	2.3 3	Q	DCO=0.96 18.
776.54	3095.7	13.1 10	Q	DCO=0.92 14.
783.1 4	2122.9	13.9 9	Q	DCO=0.96 14.
786.5 7	2676.7	0.89 17	Q	DCO=1.12 19.
805.5 7	1231.8	1.5 2	FO	
821.0 / 825.0±	3729.1	5.4 6	ЕZ	DC0=0.92 17.
828 7 7	3094 3	566	0	DCO-0.98 16
829 3 7	2952 2	616	ч О	DCO-0.92 17
839 6 7	4764 3	2 4 3	પ	500-0.02 17.
839.7 4	2632.7	17.6 14	E2	DCO=1.02 15.
				B(E2)(W.u.)=230 + 100-70.
840.0#7	3684.1?			
840.14	3235.7	58 <i>3</i>	E2	DCO=0.98 10.
844.6# 7	2122.9			Eγ: from figure 1 of 2009Si08, not listed in authors' table I.
845.3 7	5281.5	2.3 3	Q	DCO=0.92 18.
845.6 7	5212.1	0.82 12		
854+	4445.2		0	
857.27	3809.7	1.7 3	Q	DCO=1.14 24.
8087	2980.9	19 0 10	FO	
864 5 7	2907.8	12.9 10	E2	DC0=0.94 14.
879 0 4	4555.7	29 9 16	E2	DCO-0.91.9
895.3 7	2942.3	0.32 6	D+Q	DCO=0.58 14.
895.5 7	5025.8	0.17 3	·	
902.5 7	3809.7	0.38 7		
905.5 7	2952.2	0.72 12		
917.7 4	5032.5	14.5 9	E2	DCO=1.05 12.
928.5 7	5692.2			
936.5 7	5068.0	0.10 2		
948.5 7	5548.0	0.10 2		
957.0 4	5989.5	11.7 8	Q	DCO=0.94 12.

#### $^{122}Sn(^{11}B,4n\gamma),^{124}Sn(^{11}B,6n\gamma)$ 2009Si08,2009Zh20,2010Wa01 (continued)

 $\gamma(^{129}\mathrm{Cs})$  (continued)

$E\gamma^{\dagger}$	E(level)	Iγ†	Mult.	Comments
967.5 [‡]	5567.8			
987.9 7	6200.0	0.75 12		
989.0 [‡]	6270.5			
1011.2 7	7000.7	5.2 5	Q	DCO=1.12 16.
1011.6 7	3919.2	4.2 4	D	DCO=0.52 8.
1020.5 7	2812.7	6.76	Q	DCO=0.98 17.
1098.7 7	8099.4	2.12		
1109.0‡	7379.5			
1109.4 7	3156.9	3.4 4	Q	DCO=0.98 20.
1122.0 7	3517.9	4.74	D+Q	DCO=0.62 9.
1142 . 5 [‡]	1718.2			
1191.5 7	2214 . 5	6.0 5	Q	DCO=0.94 18.
1194.5‡	3590.7			
$1210^{\ddagger}$	4445.2			
1214.3 7	2842.6	5.6 4	Q	DCO=0.89 16.
1222.37	2500.3	1.4 2	Q	DCO=0.88 24.
1242.97	1890.6	1.4 2	Q	DCO=0.92 20.
1289.1 7	3685.1	5.54	Q	DCO=0.92 17.
				DCO value for 1289.17+1289.37.
$1289.3^{\#}$ 7	3684.1?	4.3 4	Q	DCO=0.92 17.
				DCO value for 1289.17+1289.37.
1388.4 7	2666.8	1.4 2	Q	DCO=1.12 19.
1396.0‡	2676.7			

[†] From 2009Si08 unless otherwise stated. Energy uncertainties are assigned as 0.4 keV for transitions with Iγ≥10 and 0.7 keV for transitions with Iγ<10, based on a general comment in 2009Si08.</li>
 [‡] γ reported by 2009Zh20.

§ Multiply placed; intensity suitably divided.
 # Placement of transition in the level scheme is uncertain.

### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

(A) Possible 3-qp band,  $\alpha = -1/2$ .

(B) Possible 3-qp band,  $\alpha =+1/2$ .

(C)  $\pi g_{7/2} + \gamma$  vibration.

(D)  $\pi g_{7/2}, \alpha = +1/2.$ 





### ¹²²Sn(¹¹B,4ny),¹²⁴Sn(¹¹B,6ny) 2009Si08,2009Zh20,2010Wa01 (continued)

 $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}48$ 

### ¹²²Sn(¹¹B,4nγ), ¹²⁴Sn(¹¹B,6nγ) 2009Si08, 2009Zh20, 2010Wa01 (continued)

(I) Possible magnetic-rotational band.

(J)  $\pi h_{11/2}$ + $\gamma$  vibration.

(K) Possible 3-qp,  $\Delta J=1$  band.



# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}50$





 $^{129}_{55}\mathrm{Cs}_{74}$ 

### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

Level Scheme

Intensities: relative Ιγ @ Multiply placed; intensity suitably divided



### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

Level Scheme (continued)

Intensities: relative  $I\gamma$  @ Multiply placed; intensity suitably divided

(47/2-)	8099.4
(43/2+)	7379.5
43/2-	7000.7



### ¹²²Sn(¹¹B,4nγ),¹²⁴Sn(¹¹B,6nγ) 2009Si08,2009Zh20,2010Wa01 (continued)

Level Scheme (continued)

 $Intensities: \ relative \ I\gamma \\ @ \ Multiply \ placed; \ intensity \ suitably \ divided \\$ 

(47/2-)	8099.4
(43/2+)	7379.5
43/2-	7000.7



### ¹¹⁶Cd(¹⁸O,4npγ) 1991Hi12

1991Hi12:  ${}^{116}Cd({}^{18}O,4np)$  E=85 MeV,  ${}^{122}Sn({}^{11}B,4n)$  E=50 MeV;  $\gamma\gamma$ -coin,  $\gamma(\theta)$ .

 $^{129}\mathrm{Cs}$  Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0 0	1/9		
6 55@ 5	5/2+		
188 85& 24	7/2+	2 26 ns 6	
208 88 3	5/2+	2.20 115 0	
426 52@ 24	9/2+		
575 58 3	$\frac{11}{2}$	0 718 us 21	% IT-100
515.50 5	11/2-	0.710 µs 21	T _{1/2} : from Adopted Levels.
603.3? ^b 8	(7/2+)		
648.2 ^{&amp;} 4	11/2+		
690.4 ^a 4	9 / 2 +		
1023.98 5	15/2-		
$1032.2^{@}4$	13/2+		
$1150.1^{\#}5$	13/2-		
1231.0 ^b 7	(11/2+)		
1279.4 ^{&amp;} 5	15/2+		
1339.3 ^a 5	13/2+		
$1627.5^{\$}5$	19/2-		
$1692.3^{\#}5$	17/2 -		
$1792.0^{@}5$	17/2+		Large negative intensity balance at this level.
1890.1 ^b 7	15/2+		
2047.8& 6	19/2+		
2122.4 ^a 6	17/2+		
2319.6#6	21/2-		
2396.08 6	23/2-		
2631.8@6	21/2+		
2667.0 ^b 7	19/2+		
2676.3 ^c 8	(19/2+)		
2812.3° 7	(21/2+)		
2908.0& 7	23/2+		
2951.3 ^a 7	21/2+		
3042.4° 8	(23/2+)		
3095.7#6	25/2-		
3235.9 [§] 10	27/2-		
3295.8 [@] 12			
3406.3° 8	(25/2+)		
3728.8& 7	27/2+		
3801.9?° 9	(27/2+)		E(level): this level is at 3734 keV in Adopted Levels due to reversed ordering of $327.7-395.6 \ \gamma$ cascade.
3923.8?# 10			
3948.8?@ 16			
4114.8 [§] 11	31/2-		
4129.6? ^c 9	(29/2+)		
4435.8& 13	(,		
5032.5 \$ 11	35/2-		
5989.5§ 15	(39/2-)		
7000.5 § 18	(43/2-)		
<ul> <li>[†] From least</li> <li>[‡] As assigned</li> <li>[§] (A): Band b</li> <li>[#] (D) D</li> </ul>	-squares fit t l in 1991Hi12 pased on 11/2-	o E $\gamma$ data, assuming 2. $-,\alpha = -1/2$ .	g 0.3 keV uncertainty when Eq stated to nearest keV, 1 keV otherwise.
" (B): Band b	based on 11/2-	$-, \alpha = \pm 1/2.$	
<ul> <li>(C): Band I</li> <li>&amp; (D): Band I</li> </ul>	based on $5/2+$	, ο κev, α=+1/2. 189 α1/2	
	Jaseu on 1/2+	, 100,u=-1/2.	

a (E): Band based on 7/2+, 103, $\alpha$ =1/2. a (E): Band based on 5/2+, 209,  $\alpha$ =+1/2. b (F): Band based on 7/2+, 603,  $\alpha$ =+1/2. c (G): Band based on (19/2+).

# $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}56$

				γ(1	²⁹ Cs)			
When only $A_2$ is given, $A_4$ is set to zero.								
Eγ	E(level)	Ιγ	Mult. [†]	α	Comments			
6.55 5	6.55				Ey: from Adopted Gammas.			
136.1	2812.3	2.4 3	(M1+E2)	0.50 13	$ \begin{array}{l} \alpha({\rm K}){=}0.39 \ 7; \ \alpha({\rm L}){=}0.09 \ 5; \ \alpha({\rm M}){=}0.019 \ 11. \\ \alpha({\rm N}){=}0.0039 \ 21; \ \alpha({\rm O}){=}0.00049 \ 23; \ \alpha({\rm P}){=}1.30{\times}10^{-5} \ 5. \end{array} $			
145 2	2812 3	5 1 5	(M1 + E2)	0 41 10	$A_2 = -0.08 \ 8.$ $\alpha(K) = 0.32 \ 5. \ \alpha(L) = 0.07 \ 4. \ \alpha(M) = 0.015 \ 8.$			
11012	201210	0.11 0	(	0.11 10	$\alpha(N)=0.0030 \ 15; \ \alpha(O)=0.00038 \ 17; \ \alpha(P)=1.08\times10^{-5} \ 4.$ A _a =-0.24 6.			
149.0	575.5	737			$A_2 = +0.04 \ 4.$			
182.3	188.85	104 11			-			
202.2	208.8	7.2 7	(M1+E2)		$\alpha(\mathbf{K})=0.116 \ 9; \ \alpha(\mathbf{L})=0.021 \ 7; \ \alpha(\mathbf{M})=0.0043 \ 15.$ $\alpha(\mathbf{N})=0.0009 \ 3; \ \alpha(\mathbf{O})=0.00012 \ 4; \ \alpha(\mathbf{P})=4.10\times10^{-6} \ 15.$			
230.1	3042.4	15.3 15	(M1 + E2)	0.096 8	$A_2 = +0.41 \ 11; \ A_4 = +0.11 \ 10.$ $\alpha(K) = 0.080 \ 4; \ \alpha(L) = 0.013 \ 4; \ \alpha(M) = 0.0028 \ 8.$			
			, , ,		$\alpha(N)=0.00058 \ 15; \ \alpha(O)=7.6\times10^{-5} \ 16; \ \alpha(P)=2.85\times10^{-6} \ 17.$ $A_{g}=-0.22 \ 10; \ A_{d}=+0.17 \ 9.$			
237.6	426 . $52$	11.7 12	D		$A_2 = -0.18 5.$			
327.7	4129.6?	1.3 1	(M1 + E2)		A ₂ =-0.63 16.			
363.9	3406.3	11.5 12	(M1+E2)	0.0254 17	$A_2 = -0.59 5.$			
385 I 386.6	1032.2 575.5	42 4	[M2]	0.0864	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			
					$A_2 = +0.11$ 9; $A_4 = +0.12$ 8.			
					Sign of $\boldsymbol{A}_4$ is inconsistent with $\Delta J{=}2,$ quadrupole transition.			
395.6	3801.9?	3.74	(M1+E2)		$A_2 = -0.50 \ 8.$			
420.0	426.52	91 9	(		$A_2 = +0.11 \ 10; \ A_4 = +0.02 \ 8.$			
459.4	648.2	50 5	(E2) (E2)		$A_2 = +0.32$ 10; $A_4 = -0.03$ 8. $A_5 = +0.27$ 10; $A_4 = -0.04$ 8.			
481 1	690.4	000	(11)		$n_2 - 1021 + 10, n_4 - 0001 + 0.$			
501.6	690.4	5.86	(M1 + E2)		$A_2 = -0.41 \ 14; \ A_4 = +0.04 \ 13.$			
574.6	1150.1	10.6 11	D+Q		$A_2 = -0.76$ 12; $A_4 = +0.05$ 11.			
597 1	603.3?							
604.1	1627.5	76 8	(Q)		$A_2 = +0.26 \ 10; \ A_4 = -0.06 \ 8.$			
605.6 626.8	1032.2	273	(Q)		$A_2 = +0.27 \ 10; \ A_4 = +0.01 \ 8.$			
628 1	1231.0	4.0 4						
631.1	1279.4	40 4	(Q)		$A_2 = +0.29 \ 10; \ A_4 = -0.05 \ 8.$			
648.9	1339. 3	7.4 7	(Q)		$A_2 = +0.23$ 6.			
653 1	3948.8?							
660 1	1890.1							
668 0	3295.8	12 0 14	D+0		A = 0.66 11; A = 0.08 10			
688 1	3923.8?	10.0 11	Diq		$n_2 = 0.00  m_1  m_4 = 0.00  m_2$			
692.5	2319.6	25.2 25	D+Q		A ₂ =-0.39 10; A ₄ =+0.23 10.			
699.7	3095.7	5.6 6	D+Q		$A_2 = -0.65 \ 18; \ A_4 = +0.27 \ 17.$			
707 1	4435.8							
759.7 769.4 [†]	1792.0	$15.2 \ 15$	(Q)		$A_2 = +0.34$ 11; $A_4 = -0.05$ 9.			
168.4*	2047.8	69÷ 7	(Q) (Q)		$A_2 = +0.35 \ I0; \ A_4 = -0.03 \ 8.$			
776.1	3095.7	12.6 13	(Q) (Q)		$A_0 = +0.35$ 11: $A_1 = +0.03$ 10.			
777 1	2667.0				-2			
783.1	2122 . 4	5.25	(Q)		$A_2 = +0.30$ 15; $A_4 = -0.04$ 13.			
787 1	2676.3							
805 1	1231.0	4.9.4						
820.8	3728.8 3922 82	4.24	(Q)		$A_2 = +0.2i$ 18; $A_4 = -0.0b$ 16.			
828.9	2951.3	4.95	(Q)		$A_{a} = +0.37$ 14: $A_{a} = -0.03$ 13.			
839.8	2631.8	32 3	(Q)		$A_{2} = +0.30 \ 10; \ A_{4} = -0.08 \ 9.$			
840 1	3235.9	32 3	(Q)		$A_2 = +0.30 \ 10; \ A_4 = -0.08 \ 9.$			
860.2	2908.0	12.8 13	(Q)		$A_2 = +0.37$ 12; $A_4 = -0.05$ 10.			
878.9	4114.8	11.1 11	(Q)		$A_2 = +0.32$ 12; $A_4 = 0.00$ 10.			
917.7	5032.5	4.04	(Q)		A ₂ =+0.19 7.			
957 1	5989.5	<2						

### ¹¹⁶Cd(¹⁸O,4npγ) 1991Hi12 (continued)

### ¹¹⁶Cd(¹⁸O,4npγ) 1991Hi12 (continued)

```
\gamma(^{129}Cs) (continued)
```

Εγ	E(level)	Ιγ	Mult. [†]	Comments
1011 <i>1</i>	7000.5	>2		
1020 1	2812.3			
1242 1	1890.1			
1387 1	2667.0	1.3 1	(Q)	$A_2 = +0.45 \ 38; \ A_4 = +0.03 \ 34.$

[†] Evaluators assign (Q) for positive A₂ and (M1+E2) for large negative A₂ values, whereas 1991Hi12 assign E2 in the former case. See also Adopted Gammas.
[‡] Multiply placed; undivided intensity given.

### ¹¹⁶Cd(¹⁸O,4npγ) 1991Hi12 (continued)



 $^{129}_{55}\mathrm{Cs}_{74}\mathrm{-}59$ 

### ¹¹⁶Cd(¹⁸O,4npγ) 1991Hi12 (continued)

(E) Band based on 5/2+, 209, α=+1/2 (F) Band based on 7/2+, 603, α=+1/2 (G) Band based on (19/2+)







### ¹¹⁶Cd(¹⁸O,4npγ) 1991Hi12 (continued)

Level Scheme

 $\label{eq:Intensities: relative I} Intensities: relative I \gamma $$ \& Multiply placed; undivided intensity given $$$ 



 $^{12\,9}_{5\,5}\mathrm{Cs}_{74}$ 

#### $^{127}I(\alpha, 2n\gamma)$ 1977Ch23

1977Ch23: E=28 MeV, natural target,  $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(t)$ -coin,  $\gamma(\theta)$ ,  $\gamma(t)$ , excitation function. Others:

 $1979Ga01 \ (also \ 1979Ga2P \ thesis): \ high-spin \ levels \ in \ ^{129}Cs \ studied \ using \ ^{127}I(\alpha,2n\gamma), \ ^{126}Te(^6Li,3n\gamma) \ and \ shows \$  $^{122}\mathrm{Sn}(^{10}\mathrm{B},3n\gamma)$  reactions, but no data are presented, except that for half-life of 575-keV isomer. 1978De29: E=22 MeV; measured spin rotation in  $\gamma(\theta,H,t)$ . deduced g and half-life for 575-keV isomer.

### $^{129}\mathrm{Cs}$ Levels

E(level) [†]	$J\pi^{\ddagger}$	$T_{1/2}$	Comments
0 0	1/2+		
6 55@ 5	5/2+		
188 638 97	7/2+		
208 68 2	5/9		
208.0° J	0/2+		
426.15-22	9/2+	0 710 01	
575.08 22	11/2-	0.718 µs 21	% 11=100.
			$\Gamma_{1/2}$ : from $\gamma(t)$ ; weighted average of 0.734 µs 23 (1978De23), and 0.69 µs 3
o / <b>=</b> / o /			(1977Ch23). Other: 0.73 μs 7 (1979Ga01, same group as 1978De29).
647.4ª 4	11/2+		
689.4° 3	9 / 2 +		
1023.08 4	15/2-		
$1031.7^{@}4$	13/2+		
1149.7#4	13/2-		
1277.8 ^a 5	15/2+		
1337.9& 5	13/2+		
1626.8 \$ 5	19/2-		
1690.5 5	17/2 -		
1693.1# 5	(15/2-)		
$1790.7^{@}5$	17/2+		
2045.6 ^a 6	19/2+		
2120 3& 5	17/2+		
2220.0 0	1., 2.		
2212.01 0			
2010.0: 0 9949 09 6			Filovally loval not included in Adopted Lovala A 658.2% is placed from a loval of
2040.91 0			Elever, lever not included in Adopted Levers. A bost of laterat
			3291 kev; and a 609.0γ from 1890 level in Adopted dataset.

[†] From least-squares fit to E $\gamma$  data, assuming 0.3 keV uncertainty for each  $\gamma$  ray.

[‡] As assigned in 1977Ch23.

§ (A): Band based on  $1h_{11/2}, \alpha = -1/2$ .

# (B): Band based on  $1h_{11/2}, \alpha = +1/2$ . @ (C): Band based on 5/2+.

& (D): Band based on  $5/2+, \alpha=+1/2$ .

a (E): Band based on  $5/2+,\alpha=+1/2$ .

### $\gamma(^{129}Cs)$

When only  $A_2$  is given,  $A_4$  is set to zero.

Εγ	E(level)	Ιγ	Mult. [†]	α	Comments
6.55 5	6.55				Ey: from Adopted Gammas.
148.6	575.08	51	(E1)	0.0722 12	$A_{2}=-0.13$ 5.
182.0	188.63	100			$A_2 = +0.02 \ 2.$
202.1	208.6	15			$A_2 = +0.10 \ 10.$
237.3	426.15	24			$A_2 = +0.02$ 5.
386.6	575.08	34	[M2]	0.0864	$A_2 = -0.01 5.$
419.5	426.15	87			$A_2 = +0.07 \ 3.$
447.9	1023.0	58	(E2)		$A_2 = +0.28 5.$
458.8	647.4	45	(E2)		$A_2 = +0.22$ 5.
480.8	689.4	11	(E2)		$A_2 = +0.26 \ 10.$
500.8	689.4	5	D		$A_2 = -0.14 \ 10.$
$522$ . $3^{\ddagger}$	2212.8?	3			Å ₂ ≈−1.
543.4	1693.1	17	D		$A_{2} = -0.09 5.$
568.7	575.08	6.5	[E3]	0.0175	$A_2 = +0.06 \ 10.$
574.6	1149.7	19	D+Q		$A_2 = -0.55$ 15.
603.8	1626.8	27			
605.5	1031.7	20	(Q)		$A_2 = +0.24$ 10.

#### $^{127}I(\alpha, 2n\gamma)$ 1977Ch23 (continued)

### $\gamma(^{129}Cs)$ (continued)

Eγ	E(level)	Ιγ	Mult. [†]	Comments	
630.4	1277.8	26	(Q)	A ₂ =+0.32 5.	
648.5	1337.9	10	(Q)	$A_2 = +0.31$ 10.	
658.4‡	2348.9?	8.5		$A_{2}^{-}=+0.29$ 10.	
667.5	1690.5	15	D+Q	$A_2 = -0.61$ 15.	
691.8‡	2318.6?	$\approx 1.0$		$A_2 \approx -0.3.$	
759.0	1790.7	8	(Q)	$A_2 = +0.34$ 10.	
767.8	2045.6	19	(Q)	$A_{2}^{2} = +0.25 5.$	
782.4	2120.3	5.5	(Q)	$A_2^{2} = +0.22$ 10.	

[†] Evaluators assign (Q) for positive  $A_2$  and (M1+E2) for large negative  $A_2$  values. See also Adopted Gammas. [‡] Placement of transition in the level scheme is uncertain.

### ¹²⁷I(α,2nγ) 1977Ch23 (continued)





### ¹²⁷I(α,2nγ) 1977Ch23 (continued)

#### Level Scheme

Intensities: relative  $I\gamma$ 



0.718 µs

 $^{129}_{55}\mathrm{Cs}_{74}$ 

 $^{129}_{56}Ba_{73}-1$ 

# $^{129}_{56}\text{Ba}_{73}$ -1

#### Adopted Levels, Gammas

 $Q(\beta^-)=-3739\ 22;\ S(n)=7756\ 11;\ S(p)=6421\ 12;\ Q(\alpha)=-295\ 11\ 2012Wa38.$ 

S(2n)=18388 16, S(2p)=11320 11 (2012Wa38).

1950Th02, 1950Fi11: identification and production of ¹²⁹Ba in proton bombardment of ¹³³Cs, measured half-life. Later decay studies: 1959He45, 1961Ar05, 1963Ya05, 1966Li05, 1970Is04, 1971Is02, 1972Ta02, 1973Is04, 1983TaZI.

## ¹²⁹Ba Levels

#### Cross Reference (XREF) Flags

A ¹²⁹La ε Decay (11.6 min)

B  120 Sn( 12 C, $3n\gamma$ ), 116 Cd( 18 O, $5n\gamma$ )

C ¹³⁰Ba(pol d,t),(d,t)

E(level) [†]	$J\pi^{\ddagger}$	XREF	T _{1/2} §	Comments
0.01	1/2+	ABC	2.23 h [@] 11	$\%\epsilon + \%\beta^{+} = 100.$
				$\mu = -0.398 \ 16 \ (1979Be25, 1983Mu12, 2014StZZ).$
				μ: atomic beam with laser fluorescence spectroscopy (1979Be25);
				result of 1979Be25 re-evaluated by 1983Mu12.
				Evaluated rms charge radius=4.8248 fm 49 (2013An02).
				Charge radius measurements: 1983Mu12, 1979Ba74.
				$J\pi$ : L=0 and analyzing power in (d.t).
$8.42^{h}6$	7/2+	ABC	2.135 h [#] 10	$\%\epsilon + \%\beta^{+} \approx 100$ ; %IT=?
				$\mu = +0.930 \ 17 \ (1979Be25.1983Mu12.2014StZZ).$
				$Q = +1.75 \ 14 \ (1979Be25.2013StZZ.2014StZZ).$
				u.Q: atomic beam with laser fluorescence spectroscopy (1979Be25):
				re-evaluated by 2013StZZ. Other: +1.60 13 (result of 1979Be25 re-evaluated by 1983Mu12).
				$J\pi$ : L=4 and analyzing power in (d,t).
$110.57^{m}5$	3 / 2 +	ABC		$J\pi$ : L=2 and analyzing power in (d,t); M1 $\gamma$ to 1/2+.
182.04 ^a 11	9/2-	BC	15.2 ns 10	$\mu = -0.864 \ 27 \ (2013 Ka 27.2014 St ZZ).$
				u: from g factor=-0.192 6 (2013Ka27.TDPAD method).
				$J\pi$ : L=5 and analyzing power in (d.t); E1 $\gamma$ to 7/2+.
				$T_{1/0}$ : from $\gamma(t)$ . Weighted average of 15 ns 1 (2013Ka27) and 16
				ns 2 (1992By03).
253.765	3 / 2 +	A C		$J\pi$ : L=2 and analyzing power in (d,t).
$263.1^{1}$ 1	9 / 2 +	В		
278.57 5	1/2+	A C		$J\pi$ : L=0 and analyzing power in (d,t).
278.81 ^{&amp;} 12	11/2-	BC		J $\pi$ : L=5 and analyzing power in (d,t); $\Delta$ J=1, M1+E2 $\gamma$ to 9/2
$318.38^{1}$ 5	1/2-,3/2-	А		E(level): level energy and deexciting E $\gamma$ are very similar to those of the 318.4 level in (HI,xn $\gamma$ ), but multipolarities are quite different. Evaluators regard it as a different level.
				$J\pi$ : E1 gammas to 1/2+ and (3/2)+.
318.4 1	5 / 2 +	BC		E(level): see comments on 318.38 level above.
				$J\pi$ : L=2 and analyzing power in (d,t).
457.02 6	3 / 2 +	A C		$J\pi :$ L=2 and analyzing power in (d,t); M1,E2 $\gamma$ to 1/2+; M1(+E2) $\gamma$ to 3/2+; (E2) $\gamma$ to 7/2+.
459.29 9	5 / 2+	A C		$J\pi$ : L=2 and analyzing power in (d,t).
$467.3^{m}$ 1	7 / 2 +	в		
542.278	5 / 2 +	A C		$J\pi$ : L=2 and analyzing power in (d,t).
544.74 ^h 10	11/2+	В	10.6 ps 3	
617.81 7	(3/2+,5/2+)	Α		J $\pi$ : gammas to 1/2+ and 7/2+; log ft=6.5 from (3/2+).
631.3 13	7 / 2 -	С		$J\pi :$ L=3 and analyzing power in (d,t). L(d,t)=2 was also reported by 1974Gr22, which is inconsistent.
643.6 ^a 1	13/2-	В		
659.97 8	5 / 2 +	A C		$J\pi$ : L=2 and analyzing power in (d,t).
667.77 10	(1/2,3/2,5/2)	Α		J $\pi$ : gammas to 1/2-,3/2- and 3/2+.
711.92 6	(3/2,5/2)+	Α		J $\pi$ : M1,E2 $\gamma$ to 3/2+; $\gamma$ to 7/2+; log ft=6.0 from (3/2+).
787.0722	( $1 \ / \ 2$ , $3 \ / \ 2$ , $5 \ / \ 2$ )	A C		$J\pi: \log ft = 7.5$ from (3/2+).
797.4 ^{&amp;} 1	15/2-	В	6.5 ps 2	
799.6 50	(3/2+,5/2+)	С		$J\pi: L(d,t)=(2).$
806.84 ¹ 20	9 / 2 +	BC		
849.44 9	5 / 2 +	A C		$J\pi$ : L=2 and analyzing power in (d,t).
864.1 ⁱ 1	13/2+	В		
883.43 ^e 13	13/2-	В		
888.65 6	(3/2+,5/2+)	Α		J $\pi$ : gammas to 1/2+ and 7/2+; log ft=6.3 from (3/2+).
892.1 15		С		

# $^{129}_{56}\mathrm{Ba}_{73}\mathrm{-}2$

### Adopted Levels, Gammas (continued)

## ¹²⁹Ba Levels (continued)

E(level) [†]	Jπ‡	XREF	T _{1/2} §	Comments
906.70 9	1 / 2 - , 3 / 2 -	A C		$J\pi: L(d,t)=1.$
911.38 21	(1/2,3/2,5/2)	Α		$J\pi$ : log ft=7.9 from (3/2+).
928.59 9	1 / 2+	A C		$J\pi$ : L=0 and analyzing power in (d,t).
$999.1^{m}$ 1	11/2+	В		
1012.4 9		С		
1035.4 15	9/2-,11/2-	С		$J\pi$ : L(d,t)=5.
1062.65 10	3 / 2 +	A C		$J\pi$ : L=2 and analyzing power in (d,t).
1068.1 3	(1/2,3/2,5/2)	Α		$J\pi: \log ft = 7.8$ from (3/2+).
1094.96 8	(3/2+,5/2+)	Α		$J\pi$ : gammas to 1/2+ and 7/2+.
1097.8 15	1/2-	С		$J\pi$ : L=1 and analyzing power in (d,t).
1119.85 12	1/2+	A C		$J\pi$ : L=0 and analyzing power in (d,t).
1204.1 2	7 / 2 +	С		$J\pi$ : L=4 and analyzing power in (d,t).
1210.0d 1	15/2-	В		J $\pi$ : (M1+E2) $\gamma$ to 13/2-; $\Delta I$ =0 dipole $\gamma$ to 15/2-; (M1+E2) from 17/2
1210.5 ^h 2	15/2+	В	1.68 ps 5	
1219.73 25	3 / 2 + , 5 / 2 +	A C		$J\pi$ : L(d,t)=2.
1258.1 3	(1/2,3/2,5/2)	Α		$J\pi: \log ft = 7.5 \text{ from } (3/2+).$
1282.5 8	5 / 2 +	С		$J\pi$ : L=2 and analyzing power in (d,t).
1303.8 8	(9/2)+	С		$J\pi$ : L=4 and analyzing power in (d,t).
1318.4 ^a 1	17/2-	BC		XREF: C(1324.7).
1338.9 10	9 / 2 -	С		$J\pi$ : L=5 and analyzing power in (d,t).
1389.549	(1/2,3/2,5/2)	A C		$J\pi: \log ft = 6.9$ from (3/2+).
1401.0 20	5 / 2 +	С		$J\pi$ : L=2 and analyzing power in (d,t).
1438.4 ¹ 3	(13/2+)	В		
1439.23 6	3 / 2 + , 5 / 2 +	A C		$J\pi: L(d,t)=2.$
1475.4 ^{&amp;} 1	19/2-	В	1.0 ps 4	
1504.35	(5/2)+	С		$J\pi$ : L=2 and analyzing power in (d,t).
1530.2 30		С		
1536.9 46	7 / 2 + , 9 / 2 +	С		$J\pi$ : $L(d,t)=4$ .
1545.3 ^e 2	17/2-	В		
1566.0 17	(3/2+,5/2+)	С		$J\pi: L(d,t)=(2).$
1590.2 ⁱ 2	17/2+	В		
1610.20 8	(5/2-)	A C		$J\pi$ : L(d,t)=(3); $\gamma$ to 1/2+.
1635.40 10	1/2+	A C		$J\pi$ : L=0 and analyzing power in (d,t).
1651.424	(9/2-,11/2-)	С		$J\pi: L(d,t)=(5).$
$1654.6^{m}2$	(15/2+)	В		
1692.3 13	11/2-	С		$J\pi$ : L=5 and analyzing power in (d,t).
1712.9 23	1/2+	С		$J\pi$ : L=0 and analyzing power in (d,t).
1768.2 30	1/2+	С		$J\pi$ : L=0 and analyzing power in (d,t).
1778.28 10	(1/2,3/2,5/2+)	A C		XREF: C(1782.8).
				$J\pi$ : $\gamma$ to $1/2+$ ; log $ft=6.4$ from $(3/2+)$ .
1804.80 18	3 / 2 + , 5 / 2 +	A C		$J\pi$ : L(d,t)=2.
1837.3 30		С		
1845.0 ^d 2	19/2-	В		
1866.33 9	3 / 2 + , 5 / 2 +	A C		$J\pi$ : L(d,t)=2.
1906.1 57	3 / 2 + , 5 / 2 +	С		$J\pi$ : L(d,t)=2.
1951.8 55	(1/2+)	С		$J\pi$ : L=(0) and analyzing power in (d,t).
1976.3 45		С		
1989.9 ^h 1	19/2+	В	0.82 ps 10	
1990.50 12	1/2+	A C		$J\pi$ : L=0 and analyzing power in (d,t).
2008.1 55	3 / 2 -	С		$J\pi$ : L=1 and analyzing power in (d,t).
2071.60 17	(1/2, 3/2, 5/2+)	Α		J $\pi$ : possible $\gamma$ to 1/2+; log ft=6.7 from (3/2+).
2146.3 ^a 2	(21/2-)	В		
$2171.4^{1}4$	(17/2+)	В		
2281.2 ^{&amp;} 2	(23/2-)	В		
2285.31 17	(1/2,3/2,5/2)	Α		$J\pi: \log ft = 6.9$ from (3/2+).
2336.7 ^e 2	(21/2-)	В		
$2340$ . $2^m$ 3	(19/2+)	В		
2369.40 22	(1/2,3/2,5/2)	Α		$J\pi: \log ft = 6.9$ from (3/2+).
2387.4.4	(13/2- to 21/2-)	В		$J\pi$ : $\gamma$ to $17/2-$ .
$2412.9^{i}2$	21/2+	В		
2429.7 3	(19/2+)	В		

# $^{129}_{56}$ Ba $_{73}$ -3

# $^{129}_{56}\mathrm{Ba}_{73}\mathrm{-}3$

### Adopted Levels, Gammas (continued)

## ¹²⁹Ba Levels (continued)

E(level) [†]	Jπ‡	XREF	T _{1/2} §	Comments
2462.6 ^f 2	(23/2+)	В	47 ns <i>1</i>	<ul> <li>μ=-2.68 8 (2013Ka27,2014StZZ).</li> <li>Jπ: 2013Ka27 propose 3-qp admixture of configurations= v(7/2[404]⊗7/2[523]⊗9/2[514]) and v(5/2[402]⊗7/2[523]⊗11/2[505]).</li> <li>T_{1/2}: from γ(t), pulsed beam. Weighted average of 47 ns <i>I</i> (2013Ka27) and 47 ns <i>2</i> (1992By03).</li> <li>μ: from g factor=-0.233 7 (2013Ka27, TDPAD method).</li> </ul>
2509.9 3	(19/2+)	В		
2599.6 ^d 2	(23/2-)	В		
2653.72	(21/2+)	В		
2674 . 7 2	(21/2+)	В		
2742.6 3	(17/2 to 21/2-)	В		$J\pi$ : $\gamma$ to $17/2-$ .
2815.5 ^h 2	23/2+	В		
2874.0 2	(23/2+)	В		
$2903.1^{m}4$	(23/2+)	В		
2913.7g 2	(25/2+)	В		
3044.2 3		В		
3079.1 ^k 2	25/2+	В	1.2 ps 3	
3094.2 ^a 2	(25/2-)	В		
3179.4 [∞] 2	(27/2-)	В		
3368.2J 2	(27/2+)	В		
3378.91 2	(27/2+)	В		
3430.64 2	(27/2-)	В		
3525.3 4	(27/2  to  31/2-)	В		$J\pi$ : $\gamma$ to $27/2-$ .
3087.5 2	(21/2-)	в		
3704.52 2741.0k.0	(31/2-)	в		
2848 5 2	(29/2+) (27/2+0, 21/2+)	D		$I_{\pi}$ , $u \neq 0.97/9$
3852 8 5	(27/2 t0 51/2+)	B		JR. 7 to 27/24.
3895 9g 2	(29/2+)	B		
3948 1a 2	(29/2-)	B		
4054 4j 2	(31/2+)	В		
4137.6& 2	(31/2-)	В		
4286.1 ^b 2	(31/2-)	В		
4320.2 2	(31/2+)	В		
4333.6 3	( • • • • • • )	В		
4351.4 3	(31/2-)	В		
4458.7 ^f 3	(31/2+)	В		
4502.8 ^k 2	(33/2+)	В		
4617.1° 2	(33/2-)	В		
4663.9 3	(31/2 to 35/2+)	В		$J\pi$ : $\gamma$ to $31/2+$ .
4871.5 ^j 2	(35/2+)	В		
4951.1 ^g 6	(33/2+)	В		
5047.4 ^b 2	(35/2-)	В		
5152.0 4	(35/2-)	В		
5379.6 ^k 3	(37/2+)	В		
5469.3 ^c 3	(37/2-)	В		
5807.6J 3	(39/2+)	В		
5975.6 ^b 3	(39/2-)	В		
6223.8° 6	(39/2-)	В		
6352.1 ^K 4	(41/2+)	В		
6450.7° 3	(41/2-)	В		
0843.0J 4	(43/2+)	В		
0970.384 7494 ok 5	(40/2-)	ы р		
1404.0° 0 7501.0° 6	(40/2+)	ы р		
7964 11 5	(47/2+)	B		
9144 2J 7	(51/2+)	B		
10388.3 ^c 13	(55/2+)	В		

 †  From least-squares fit to the adopted Ey values.

### $^{129}_{56}Ba_{73}-4$

### $^{129}_{56}Ba_{73}-4$

#### Adopted Levels, Gammas (continued)

### ¹²⁹Ba Levels (continued)

- [‡] For high-spin (J>13/2) levels populated in ¹²⁰Sn(¹²C,3n $\gamma$ ), ¹¹⁶Cd(¹⁸O,5n $\gamma$ ), assignments are from multipolarities assigned on the basis of  $\gamma(\theta)$ , DCO, and band structures. No separate arguments are given for most of these levels. Ascending order of spins with excitation energy is assumed based on yrast pattern of population in high-spin studies.
- § From recoil distance technique (2000St07) unless otherwise noted.
- [#] Weighted average of 2.11 h 5 for 420ce, 2.10 h 5 for 597ce, 2.10 h 5 for 459ce, 2.04 h 10 for 481ce, 2.14 h 10 for 501ce, 2.08 h 5 for 534ce, 2.22 h 10 for 546ce, 2.13 h 5 for 748ce, 2.13 h 6 for 690ce, 2.07 h 12 for 872ce, 2.07 h 10 for 780ce, 2.00 h 12 for 803ce, 2.22 h 12 for 1034ce, 2.15 h 10 for 1045+1047ce, 2.09 h 5 for 392ce, 2.08 h 5 for 679ce, 2.16 h 8 for 893ce, 2.18 h 8 for 999ce, 2.19 h 10 for 1222ce, 2.11 h 5 for 1459ce, 2.18 h 10 for 1122ce, 2.18 h 10 for 1220ce, 2.10 h 12 for 1624ce (1961Ar05); 2.13 h 6 for 182.37 (1966Li05), 2.19 h 4 for 14597, 2.09 h 7 for 16237 (1972Ta02); 2.16 h 2 for 1827, 2.15 h 3 for 14597 (1973Is04). All  $\gamma$  rays listed are from decay of only the isomer. Others (for composite g.s.+isomer activities): 2.28 h 6, 2.47 h 7, 2.53 h 7 for  $\gamma^{\pm}$  (1950Ita), 2.20 h 15 (1966Li05), 2.20 h 5 (1963Ya05), 2.61 h 2 (1961Ar05) for total positrons, 2.45 h 5 (1959He45), 2.0 h 1 (1950Fi11), 1.8 h 2 (1950Th08).
- Weighted average of 2.20 h +17-12 for 1164.6γ and 2.25 h +15-11 for 1947γ+1954γ (1972Ta02); all three γ rays are emitted only by the decay of g.s. of ¹²⁹Ba. Others (composite for g.s.+isomer activities): 2.28 h 6, 2.47 h 7, 2.53 h 7 (1973Is04), 02.20 h 15 (1966Li05), 2.20 h 5 (1963Ya05), 2.61 h 2 (1961Ar05) for total positrons, 2.45 h 5 (1959He45), 2.0 h 1 (1950Fi11), 1.8 h 2 (1950Th08).
- & (A): v9/2[514],α=-1/2.
- a (B):  $v9/2[514], \alpha = +1/2$ .
- b (C):  $v9/2[514] \otimes \pi h_{11/2}^2, \alpha = -1/2$ .
- c (D):  $v9/2[514] \otimes \pi h_{11/2}^{11/2}, \alpha = +1/2.$
- d (E): Yrare vh_{11/2} band, $\alpha = -1/2$ .
- e (F): Yrare  $vh_{11/2}$  band, $\alpha = +1/2$ .
- f (G):  $v7/2[402] \otimes v9/2[514] \otimes v7/2[523], \alpha = -1/2$ .
- (G).  $\sqrt{1/2}[402] \otimes \sqrt{9/2}[514] \otimes \sqrt{1/2}[523], \alpha = +1/2$ . g (H):  $\sqrt{7/2}[402] \otimes \sqrt{9/2}[514] \otimes \sqrt{7/2}[523], \alpha = +1/2$ .
- 5 (H): V//2[402]@V9/2[514]@V//2[523
- h (I):  $v7/2[404], \alpha = -1/2$ .
- i (J):  $v7/2[404], \alpha=+1/2$ .
- j (K):  $v7/2[404] \otimes \pi h_{11/2}^2, \alpha = -1/2.$
- ^k (L):  $v7/2[404] \otimes \pi h_{11/2}^{2}, \alpha = +1/2.$

l (M):  $v(1/2[411]+1/2[400]), \alpha=-1/2$ . Admixture of 1/2[411] and 1/2[400] neutron configurations.

^m (N):  $v(1/2[411]+1/2[400]), \alpha=+1/2$ . Admixture of 1/2[411] and 1/2[400] neutron configurations.

### γ(¹²⁹Ba)

 $E\gamma$  and  $I\gamma$  data are from (HI,xn\gamma) (1992By03) for high-spin states and from ¹²⁹La  $\epsilon$  decay (1979Br05) for low-spin states, unless otherwise noted.

E(level)	Εγ	Ιγ	$\underline{ Mult.^{\dagger}   \delta   }$	α‡	Comments
8.42	(8.4 2)		[M3]	1.05×10 ⁸ 19	B(M3)(W.u.)<0.041 7. $\alpha$ (L)=7.8E7 14; $\alpha$ (M)=2.2E7 4; $\alpha$ (N)=4.6E6 8; $\alpha$ (O)=5.9E5 11; $\alpha$ (P)=6.5E3 11.
					Ey: deduced from energy difference of $\gamma$ rays to 7/2+ and 1/2+ levels (1979Br05).
110.57	102.3 3	$\leq 0.15$	[E2]	1.78 4	$ \begin{array}{l} \alpha(\mathrm{K}) = 1.133 \ 19; \ \alpha(\mathrm{L}) = 0.507 \ 10; \ \alpha(\mathrm{M}) = 0.1108 \ 22. \\ \alpha(\mathrm{N}) = 0.0230 \ 5; \ \alpha(\mathrm{O}) = 0.00305 \ 6; \ \alpha(\mathrm{P}) = 5.24 \times 10^{-5} \ 9. \end{array} $
	110.5 1	100 5	M1	0.743	$\alpha(\mathbf{K})=0.636 \ 9; \ \alpha(\mathbf{L})=0.0853 \ 13; \ \alpha(\mathbf{M})=0.0176 \ 3.$ $\alpha(\mathbf{N})=0.00380 \ 6; \ \alpha(\mathbf{O})=0.000580 \ 9; \ \alpha(\mathbf{P})=4.19\times10^{-5} \ 6.$
182.04	173.6 <i>1</i>	100	Ε1	0.0493	Mult.: from $\alpha(\exp)$ and $\gamma(\theta)$ . B(E1)(W.u.)=3.2×10 ⁻⁶ 2. $\alpha(K)=0.0424$ 6; $\alpha(L)=0.00555$ 8; $\alpha(M)=0.001137$ 16. $\alpha(N)=0.000243$ 4; $\alpha(O)=3.63\times10^{-5}$ 6;
					$\alpha(P)=2.35\times10^{-6}$ 4. Mult.: from A ₀ , A ₄ , linear pol (1978Gi04).
253.76	143.3 1	15.7 6	$E2(+M1)^{\S} > 1.7$	0.519 25	$\alpha(K)=0.381$ 13; $\alpha(L)=0.109$ 10; $\alpha(M)=0.0234$ 23. $\alpha(N)=0.0049$ 5; $\alpha(Q)=0.00067$ 6; $\alpha(P)=1.95\times10^{-5}$ 3
	253.8 1	100 4	E2 [§]	0.0777	$ \begin{array}{l} \alpha({\rm K}) = 0.0621 \; 9; \; \alpha({\rm L}) = 0.01227 \; 18; \; \alpha({\rm M}) = 0.00260 \; 4. \\ \alpha({\rm N}) = 0.000549 \; 8; \; \alpha({\rm O}) = 7.80 \times 10^{-5} \; 11; \\ \alpha({\rm P}) = 3.43 \times 10^{-6} \; 5. \end{array} $
263.1	254.7 1	100	M1+E2	0.0757 15	$\alpha(K)=0.0628$ 16; $\alpha(L)=0.0103$ 19; $\alpha(M)=0.0022$ 5. $\alpha(N)=0.00046$ 9; $\alpha(Q)=6.7\times10^{-5}$ 10; $\alpha(P)=3.8\times10^{-6}$ 4
278.57	168.1 1	5.2 2	${ m E2}$ , M1 $^{ m \$}$	0.27 5	$\alpha(\mathbf{K}) = 0.216 \ I9; \ \alpha(\mathbf{L}) = 0.044 \ I8; \ \alpha(\mathbf{M}) = 0.009 \ 4.$
	278.6 1	100	M1 §	0.0589	$ \begin{array}{l} \alpha({\rm K}) = 0.50505 \ 7; \ \alpha({\rm L}) = 0.50628 \ 10; \ \alpha({\rm M}) = 0.00137 \ 2. \\ \alpha({\rm N}) = 0.000295 \ 5; \ \alpha({\rm O}) = 4.52 \times 10^{-5} \ 7; \\ \alpha({\rm P}) = 3.30 \times 10^{-6} \ 5. \end{array} $

# $^{129}_{56}\mathrm{Ba}_{73}\text{--}5$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\text{Ba})$ (continued)

E(level)	Eγ	Ιγ	Mult. [†]	δ	α‡	Comments
278.81	96.8 1	100	M1+E2		1.6 6	$\alpha(K)=1.13\ 2I;\ \alpha(L)=0.4\ 3;\ \alpha(M)=0.08\ 6.$
318.38	64.6 1	11 1	E1 [§]		0.756	$ \alpha(\mathbf{N}) = 0.017 \ 12; \ \alpha(\mathbf{O}) = 0.0024 \ 16; \ \alpha(\mathbf{P}) = 6.12 \times 10^{-5} \ 9. \\ \alpha(\mathbf{K}) = 0.641 \ 10; \ \alpha(\mathbf{L}) = 0.0920 \ 14; \ \alpha(\mathbf{M}) = 0.0189 \ 3. \\ \alpha(\mathbf{N}) = 0.00252 \ \alpha(\mathbf{C}) = 0.002572 \ \alpha(\mathbf{C}) = 0.00555 \ 5. \\ \alpha(\mathbf{C}) = 0.005572 \ \alpha(\mathbf{C}) = 0.005572 \ \alpha(\mathbf{C}) = 0.005572 \ \alpha(\mathbf{C}) = 0.00572 \ $
	207.9 1	23 5	[E1]		0.0302	$ \begin{array}{l} \alpha(\mathbf{N}) = 0.00398 \ 6; \ \alpha(\mathbf{O}) = 0.000572 \ 9; \ \alpha(\mathbf{P}) = 3.14 \times 10^{-6} \ 5. \\ \alpha(\mathbf{K}) = 0.0259 \ 4; \ \alpha(\mathbf{L}) = 0.00337 \ 5; \ \alpha(\mathbf{M}) = 0.000690 \ 10. \\ \alpha(\mathbf{N}) = 0.0001476 \ 21; \ \alpha(\mathbf{O}) = 2.21 \times 10^{-5} \ 4; \\ \alpha(\mathbf{D}) = 1.467 \times 10^{-6} \ 9.1 \\ \end{array} $
	318.4 1	100 6	El§		0.00979	$\alpha(\mathbf{K})=0.00843 \ 12; \ \alpha(\mathbf{L})=0.001078 \ 16; \ \alpha(\mathbf{M})=0.000221 \ 3.$ $\alpha(\mathbf{N})=4.74\times10^{-5} \ 7; \ \alpha(\mathbf{O})=7.16\times10^{-6} \ 10; \ \alpha(\mathbf{P})=4.93\times10^{-7} \ 7.$
318.4	207.5 3	12 6	[M1+E2]		0.141 12	$\alpha(\mathbf{K}) = 0.115 5; \ \alpha(\mathbf{L}) = 0.021 6; \ \alpha(\mathbf{M}) = 0.0043 14.$
	318.3 2	100 14	[E2]		0.0375	$ \begin{array}{l} \alpha(\mathrm{N}) = 0.0009 \ \ 3; \ \alpha(\mathrm{O}) = 0.00013 \ \ 4; \ \alpha(\mathrm{P}) = 0.8810^{-5} \ \ 5. \\ \alpha(\mathrm{K}) = 0.0306 \ \ 5; \ \alpha(\mathrm{L}) = 0.00542 \ \ 8; \ \alpha(\mathrm{M}) = 0.001141 \ \ 17. \\ \alpha(\mathrm{N}) = 0.000242 \ \ 4; \ \alpha(\mathrm{O}) = 3.49 \times 10^{-5} \ \ 5; \\ \alpha(\mathrm{P}) = 1.753 \times 10^{-6} \ \ 25. \end{array} $
457.02	138.7 1	4.9 6	[E1]		0.0917	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0786 \ 12; \ \alpha(\mathrm{L}) = 0.01042 \ 15; \ \alpha(\mathrm{M}) = 0.00214 \ 3. \\ \alpha(\mathrm{N}) = 0.000455 \ 7; \ \alpha(\mathrm{O}) = 6.75 \times 10^{-5} \ 10; \\ \alpha(\mathrm{P}) = 4.26 \times 10^{-6} \ 6. \end{array} $
	178.3 3	1.5 3	[M1+E2]		0.23 3	$\alpha(\mathbf{K}) = 0.181 \ 14; \ \alpha(\mathbf{L}) = 0.035 \ 13; \ \alpha(\mathbf{M}) = 0.007 \ 3.$
	202.9 3	2.5 9	[M1+E2]		0.151 14	$\alpha(\mathbf{N}) = 0.0016  6;  \alpha(\mathbf{O}) = 0.00023  8;  \alpha(\mathbf{P}) = 1.05 \times 10^{-6}  6.$ $\alpha(\mathbf{K}) = 0.123  6;  \alpha(\mathbf{L}) = 0.022  7;  \alpha(\mathbf{M}) = 0.0047  15.$ $\alpha(\mathbf{K}) = 0.0046  9;  \alpha(\mathbf{O}) = 0.0044  (\mathbf{K})  7 = 0.0047  15.$
	346.5 1	64 <i>3</i>	M1(+E2)§	<0.4	0.0330 6	$\begin{array}{l} \alpha(\mathbf{N}) = 0.0010  3; \ \alpha(\mathbf{O}) = 0.00014  4; \ \alpha(\mathbf{P}) = 1.3810  \forall  5. \\ \alpha(\mathbf{K}) = 0.0283  6; \ \alpha(\mathbf{L}) = 0.00375  6; \ \alpha(\mathbf{M}) = 0.000773  13. \\ \alpha(\mathbf{N}) = 0.000167  3; \ \alpha(\mathbf{O}) = 2.55 \times 10^{-5}  4; \\ \alpha(\mathbf{P}) = 1  83 \times 10^{-6}  5 \end{array}$
	448.6 1	654	(E2) [§]		0.01336	$ \begin{array}{l} \alpha(\mathbf{x}) = 0.05110 & 0. \\ \alpha(\mathbf{K}) = 0.01117 & 16; & \alpha(\mathbf{L}) = 0.001738 & 25; & \alpha(\mathbf{M}) = 0.000363 & 5. \\ \alpha(\mathbf{N}) = 7.74 \times 10^{-5} & 11; & \alpha(\mathbf{O}) = 1.140 \times 10^{-5} & 16; \\ \alpha(\mathbf{P}) = 6.65 \times 10^{-7} & 10. \end{array} $
	457.0 1	100 8	M1 , E2 $\S$		0.0146 20	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0124 \ 18; \ \alpha(\mathrm{L}) = 0.00173 \ 10; \ \alpha(\mathrm{M}) = 0.000359 \ 18. \\ \alpha(\mathrm{N}) = 7.7 \times 10^{-5} \ 5; \ \alpha(\mathrm{O}) = 1.16 \times 10^{-5} \ 9; \\ \alpha(\mathrm{P}) = 7.8 \times 10^{-7} \ 15. \end{array} $
459.29	205.6 2	17 3	[M1+E2]		0.145 13	$\alpha(K) = 0.118 5; \alpha(L) = 0.021 7; \alpha(M) = 0.0045 14.$ $\alpha(N) = 0.0010 3; \alpha(O) = 0.00014 4; \alpha(P) = 7.0 \times 10^{-6} 5.$
	348.7 1	100 9	M1(+E2)§	<0.6	0.0322 8	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0275 \ \ 8; \ \ \alpha(\mathbf{L}) = 0.00371 \ \ 7; \ \ \alpha(\mathbf{M}) = 0.000765 \ \ 15. \\ &\alpha(\mathbf{N}) = 0.000165 \ \ 3; \ \ \alpha(\mathbf{O}) = 2.51 \times 10^{-5} \ \ 4; \\ &\alpha(\mathbf{P}) = 1.77 \times 10^{-6} \ \ 7. \end{aligned} $
467.3	149.0 2	9.8 23	[M1+E2]		0.40 8	$\alpha(K)=0.31$ 4; $\alpha(L)=0.07$ 4; $\alpha(M)=0.015$ 7. $\alpha(N)=0.0031$ 15; $\alpha(O)=0.00043$ 19; $\alpha(P)=1.77\times10^{-5}$ 5.
	356.7 1	100 15	(E2)		0.0263	$\alpha(K)=0.0217$ 3; $\alpha(L)=0.00366$ 6; $\alpha(M)=0.000769$ 11. $\alpha(N)=0.0001633$ 23; $\alpha(O)=2.37\times10^{-5}$ 4; $\alpha(P)=1.261\times10^{-6}$ 18.
542.27	85.1# 2	≤6	[M1+E2]		2.5 10	$\alpha(\mathbf{K}) = 1.6 \ 4; \ \alpha(\mathbf{L}) = 0.7 \ 5; \ \alpha(\mathbf{M}) = 0.15 \ 11.$ $\alpha(\mathbf{N}) = 0.030 \ 23; \ \alpha(\mathbf{O}) = 0.004 \ 3; \ \alpha(\mathbf{P}) = 8.79 \times 10^{-5} \ 15.$
	431.8 2	94 12				
	533.9 1	100 12				
544.74	281.7 1	28 4	(M1+E2)		0.0562 13	$ \begin{split} &\alpha(K) \!=\! 0.0469 \ 23; \ \alpha(L) \!=\! 0.0074 \ 10; \ \alpha(M) \!=\! 0.00155 \ 23. \\ &\alpha(N) \!=\! 0.00033 \ 5; \ \alpha(O) \!=\! 4.9 \!\times\! 10^{-5} \ 5; \ \alpha(P) \!=\! 2.9 \!\times\! 10^{-6} \ 4. \end{split} $
	536.3 1	100 3	E2		0.00814	B(E2)(W.u.)=24.0 14. $\alpha$ (K)=0.00686 10; $\alpha$ (L)=0.001014 15; $\alpha$ (M)=0.000211 3. $\alpha$ (N)=4.51×10 ⁻⁵ 7; $\alpha$ (O)=6.71×10 ⁻⁶ 10; $\alpha$ (P)=4.15×10 ⁻⁷ 6
617 81	339 1 2	21 5				u(1)-4.15×10 0.
0101	507.3 2	93.9				
	609.3 2	21 5				
	617.8 1	100 7				
643 6	364 7 1	100 4	M1+E2		0 0269 24	$\alpha(\mathbf{K}) = 0.0227 \cdot 25 \cdot \alpha(\mathbf{L}) = 0.00333 \cdot 9 \cdot \alpha(\mathbf{M}) = 0.000692 \cdot 23$
040.0	507. <i>1 1</i>	100 4	M1 T 12 2		5.0205 24	$ \alpha(\mathbf{N}) = 0.000148 \ 4; \ \alpha(\mathbf{O}) = 2.22 \times 10^{-5} \ 4; \\ \alpha(\mathbf{P}) = 1.41 \times 10^{-6} \ 23. $
	461.6 1	25.4 12	E2		0.01232	$\begin{split} &\alpha({\rm K}){=}0.01032\ 15;\ \alpha({\rm L}){=}0.001591\ 23;\ \alpha({\rm M}){=}0.000332\ 5.\\ &\alpha({\rm N}){=}7.08{\times}10^{-5}\ 10;\ \alpha({\rm O}){=}1.045{\times}10^{-5}\ 15;\\ &\alpha({\rm P}){=}6.16{\times}10^{-7}\ 9. \end{split}$
659.97	341.5 2	559				
	381.5 2	$18 \ 5$				

# $^{129}_{56}\mathrm{Ba}_{73}$ -6

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}Ba)$ (continued)

E(level)	Eγ	Ιγ	$Mult.^{\dagger}$	α‡	Comments
659.97	406.2 1	919	M1 , E2 $$$	0.0200 22	$\alpha(K)=0.0170$ 22; $\alpha(L)=0.00243$ 6; $\alpha(M)=0.000503$ 9. $\alpha(N)=0.0001079$ 24; $\alpha(O)=1.62\times10^{-5}$ 7; $\alpha(P)=1.06\times10^{-6}$ 19.
	549.5 2	100 14			
	651.5 2	559			
667.77	349.4 2	80 40			
	414.0 1	100 40			
711.92	254.9 2	15 4			
	393.5 2	5 2			
	433.3 2	12 2			
	458.2 1	100 7	M1 , E2 $^{\$}$	0.0145 19	$\alpha(\mathbf{K})=0.0123 \ 18; \ \alpha(\mathbf{L})=0.00172 \ 10; \ \alpha(\mathbf{M})=0.000357 \ 18.$ $\alpha(\mathbf{N})=7.7\times10^{-5} \ 5; \ \alpha(\mathbf{O})=1.15\times10^{-5} \ 9; \ \alpha(\mathbf{P})=7.7\times10^{-7} \ 15.$
	601.3 2	48 4			
	703.5 1	31 2			
	711.9 1	6 1			
787.07	244.8 2	100			
797.4	153.8 <i>1</i>	7.4 4	M1+E2	0.36 7	$ \begin{array}{l} \alpha(\mathrm{K}){=}0.28 \ 3; \ \alpha(\mathrm{L}){=}0.06 \ 3; \ \alpha(\mathrm{M}){=}0.013 \ 6. \\ \alpha(\mathrm{N}){=}0.0027 \ 13; \ \alpha(\mathrm{O}){=}0.00039 \ 16; \ \alpha(\mathrm{P}){=}1.61{\times}10^{-5} \ 5. \end{array} $
	518.6 1	100 2	E2	0.00892	$\begin{array}{l} B(E2)(W.u.) = 54.5 \ 23. \\ \alpha(K) = 0.00751 \ 11; \ \alpha(L) = 0.001119 \ 16; \ \alpha(M) = 0.000233 \ 4. \end{array}$
					$\alpha(N)=4.98\times10^{-5}$ 7; $\alpha(O)=7.39\times10^{-6}$ 11; $\alpha(P)=4.53\times10^{-7}$ 7.
806.84	340.0 5	3.9 20			
	488.7 3	100 20	(E2)	0.01050	$ \begin{aligned} &\alpha(\mathrm{K}) \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
849.44	307.2 [#] 2				
	531.22	45 18			
	738.8 1	100 9			
864.1	319.4 1	14 4	(M1+E2)	0.0391 22	$ \begin{array}{l} \alpha({\rm K}){=}0.033 \ 3; \ \alpha({\rm L}){=}0.0050 \ 4; \ \alpha({\rm M}){=}0.00104 \ 9. \\ \alpha({\rm N}){=}0.000222 \ 18; \ \alpha({\rm O}){=}3.30{\times}10^{-5} \ 16; \ \alpha({\rm P}){=}2.0{\times}10^{-6} \ 3. \end{array} $
	600.7 2	100 5	E2	0.00604	$ \begin{split} &\alpha(K) \!=\! 0.00511 \ 8; \ \alpha(L) \!=\! 0.000734 \ 11; \ \alpha(M) \!=\! 0.0001523 \ 22. \\ &\alpha(N) \!=\! 3.26 \!\times\! 10^{-5} \ 5; \ \alpha(O) \!=\! 4.88 \!\times\! 10^{-6} \ 7; \ \alpha(P) \!=\! 3.11 \!\times\! 10^{-7} \ 5. \end{split} $
883.43	604.7 1	61 8	(M1+E2)	0.0071 12	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0061 \ 11; \ \alpha(\mathbf{L}) \!=\! 0.00081 \ 10; \ \alpha(\mathbf{M}) \!=\! 0.000168 \ 19. \\ &\alpha(\mathbf{N}) \!=\! 3.6 \!\times\! 10^{-5} \ 5; \ \alpha(\mathbf{O}) \!=\! 5.5 \!\times\! 10^{-6} \ 7; \ \alpha(\mathbf{P}) \!=\! 3.8 \!\times\! 10^{-7} \ 8. \end{split}$
	701.3 1	100 7	E2		
888.65	270.72	12 4			
	346.42	$\leq 1.2$			
	570.22	27 12			
	610.12	194			
	778.1 1	100 12			
	880.2 1	62 8			
	888.7 1	77 8			
906.70	588.3 1	100 25			
	628.12	$75 \ 25$			
	653.02	50 25			
911.38	632.82	100			
928.59	674.82	18 9			
	928.6 1	100 9			
999.1	192.4 3	2.5 9	[M1+E2]	0.178 19	$ \begin{array}{l} \alpha({\rm K}){=}0.144 ~ 8; ~ \alpha({\rm L}){=}0.027 ~ 9; ~ \alpha({\rm M}){=}0.0057 ~ 20. \\ \alpha({\rm N}){=}0.0012 ~ 4; ~ \alpha({\rm O}){=}0.00017 ~ 5; ~ \alpha({\rm P}){=}8.4{\times}10^{-6} ~ 5. \end{array} $
	531.7 1	100 19	(E2)	0.00833	$ \begin{array}{l} \alpha(K) \!=\! 0.00702 \ 10; \ \alpha(L) \!=\! 0.001040 \ 15; \ \alpha(M) \!=\! 0.000216 \ 3. \\ \alpha(N) \!=\! 4.62 \!\times\! 10^{-5} \ 7; \ \alpha(O) \!=\! 6.87 \!\times\! 10^{-6} \ 10; \ \alpha(P) \!=\! 4.24 \!\times\! 10^{-7} \ 6. \end{array} $
1062 . $65$	744.22	50 25			
	808.9 1	$100 \ 25$			
1068.1	814.3 3	100			
1094.96	776.62	$\leq 2.0$			
	816.4 1	60 20			
	841.2 2	80 20			
	984.3 2	60 10			
	1086.5 2	100 10			
	1095.0 3	30 10			
1119.85	841.3 2	100 15			
	866.0 2	$\leq 1.5$			
	1119.9 2	23 8			

# $^{129}_{56}\mathrm{Ba}_{73}$ -7

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\text{Ba})$ (continued)

E(level)	Εγ	Ιγ	Mult. [†]	α‡	Comments
1210.0	412.6 1	15 3	D	0.0213	$\alpha(K)=0.0183 \ 3; \ \alpha(L)=0.00237 \ 4; \ \alpha(M)=0.000488 \ 7.$ $\alpha(N)=0.0001054 \ 15; \ \alpha(O)=1.618 \times 10^{-5} \ 23; \ \alpha(P)=1.192 \times 10^{-6} \ 17.$
	566.4 1	100 4	(M1 + E2)	0.0084 14	$\alpha(K)=0.0071 \ 12; \ \alpha(L)=0.00097 \ 11; \ \alpha(M)=0.000200 \ 20.$ $\alpha(N)=4 \ 3\times10^{-5} \ 5; \ \alpha(O)=6 \ 5\times10^{-6} \ 8; \ \alpha(P)=4 \ 5\times10^{-7} \ 9$
1210.5	346.5 2	10 2	(M1+E2)	0.0311 24	$ \begin{aligned} &\alpha({\rm K}) = 0.026\ 3;\ \alpha({\rm L}) = 0.00389\ 17;\ \alpha({\rm M}) = 0.00081\ 5.\\ &\alpha({\rm N}) = 0.000173\ 8;\ \alpha({\rm O}) = 2.58 \times 10^{-5}\ 6;\ \alpha({\rm P}) = 1.62 \times 10^{-6}\ 25. \end{aligned} $
	665.8 1	100 5	E2		B(E2)(W.u.)=60 5.
1219.73	901.34	60 20			
	966.0 3	100 20			
1258.1	1004.3 3	100			
1318.4	521.0 1	100 10	(M1+E2)	0.0103 16	$ \begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.0088 \ 15; \ \alpha(\mathbf{L}) \!=\! 0.00121 \ 11; \ \alpha(\mathbf{M}) \!=\! 0.000250 \ 21. \\ &\alpha(\mathbf{N}) \!=\! 5.4 \!\times\! 10^{-5} \ 5; \ \alpha(\mathbf{O}) \!=\! 8.1 \!\times\! 10^{-6} \ 9; \ \alpha(\mathbf{P}) \!=\! 5.5 \!\times\! 10^{-7} \ 11. \end{aligned} $
	674.8 1	94 5	E2		
1389.54	771.6 2	60 20			
	1071.2 2	≤60			
	1135.8 1	100 20			
1438.4	631.7 3	100	(Q)		
1439.23	1160.8 1	86 14			
	1185.6 1	$71 \ 14$			
	1328.4 1	100 14			
	1439.2 1	43 14			
1475.4		6.7 18	(M1+E2)	0.34 6	$\alpha(\mathbf{K}) = 0.27 \ 3; \ \alpha(\mathbf{L}) = 0.056 \ 25; \ \alpha(\mathbf{M}) = 0.012 \ 6.$ $\alpha(\mathbf{N}) = 0.0025 \ 12; \ \alpha(\mathbf{O}) = 0.00036 \ 15; \ \alpha(\mathbf{P}) = 1.52 \times 10^{-5} \ 5.$
	678.0 1	100 2	E2		B(E2)(W.u.)=90 40.
1545.3	335.7 3	7.3 13	(M1+E2)	0.0340 23	$\begin{array}{l} \alpha(\mathrm{K}) = 0.029 \ 3; \ \alpha(\mathrm{L}) = 0.00428 \ 24; \ \alpha(\mathrm{M}) = 0.00089 \ 6. \\ \alpha(\mathrm{N}) = 0.000190 \ 11; \ \alpha(\mathrm{O}) = 2.84 \times 10^{-5} \ 9; \ \alpha(\mathrm{P}) = 1.8 \times 10^{-6} \ 3. \end{array}$
	661.8 1	100 10	Q		
	747.8 2	204	D D		
1590.2	379.8 3	13 9	[MI+E2]	0.0241 23	$\alpha(\mathbf{K})=0.0203\ 24;\ \alpha(\mathbf{L})=0.00295\ 5;\ \alpha(\mathbf{M})=0.000613\ 13.$ $\alpha(\mathbf{N})=0.0001314\ 21;\ \alpha(\mathbf{O})=1.97\times10^{-5}\ 5;\ \alpha(\mathbf{P})=1.26\times10^{-6}\ 21.$
	726.1 2	100 5	E2		
1610.20	760.6 2	≤19			
	1068.0 1	63 6			
	1150.9 2	13 0			
	1291.8 1	100 13			
	1610 9 9	31 0 10 C	[ <b>M</b> 9]]		
1635 40	1017 6 1	100 11	[1112]		
1000.40	1356 6 2	56 11			
	1381 8 2	11 6			
1654.6	216.5 3	1.8 9	[M1+E2]	0.124 9	$\alpha(K)=0.101$ 3; $\alpha(L)=0.018$ 5; $\alpha(M)=0.0037$ 11. $\alpha(N)=0.00079$ 22; $\alpha(O)=0.00012$ 3; $\alpha(P)=6.0\times10^{-6}$ 5.
	655.62	100 26	(Q)		
1778.28	1321.3 2	60 20			
	1459.72	100 20			
	1499.8 2	80 20			
	1524.5 3	80 20			
	1778.32	80 20			
1804.80	1486.7 3	$\leq 4.0$			
	1550.92	100 20			
1845.0	526.6 1	939	(M1+E2)	0.0101 16	$ \begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.0086 \ 14; \ \alpha(\mathbf{L}) \!=\! 0.00117 \ 11; \ \alpha(\mathbf{M}) \!=\! 0.000243 \ 21. \\ &\alpha(\mathbf{N}) \!=\! 5.2 \!\times\! 10^{-5} \ 5; \ \alpha(\mathbf{O}) \!=\! 7.9 \!\times\! 10^{-6} \ 9; \ \alpha(\mathbf{P}) \!=\! 5.4 \!\times\! 10^{-7} \ 11. \end{aligned} $
	634.9 1	100 5	E2	0.00524	$ \begin{array}{l} \alpha({\rm K}){=}0.00445 \ 7; \ \alpha({\rm L}){=}0.000631 \ 9; \ \alpha({\rm M}){=}0.0001307 \ 19. \\ \alpha({\rm N}){=}2.80{\times}10^{-5} \ 4; \ \alpha({\rm O}){=}4.20{\times}10^{-6} \ 6; \ \alpha({\rm P}){=}2.72{\times}10^{-7} \ 4. \end{array} $
1866.33	1409.3 1	100 20			
	1547.9 3	20 10			
	1587.8 2	60 20			
	$1755.6^{\#}2$	20 10			
	1866.3 2	40 20			
1989.9	400.0 3	6.3 14	[M1+E2]	0.0209 23	$ \begin{array}{l} \alpha(\mathrm{K}) \!=\! 0.0177 \; 22; \; \alpha(\mathrm{L}) \!=\! 0.00254 \; 5; \; \alpha(\mathrm{M}) \!=\! 0.000527 \; 8. \\ \alpha(\mathrm{N}) \!=\! 0.0001129 \; 21; \; \alpha(\mathrm{O}) \!=\! 1.69 \!\times\! 10^{-5} \; 7; \; \alpha(\mathrm{P}) \!=\! 1.10 \!\times\! 10^{-6} \; 19. \end{array} $
	779.3 1	100 5	E2		B(E2)(W.u.)=58 9.
1990.50	1061.92	$100 \ 25$			

# $^{129}_{56}$ Ba $_{73}$ -8

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}Ba)$ (continued)

E(level)	Eγ	Ιγ	Mult. [†]	α‡	Comments
1000 50	1500 5 0	05 10			
1990.50	1533.5 3	25 13			
	1672.1 3	20 13			
	1712.0 5	50 25 75 95			
	1990 5 3	75 25 50 25			
2071 60	1793 0 2	100 20			
2011.00	2071 6 3	<40			
2146.3	670.8 2	47 5	D+Q		
	827.9 2	100 16	(Q)		
2171.4	733.0 3	100			
2281.2	805.8 1	100	Q		
2285.31	1966.9 2	$\leq 5.0$			
	2285.3 3	$\leq 100$			
2336.7	492.3 3	49 8			
	791.5 1	100 8	(Q)		
	861.3 2	6 4			
2340.2	685.6 2	100	Q		
2369.40	1910.12	100 10			
2387.4	1069.7 7	100			
2412.9	423.2 2	9 4	D		
	822.7 1	100 8	E2		
2429.7	258.0 5	33 13			
	775.2 3	100 47	(Q)		
2462.6	126.0 1	33 5	(E1)	0.1196	$B(E1)(W.u.) = 6.2 \times 10^{-7} II.$
					$\alpha(\mathbf{K}) = 0.1025 \ I_{2}; \ \alpha(\mathbf{L}) = 0.01368 \ 20; \ \alpha(\mathbf{M}) = 0.00280 \ 4.$
					$\alpha(N)=0.000597.9; \alpha(O)=8.83\times10^{-5}.13; \alpha(P)=5.49\times10^{-5}.8$
	916 9 1	11 2	[17:1]	0 00005	Mult.: 1992By03 deduced $\alpha(t)=0.1.2$ from intensity balance. $P(F1)(W_{12})=1.2\times10^{-8}$ d
	510.5 1	11 5	[151]	0.00333	$\alpha(\mathbf{K}) = 0.00858, 12; \alpha(\mathbf{L}) = 0.001096, 16; \alpha(\mathbf{M}) = 0.000225, 4$
					$\alpha(\mathbf{N}) = 4.82 \times 10^{-5} \ 7 \ \alpha(\mathbf{\Omega}) = 7.28 \times 10^{-6} \ 11 \ \alpha(\mathbf{R}) = 5.02 \times 10^{-7} \ 7$
	472.8 1	100 7	(E2)	0.01151	$B(E_2)(W,u_1)=0.0088$ 7.
			()		$\alpha(K) = 0.00965 \ 14; \ \alpha(L) = 0.001478 \ 21; \ \alpha(M) = 0.000308 \ 5.$
					$\alpha(N)=6.58\times10^{-5}$ 10; $\alpha(O)=9.72\times10^{-6}$ 14; $\alpha(P)=5.78\times10^{-7}$ 8.
2509.9	855.4 3	100			
2599.6	453.6 2	21 4	(M1+E2)	0.0149 20	$\alpha(K)=0.0126$ 19; $\alpha(L)=0.00177$ 10; $\alpha(M)=0.000367$ 18.
					$\alpha(N)=7.9\times10^{-5}$ 5; $\alpha(O)=1.19\times10^{-5}$ 9; $\alpha(P)=7.9\times10^{-7}$ 15.
	754.5 1	100 4	Q		
	1124.3 3	18 2	(Q)		
2653.7	1063.52	100	Q		
2674.7	164.9 3	52 <i>3</i>	(M1 + E2)	0.29 5	$\alpha(K)=0.229\ 22;\ \alpha(L)=0.047\ 20;\ \alpha(M)=0.010\ 5.$
					$\alpha(N)=0.0021$ 9; $\alpha(O)=0.00030$ 11; $\alpha(P)=1.32\times10^{-5}$ 5.
	245.1 3	100 23	(M1 + E2)	0.085 3	$\alpha(K)=0.0702 \ 13; \ \alpha(L)=0.0117 \ 24; \ \alpha(M)=0.0024 \ 6.$
					$\alpha(N)=0.00052 \ 11; \ \alpha(O)=7.6\times10^{-5} \ 13; \ \alpha(P)=4.2\times10^{-6} \ 5.$
	334.5 3	29 13	(M1+E2)	0.0343 23	$\alpha(\mathbf{K})=0.029 \ 3; \ \alpha(\mathbf{L})=0.00432 \ 25; \ \alpha(\mathbf{M})=0.00090 \ 6.$
	1004 5 0	50 10	$(\mathbf{O})$		$\alpha(\mathbf{N})=0.000193\ 12;\ \alpha(\mathbf{O})=2.87\times10^{-5}\ 9;\ \alpha(\mathbf{P})=1.8\times10^{-5}\ 3.$
9749 6	1084.5 2	58 16 100	(Q)		
2742.0	1424.2 3	10.2	(M1 + F9 )	0 0 2 0 5 2 2	$\alpha(\mathbf{K}) = 0.0174.22$ ; $\alpha(\mathbf{L}) = 0.00249.6$ ; $\alpha(\mathbf{M}) = 0.000516.0$
2015.5	402.7 5	10 2	(1011+152)	0.0205 25	$\alpha(\mathbf{N}) = 0.00114722, \alpha(\mathbf{L}) = 0.002490, \alpha(\mathbf{M}) = 0.00031003.$
	825 6 1	100 6	E9		$u(n) = 0.0001107 22; u(0) = 1.00 \times 10^{-7}; u(1) = 1.00 \times 10^{-13}.$
2874 0	199 3 1	24 4	(M1 + E2)	0 159 16	$\alpha(K)=0$ 129 6: $\alpha(L)=0.024$ 8: $\alpha(M)=0.0050.17$
201110	100.01		(1111122)	0.100 10	$\alpha(\mathbf{n}) = 0.120$ c, $\alpha(\mathbf{n}) = 0.0011$ c, $\alpha(\mathbf{n}) = 0.00015$ 5; $\alpha(\mathbf{P}) = 7.6 \times 10^{-6}$ 5.
	884.1 1	100 5	Q		,,,,
2903.1	562.9 3	100	(Q)		
2913.7	451.0 2	100	(M1+E2)	0.0151 20	$\alpha(K)=0.0128$ 19; $\alpha(L)=0.00180$ 10; $\alpha(M)=0.000373$ 17.
					$\alpha(N)=8.0\times10^{-5} 4; \ \alpha(O)=1.21\times10^{-5} 9; \ \alpha(P)=8.0\times10^{-7} 15.$
3044.2	301.6 2	100 33	D		
	656.9 3	100 50			
3079.1	205.1 1	789	(M1 + E2)	0.146 13	$\alpha(K)=0.119$ 5; $\alpha(L)=0.021$ 7; $\alpha(M)=0.0045$ 14.
					$\alpha(N)=0.0010$ 3; $\alpha(O)=0.00014$ 4; $\alpha(P)=7.0\times 10^{-6}$ 5.
	263.51	100 10	(M1 + E2)	0.0685	$\alpha(K)=0.0569$ 19; $\alpha(L)=0.0092$ 15; $\alpha(M)=0.0019$ 4.
					$\alpha(N)=0.00041$ 7; $\alpha(O)=6.0\times10^{-5}$ 8; $\alpha(P)=3.4\times10^{-6}$ 4.

# $^{129}_{56}$ Ba $_{73}$ -9

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}Ba)$ (continued)

E(level)	Eγ	Ιγ	Mult. [†]	α‡	Comments
3079.1	425.4 3	13 3	E2	0.01557	B(E2)(W.u.)=45 16. $\alpha$ (K)=0.01298 19; $\alpha$ (L)=0.00205 3; $\alpha$ (M)=0.000429 6. $\alpha$ (N)=9.15×10 ⁻⁵ 13; $\alpha$ (O)=1.344×10 ⁻⁵ 19; $\alpha$ (P)=7.69×10 ⁻⁷ 11.
	666.4 3	44 7	E2		B(E2)(W,u)=16 5.
3094.2	812.9 3	48 8	D+Q		
	948.1 2	100 8	(Q)		
3179.4	898.2 1	100	Q		
3368.2	289.1 1	100 6	(M1+E2)	0.0521 15	$\alpha(K)=0.0436\ 24;\ \alpha(L)=0.0068\ 9;\ \alpha(M)=0.00142\ 19.$ $\alpha(N)=0.00030\ 4;\ \alpha(O)=4.5\times10^{-5}\ 4;\ \alpha(P)=2.7\times10^{-6}\ 4.$
	454.4 1	6.3 10	(M1+E2)	0.0148 20	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	552.6 1	2.8 10			
	905.5 1	4.3 5	(Q)		
3378.9	465.5 3	100 12	(M1+E2)	0.0139 19	$ \begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.0118 \ 18; \ \alpha(\mathbf{L}) \!=\! 0.00165 \ 10; \ \alpha(\mathbf{M}) \!=\! 0.000341 \ 19. \\ &\alpha(\mathbf{N}) \!=\! 7.3 \!\times\! 10^{-5} \ 5; \ \alpha(\mathbf{O}) \!=\! 1.10 \!\times\! 10^{-5} \ 9; \ \alpha(\mathbf{P}) \!=\! 7.4 \!\times\! 10^{-7} \ 14. \end{aligned} $
	916.3 1	35 8	(Q)		
3430.6	830.9 1	100 13	(Q)		
	1149.4 3	294	(Q)		
3525.3	345.9 3	100			
3687.5	$508.2^{@}2$	$100^{@}$ 15	(D)		
	643.4 3	24 13			
	1406.7 3	47 11	(Q)		
3704.5	525.12	100 21	(Q)		
	660.3 4	63 42			
3741.8	362.9 1	5 1	(M1+E2)	0.0273 24	$ \begin{array}{l} \alpha(\mathrm{K}) \!=\! 0.0230 \; 25; \; \alpha(\mathrm{L}) \!=\! 0.00338 \; 9; \; \alpha(\mathrm{M}) \!=\! 0.000703 \; 25. \\ \alpha(\mathrm{N}) \!=\! 0.000150 \; 5; \; \alpha(\mathrm{O}) \!=\! 2.25 \!\times\! 10^{-5} \; 4; \; \alpha(\mathrm{P}) \!=\! 1.43 \!\times\! 10^{-6} \; 23. \end{array} $
	373.6 1	100 15	(M1+E2)	0.0252 24	$ \begin{array}{l} \alpha(\mathrm{K}) \!=\! 0.0213 \;\; 24; \; \alpha(\mathrm{L}) \!=\! 0.00310 \;\; 6; \; \alpha(\mathrm{M}) \!=\! 0.000644 \;\; 16. \\ \alpha(\mathrm{N}) \!=\! 0.000138 \;\; 3; \; \alpha(\mathrm{O}) \!=\! 2.06 \!\times\! 10^{-5} \;\; 4; \; \alpha(\mathrm{P}) \!=\! 1.32 \!\times\! 10^{-6} \;\; 22. \end{array} $
	662.8 2	50 7	(Q)		
3848.5	480.3 3	100			
3852.8	327.5 3	100	_		
3895.9	517.01	100 19	D		
	982.2 1	62 10	Q		
3948.1	243.5 2	58 3	(M1+E2)	0.087 3	$\alpha(\mathbf{K}) = 0.0716 \ 12; \ \alpha(\mathbf{L}) = 0.0119 \ 25; \ \alpha(\mathbf{M}) = 0.0025 \ 6.$ $\alpha(\mathbf{N}) = 0.00053 \ 11; \ \alpha(\mathbf{O}) = 7.8 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) = 4.3 \times 10^{-6} \ 5.$
	260.6 1	100 5	(M1+E2)	0.0707 11	$\alpha(\mathbf{K})=0.058776; \ \alpha(\mathbf{L})=0.009576; \ \alpha(\mathbf{M})=0.002074.$ $\alpha(\mathbf{N})=0.000438; \ \alpha(\mathbf{O})=6.2\times10^{-5}9; \ \alpha(\mathbf{P})=3.6\times10^{-6}4.$
	100.1 I 854 0 4	30 3	U (O)		
4054.4	312.6 1	100 13	(Q) (M1+E2)	0.0416 21	$\alpha(K)=0.035$ 3; $\alpha(L)=0.0053$ 5; $\alpha(M)=0.00111$ 11. $\alpha(N)=0.000337$ 21: $\alpha(Q)=3.52\times10^{-5}$ 20: $\alpha(P)=2.1\times10^{-6}$ 3
	675.5 2	4 2			
	686.2 1	83 4	(0)		
4137.6	958.2 1	100	Q		
4286.1	338.1 <i>1</i>	100 4	(M1+E2)	0.0333 23	$\alpha(K)=0.028$ 3; $\alpha(L)=0.00419$ 22; $\alpha(M)=0.00087$ 6. $\alpha(N)=0.000186$ 10; $\alpha(O)=2.78\times10^{-5}$ 8; $\alpha(P)=1.7\times10^{-6}$ 3.
	598.9 <i>3</i>	12 2			
	855.5 1	27 4	Q		
4320.2	424.4 2	32 16			
	471.5 3	100 53			
	941.22	53 16			
4333 . 6	485.1 3	100			
4351 . 4	920.92	88 15	Q		
	1171.75	$100 \ 35$			
4458 . 7	562.72	88 25			
	1080.1 3	$\leq 100$			
4502 . 8	448.4 1	100 17	D		
	761.2 3	50 7	(Q)		
4617.1	331.0 1	100 6	(M1+E2)	0.0353 23	$ \begin{array}{l} \alpha(\mathrm{K}){=}0.030 \ 3; \ \alpha(\mathrm{L}){=}0.0045 \ 3; \ \alpha(\mathrm{M}){=}0.00093 \ 7. \\ \alpha(\mathrm{N}){=}0.000199 \ 13; \ \alpha(\mathrm{O}){=}2.96{\times}10^{-5} \ 11; \ \alpha(\mathrm{P}){=}1.8{\times}10^{-6} \ 3. \end{array} $
	669.0 2	27 3	(Q)		
4663.9	330.4 3	12 6			
	609 5 3	100 29			

### Adopted Levels, Gammas (continued)

#### $\gamma(^{129}Ba)$ (continued)

E(level)	Εγ	Ιγ	Mult. [†]	α‡	Comments
4871.5	368.6 2	46 12	(M1+E2)	0.0261 24	$\alpha(K)=0.0221\ 24;\ \alpha(L)=0.00323\ 7;\ \alpha(M)=0.000671\ 20.$ $\alpha(N)=0.000144\ 4;\ \alpha(O)=2.15\times10^{-5}\ 4;\ \alpha(P)=1.37\times10^{-6}\ 23.$
	817.1 <i>1</i>	100 5	Q		
4951.1	1055.2 5	100	•		
5047.4	430.2 1	100 7	(M1+E2)	0.0171 21	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
	761.3 3	334			
5152.0	1014.4 3	100	(Q)		
5379.6	508.2 [@] 2	$100^{@}$ 14	D		
	876.4 6	65 19			
5469.3	421.9 1	788	(M1+E2)	0.0181 22	$ \begin{array}{l} \alpha(K) \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$
	852.2 2	100 9	Q		
5807.6	428.0 3	36 12	(M1+E2)	0.0174 21	$ \begin{array}{l} \alpha({\rm K}){=}0.0147 \ 20; \ \alpha({\rm L}){=}0.00209 \ 8; \ \alpha({\rm M}){=}0.000433 \ 14. \\ \alpha({\rm N}){=}9.3{\times}10^{-5} \ 4; \ \alpha({\rm O}){=}1.40{\times}10^{-5} \ 8; \ \alpha({\rm P}){=}9.2{\times}10^{-7} \ 17. \end{array} $
	935.9 3	100 10	(Q)		
5975.6	506.3 2	100 34	D		
	928.1 5	50 20	(Q)		
6223.8	1071.8 4	100	(Q)		
6352.1	544.4 3	72 44			
	972.7 3	$100 \ 39$	(Q)		
6450.7	475.1 3	33 10			
	981.6 3	100 16	(Q)		
6843.6	491.6 3	8 4			
	1035.6 7	100 20			
6975.3	524.6 3	100 50			
	999.6 <i>3</i>	56 25			
7434.0	590.3 <i>3</i>	18 9			
	1082.1 5	100 46			
7501.9	1051.1 5	100			
7964.1	530.0 3	5 3			
	1120.7 5	100 37			
9144.2	1180.1 5	100			
10388.3	1244.1 10	100			

[†] Multipolarities are from ¹²⁰Sn(¹²C,3n $\gamma$ ),¹¹⁶Cd(¹⁸O,5n $\gamma$ ), unless otherwise noted. The assignments are based on  $\gamma(\theta)$ , DCO data in general, and from linear polarization data for selected transitions. RUL is also used for levels of known half-lives, or assumed  $\approx$ 10 ns resolving time in  $\gamma\gamma$  coincident data in high-spin studies.

 ‡   $\delta(E2/M1)=0.5$  assumed for M1+E2 transitions from high-spin levels, when  $\delta$  not given.

§ From  $\alpha(exp)$  in  $^{129}La\ \epsilon$  decay.

# Placement of transition in the level scheme is uncertain.

 $\ensuremath{@}$  Multiply placed; intensity suitably divided.

### Adopted Levels, Gammas (continued)

(A) v9/2[514],α=-1/2.

(B)  $v9/2[514], \alpha=+1/2$ .

(C)  $v9/2[514] \otimes \pi h_{11/2}^2, \alpha = -1/2.$ 

### (D) $v9/2[514] \otimes \pi h_{11/2}^2, \alpha = +1/2.$




# $^{129}_{56}$ Ba $_{73}$ -12

### Adopted Levels, Gammas (continued)

(E) Yrare  $vh_{11/2}$  band,  $\alpha = -1/2$ . (F) Yrare  $vh_{11/2}$  band, (G) (H)  $\alpha = +1/2$ .  $v7/2[402] \otimes v9/2[514] \otimes v7/2[523], \alpha = -v7/2[402] \otimes v9/2[514] \otimes v7/2[523], \alpha = +1/2$ . 1/2.



 $^{129}_{56}Ba_{73}$ 

(I)  $v7/2[404], \alpha = -1/2$ .

(J)  $v7/2[404], \alpha=+1/2$ .

(K)  $v7/2[404] \otimes \pi h_{11/2}^2, \alpha = -1/2.$ 



# $^{129}_{56}\mathrm{Ba}_{73}\text{--}14$

# $^{129}_{56}$ Ba $_{73}$ -14

### Adopted Levels, Gammas (continued)

(L)  $v7/2[404] \otimes \pi h_{11/2}^2, \alpha = +1/2.$ 

(M)  $\nu(1/2[411]+1/2[400]),$  $\alpha=-1/2.$  (N)  $v(1/2[411]+1/2[400]), \alpha=+1/2.$ 







 $^{12\,9}_{5\,6}\mathrm{Ba}_{73}$ 

9/2-

173.6

.....(I)



Level Scheme



Level Scheme (continued)



Level Scheme (continued)



Level Scheme (continued)



 $^{129}_{56}Ba_{73}$ 

Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided



 $^{129}_{56}\mathrm{Ba}_{73}$ 

Level Scheme (continued)

(55/2+)		10388.3
(51/2+)		9144.2
(47/2+)		7964.1
(45/2+)		7434.0
(43/2+)		6843.6
(41/2-)		6450.7
(39/2-)		6223.8
(39/2-)		5975.6
(39/2+)		5807.6
(37/2+)		5379.6
(25/9)		5047.4
(35/2+)		4871.5
(33/2+)		4502.8
(31/2+)		4320.2
(31/2-)		4137.6
(29/2+)		3895.9
(27/2-)		3687.5
(27/2+)		3368.2
25/2+		3079.1 1.2
(17/2  to  21/2-)		2742.6
(19/2+)		2509.9
(19/2+)		2340.2
(21/2-)		2146.3
(1/2+)		1951.8
	\$ <u>\$</u>	> <u>'</u>
9/2-		
3/2+		110.57
7/2+		8.42 2.13
1/2+		2.23

# $^{129}_{56}\mathrm{Ba}_{73}\text{--}23$

### ¹²⁹La ε Decay (11.6 min) 1979Br05

 $Parent \ ^{129}La: \ E=0.0; \ J\pi=(3/2+); \ T_{1/2}=11.6 \ min \ 2; \ Q(g.s.)=3739 \ 22; \ \%\epsilon+\%\beta^+ \ decay=100.$ ¹²⁹La-Q(ε): From 2012Wa38.

La-q(t). From 2012 wass. ¹²⁹La-J,T_{1/2}: From ¹²⁹La Adopted Levels. 1979Br05: ¹³⁰Ba(p,2n) E=25 MeV, no chem sep; Ge γ, γγ-coin, semi ce, semi β⁺, γβ⁻coin, half-life. Others: 1998Ko66 (Q value=3.74 MeV 4 from βγ coin data), 1963Ya05, 1963Pr02, 1963La03.

			¹²⁹ B	a Levels
E(level)	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	E(level)	$J\pi^{\dagger}$
0.0	1/2+	2.23 h 11	928.59 9	1 / 2 +
8.42 6	7 / 2 +	2.135 h 10	1062.65 10	3 / 2 +
110.575	3 / 2+		1068.1 3	(1/2,3/2,5/2)
253.765	3 / 2+		1094.96 8	(3/2+,5/2+)
278.575	1 / 2+		1119.85 12	1 / 2 +
318.38 5	1 / 2 - , 3 / 2 -		1219.73 25	3 / 2 + , 5 / 2 +
457.02 6	3 / 2 +		1258.1 3	(1/2,3/2,5/2)
459.29 9	5 / 2+		1389.54 9	(1/2,3/2,5/2)
542.27 8	5 / 2+		1439.23 6	3 / 2 + , 5 / 2 +
617.81 7	(3/2+,5/2+)		1610.21 8	(5/2-)
659.97 8	5 / 2 +		1635.40 10	1 / 2 +
667.77 10	(1/2,3/2,5/2)		1778.28 10	(1/2,3/2,5/2)
711.92 6	(3/2,5/2)+		1804.80 18	3 / 2 + , 5 / 2 +
787.07 22	(1/2,3/2,5/2)		1866.33 9	3 / 2 + , 5 / 2 +
849.44 9	5 / 2+		1990.50 12	1 / 2 +
888.65 6	(3/2+,5/2+)		2071.60 17	(1/2,3/2,5/2)
906.70 9	1 / 2 - , 3 / 2 -		2285.31 17	(1/2,3/2,5/2)
911.38 <i>21</i>	(1/2, 3/2, 5/2)		2369.40 22	(1/2,3/2,5/2)

[†] From Adopted Levels.

#### β⁺,ε Data

1979Br05 determined E\beta+ endpoints from F-K analyses in  $\gamma\beta+$  coin and deduced Q(\epsilon)=3720 50.

Eε	E(level)	Iβ+†	Iε [†]	Log ft	$\mathrm{I}(\epsilon{+}\beta^{+})^{\dagger}$	Comments
(1370 22)	2369.40	0.00010 5	0.074 25	6.9 2	0.074 25	av Eβ=166.5 98; εK=0.8472 3; εL=0.11835 13; cM = 0.02208 4
(1454 22)	2285.31	0.00025 6	0.0738 21	6.95 2	0.0741 21	av E $\beta$ =203.5 97; $\epsilon$ K=0.8458 6; $\epsilon$ L=0.11784 16; $\epsilon$ M+=0.03292 5.
(1667 22)	2071.60	0.0027 6	0.17 3	6.72 8	0.17 3	av E $\beta$ =296.9 96; $\epsilon$ K=0.8360 17; $\epsilon$ L=0.1158 3; $\epsilon$ M+=0.03233 9.
(1749 22)	1990.50	0.0066 14	0.26 5	6.6 1	0.27 5	av Eβ=332.3 97; εK=0.8290 23; εL=0.1146 4; εM+=0.03199 11.
(1873 22)	1866.33	0.011 2	0.26 5	6.6 1	0.27 5	av Eβ=386.7 97; εK=0.814 4; εL=0.1123 5; εM+=0.03133 14.
(1934 22)	1804.80	0.0091 18	0.16 3	6.87 8	0.17 3	av E $\beta$ =413.6 97; $\epsilon$ K=0.805 4; $\epsilon$ L=0.1109 6; $\epsilon$ M+=0.03093 16.
(1961 22)	1778.28	0.029 4	0.46 6	6.42 6	0.49 6	av E $\beta$ =425.3 97; $\epsilon$ K=0.800 4; $\epsilon$ L=0.1102 6; $\epsilon$ M+=0.03075 17.
(2104 22)	1635.40	0.034 4	0.34 4	6.62 5	0.37 4	av Eβ=488.1 97; εK=0.772 5; εL=0.1061 8; εM+=0.02959 20.
(2129 22)	1610.21	0.095 10	0.87 7	6.22 4	0.96 8	av Eβ=499.2 98; εK=0.767 6; εL=0.1053 8; εM+=0.02936 21.
(2300 22)	1439.23	0.078 10	0.44 5	6.58 6	0.52 6	av Eβ=575.0 98; εK=0.723 7; εL=0.0990 9; εM+=0.02760 25.
(2349 22)	1389.54	0.045 7	0.22 3	6.89 7	0.27 4	av Eβ=597.0 98; εK=0.708 7; εL=0.0970 10; εM+=0.0270 3.
(2481 22)	1258.1	0.016 5	0.058 20	7.52	0.074 25	av E $\beta$ =655.6 99; $\epsilon$ K=0.668 7; $\epsilon$ L=0.0914 10; $\epsilon$ M+=0.0255 3.
(2519 22)	1219.73	0.046 9	0.15 3	7.1 1	0.20 4	av Eβ=672.8 99; εK=0.656 8; εL=0.0896 10; εM+=0.0250 3.
(2619 22)	1119.85	0.12 2	0.32 4	6.83 7	0.44 6	av $E\beta=717.5$ 99; $\epsilon K=0.623$ 8; $\epsilon L=0.0850$ 11; $\epsilon M+=0.0237$ 3.
(2644 22)	1094.96	0.24 3	0.62 7	6.56 5	0.86 9	av Eβ=728.7 99; εK=0.614 8; εL=0.0839 11; εM+=0.0234 3.

	¹²⁹ La ε Decay (11.6 m			1.6 min)	1979Br05 (	(continued)		
$\beta^+, \epsilon$ Data (continued)								
Eε	E(level)	Ιβ+†	Ιε [†]	Log ft	$I(\epsilon+\beta^+)^{\dagger}$	Comments		
(2671 22)	1068.1	0.014 7	0.035 18	7.8 2	0.049 25	av Eβ=740.8 99; εK=0.605 8; εL=0.0826 11; εM+=0.0230 3.		
(2676 22)	1062.65	0.044 12	0.11 3	7.3 1	0.15 4	av E $\beta$ =743.2 99; cK=0.603 8; cL=0.0824 11; sM=-0.0229 3		
(2810 22)	928.59	0.076 17	0.14 3	7.2 1	0.22 5	av $E\beta = 804 \ 10$ ; $\epsilon K = 0.558 \ 8$ ; $\epsilon L = 0.0760 \ 11$ ; $\epsilon M = 0.0212 \ 3$		
(2828 22)	911.38	0.017 9	0.032 16	7.92	0.049 25	av $E\beta=811$ 10; eK=0.552 8; eL=0.0752 11; eM=-0.0210 3		
(2832 22)	906.70	0.078 18	0.14 3	7.3 1	0.22 5	av $E\beta=814$ 10; $\epsilon K=0.550$ 8; $\epsilon L=0.0750$ 11; $\epsilon M=0.0209$ 3		
(2850 22)	888.65	0.71 6	1.27 10	6.31 4	1.98 15	av $E\beta = 822$ 10; $\epsilon K = 0.544$ 8; $\epsilon L = 0.0742$ 11; $\epsilon M = -0.0207$ 3		
(2890 22)	849.44	0.12 2	0.20 4	7.1 1	0.32 6	av $E\beta = 839$ 10; $\epsilon K = 0.531$ 8; $\epsilon L = 0.0723$ 11; $\epsilon M = 0.0201$ 3		
(2952 22)	787.07	0.060 12	0.090 18	7.5 1	0.15 3	av E $\beta$ =868 10; cK=0.510 8; cL=0.0695 10; sM=-0.0193 3		
(3027 22)	711.92	1.95 11	2.59 14	6.06 3	4.54 24	av $E\beta = 902 \ 10$ ; $eK = 0.485 \ 8$ ; $eL = 0.0661 \ 10$ ; $eM = -0.0184 \ 3$		
(3071 22)	667.77	0.10 3	0.12 4	7.4 2	0.22 7	av $E\beta = 922$ 10; $\epsilon K = 0.471$ 7; $\epsilon L = 0.0641$ 10; $\epsilon M = -0.0179$ 3		
(3079 22)	659.97	0.78 6	0.95 7	6.50 4	1.73 13	av $E\beta = 925$ 10; $\epsilon K = 0.469$ 7; $\epsilon L = 0.0638$ 10; $\epsilon M = -0.0178$ 3		
(3121 22)	617.81	0.96 8	1.11 9	6.45 4	2.07 16	av $E\beta=945$ 10; $\epsilon K=0.455$ 7; $\epsilon L=0.0620$ 10; $\epsilon M=-0.0172$ 3		
(3197 22)	542.27	0.17 4	0.18 4	7.3 1	0.35 8	av $E\beta = 979$ 10; $\epsilon K = 0.432$ 7; $\epsilon L = 0.0588$ 10; $\epsilon M = 0.0164$ 3		
(3280 22)	459.29	0.94 9	0.86 8	6.60 5	1.80 17	av $E\beta$ =1017 10; $\epsilon$ K=0.408 7; $\epsilon$ L=0.0554 9; $\epsilon$ M=0.01542 25		
(3282 22)	457.02	9.8 5	9.0 5	5.59 3	18.8 10	av E $\beta$ =1018 10; εK=0.407 7; εL=0.0553 9; εM+=0.01539 25.		
(3421 22)	318.38	0.42 13	0.32 10	7.1 2	0.74 23	av E $\beta$ =1081 10; $\epsilon$ K=0.368 6; $\epsilon$ L=0.0500 8; $\epsilon$ M+=0.01392 23.		
(3460 22)	278.57	15.0 5	10.9 4	5.55 2	25.9 8	av E $\beta$ =1100 11; $\epsilon$ K=0.358 6; $\epsilon$ L=0.0486 8; $\epsilon$ M+=0.01352 22.		
(3485 22)	253.76	3.3 3	2.3 2	6.23 5	5.6 5	av E $\beta$ =1111 11; $\epsilon$ K=0.351 6; $\epsilon$ L=0.0477 8; $\epsilon$ M+=0.01328 22.		
(3628 22)	110.57	9.1 10	5.4 6	5.90 5	14.5 16	av E $\beta$ =1177 <i>11</i> ; $\epsilon$ K=0.317 <i>6</i> ; $\epsilon$ L=0.0429 <i>7</i> ; $\epsilon$ M+=0.01195 <i>20</i> .		
(3739 22)	0.0	11 2	5.8 10	5.89 <i>8</i>	17 3	av E $\beta$ =1228 11; $\epsilon$ K=0.292 5; $\epsilon$ L=0.0396 7; $\epsilon$ M+=0.01102 18. I( $\epsilon$ + $\beta$ ): from 1979Br05 based on the growth and decay of 372 $\gamma$ and 411 $\gamma$ from decay of the daughter ¹²⁹ Cs.		

 †  Absolute intensity per 100 decays.

### γ(¹²⁹Ba)

 $I\gamma \text{ normalization: From sum of } I(\gamma + ce + \epsilon + \beta^+ \text{ to } g.s.) = 100 \text{ with } I(\epsilon + \beta^+) \text{ to } g.s. = 17\% 3 \text{ (1979Br05)}.$ 

Εγ	E(level)	Ιγ&	Mult.	δ@	α§#	Comments
(8.42)	8.42		[M3]		1.05×10 ⁸ 19	$ \begin{array}{l} \alpha(L) = 7.8E7 \ 14; \ \alpha(M) = 2.2E7 \ 4. \\ \alpha(N) = 4.6E6 \ 8; \ \alpha(O) = 5.9E5 \ 11; \ \alpha(P) = 6.5E3 \ 11. \end{array} $
						Ey: deduced from energy differences of gammas to $7/2+$ and $1/2+$ levels.
64.6 1	318.38	0.9 1	E1		0.756	$\begin{array}{l} \alpha(K){=}0.641 \ 10; \ \alpha(L){=}0.0920 \ 14; \ \alpha(M){=}0.0189 \ 3. \\ \alpha(N){=}0.00398 \ 6; \ \alpha(O){=}0.000572 \ 9; \ \alpha(P){=}3.14{\times}10^{-5} \ 5. \end{array}$
						α(L)exp=0.14 5.
85.1 ^a 2	542 . $27$	$\leq 0$ . 1	[M1+E2]		2.5 10	$\alpha(K)=1.6$ 4; $\alpha(L)=0.7$ 5; $\alpha(M)=0.15$ 11.
						$\alpha(N)=0.030\ 23;\ \alpha(O)=0.004\ 3;\ \alpha(P)=8.79\times10^{-5}\ 15.$
$102.3^{\ddagger}$ 3	110.57	$\leq 0$ . 1	[E2]		1.78 4	$\alpha(K)=1.133$ 19; $\alpha(L)=0.507$ 10; $\alpha(M)=0.1108$ 22.
						$\alpha(N){=}0.0230~5;~\alpha(O){=}0.00305~6;~\alpha(P){=}5.24{\times}10^{-5}~9.$

				γ( ¹²⁹	⁹ Ba) (continued)	
Εγ	E(level)	γ&	Mult.	δ@	<u>α</u> §#	Comments
110.5 <i>1</i>	110.57	68.5 <i>31</i>	M1		0.743	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.636 \; 9; \; \alpha({\rm L}) \!=\! 0.0853 \; 13; \; \alpha({\rm M}) \!=\! 0.0176 \; 3. \\ \alpha({\rm N}) \!=\! 0.00380 \; 6; \; \alpha({\rm O}) \!=\! 0.000580 \; 9; \; \alpha({\rm P}) \!=\! 4.19 \!\times\! 10^{-5} \; 6. \end{array} $
138.7 1	457.02	1.6 2	[E1]		0.0917	$\begin{aligned} &\alpha(K)\exp=0.64 \ 4; \ \alpha(M)\exp=0.018 \ 2. \\ &\alpha(K)=0.0786 \ 12; \ \alpha(L)=0.01042 \ 15; \ \alpha(M)=0.00214 \ 3. \\ &\alpha(N)=0.000455 \ 7; \ \alpha(O)=6.75\times10^{-5} \ 10; \\ &\alpha(P)=4 \ 26\times10^{-6} \ 6 \end{aligned}$
143.3 <i>1</i>	253.76	5.1 2	E2(+M1)	>1.7	0.519 25	$\alpha(K) = 0.381 \ 13; \ \alpha(L) = 0.109 \ 10; \ \alpha(M) = 0.0234 \ 23.$ $\alpha(N) = 0.0049 \ 5; \ \alpha(O) = 0.00067 \ 6; \ \alpha(P) = 1.95 \times 10^{-5} \ 3.$ $\alpha(K) \exp - 0.49 \ 12.$
168.1 <i>1</i>	278.57	5.2 2	E2,M1		0.27 5	$\alpha(K)=0.216 \ I_2; \ \alpha(L)=0.044 \ I_3; \ \alpha(M)=0.009 \ 4.$ $\alpha(N)=0.0020 \ s; \ \alpha(O)=0.00028 \ I_0; \ \alpha(P)=1.25\times10^{-5} \ 5.$ $\alpha(K)=xp=0.23 \ 2.$
×173.6 1		2.04				
178.3 3	457.02	0.5 1	[M1+E2]		0.23 3	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
202.9† 3	457.02	0.8 3	[M1+E2]		0.151 14	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
205.6 2	459.29	1.1 2	[M1+E2]		0.145 13	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
207.9 1	318.38	1.9 4	[E1]		0.0302	$\begin{split} &\alpha({\rm K}){=}0.0259~4;~\alpha({\rm L}){=}0.00337~5;~\alpha({\rm M}){=}0.000690~10,\\ &\alpha({\rm N}){=}0.0001476~21;~\alpha({\rm O}){=}2.21{\times}10^{-5}~4;\\ &\alpha({\rm P}){=}1.467{\times}10^{-6}~21. \end{split}$
244.82	787.07	0.6 1				
253.8 1	253.76	32.5 14	E2		0.0777	$\begin{aligned} &\alpha(\mathbf{K})=0.0621 \; 9; \; \alpha(\mathbf{L})=0.01227 \; 18; \; \alpha(\mathbf{M})=0.00260 \; 4. \\ &\alpha(\mathbf{N})=0.000549 \; 8; \; \alpha(\mathbf{O})=7.80\times10^{-5} \; 11; \\ &\alpha(\mathbf{P})=3.43\times10^{-6} \; 5. \\ &\alpha(\mathbf{K})\exp=0.065 \; 7; \; \alpha(\mathbf{L})\exp=0.013 \; 2. \end{aligned}$
254.9 [‡] 2	711.92	1.3 3				
270.7 [‡] 2	888.65	0.3 1				
278.6 <i>1</i> 307.2 ^a 2	278.57	100	M1		0.0589	$\begin{split} &\alpha(K){=}0.0505~7;~\alpha(L){=}0.0066~1;~\alpha(M){=}0.00137~2.\\ &\alpha(N){=}0.000295~5;~\alpha(O){=}4.52{\times}10^{-5}~7;~\alpha(P){=}3.30{\times}10^{-6}~5.\\ &\alpha(K){exp}{=}0.049~3;~\alpha(L){exp}{=}0.0072~5;~\alpha(M){exp}{=}0.0020~3.\\ &Mult.:~ce~data~give~M1({+}E2)~with~\delta{<}1.2,~but~\Delta J\pi\\ &forbids~E2. \end{split}$
318.4 1	318.38	8.2 5	E1		0.00979	$\begin{split} &\alpha(K) = 0.00843 \ 12; \ \alpha(L) = 0.001078 \ 16; \ \alpha(M) = 0.000221 \ 3. \\ &\alpha(N) = 4.74 \times 10^{-5} \ 7; \ \alpha(O) = 7.16 \times 10^{-6} \ 10; \\ &\alpha(P) = 4.93 \times 10^{-7} \ 7. \\ &\alpha(K) \exp = 0.012 \ 4. \end{split}$
339.12	617.81	0.9 2				
341.52	659.97	1.2 2				
346.4+2	888.65	≤0.3				
346.5 1	457.02	20.7 10	M1(+E2)	<0.4	0.0330 6	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0283 \ 6; \ \alpha(\mathrm{L}) = 0.00375 \ 6; \ \alpha(\mathrm{M}) = 0.000773 \ 13. \\ \alpha(\mathrm{N}) = 0.000167 \ 3; \ \alpha(\mathrm{O}) = 2.55 \times 10^{-5} \ 4; \ \alpha(\mathrm{P}) = 1.83 \times 10^{-6} \ 5. \\ \alpha(\mathrm{K}) \exp = 0.033 \ 5. \end{array} $
348.7 1	459.29	6.4 6	M1(+E2)	<0.6	0.0322 8	$ \begin{split} &\alpha({\rm K}){=}0.0275\ 8;\ \alpha({\rm L}){=}0.00371\ 7;\ \alpha({\rm M}){=}0.000765\ 15. \\ &\alpha({\rm N}){=}0.000165\ 3;\ \alpha({\rm O}){=}2.51{\times}10^{-5}\ 4;\ \alpha({\rm P}){=}1.77{\times}10^{-6}\ 7. \\ &\alpha({\rm K}){\rm exp}{=}0.045\ 18. \end{split} $
349.4 ‡ 2	667.77	0.4 2				
381.52	659.97	0.4 1				
393.51 2	711.92	0.4 2				
406.2 1	659.97	2.02	M1 , E2		0.0200 22	$\begin{aligned} &\alpha(\mathbf{K})=0.01/0 \ 22; \ \alpha(\mathbf{L})=0.00243 \ 6; \ \alpha(\mathbf{M})=0.000503 \ 9. \\ &\alpha(\mathbf{N})=0.0001079 \ 24; \ \alpha(\mathbf{O})=1.62\times10^{-5} \ 7; \\ &\alpha(\mathbf{P})=1.06\times10^{-6} \ 19. \\ &\alpha(\mathbf{K})\exp=0.030 \ 14. \end{aligned}$
414.0 1	667.77	0.5 2				-
431.8 2	542.27	1.6 2				
433.3 2	711.92	1.02				

### ¹²⁹La ε Decay (11.6 min) 1979Br05 (continued)

# $^{129}_{56}\mathrm{Ba}_{73}$ -26

¹²⁹ La <b>ε</b> Decay (11.6 min)	1979Br05 (continued)
---------------------------------------------	----------------------

 $\gamma(^{129}\text{Ba})$  (continued)

$\mathbf{E}\gamma$	E(level)	Iγ&	Mult.	α§#	Comments
448.6 1	457.02	21.0 13	(E2)	0.01336	$\alpha(K)=0.01117$ 16; $\alpha(L)=0.001738$ 25; $\alpha(M)=0.000363$ 5. $\alpha(N)=7.74\times10^{-5}$ 11; $\alpha(O)=1.140\times10^{-5}$ 16; $\alpha(P)=6.65\times10^{-7}$ 10. $\alpha(K)\exp=0.007$ 4. Mult: $\alpha(K)\exp$ allows E1 also within uncertainty but E1
457.0 1	457.02	32.5 26	M1 , E2	0.0146 20	rejected by $\Delta J\pi$ . $\alpha(K)=0.0124$ 18; $\alpha(L)=0.00173$ 10; $\alpha(M)=0.000359$ 18.
					$\alpha(N)=7.7 \times 10^{-5} 5; \ \alpha(O)=1.16 \times 10^{-5} 9; \ \alpha(P)=7.8 \times 10^{-7} 15.$
458.2 1	711.92	8.5 6	M1 , E2	0.0145 19	$ \begin{array}{l} \alpha({\bf K}) = 0.0123 \ 18; \ \alpha({\bf L}) = 0.00172 \ 10; \ \alpha({\bf M}) = 0.000357 \ 18. \\ \alpha({\bf N}) = 7.7 \times 10^{-5} \ 5; \ \alpha({\bf O}) = 1.15 \times 10^{-5} \ 9; \ \alpha({\bf P}) = 7.7 \times 10^{-7} \ 15. \\ \alpha({\bf K}) = {\bf p} = 0.012 \ 4. \end{array} $
$507$ . $3^{12}$ 2	617.81	3.9 4			
531.22	849.44	0.52			
533.9 1	542 . $27$	1.7 2			
549.5772	659.97	2.23			
570.21 2	888.65	0.73			
588.31 601 3 [†] ‡ 2	906.70 711 99	0.41			
609 3 2	617 81	4.15			
$610.1^{\ddagger}2$	888.65	0.52 0.51			
617.8 1	617.81	4.2 3			
x622.0 3		1.0 3			
628.12	906.70	0.3 1			
$632.8^{\ddagger}2$	911.38	0.2 1			
651.52	659.97	1.22			
653.0+2	906.70	0.2 1			
674.8+2	928.59	0.21			
703.5 1	711.92	2.62			
738 8 1	849 44	1 1 1			
744.2 [‡] 2	1062.65	0.2 1			
760.6†‡ 2	1610.21	≤0.3			
771.6 2	1389.54	0.3 1			
776.6 [‡] 2	1094.96	$\leq 0$ . 2			
778.1 1	888.65	2.63			
808.9 1	1062.65	0.4 1			
814.3 [†] ‡ 3	1068.1	0.2 1			
816.41+ <i>1</i>	1094.96	0.62			
*831.8 2	1004 06	0.62			
841.272	1110 85	0.82			
866 0 2	1119.85	<0.2			
880.2 1	888.65	1.6 2			
888.7 1	888.65	2.02			
901.3 4	1219.73	0.3 1			
928.6 1	928.59	1.1 <i>1</i>			
966.0 3	1219.73	0.5 1			
984.3 2	1094.96	0.6 1			
1004.377 3	1258.1	0.3 1			
1017.6 1	1635.40	0.91			
1061.9 2	1990.50	0.4 1			
1071 2 2	1389 54	< 0 3			
1086.5 2	1094.96	1.0 1			
1095.0 3	1094.96	0.3 1			
$1119.9^{\dagger}2$	1119.85	0.3 1			
1135.8 <i>1</i>	1389.54	0.5 1			
1150.92	1610.21	0.2 1			
1160.8 1	1439 . $23$	0.6 1			
1185.6 <i>1</i>	1439 . $23$	0.5 1			
x1236.5 1		0.4 1			
1291.8 1	1610.21	1.6 2			
1321.3 [†] ‡ 2	1778.28	0.3 1			

# $^{129}_{56}$ Ba₇₃-27

Fx	F(level)	Тv&	Mult	Fx	F(level)	T.v&	Mult
I	E(level)	11		<u> </u>	E(level)	17	
1328.4 1	1439.23	0.7 1		1610.2 2	1610.21	0.3 1	[M2]
1356.4 ‡ 2	1610.21	0.5 1		1672.1 3	1990.50	0.10 5	
1356.6 ‡ 2	1635.40	0.5 1		1712.0 ^a 3	1990.50	0.2 1	
1381.8 2	1635.40	0.10 5		1736.7 2	1990.50	0.3 1	
1409.3 1	1866.33	0.5 1		1755.6 ^a 2	1866.33	0.10 5	
1439.2 † 1	1439.23	0.3 1		1778.3 2	1778.28	0.4 1	
1459.7 [†] ‡ 2	1778.28	0.5 1		x1785.5 5		0.2 1	
1486.7 [†] ‡ 3	1804.80	$\leq 0$ . 2		1793.0 2	2071.60	0.5 1	
1499.8 2	1778.28	0.4 1		1866.3 2	1866.33	0.2 1	
$1524.5^{\dagger \ddagger} 3$	1778.28	0.4 1		1910.1 2	2369.40	0.3 1	
1533.5 3	1990.50	0.10 5		1966.9 2	2285. $31$	$\leq 0$ . 1	
1547.9 3	1866.33	0.10 5		1990.5 3	1990.50	0.2 1	
1550.92	1804.80	0.5 1		2071.6 3	2071.60	$\leq 0$ . 2	
1587.82	1866.33	0.3 1		2285.3 3	2285 . $31$	$\leq 0$ . 2	

# ¹²⁹La & Decay (11.6 min) 1979Br05 (continued) $\gamma(^{129}Ba)$ (continued)

 †  Composite line with impurity in singles spectrum.

[‡] Observed in  $\gamma\gamma$ -coin only.

 $\frac{8}{3}$   $\alpha(\exp)$  were deduced from I $\gamma$  data and Ice values normalized so that  $\alpha(K)=0.0216$  for 357.4-keV E2 transition in ¹³⁰Ba. [#] Overlaps M1 and E2 for M1+E2 transitions when  $\delta$  not given.

@ If no value given it was assumed  $\delta$ =1.00 for E2/M1,  $\delta$ =1.00 for E3/M2 and  $\delta$ =0.10 for the other multipolarities.

& For absolute intensity per 100 decays, multiply by 0.247 7.

a Placement of transition in the level scheme is uncertain.

 $^{x}~\gamma$  ray not placed in level scheme.

 $^{129}La\ \epsilon\ Decay\ (11.6\ min)$  1979Br05 (continued) Decay Scheme 0.0 11.6 min (3/2+)Intensities:  $I(\gamma+ce)$  per 100 parent decays  $^{129}_{57}$ La $_{72}$  $\%\epsilon + \%\beta^{+} = 100$  $Q^+ = 3739^{22}$ 1 1910, 10074 4730.05 1680.05 1670.05  $I\beta^+$ Iε ↓ 2881 1966.3 1966.9 √ Log ft (1/2,3/2,5/2) 2369.40 0.00010 0.0746.9 (1/2, 3/2, 5/2)2285.31 0.00025 0.0738 6.95 16807.0 1680.05 r 1 2021 1 292.6 1 293.0 47 (1/2,3/2,5/2) 2071.60 0.0027 0.176.72 060 1/2+ 1990.50 0.26 0.0066 6.6 3/2+,5/2+1866.33 0.011 0.26 6.6 3/2+,5/2+ł 1804.80 3 0.0091 0.16 6.87 (1/2, 3/2, 5/2)1778.28 0.029 0.46 6.42101 100 100 ŝ 1/2+ 1635.40 0.034 6.62 0.34 (5/2-) 1610.21 0.095 0.87 6.22 0.0 1/85.6 1/65.6 1/60.8 6 200 NO. 3/2+,5/2+1439.23 0.078 0.44 6.58--1 Ŧ (1/2,3/2,5/2) 1389.54 0.045 0.226.89 3/2+,5/2+1219.73 0.046 0.15 7.11/2 +1119.85 0.120.32 6.83 3/2 +1062.65 0.044 0.11 7.31/2 +928.59 0.076 0.147.25/2 +849.44 0.20 7.10.12ł (1/2,3/2,5/2) 787.07 0.060 0.090 7.5ł ÷ 1 (1/2,3/2,5/2) 1 667.77 0.10 0.12 7.4(3/2+,5/2+)÷ V. 617.81 0.96 1.11 6.45 ł ł 5/2+ 542.270.17 0.18 7.35/2+ 459.29 ł ł 0.94 0.86 6.60 3/2+ 457.02 9.8 9.0 5.591/2-,3/2-318.380.420.327.11/2 +278.5715.010.9 5.55Ť V | ↓ | Ŵ V V 253.76 3/2+ 3.3 2.36.23 3/2 +110.579.1 5.45.901/2 +0.0 2.23 h 11 5.85.89

 $^{129}_{56}Ba_{73}$ 



 $^{129}_{56}Ba_{73}$ 

	¹²⁹ La & Decay (11.6 min) 1979Br05 (continued)	_	
	Decay Scheme (continued)		
	Intensities: $I(\gamma+ce)$ per 100 parent decays	(3/2+) 0.0 11.6	min
		$129_{57}La_{72}$	
		$\%\epsilon + \%\beta^{+} = 100$ $Q^{+} = 3739^{22}$	
	/	Ιβ+ Ιε	Log ft
(1/2,3/2,5/2)	2369.40	0.00010 0.074	6.9
(1/2,3/2,5/2)	2285.31	0.00025 0.0738	6.95
(1/2,3/2,5/2)	2071.60	0.0027 0.17	6.72
1/2+	1990.50	0.0066 0.26	6.6
	/		
3/2+,5/2+	1866.33	0.011 0.26	6.6
(1/2,3/2,5/2)	1778.28	0.029 0.46	6.42
(5/2-)	1610.21	0.095 0.87	6.22
	//		
$\frac{3/2+,5/2+}{(1/2,3/2,5/2)}$	1439.23 ¥ 1389.54	0.078 $0.440.045$ $0.22$	6.58 6.89
3/2+,5/2+	1219.73	0.046 0.15	7.1
1/2+	1119.85	0.12 0.32	6.83
3/2+	1062.65	0.044 0.11	7.3
1/0 0/0			
<u>-1/2-,3/2-</u> 5/2+		0.078 0.14	7.3
(1/2,3/2,5/2)	<u> </u>	0.060 0.090	7.5
(1/2, 3/2, 5/2)		0.10 0.12	7.4
5/2+		0.78 0.95	6.50
(3/2+,5/2+)		0.96 1.11	6.45
5/2+	<u></u>	0.17 0.18	7.3
3/2+	459.29 457.02	0.94 0.86	6.60 5.50
0,21		9.8 9.0	5.59
1/2-,3/2-		0.42 0.32	7.1
1/2+		15.0 10.9	5.55
3/2+		3.3 2.3	6.23
3/2+		9.1 5.4	5.90
7/2+ 1/2+		2.135 h	5.89
	$^{129}_{56}\text{Ba}_{73}$	2.20 II 12 0.0	

### $^{120}Sn(^{12}C, 3n\gamma), ^{116}Cd(^{18}O, 5n\gamma)$ 1992By03,1978Gi04,2013Ka27

1992By03 (also 1990Sc21):  120 Sn( 12 C, $_{3n\gamma}$ ), E=46-56 MeV,  116 Cd( 18 O, $_{5n\gamma}$ ) E=82,86 MeV; Ge  $\gamma$ ,  $\gamma\gamma$ -coin,  $\gamma(\theta)$ ,  $\gamma(t)$ , T_{1/2}. 1978Gi04:  120 Sn( 12 C, $3n\gamma$ ) E=52 MeV; Ge  $\gamma$ , linear polarization.

1977GiO2:  120 Sn( 12 C,3n\gamma) E=45-54 MeV; Ge  $\gamma$ , excitation function,  $\gamma\gamma$ -,  $\gamma\gamma(t)$ -coin,  $\gamma(\theta)$ ,  $T_{1/2}$ . 2000StO7:  116 Cd( 18 O,5n\gamma) E=76 MeV; Ge  $\gamma$ ,  $\gamma\gamma$ -coin, recoil distance technique, differential decay curve method,  $T_{1/2}$ .

2013Ka27: ¹²⁰Sn(¹²C, 3ny), E=52 MeV pulsed beam from 15UD Pelletron accelerator at IUAC, measured lifetimes and g

factors of 182, 9/2- and 2463, 23/2+ isomers by TDPAD method. Target=500  $\mu g/cm^2$   $^{120}Sn$  evaporated on 1  $mg/cm^22$  iron

foil backed by tantalum foil. The internal magnetic field at Ba in iron was calibrated with respect to the g factor=-0.159 5 (1996Da02) for 3116, 10+ isomeric state in  $^{132}\mathrm{Ba}.$ 

¹²⁹Ba Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} §	Comments
lr		#	
0.0*	1/2+	$2.23 h^{\#} 11$	
8.4 ⁶ 2	7/2+	2.135 h [#] 10	
110.6 2	3/2+	15 9 ng 10	$a = 0.109 & (2012 K_{\odot} 27)$
182.04~ 11	9/2-	15.2 HS 10	g=-0.192 6 (2013Ka27). $T_{1/2}$ : from $\gamma$ (t). Weighted average of 15 ns <i>I</i> (2013Ka27) and 16 ns <i>2</i> (1992By03). g: TDPAD method (2013Ka27).
263.1 1	9 / 2 +		
$278.81^{@}$ 12	11/2 -		
318.4 ^k 1	(5/2+)		
$467.3^{1}$ 1	7 / 2 +		
544.74g 10	11/2+	10.6 ps 3	
643.6 ^{&amp;} 1	13/2-		
797.4@1	15/2-	6.5 ps 2	
806.84 ^K 20	(9/2+)		
864.1" <i>I</i>	13/2+		
883.43 ^u 13	13/2-		
999.1 ¹ 1	11/2+		
1210.0° 1	15/2-	1 40 5	
1210.55 2	15/2+	1.68 ps 5	
1318.4 ^{cc} 1	17/2-		
1438.4" 3	(13/2+)	10	
1475.4° 1	19/2 -	1.0 ps 4	
1545.34 2 1500 sh s	(17/2-)		
1654 el 9	15/2+		
1845 00 2	10/2+		
1040.0° 2	19/2-	0.82 pc 10	
2116 28 2	13/2+ 21/2-	0.82 ps 10	
2171 4k 4	(17/2+)		
2281 2@ 2	$\frac{23}{2-}$		
2336 7d 2	$\frac{20}{2}$		
2340.213	19/2+		
2387.4 4			
2412.9 ^h 2	21/2+		
2429.7 3	19/2+		
2462.6 ^e 2	23/2+	47 ns 1	g=-0.233 7 (2013Ka27).
			T _{1/2} : from $\gamma$ (t). Weighted average of 47 ns <i>I</i> (2013Ka27) and 47 ns <i>2</i> (1992By03). g: TDPAD method (2013Ka27).
2509.9 3	(19/2+)		
2599.6° 2	23/2-		
2653.7 2	(21/2+)		
2674.7 2	21/2+		
2742.6 3			
2815.5 ^g 2	23/2+		
2874.02	23/2+		
$2903.1^{1}4$	(23/2+)		
$2913.7^{t}2$ $3044.2^{3}$	25/2+		
3079.1 ^j 2	(25/2+)	1.2 ps 3	
3094.2 ^{&amp;} 2	25/2-		
$3179.4^{@}2$	27/2-		
3368.2 ⁱ 2	(27/2+)		
3378.9 ^e 2	27/2+		
3430.6° 2	(27/2-)		

### $^{129}_{56}$ Ba₇₃-32

_

#### 120 Sn( 12 C,3n $\gamma$ ), 116 Cd( 18 O,5n $\gamma$ ) 1992By03,1978Gi04,2013Ka27 (continued)

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$
3525.3 4		4333.6 3		5807.6 ⁱ 3	(39/2+)
3687.52	(27/2-)	4351.4 3	(31/2-)	5975.6 ^a 3	39/2-
3704.5 2	(31/2-)	4458.7 ^e 3	(31/2+)	6223.8 [@] 6	(39/2-)
3741.8 ^j 2	(29/2+)	4502.8 ^j 2	(33/2+)	6352.1 ^j 4	(41/2+)
3848.5 3		4617.1 ^b 2	(33/2-)	6450.7 ^b 3	41/2-
3852.8 5		4663.9 3		6843.6 ⁱ 4	(43/2+)
3895.9f 2	29/2+	4871.5 ⁱ 2	(35/2+)	6975.3ª 4	(43/2-)
3948.1& 2	(29/2-)	4951.1 ^f 6	(33/2+)	7434.0j 5	(45/2+)
$4054$ . $4^{i}$ 2	(31/2+)	5047.4 ^a 2	(35/2-)	7501.9 ^b 6	(45/2-)
$4137.6^{@}2$	31/2-	$5152.0^{@}4$	(35/2-)	7964.1 ⁱ 5	(47/2+)
4286.1 ^a 2	(31/2-)	5379.6 ^j 3	(37/2+)	9144.2 ⁱ 7	(51/2+)
4320.2 2	(31/2+)	5469.3 ^b 3	(37/2-)	10388.3 ⁱ 13	(55/2+)

¹²⁹Ba Levels (continued)

 †  From least-squares fit to Ey data from 1992By03.

[‡] Band structures are constructed from the experimental results obtained by using standard in-beam techniques upon a few levels with known  $J\pi$ , and also interpreted on the basis of cranked-shell model and trs analyses (1977Gi02,1978Gi04,1992By03).

§ From recoil distance (RDDS) technique (2000St07), unless otherwise stated.

# From Adopted Levels.

^(a) (A):  $v9/2[514], \alpha = -1/2$ .

& (B):  $v9/2[514], \alpha = +1/2$ .

a (b):  $\sqrt{9/2[514]}, \alpha = 1/2$ . a (c):  $\sqrt{9/2[514]} \otimes \pi h_{11/2}^2, \alpha = -1/2$ . b (D):  $\sqrt{9/2[514]} \otimes \pi h_{11/2}^2, \alpha = +1/2$ . c (E):  $\sqrt{2} = \sqrt{1/2} + 1/2$ . d (F):  $\sqrt{2} = \sqrt{1/2} + 1/2$ . e (G):  $\sqrt{7/2[402]} \otimes \sqrt{9/2[514]} \otimes \sqrt{7/2[523]}, \alpha = -1/2$ .

f (H):  $v7/2[402] \otimes v9/2[514] \otimes v7/2[523], \alpha=+1/2.$ 

g (I):  $v7/2[404], \alpha = -1/2$ .

h (J):  $v7/2[404], \alpha = +1/2$ .

k (M):  $v(1/2[411]+1/2[400]), \alpha = -1/2$ . Admixture of 1/2[411] and 1/2[400] neutron configurations.

l (N): v(1/2[411]+1/2[400]),  $\alpha$ =+1/2. Admixture of 1/2[411] and 1/2[400] neutron configurations.

### $\gamma(^{129}Ba)$

$\mathbf{E}\gamma^{\dagger}$	E(level)	$I\gamma^\dagger$	Mult. [‡]	α#	Comments
96.8 1	278.81	36.6 25	M1+E2 [§]	1.6 6	Mult.: large negative $A_2$ in $\gamma(\theta)$ data suggests significant quadrupole admixture, favoring M1+E2 over E1+M2. $\alpha(K)=1.13\ 21$ ; $\alpha(L)=0.4\ 3$ ; $\alpha(M)=0.08\ 6$ . $\alpha(N)=0.017\ 12$ ; $\alpha(O)=0.0024\ 16$ ; $\alpha(P)=6.12\times10^{-5}\ 9$ . $A_2=-0.67\ 10$ ; DCO=0.44\ 2.
110.6 2	110.6	14.0 25	(M1)	0.741	$\begin{array}{l} A_{2}=-0.48 \ 3; \ A_{4}=+0.02 \ 5. \\ \alpha(K)=0.634 \ 10; \ \alpha(L)=0.0851 \ 13; \ \alpha(M)=0.0176 \ 3; \\ \alpha(N)=0.00379 \ 6; \ \alpha(O)=0.000579 \ 9. \\ A_{}=0.18 \ 44. \ DCO_{+-}0.64 \ c. \\ \end{array}$
126.0 1	2462.6	5.3 7	(E1)	0.1196	$\begin{array}{l} \alpha_{0} = -0.16 \ 14^{\circ}, \ DC0 = 0.64 \ 8^{\circ}. \\ \alpha(\mathbf{K}) = 0.1025 \ 15^{\circ}, \ \alpha(\mathbf{L}) = 0.01368 \ 20^{\circ}; \ \alpha(\mathbf{M}) = 0.00280 \ 4^{\circ}. \\ \alpha(\mathbf{N}) = 0.000597 \ 9^{\circ}; \ \alpha(\mathbf{O}) = 8.83 \times 10^{-5} \ 13^{\circ}; \ \alpha(\mathbf{P}) = 5.49 \times 10^{-6} \ 8^{\circ}. \\ \mathbf{A}_{-} = -0.03 \ 4^{\circ}. \ \mathbf{DC0} = 0.74 \ 9^{\circ}. \end{array}$
×131 4 4		14 5			112- 0.00 11, D00-0.11 0.
x132.1 3		3 1			
149.0 2	467.3	1.3 3	[M1+E2]	0.40 8	$\alpha(K)=0.31$ 4; $\alpha(L)=0.07$ 4; $\alpha(M)=0.015$ 7. $\alpha(N)=0.0031$ 15; $\alpha(O)=0.00043$ 19; $\alpha(P)=1.77 \times 10^{-5}$ 5. $A_{n}=-0.05$ 9.
153.8 <i>1</i>	797.4	7.4 4	M1+E2	0.36 7	α(K)=0.28 3; α(L)=0.06 3; α(M)=0.013 6. $α(N)=0.0027 13; α(O)=0.00039 16; α(P)=1.61×10^{-5} 5.$ $A_2=-0.50 10; DCO=0.48 1.$ $A_3=-0.46 5: A_3=+0.07 6.$
157.0 <i>1</i>	1475.4	5.3 14	(M1+E2)	0.34 6	$\begin{array}{l} \alpha(\mathrm{K}) = 0.27 \ 3; \ \alpha(\mathrm{L}) = 0.056 \ 25; \ \alpha(\mathrm{M}) = 0.012 \ 6. \\ \alpha(\mathrm{N}) = 0.0025 \ 12; \ \alpha(\mathrm{O}) = 0.00036 \ 15; \ \alpha(\mathrm{P}) = 1.52 \times 10^{-5} \ 5. \\ \mathrm{A}_2 = -0.12 \ 17; \ \mathrm{DCO} = 0.55 \ 16. \end{array}$
x161.2 4		7 3			

# $^{129}_{56}\mathrm{Ba}_{73}\mathrm{-}33$

### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

### $\gamma(^{129}\text{Ba})$ (continued)

${f E}\gamma^{\dagger}$	E(level)	Iγ [†]	Mult. [‡]	α#	Comments
164 0 2	9674 7	161	(M1 + F9 )	0 961 4	A = 0.45.10
173.6 1	182.04	138.8 10	(M1+E2) E1§	0.0493	$\begin{array}{l} A_2 = -0.43 \ 15. \\ \alpha(\mathbf{K}) = 0.0424 \ 6; \ \alpha(\mathbf{L}) = 0.00555 \ 8; \ \alpha(\mathbf{M}) = 0.001137 \ 16. \\ \alpha(\mathbf{N}) = 0.000243 \ 4; \ \alpha(\mathbf{O}) = 3.63 \times 10^{-5} \ 6; \ \alpha(\mathbf{P}) = 2.35 \times 10^{-6} \ 4. \\ A_2 = -0.19 \ 3; \ \mathbf{DCO} = 0.63 \ 2. \\ A_3 = -0.210 \ 13; \ A_4 = +0.03 \ 4. \\ \mathbf{DO} = 0.055 \ 6. \end{array}$
192.4 3	999.1	0.3 1	[M1+E2]	0.178 19	POL=+0.25 6. $\alpha(\mathbf{K})=0.144 \ 8; \ \alpha(\mathbf{L})=0.027 \ 9; \ \alpha(\mathbf{M})=0.0057 \ 20.$ $\alpha(\mathbf{N})=0.0012 \ 4; \ \alpha(\mathbf{O})=0.00017 \ 5; \ \alpha(\mathbf{P})=8.4\times10^{-6} \ 5.$
199.3 <i>1</i>	2874.0	5.69	(M1+E2)	0.159 16	$\alpha(K)=0.129$ 6; $\alpha(L)=0.024$ 8; $\alpha(M)=0.0050$ 17. $\alpha(N)=0.0011$ 4; $\alpha(O)=0.00015$ 5; $\alpha(P)=7.6\times10^{-6}$ 5. $A_{2}=-0.37$ 26; DCO=0.47 4.
205.1 1	3079.1	16.3 19	(M1+E2)	0.146 13	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
x205.6 3		$2 \ 1$			
207.5 3	318.4	0.8 4	[M1+E2]	0.141 12	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
216.5 3	1654.6	0.2 1	[M1+E2]	0.124 9	$\alpha(\mathbf{K})=0.101 \ 3; \ \alpha(\mathbf{L})=0.018 \ 5; \ \alpha(\mathbf{M})=0.0037 \ 11.$ $\alpha(\mathbf{N})=0.00079 \ 22; \ \alpha(\mathbf{O})=0.00012 \ 3; \ \alpha(\mathbf{P})=6.0\times10^{-6} \ 5.$
243.5 2	3948.1	7.74	(M1+E2)	0.087 3	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0716 \ 12; \ \alpha(\mathbf{L}) = 0.0119 \ 25; \ \alpha(\mathbf{M}) = 0.0025 \ 6. \\ &\alpha(\mathbf{N}) = 0.00053 \ 11; \ \alpha(\mathbf{O}) = 7.8 \times 10^{-5} \ 13; \ \alpha(\mathbf{P}) = 4.3 \times 10^{-6} \ 5. \\ &A_2 = -0.30 \ 12; \ \mathbf{DCO} = 0.37 \ 11. \end{aligned} $
245.1 3	2674.7	3.1 7	(M1+E2)	0.085 3	$\alpha(K)=0.0702 \ 13; \ \alpha(L)=0.0117 \ 24; \ \alpha(M)=0.0024 \ 6.$ $\alpha(N)=0.00052 \ 11; \ \alpha(O)=7.6\times10^{-5} \ 13; \ \alpha(P)=4.2\times10^{-6} \ 5.$ $A_9=-0.34 \ 28; \ DCO=0.39 \ 22.$
254.7 1	263.1	43.0 24	M1+E2	0.0757 <i>15</i>	$\alpha(K)=0.0628$ 16; $\alpha(L)=0.0103$ 19; $\alpha(M)=0.0022$ 5. $\alpha(N)=0.00046$ 9; $\alpha(O)=6.7\times10^{-5}$ 10; $\alpha(P)=3.8\times10^{-6}$ 4. $A_2=-0.76$ 7; DCO=0.42 4. $A_2=-0.65$ 2; $A_4=+0.16$ 4. POL=+0.208.
258.0 5	2429.7	0.5 2			
260.6 1	3948.1	13.2 6	(M1+E2)	0.0707 11	$\alpha(K)=0.0587$ 18; $\alpha(L)=0.0095$ 16; $\alpha(M)=0.0020$ 4. $\alpha(N)=0.00043$ 8; $\alpha(O)=6.2\times10^{-5}$ 9; $\alpha(P)=3.6\times10^{-6}$ 4. $A_{0}=-0.49$ 12; DCO=0.51 8.
263.5 1	3079.1	21.0 20	(M1+E2)	0.0685	$ \begin{array}{l} \alpha(\mathbf{\bar{K}}) \!=\! 0.0569 \; 19; \; \alpha(\mathbf{L}) \!=\! 0.0092 \; 15; \; \alpha(\mathbf{M}) \!=\! 0.0019 \; 4. \\ \alpha(\mathbf{N}) \!=\! 0.00041 \; 7; \; \alpha(\mathbf{O}) \!=\! 6.0 \!\times\! 10^{-5} \; 8; \; \alpha(\mathbf{P}) \!=\! 3.4 \!\times\! 10^{-6} \; 4. \\ \mathbf{A}_2 \!=\! \!-\! 0.56 \; 7; \; \mathbf{DCO} \!=\! 0.49 \; 4. \end{array} $
x272.8 3		7 4			
281.7 1	544.74	16.0 20	(M1+E2)§	0.0562 13	$\begin{split} &\alpha(\mathbf{K}) = 0.0469 \ 23; \ \alpha(\mathbf{L}) = 0.0074 \ 10; \ \alpha(\mathbf{M}) = 0.00155 \ 23. \\ &\alpha(\mathbf{N}) = 0.00033 \ 5; \ \alpha(\mathbf{O}) = 4.9 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 2.9 \times 10^{-6} \ 4. \\ &A_2 = -0.73 \ 18; \ \mathbf{DCO} = 0.36 \ 5. \\ &A_9 = -0.61 \ 3; \ A_4 = +0.32 \ 10. \end{split}$
289.1 <i>1</i>	3368.2	40.0 22	(M1+E2)	0.0521 15	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0436 \; 2^{4}; \; \alpha({\rm L}) \!=\! 0.0068 \; 9; \; \alpha({\rm M}) \!=\! 0.00142 \; 19. \\ \alpha({\rm N}) \!=\! 0.00030 \; 4; \; \alpha({\rm O}) \!=\! 4.5 \!\times\! 10^{-5} \; 4; \; \alpha({\rm P}) \!=\! 2.7 \!\times\! 10^{-6} \; 4. \\ {\rm A}_2 \!=\! \! -\! 0.52 \; 10; \; {\rm DCO} \!=\! 0.50 \; 3. \end{array} $
301.6 2	3044.2	1.24	D		$A_2 = -0.83.$
312.6 1	4054.4	20.0 26	(M1+E2)	0.0416 21	$ \begin{split} & \alpha(\mathrm{K}) = 0.035 \ 3; \ \alpha(\mathrm{L}) = 0.0053 \ 5; \ \alpha(\mathrm{M}) = 0.00111 \ 11. \\ & \alpha(\mathrm{N}) = 0.000237 \ 21; \ \alpha(\mathrm{O}) = 3.52 \times 10^{-5} \ 20; \ \alpha(\mathrm{P}) = 2.1 \times 10^{-6} \ 3. \\ & \mathrm{A}_2 = -0.52 \ 7; \ \mathrm{DCO} = 0.45 \ 9. \end{split} $
316.3 1	2462.6	1.8 4	[E1]		$\begin{split} &\alpha\!=\!0.00995 \ 14; \ \alpha(\mathrm{K})\!=\!0.00858 \ 12; \ \alpha(\mathrm{L})\!=\!0.001096 \ 16; \\ &\alpha(\mathrm{M})\!=\!0.000225 \ 4. \\ &\alpha(\mathrm{N})\!=\!4.82\!\times\!10^{-5} \ 7; \ \alpha(\mathrm{O})\!=\!7.28\!\times\!10^{-6} \ 11; \ \alpha(\mathrm{P})\!=\!5.02\!\times\!10^{-7} \ 7. \\ &\mathrm{A_2}\!=\!-0.40 \ 41. \end{split}$
318.3 2	318.4	6.79	[E2]	0.0375	$ \begin{split} &\alpha({\rm K}){=}0.0306\ 5;\ \alpha({\rm L}){=}0.00542\ 8;\ \alpha({\rm M}){=}0.001141\ 17.\\ &\alpha({\rm N}){=}0.000242\ 4;\ \alpha({\rm O}){=}3.49{\times}10^{-5}\ 5;\ \alpha({\rm P}){=}1.753{\times}10^{-6}\ 25. \end{split} $
319.4 <i>1</i>	864.1	4.1 11	(M1+E2)	0.0391 22	$ \begin{split} &\alpha(\mathbf{K}) {=} 0.033 \ 3; \ \alpha(\mathbf{L}) {=} 0.0050 \ 4; \ \alpha(\mathbf{M}) {=} 0.00104 \ 9. \\ &\alpha(\mathbf{N}) {=} 0.000222 \ 18; \ \alpha(\mathbf{O}) {=} 3.30 {\times} 10^{-5} \ 16; \ \alpha(\mathbf{P}) {=} 2.0 {\times} 10^{-6} \ 3. \\ &\mathbf{A}_2 {=} {-} 0.92 \ 39; \ \mathbf{D} {\mathbf{C}} {\mathbf{O}} {=} 0.34 \ 6. \end{split} $
327.5 3	3852.8	3.0 10			
330.4 3	4663.9	0.4 2			

# $^{129}_{56}$ Ba $_{73}$ -34

### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

### $\gamma(^{129}\text{Ba})$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ†	Mult. [‡]	α#	Comments
331.0 1	4617.1	22.3 12	(M1+E2)	0.0353 23	$\alpha(K)=0.030$ 3; $\alpha(L)=0.0045$ 3; $\alpha(M)=0.00093$ 7. $\alpha(N)=0.000199$ 13; $\alpha(O)=2.96\times10^{-5}$ 11; $\alpha(P)=1.8\times10^{-6}$ 3.
334.5 <i>3</i>	2674.7	0.9 4	(M1+E2)	0.0343 23	$\begin{array}{l} A_2 = -0.78 \ 31; \ DC0 = 0.45 \ 6. \\ \alpha(K) = 0.029 \ 3; \ \alpha(L) = 0.00432 \ 25; \ \alpha(M) = 0.00090 \ 6. \\ \alpha(N) = 0.000193 \ 12; \ \alpha(O) = 2.87 \times 10^{-5} \ 9; \ \alpha(P) = 1.8 \times 10^{-6} \ 3. \\ A_9 = -0.09 \ 25; \ DC0 = 0.37 \ 22. \end{array}$
335.7 3	1545.3	1.1 2	(M1+E2)	0.0340 23	$\alpha$ (K)=0.029 3; $\alpha$ (L)=0.00428 24; $\alpha$ (M)=0.00089 6. $\alpha$ (N)=0.000190 11; $\alpha$ (O)=2.84×10 ⁻⁵ 9; $\alpha$ (P)=1.8×10 ⁻⁶ 3. A ₉ =-0.77 43.
338.1 <i>1</i>	4286.1	18.6 10	(M1+E2)	0.0333 23	$\alpha^{2}$ (K)=0.028 3; $\alpha$ (L)=0.00419 22; $\alpha$ (M)=0.00087 6. $\alpha$ (N)=0.000186 10; $\alpha$ (O)=2.78×10 ⁻⁵ 8; $\alpha$ (P)=1.7×10 ⁻⁶ 3. A ₂ =-0.04 30; DCO=0.45 5.
340.05	806.84	0.2 1			
345.9 3	3525.3	2.5 10			
346.5 2	1210.5	7.59	(M1+E2)	0.0311 24	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.026 \ \ 3; \ \ \alpha(\mathbf{L}) = 0.00389 \ \ 17; \ \ \alpha(\mathbf{M}) = 0.00081 \ \ 5. \\ &\alpha(\mathbf{N}) = 0.000173 \ \ 8; \ \ \alpha(\mathbf{O}) = 2.58 \times 10^{-5} \ \ 6; \ \ \alpha(\mathbf{P}) = 1.62 \times 10^{-6} \ \ 25. \\ &\mathbf{A}_{2} = -0.84 \ \ 13; \ \ \mathbf{DCO} = 0.35 \ \ 6. \end{aligned} $
356.7 1	467.3	13.2 20	(E2)	0.0263	$\alpha(K)=0.0217$ 3; $\alpha(L)=0.00366$ 6; $\alpha(M)=0.000769$ 11. $\alpha(N)=0.0001633$ 23; $\alpha(O)=2.37\times10^{-5}$ 4; $\alpha(P)=1.261\times10^{-6}$ 18. $A_{0}=+0.32$ 47; DCO=1.05 14.
362.9 1	3741.8	1.12	(M1+E2)	0.02874	$A_0 = +0.02$ 32; DCO=0.62 28.
364.7 1	643.6	43.3 17	M1+E2 §	0.0269 24	$\alpha(K)=0.0227\ 25;\ \alpha(L)=0.00333\ 9;\ \alpha(M)=0.000692\ 23.$ $\alpha(N)=0.000148\ 4;\ \alpha(O)=2.22\times10^{-5}\ 4;\ \alpha(P)=1.41\times10^{-6}\ 23.$ $A_2=-0.68\ 11;\ DCO=0.36\ 5.$ $A_2=-0.70\ 3;\ A_4=+0.16\ 5.$ POI-+0.07.7
× 365 0 5		3 1			
368.6 2	4871.5	7.5 19	(M1+E2)	0.0261 24	$\alpha(\mathbf{K})=0.0221\ 24;\ \alpha(\mathbf{L})=0.00323\ 7;\ \alpha(\mathbf{M})=0.000671\ 20.$ $\alpha(\mathbf{N})=0.000144\ 4;\ \alpha(\mathbf{O})=2.15\times10^{-5}\ 4;\ \alpha(\mathbf{P})=1.37\times10^{-6}\ 23.$ $\mathbf{A}=-0.61\ 36:\ \mathbf{D}\mathbf{C}\mathbf{O}=0.54\ 19.$
373.6 1	3741.8	21.0 <i>31</i>	(M1+E2)	0.0252 24	$\begin{array}{l} \alpha({\rm K})=0.0213\ 24;\ \alpha({\rm L})=0.00310\ 6;\ \alpha({\rm M})=0.000644\ 16.\\ \alpha({\rm N})=0.000138\ 3;\ \alpha({\rm O})=2.06\times10^{-5}\ 4;\ \alpha({\rm P})=1.32\times10^{-6}\ 22.\\ {\rm A}_{0}\ 35\ 9;\ {\rm DCO-0}\ 48\ 11 \end{array}$
379.8 <i>3</i>	1590.2	3.7 24	[M1+E2]	0.0241 23	$\alpha(\mathbf{K})=0.0203\ 24;\ \alpha(\mathbf{L})=0.00295\ 5;\ \alpha(\mathbf{M})=0.000613\ 13.$ $\alpha(\mathbf{N})=0.0001314\ 21;\ \alpha(\mathbf{O})=1.97\times10^{-5}\ 5;\ \alpha(\mathbf{P})=1.26\times10^{-6}\ 21.$
x392.2 3		15 5			
400.0 3	1989.9	5.0 11	[M1+E2]	0.0209 23	$A_{0} = +0.07 \ 11.$
402.7 3	2815.5	3.2 6	(M1 + E2)	0.0205 23	$A_2 = -1.1 \ 11.$
412.6 1	1210.0	2.9 6	D		$A_2^{-}=+0.13$ 56; DCO=0.54 10.
421.9 1	5469.3	7.27	(M1 + E2)		A ₂ =-0.52 18; DCO=0.37 9.
423.22	2412 . 9	2.08	D		$A_2 = -0.56$ 53.
424.42	4320 . 2	0.6 3			
425.4 3	3079.1	2.77	E2		A ₂ =-0.25 37; DCO=1.05 29.
428.03	5807.6	3.2 11	(M1 + E2)		$A_2 = -0.64 \ 37.$
430.2 1	5047.4	12.39	(M1 + E2)		$A_2 = -0.76$ 16; DCO=0.43 8.
448.4 1	4502.8	12.7 21	D		A ₂ =-0.17 10; DCO=0.44 11.
451.0 2	2913.7	10.4 10	(M1+E2)	0.0151 20	A ₂ =-0.67 11; DCO=0.37 5.
453.6 2	2599.6	2.95	(M1+E2)	0.0149 20	A ₂ =-1.1 4; DCO=0.60 29.
454.4 1	3368.2	2.54	(M1 + E2)	0.0148 20	DCO=0.30 9.
461.6 1	643.6	11.0 5	E28	0.01232	$A_2 = +0.19$ 14; DCO=0.84 23. $A_2 = +0.22$ 2; $A_4 = +0.08$ 5. POL=+0.44 17.
465 5 3	3378 9	5 1 6	(M1 + E2)	0 0139 19	$A_{\alpha} = -0.91 \ 18$ : DCO=0.39.8
471.5 3	4320.2	1.9 10	,		<u> </u>
472.8 1	2462.6	15.9 11	(E2)	0.01151	B(E2)(W.u.)= $0.0088$ 9. A ₂ =+0.16 8; DCO= $0.89$ 7. A ₂ =+0.03 <i>I</i> : A ₂ ==0.01 2.
475.1 3	6450.7	1.75			z ···· -,4 ····
480.3 3	3848.5	8.8 10			
485.1 3	4333.6	3.0 10			
488.7 3	806.84	5.1 10	(E2)		$A_{2} = +0.52 \ 10.$
491.6 3	6843.6	0.6 3			-
492.3 3	2336.7	4.0 6			

# $^{129}_{56}\mathrm{Ba}_{73}\mathrm{-}35$

### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

### $\gamma(^{129}\text{Ba})$ (continued)

	$E\gamma^{\dagger}$	E(level)	Iγ [†]	Mult. [‡]	α#	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	506 2 2	5075 6	5 0 17	D		DCO-0 27 15
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	508.3 2 508.2 [@] 2	3687 5	4 7 [@] 7	(D)		DCO-0.95 20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	500.2 2	5379 6	4 3@ 6	(D)		DCO=0.53 20.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×513 8 3	0010.0	2.1	D		500-0.00 11.
518.6       I       797.4       100.0       20 $\mathbb{E}^{\frac{1}{2}}$ $A_{2}=0.334;$ $\mathbb{PO}[2-0.335;$ $\mathbb{PO}[2-0.300; 26;$ $\mathbb{PO}[2-0.300; 26;$ $\mathbb{PO}[2-0.300; 26;$ $\mathbb{PO}[2-0.300; 26;$ $\mathbb{PO}[2-0.300; 26;$ $\mathbb{PO}[2-0.32; 12;$ $A_{2}=-0.054;$ $A_{3}=-0.044;$ 521.0       1       1318.4       17.4 $\mathbb{I}^{7}$ $\mathbb{N}^{1}$	517.0 1	3895.9	2.1 4	D		DCO=0.45 23.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	518.6 1	797.4	100.0 20	E 2 §		$A_2 = +0.23$ 4; DCO=1.03 5.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$A_0 = +0.170 \ 8; \ A_4 = -0.07 \ 2.$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$POL=+0.300\ 26.$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	521.0 1	1318.4	17.4 17	(M1+E2) [§]	0.0103 16	A ₂ =-0.90 9; DCO=0.32 13.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$A_{2} = -0.45$ 4; $A_{4} = -0.04$ 4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	524.6 3	6975.3	1.6 8			2 * *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	525.1 2	3704.5	2.45	(Q)		A ₂ =-0.33 26; DCO=0.98 35.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	526.6 1	1845.0	11.7 11	$(M1 + E2)^{\$}$	0.0101 16	$A_2 = -0.97$ 16; DCO=0.40 10.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$A_2 = -0.70$ 6; $A_4 = +0.10$ 7.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	530.03	7964.1	0.2 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	531.7 1	999.1	11.622	(E2)		A ₂ =-0.02 16; DCO=0.95 21.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	536.31	544.74	57.1 17	E 2 §		$A_2 = +0.23$ 7; DCO=1.03 13.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$A_2 = +0.22$ 1; $A_4 = -0.09$ 4.
						POL=+0.36 4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	544.4 3	6352 . 1	1.3 8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	552.61	3368.2	1.1 4			$A_2 = +0.10$ 7.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	562.72	4458.7	0.72			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	562.9 3	2903.1	3.0 5	(Q)		A ₂ =-0.04 15; DCO=0.87 20.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	566.4 1	1210.0	19.5 8	(M1+E2)§		$A_2 = -0.44$ 5; DCO=0.26 5.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						$A_2 = -0.47 \ 4; \ A_4 = -0.08 \ 4.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	590.3 3	7434.0	0.21			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	598.9 3	4286.1	2.3 3	<b>T</b> = 8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	600.72	864.1	31.0 15	E28		$A_2 = +0.33 \ 3$ ; DCO=0.94 9.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						$A_2 = +0.14$ 3; $A_4 = -0.04$ 4.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	604 7 1	009 49	7 2 0	(11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		POL=+0.36 I7.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	004.7 1	003.43	1.3 9	(MI+E2) >		$A_2 = +0.097; DCO = 0.0371.$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	600 5 2	4662 0	2 5 10			$A_2 = +0.13$ 6; $A_4 = -0.02$ 7.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	631 7 3	1438 4	1 5 10	( <b>0</b> )		A = +0.11.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	634 9 1	1845 0	12 6 6	E28		$A_{2} = +0.37 \ 11$ ; DCO=1.07.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00110 1	1010.0	12.0 0			$A_2 = +0.20$ 2: $A_2 = -0.08$ 5.
						POL=+0.41 16.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	643.4 3	3687.5	1.1 6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	655.6 2	1654.6	11.1 29	(Q)		$A_2 = +0.09$ 9; DCO=0.97.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	656.9 3	3044.2	1.2 6			2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	660.3 4	3704.5	1.5 10			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	661.8 1	1545.3	$15.1 \ 15$	Q		A ₂ =+0.36 11; DCO=1.05 26.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	662.8 2	3741.8	10.5 14	(Q)		$A_2 = +0.27 \ 8; \ DCO = 0.81 \ 19.$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	665.8 1	1210.5	72.1 36	E 2 §		$A_2 = +0.31$ 4; DCO=1.00 4.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						$A_2 = +0.14$ 2; $A_4 = -0.05$ 5.
						POL=+0.24 9.
	666.4 3	3079.1	9.3 14	E2		A ₂ =+1.5 8; DCO=1.08 13.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	669.02	4617.1	6.0 7	(Q)		A ₂ =+0.35 20; DCO=0.93 31.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	670.8 2	2146.3	6.4 6	(M1+E2)		A ₂ =-0.62 27; DCO=0.34 9.
$A_2 = +0.270 \ 25; \ A_4 = -0.03 \ 4.$ POL=+0.39 9.	674.8 1	1318.4	16.4 8	E28		$A_2 = +0.33 \ 9$ ; DCO=1.34 42.
POL=+0.39 9.						$A_2 = +0.270 \ 25; \ A_4 = -0.03 \ 4.$
675.52 4054.4 0.83						POL=+0.39 9.
	675.5 2	4054.4	0.8 3	Foð		
$6/8.0$ 1 1475.4 79.6 16 E28 $A_2=+0.265$ ; DC0=0.98 8.	678.0 1	1475.4	79.6 16	E Z 2		$A_2 = +0.25$ 5; DCO=0.98 8.
$A_{2}=+0.24$ 2; $A_{4}=-0.14$ 5.						$A_2 = +0.24 \ Z; \ A_4 = -0.14 \ D.$
	695 6 9	9940 9	7 9 0	0		$F \cup L = + 0.30 \ 9.$
$003.0 2 2040.2 1.5 0 4 A_2=10.15 31; DU0=0.90 8.$	686 9 1	2040.2 1051 1	1.38 1659	۲ ۲		$A_2 = \pm 0.24$ 6: DCO=0.98 22
$000.2$ 1 $007.4$ 10.5 $0$ (q) $A_2=10.24$ 0; $DOU=0.30$ 22. 701 3 1 883 43 19 0.8 F2 [§] A -1.01 9.6 $DOU=1.06$ 19	701 9 1	4004.4 883 19	12 0 8	E28		$A_2 = +0.24$ 0, $B = 0.36$ 22. A $-+0.12$ 8: $B = 0.6$ 12
$A_{2} = 0.12 + 0.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 = 1.00 =$	101.0 1	000.40	12.0 0	11.		$A_{2} = +0.14$ 1; $A_{3} = -0.02$ 3
POL=+0.26 7.						POL=+0.26 7.

# $^{129}_{56}\mathrm{Ba}_{73}\mathrm{-}36$

### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

### $\gamma(^{129}\text{Ba})$ (continued)

$E\gamma^{\dagger}$	E(level)	Iγ†	Mult.‡	Comments
726 1 2	1590 2	28 9 15	E2§	A.=+0.26.5: DCO=1.08.8
120.1 2	1000.2	20.0 10	12	$A_2 = +0.10$ 2; $A_2 = -0.04$ 3.
				POL=+0.26 13.
733.0 3	2171.4	1.7 10		
747.8 2	1545.3	3.0 6	D	$A_2 = -0.12$ 10.
754.51	2599.6	13.96	Q	$A_2 = +0.64 \ 30; \ DCO = 1.19 \ 24.$
761.2 3	4502.8	6.3 8	(Q)	$A_2 = +0.23$ 12.
761.3 3	5047.4	4.1 5		
x761.8 4		4 1		
768.7 1	3948.1	4.77	D	$A_2 = -0.04$ 7; DCO=0.50 8.
775.2 3	2429.7	1.5 7	(Q)	DCO=1.05 38.
779.3 1	1989.9	79.6 35	E28	$A_2 = +0.23$ 3; DCO=0.98 4.
<b>701 5 1</b>	0000 5	0.0.0	( <b>0</b> )	$A_2 = +0.22$ 2; $A_4 = -0.07$ 5.
791.5 1	2336.7	8.2 0 57 6 19	(Q) 08	$A_2 = +0.12$ 7; DCO=0.97 19.
805.8 1	2201.2	57.6 12	Q.3	$A_2 = +0.27 \ 9; \ D = 1.07 \ 0.$
812 9 3	3094 2	396	D+0	$A_2 = -0.08 \ 30$ ; $B_4 = -0.04 \ 4$ .
817 1 1	4871 5	16 3 8	0 0	$A_2 = 0.00 \ 0.00 \ 0.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 10.00 \ 1$
822.7 1	2412.9	23.2.18	E2§	$A_2 = +0.34$ 6: DC0=0.96 9.
022.1 1	2112.0	2012 10		$A_2 = +0.17$ 4: $A_4 = -0.11$ 10.
				POL=+0.39 24.
825.6 1	2815.5	31.9 19	E2 §	$A_2 = +0.31 4$ ; DCO=1.08 6.
				$A_2 = +0.20$ 6; $A_4 = +0.11$ 10.
				POL=+0.48 14.
827.9 2	2146.3	13.7 22	(Q)	A ₂ =+0.25 <i>12</i> ; DCO=0.95 <i>23</i> .
830.9 1	3430.6	10.3 13	(Q)	$A_2 = +0.36$ 9; DCO=0.80 17.
852.2	5469.3	9.2 8	Q	$A_2 = +0.41$ 18; DCO=1.05 28.
854.04	3948.1	4.9 8	(Q)	$A_2 = +0.59 \ 35.$
855.4 3	2509.9	1.1 4		
855.5 1	4286.1	5.1 7	Q	$A_2 = +0.61 \ 20; \ DCO = 1.00 \ 20.$
861.3 2	2336.7	0.5 3		
876.4 6	5379.6	2.8 8		
884.1 1	2874.0	23.7 11	Q	$A_2 = +0.30$ 6; DCO=1.04 10.
898.2 1	3179.4	37.2 11	Qs	$A_2 = +0.26$ 6; DCO=1.01 10.
0.05 5 1	0.000 0	0 7 9	( <b>0</b> )	$A_2 = +0.13 \ b; \ A_4 = +0.04 \ 10.$
905.5 1 X012 8 4	3368.2	0.72	(Q)	DC0=0.80 25.
915.6 4	3378 0	181	( <b>0</b> )	A = +0.32, 21 DCO=0.79, 36
920 9 2	4351 4	234	Q Q	$A_2 = +0.42, 33; DCO = 1.13, 37$
928.1 5	5975.6	$\frac{2}{2}, 5, 10$	ູ (ຄ)	$A_2 = +1.1 \ 3.$
935.9 3	5807.6	8.99	(Q)	$A_{0} = +0.12$ 7.
941.2 2	4320.2	1.0 3		2
948.1 2	3094.2	8.1 6	(Q)	$A_2 = +0.06$ 18; DCO=0.80 33.
958.2 1	4137.6	19.1 8	Q	$A_2 = +0.41$ 6; DCO=0.98 9.
972.7 3	6352.1	1.8 7	(Q)	A ₂ =+0.76 26.
981.6 3	6450.7	5.2 8	(Q)	A ₂ =-0.25 20; DCO=1.06 40.
982.2 1	3895.9	1.32	Q	DCO=1.30 35.
999.6 3	6975.3	0.9 4		
1014.4 3	5152 . 0	8.3 9	(Q)	DCO=0.87 14.
1035.6 7	6843.6	7.6 15		$A_2 = -0.06 \ 9.$
*1048.5 4		16 4		
1051.1 5	7501.9	1.87		$A_2 = +0.05 \ 6.$
1055.2 5	4951.1	0.4 2	0	A = 10.2, $DCO = 1.09.17$
1060 7 7	2003.7	4.26	હ	$A_2 = +1.0 \ s; \ D = 0.02 \ 1/.$
1071 8 1	6223 8	2.10 2.6.6	(0)	A -+0 52 25: DCO-0 86 33
x1075 9 4	0220.0	2.00	(9)	$n_2 = 10.02 20$ , DOG=0.00 00.
1080 1 3	4458 7	<0.8		
1082.1 5	7434.0	1,15		
1084.5 2	2674.7	1.8 5	(Q)	DCO=1.00 27.
×1110.3 5		20 8	· •	
1120.7 5	7964.1	4.1 15		
1124.3 3	2599.6	2.5 3	(Q)	$A_2 = +0.15 \ 21$ ; DCO=0.95 29.

# $^{129}_{56}$ Ba $_{73}$ -37

		120 Sn $(^{12}$ C $,$ 3n $\gamma$ ),	¹¹⁶ Cd( ¹⁸ O,5nγ	) 1992By03,1978Gi04,2013Ka27 (continued)
			_	$\gamma(^{129}\text{Ba})$ (continued)
${f E}\gamma^{\dagger}$	E(level)	Ιγ†	Mult. [‡]	Comments
1149.4 3	3430.6	3.0 4	(Q)	DCO=1.31 56.
1171.75	4351.4	2.6 9		A ₂ =+0.12 11.
1180.1 5	9144.2	2.5 9		-
1244.1 10	10388.3	1.6 8		
1406.7 3	3687.5	2.25	(Q)	A ₂ =-0.11 7; DCO=0.85 30.
1424.25	2742.6	1.2 6		-

¹²⁰Sn(¹²C,3ny),¹¹⁶Cd(¹⁸O,5ny) 1992By03,1978Gi04,2013Ka27 (continued)

† From 1992By03.

⁴ From 7( $\theta$ ), DCO and linear polarization data. All DCO values are from 1992By03 and POL values from 1978Gi04. When only one  $A_2$  value is listed, it is from 1992By03. WhenA2 and  $A_4$  are listed together, these are from 1977Gi02. The  $\gamma$  rays with DCO=1 and  $A_2 \ge +0.2$  are expected to be stretched quadrupole (most likely E2), cascading  $\gamma$  rays with DCO=0.5 and large negative  $A_2$  as D+Q (most likely M1+E2). RUL is also used when level half-lives are known; and also with assumed resolving time of =10 ns in  $\gamma\gamma$  experiments.

§ From  $\gamma(\theta)$  and linear polarization (1977Gi02,1978Gi04).

 $^{\#}$   $\delta(E2/M1){=}0.5$  assumed for M1+E2 transitions when  $\delta$  not given.

@ Multiply placed; intensity suitably divided.

 $^{x}~\gamma$  ray not placed in level scheme.

### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

(A)  $v9/2[514], \alpha = -1/2$ .

(B)  $v9/2[514], \alpha=+1/2$ .

(C)  $v9/2[514] \otimes \pi h_{11/2}^2, \alpha = -1/2.$ 

(D)  $v9/2[514] \otimes \pi h_{11/2}^2$ ,  $\alpha = +1/2$ .



 $^{129}_{56}Ba_{73}$ 

### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

 $\begin{array}{c|c} (E) \ Yrare \ vh_{11/2} \ band, \\ \alpha = -1/2. \end{array} \begin{array}{c} (F) \ Yrare \ vh_{11/2} \ band, \\ \alpha = +1/2. \end{array} \begin{array}{c} (G) \\ v7/2[402] \otimes v9/2[514] \otimes v7/2[523], \alpha \neq 7/2[402] \otimes v9/2[514] \otimes v7/2[523], \alpha = +1/2. \end{array} \right) \\ \end{array}$ 



(I) $v7/2[404], \alpha = -1/2$ .	(J) $v7/2[404], \alpha=+1/2$ .	(K) $v7/2[404] \otimes \pi h_{11/2}^{2}, \alpha = -1/2.$	
		(55/2+) 10388	3.3
		<u>(51/2+) y 9144.</u>	2
		<u>(47/2+) v 7964.</u>	1
		(L)(45/2+)	
		(43/2+) ¥ 6843.	6
		(39/2+) ¥ 5807.	6
		$(L)(37/2+) \qquad \qquad$	5
		$(31/2+) \qquad \qquad$	4
23/2+ 281	5.5	$\begin{array}{c c} \hline (27/2+) \\ \hline (1)(25/2+) \\ \hline (H)(25/2+) \\ $	2
(J)21/2+	21/2+ 2412.5	)(G)23/2+	
<u>19/2+ v 198</u>	9.9 (I)19/2+ v	_	
(J)17/2+ v	17/2+ v 1590.5	2	
15/2+ v 121	0.5 (I)15/2+ V	_	
(J)13/2+	13/2+ ¥ 864.1	_	
11/2+ ¥ 544. 9/2+ ¥	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	
7/2+ 8.4			

### ¹²⁰Sn(¹²C,3nγ), ¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

 $^{129}_{56}\mathrm{Ba}_{73}$ 

# $^{129}_{56}$ Ba $_{73}$ -41

# $^{129}_{56}\mathrm{Ba}_{73}\mathrm{-}41$

### $^{120}Sn(^{12}C, 3n\gamma), ^{116}Cd(^{18}O, 5n\gamma) \\ 1992By03, 1978Gi04, 2013Ka27 \ (continued)$

(L)  $v7/2[404] \otimes \pi h_{11/2}^2, \alpha = +1/2.$ 

(M) v(1/2[411]+1/2[400]),  $\alpha = -1/2.$ 

(N) v(1/2[411]+1/2[400]),  $\alpha = +1/2.$ 





# $^{129}_{56}$ Ba $_{73}$ -42



 $^{12\,9}_{5\,6}\mathrm{Ba}_{73}$ 



### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

Level Scheme



### ¹²⁰Sn(¹²C,3ny),¹¹⁶Cd(¹⁸O,5ny) 1992By03,1978Gi04,2013Ka27 (continued)

Level Scheme (continued)

 $\label{eq:Intensities: relative I} Intensities: relative I \gamma \\ @ Multiply placed; intensity suitably divided$ 



### ¹²⁰Sn(¹²C,3nγ),¹¹⁶Cd(¹⁸O,5nγ) 1992By03,1978Gi04,2013Ka27 (continued)

Level Scheme (continued)

Intensities: relative Ιγ @ Multiply placed; intensity suitably divided

(55/2+)	10388.3	
(51/2+)	9144.2	
(47/9.)	7064 1	
(47/2+)	1904.1	
(45/2+)	 - 7434.0	
(43/2+)	 6843.6	
41/2-	6450 7	
(39/2_)	6223.8	
20/0	5075 0	
(39/2+)	5807.6	
(37/2+)	 5379.6	
(35/2-)	5047.4	
(35/2+)	4871.0	
(31/2+)	 4003.9	
(31/2-)	= 4286.1	
(31/2+)	- 4054.4	
19/2-	1845.0	
15/2+	1654.6	
17/2+	1590.2	
(17/2-) 19/2-	1545.3	1.0
(13/2+)	1438.4	1.0 ps
17/2-	1318.4	
15/2+	1210.5	1.68 ps
11/2+	999.1	
13/2-	883.43	
$\frac{13/2+}{(9/2+)}$	864.1	
15/2-	797.4	65 ns
13/2-	643.6	010 pb
<u>11/2+</u> 7/2+	467.3	10.6 ps
(5/2+)	318.4	
11/2-	278.81	
9/2+	263.1	
3/2+	110.6	15.2 ns
7/2+	8.4	2.135 h
1/2+	] 0.0	2.23 h

 $^{129}_{56}\mathrm{Ba}_{73}$ 

### ¹³⁰Ba(pol d,t),(d,t) 1998Bu05,1974Gr22

1998Bu05: E=25 MeV; polarized beam; magnetic spectrograph, FWHM=16-18 keV,  $\theta$ =6°-35°; enriched target (14.4%). Measured  $\sigma(\theta)$ , vector analyzing powers.

1974Gr22: E=16 MeV; magnetic spectrograph, FWHM=16-18 keV,  $\theta$ =20°-85°; enriched target (100%).

Data are from 1998Bu05 unless otherwise noted.

¹²⁹Ba Levels

Relative differential cross sections at  $14.3^{\circ}(c.m.)$  are listed under comments.

E(level)	Jπ [‡]	L	Glj§	Comments
0.0	1/9+	0	1.0	17/10-590
7 8 16	7/2+	4	1.0	$d\sigma/d\Omega = 102$
110 4 6	3/2+	2	0.64	$d\sigma/d\Omega = 1027$
181 4 3	9/2-	5	0.10	$d\sigma/d\Omega = 3$
253 8 5	3/2-	9	0.10	$d\sigma/d\Omega = 98$
233.83	1/2+	0	0.007	$d\sigma/d\Omega = 90$
279 27 9	(11/2) =	5	1 83	u0/u32=50.
318 4 10	5/2+	2	0 40	dσ/dΩ=816
458 7 10	3/2+	2	0.22	$d\sigma/d\Omega = 864$
458 7 10	5/2+	2	0.27	
541 5 27	5/2+	2	0.67	dσ/dΩ=1320
631 3 13	7/2-	3	0.31	L: L=2 was reported by 1974Gr22
00110 10	• / =	0	0.01	$d\sigma/dQ = 123$
659.5 20	5/2+	2	0.056	$d\sigma/d\Omega = 105$ .
788.0 4		(1+5)	0.003.0.089	$d\sigma/d\Omega = 7$ .
799.6 50	(3/2+,5/2+)	,	,	Level observed by 1974Gr22.
805.8 16	,,	(1+5)	0.006.0.14	$d\sigma/d\Omega = 14$ .
849.8 26	5 / 2 +	2	0.024	$d\sigma/d\Omega = 42.$
892.1 15				$d\sigma/d\Omega = 42$ .
906.77		1	0.044	$d\sigma/d\Omega = 27.$
928.6 5	1/2+	0	0.24	$d\sigma/d\Omega = 158$ .
1012.4 9				$d\sigma/d\Omega = 30.$
1035.4 15		5	0.19	$d\sigma/d\Omega < 9$ .
1063.1 2	3 / 2 +	2	0.044	$d\sigma/d\Omega = 64.$
1097.8 15	1/2-	1	0.004	$d\sigma/d\Omega = 5$ .
1119.5 4	1 / 2 +	0	0.031	$d\sigma/d\Omega = 17.$
1204.1 2	7 / 2 +	4	0.096	$d\sigma/d\Omega=5$ .
1219.3 18	(5/2)+	2	0.031	$d\sigma/d\Omega = 58.$
1282.5 8	5 / 2 +	2	0.13	$d\sigma/d\Omega = 244$ .
1303.8 8	(9/2)+	4	0.10	$d\sigma/d\Omega$ <20.
1324.7 50				
1338.9 10	9 / 2 -	5	0.18	$d\sigma/d\Omega < 7$ .
1384.7 53				
1401.0 20	5 / 2 +	2	0.11	$d\sigma/d\Omega = 200$ .
1436.9 14		2	0.07	$d\sigma/d\Omega = 136$ .
1504.3 5	(5/2)+	2	0.013	$d\sigma/d\Omega = 19.$
1530.2 30				$d\sigma/d\Omega = 10.$
1536.9 46		4	0.27	$d\sigma/d\Omega = 28.$
1566.0 17		(2)	0.006	$d\sigma/d\Omega = 13.$
1611.4 40		(3)	0.038	$d\sigma/d\Omega = 17.$
1633.2 48	1 / 2 +	0	0.038	$d\sigma/d\Omega=26.$
1651.4 24		(5)	0.13	$d\sigma/d\Omega = 15$ .
1692.3 13	11/2 -	5	0.24	$d\sigma/d\Omega = 17.$
1712.9 23	1/2+	0	0.11	$d\sigma/d\Omega = 78.$
1768.2 30	1/2+	0	0.22	$d\sigma/d\Omega = 132$ .
1782.8 30				
1805.4 38		2	0.013	$d\sigma/d\Omega = 26.$
1837.3 30				
1863.4 60		2	0.009	$d\sigma/d\Omega = 10$ .
1906.1 57		2	0.02	$d\sigma/d\Omega = 28$ .
1951.8 55		(0)	0.02	$d\sigma/d\Omega = 10.$
1976.3 45	1 / 9 .	0	0.000	
1989.9 30	1/2+	0	0.062	$d\sigma/d\Omega = 46$ .
2008.1 55	3 / 2 -	1	0.027	$a\sigma/a\Omega=18$ .

† Doublet.

 $\ddagger$  From L-transfer and vector analyzing powers.

 $\$  Relative spectroscopic strength, normalized to the ground state.
_

## Adopted Levels, Gammas

 $Q(\beta^-) = -5040 \ 40; \ S(n) = 10770 \ 60; \ S(p) = 3235 \ 22; \ Q(\alpha) = 338 \ 23 \ 2012 Wa38.$ 

S(2n)=19570 30, S(2p)=9662 22 (2012Wa38).

1963Pr02: ¹²⁹La produced and identified in bombardment of indium foils by ¹⁶O beam followed by chemical separation and half-life measurement.

Later decay studies: 1963Ya05, 1963La03, 1979Br05, 1998Ko66.

# ¹²⁹La Levels

The band configurations are based on comparison with cranked-shell model analysis.

Cross Reference (XREF) Flags

A 129 La IT Decav (0.56 s)	Α	$^{129}La$	IT	Decay	(0.56 s)	
---------------------------------	---	------------	----	-------	----------	--

A ¹²⁹Ce ε Decay (0.56 s)
 B ¹²⁹Ce ε Decay (3.5 min)
 C 51V(82SE,4NG),100MO(34S,P4NG) **EDIT ERROR**
 D ¹¹⁹Sn(¹⁴N,4nγ)

E(level) [†]	Jπ§	XREF	T _{1/2} #	Comments
0 0e	(3/2+)	ABCD	11 6 min 2	$\%_{E+}\%$ $\beta^{+}=100$
0.0	(0/21)	nbob	11.0 min 2	$J\pi$ : see comment under 172.3 level.
				T ₁₀ ; from 1979Br05, Other: 10.0 min 5 (1963Ya05), 7.2 min 5
				$(1963Pr02), \approx 20 \text{ m} (1963La03).$
$68.18^{f}$ 5	(5/2+)	ABCD		$J\pi$ : see comment for 172.3 level.
172.33@ 20	(11/2-)	A CD	0.56 s 5	%IT=100.
				J $\pi$ : observation of a decoupled band based on 172.3 level, E3-M1 $\gamma$ cascade to g.s., available orbits for the odd proton; and systematics of structures based on h _{11/2} proton orbital in this mass region give most probable assignment of 11/2> 5/2+ -> 3/2+ cascade for 172, 68 and g.s. Theoretical model calculations (2001Sh07, 1987La21, 1985Ha34) support these assignments. However, all the assignments are given in parentheses here since a direct measurement of any of these spins is not yet available. T _{1/2} : from $\gamma$ decay curve (1969Al05).
216.30 23	(1/2+ to 9/2+)	В		$J\pi$ : $\gamma$ to (5/2+).
239.62 8	(5/2+)	B D		$J\pi$ : M1 $\gamma$ to (5/2+).
248.45 ^e 8	(7/2+)	BCD		$J\pi;~M1~\gamma$ to (5/2+) and (E2) $\gamma$ to (3/2+) in strongly coupled band.
270.92 13	(1/2 to 7/2+)	В		$J\pi$ : $\gamma$ to $3/2+$ .
398.48 9	(3/2+,5/2+,7/2+)	В		$J\pi$ : M1,E2 $\gamma$ to (3/2+).
440.25 11	(7/2+)	B D		J $\pi$ : M1 $\gamma$ to (5/2+); population of the level in HI reaction favors 7/2 over the lower spins.
442.08 [@] 18	(15/2-)	CD	90 ps 4	T _{1/2} : from Doppler-shift recoil-distance method in (HI,xnγ) (1975Bu08).
446.33 ^f 11	(9/2+)	BCD		$J\pi$ : $\Delta J=1$ , $M1 \gamma$ to $(7/2+)$ and $\Delta J=2$ , $Q \gamma$ to $(5/2+)$ in-band transitions.
464.02 12	(5/2+,7/2+)	В		$J\pi$ : $\Delta J=1$ , M1(+E2) $\gamma$ to (7/2+); M1,E2 $\gamma$ to (5/2+); $\gamma$ to (3/2+).
472.21 14	(1/2 + to 7/2 +)	В		$J\pi$ : gammas to (3/2+) and (5/2+).
556.00? 20	(1/2 to 7/2+)	в		$J\pi: \gamma \text{ to } (3/2+).$
587.64 14	(1/2+ to 7/2+)	В		$J\pi$ : gammas to (3/2+) and (5/2+).
619.61 13	(3/2+ to 9/2+)	В		J $\pi$ : gammas to (5/2+) and (7/2+).
645.53 12	(9/2+)	B D		$J\pi$ : (M1+E2) $\gamma$ to (9/2+); $\gamma$ to (5/2+); population in heavy-ion reaction favors (9/2+) over (7/2+).
652.5 3	(1/2 to 9/2+)	В		
696.56 ^e 15	(11/2+)	CD		J $\pi$ : in-band dipole $\gamma$ to (9/2+) and $\gamma$ to (7/2+).
706.43 12	(5/2+ to 9/2+)	В		
782.3 3	(5/2+ to 9/2+)	в		
796.21 12	(3/2+ to 7/2+)	в		
832.32 15	(3/2+ to 9/2+)	В		
916.64 [@] 21	(19/2-)	CD	6.0 ps 9	$T_{1/2}$ : from Doppler-shift recoil-distance method in (HI,xn $\gamma$ ) (1975Bu08).
098 09 16	(7/9, +, 11/9)	ЪЪ		$J_{\pi}: \Delta J = 2, E_{2} \text{ in-Dand } \gamma \text{ to } (10/2-).$
928.93 16 094 09 10	$(1/2 + t_0 - 11/2 +)$	вп		on: gammas to (//2+) and (11/2+).
966.34 14	(1/2 to 7/2+)	В		

# $^{129}_{57}\mathrm{La_{72}-2}$

# $^{129}_{57}\mathrm{La}_{72}\mathrm{-}2$

# Adopted Levels, Gammas (continued)

# ¹²⁹La Levels (continued)

E(level) [†]	$J\pi^{\S}$	XREF	T _{1/2} #	Comments
992.41 16	(11/2+)	D		J $\pi$ : $\Delta$ J=1, (M1+E2) to (9/2+); population in HI reaction favors (11/2+) over 7/2+.
1015.26 15	(1/2 to 7/2+)	В		
1021.79 ^f 16	(13/2+)	CD		J\pi: $\Delta$ J=1, (M1+E2) in-band $\gamma$ to (11/2+) and $\Delta$ J=2, Q in-band $\gamma$ to (9/2+).
1120.18 ^b 20	(13/2-)	D		J $\pi$ : gammas to (11/2-) and (15/2-); $\gamma$ from (17/2-) in probably E2.
1120.5? 3		D		E(level): existence of this level is not discussed in 1995Ku29. Evaluators find it possible that the 1098.7 keV $\gamma$ feeds the 1120.3 keV (13/2-) level, in which case this level may not exist.
1234.19 21	(13/2+)	D		J $\pi$ : $\gamma$ to (9/2+) and $\gamma$ from (17/2+).
1275.09 22	(15/2 to 19/2-)	D		$J\pi$ : $\gamma$ to (15/2-).
1304.94 $23$	(17/2-)	D		J $\pi$ : $\Delta$ J=1, M1+E2 $\gamma$ to (15/2-); $\Delta$ J=1, d $\gamma$ to (19/2-).
1315.78 ^e 20	(15/2+)	CD		J $\pi$ : in-band $\Delta J=2$ , Q $\gamma$ to (11/2+).
1328.8 4	(15/2 to 19/2-)	D		$J\pi$ : $\gamma$ to (15/2-).
1524.31 22	(11/2 + to 15/2 +)	D		$J\pi$ : gammas to (13/2+) and (7/2+:11/2+).
1558.03 ^w 23	(23/2-)	$^{\rm CD}$	≥1.2 ps	$J\pi$ : in-band $\Delta J=2$ , (E2) $\gamma$ to (19/2-).
$1586.62^{D}$ 23	(17/2-)	D		$J\pi: \Delta J=1, M1+E2 \gamma$ to $(19/2-); \gamma$ to $(15/2-).$
1651.1 4	(15/2  to  19/2 -)	D		$J\pi$ : $\gamma$ to $(15/2-)$ .
1654.17 22	(13/2+)	D		$J\pi: \Delta J=1, D+Q \gamma$ to $(11/2+); \gamma$ to $(13/2+).$
1724.96 19	(15/2+)	CD		$J\pi: \Delta J=0, D+Q \gamma$ to $(15/2-); \gamma$ to $(11/2+).$
1753.2? 4		D		E(level): existence of this level is not discussed in 1995Ku29. The 1311.1γ may depopulate the 1753.4,17/2+ level, in which case this level may not exist.
1753.4 3	(17/2+)	D		$J\pi$ : in-band $\Delta J=2$ , Q $\gamma$ to (13/2+).
1803.0 3		D		
1851.24 ^a 23	(19/2-)	D		$J\pi$ : strong $\Delta J=2$ , Q $\gamma$ to (15/2-); $\Delta J=(0),(D) \gamma$ to (19/2-).
1949.58 [∞] 23	(21/2-)	CD		$J\pi: \Delta J=1, M1+E2 \gamma$ to $(19/2-); \gamma$ to $(23/2-).$
1951.5 4	(23/2  to  27/2)	D		$J\pi$ : $\gamma$ to (23/2-).
1956.5 4	(9/2 + to 17/2 +)	D		
1972.2 3	(15/2-,17/2,19/2-)	CD		$J\pi$ : gammas to (15/2-) and (19/2-).
1985.0 3	(19/2+)			$J\pi$ : $\Delta J = 2, Q$ or $\Delta J = 0$ , a gammas to (15/2+) and (19/2-).
2003.8 4	(10/2 t 0 19/2 -)	CD		$J\pi$ : $\gamma$ to (15/2-).
2009.9- 5	(15/2+) (15/2+0.22/2)	D		$J\pi$ : In-band $\Delta J=2$ , $Q \gamma$ to $(15/2+)$ .
2110.2 4	(19/2 - 10/23/2 - )	D		$J\pi$ : AI-1 d v to (17/2-)
2206 4 4	(19/2) (19/2) to $23/2$	D		$J\pi: \sqrt{10} = 1, \ \text{u} \neq 10 \ (17/2 - ).$
2218 90 18	(15/2+)	CD		$J\pi$ : $AJ=1$ M1+E2 $\gamma$ to (13/2+): $\gamma$ to (15/2-)
2221.5 ^b 3	(21/2-)	D		$J\pi$ : $\Delta J=1$ , $M1+E2 \gamma$ to $(23/2-)$ ; $\gamma$ to $(17/2-)$ .
2242.7 2	(17/2+)	CD		$J\pi: \Delta J=1, M1+E2 \gamma$ to $(15/2+); Q \gamma$ to $(13/2+).$
2242.7+x ^g 10	(17/2+)	CD		Jπ: no definite decay path from this level to the known-energy levels could be identified. It populates mainly (15/2-), (15/2+) and (17/2+) levels. Positive parity derived from the assumed configuration based on no signature splitting.
2277.94	(19/2 to 23/2-)	D		$J\pi$ : $\gamma$ to (19/2-).
2290.9 3	(19/2 to 23/2-)	D		$J\pi$ : $\gamma$ to (19/2-).
2297.6+x ^h 3	(19/2+)	CD		$J\pi$ : in-band $\gamma$ to (17/2+).
2298.1 3	(15/2 to 19/2-)	D		$J\pi$ : $\gamma$ to (15/2-).
$2343.2^{@}$ 3	(27/2-)	CD	0.82 ps 20	J $\pi$ : in-band $\Delta J=2$ , E2 $\gamma$ to (23/2-).
$2351.8^{i}$ 3	(19/2+)	CD		$J\pi:$ $\Delta J{=}0,~d~\gamma$ to (19/2-); parity from the band configuration.
2408.3+x ^g 4	(21/2+)	CD		$J\pi$ : in-band $\Delta J=1$ , M1+E2 $\gamma$ to (19/2+).
2431.2 ^c 3	(23/2+)	CD		$J\pi$ : $\Delta J=2$ , Q or $\Delta J=0$ , d gammas to (19/2+) and (23/2-).
2452.8 3	(19/2  to  23/2-)	D		$J\pi$ : $\gamma$ to (19/2-).
2453.7 4	(23/2  to  27/2-)	D		$J\pi$ : $\gamma$ to (23/2-).
2462.6 5	(19/2  to  23/2-)	D		$J\pi$ : $\gamma$ to $(19/2-)$ .
2474.76 ^a 24	(23/2-)	D		$J\pi$ : in-band $\Delta J=2$ , Q $\gamma$ to (19/2-).
2478.0 ^u 3	(21/2+)	CD		Jπ: gammas to (17/2+) and (23/2-); member of positive-parity band.
2490.0 4 2520.2 2	$(19/2 \ to \ 23/2-)$	U D		$J\pi$ : $\gamma = 0$ (19/2–).
2020.0 0 2568 21 2	(20/2 to 2//2-) (21/2+)	U CD		$J\pi$ : in-hand AJ-1 (M1+E2) v to (19/9+)
$2572.7+x^{h}5$	(23/2+)	CD		$J\pi$ : in-band $\Delta J=1$ , (M1+E2) $\gamma$ to (21/2+).
		02		

# $^{129}_{57}\mathrm{La}_{72}\mathrm{-3}$

# Adopted Levels, Gammas (continued)

# ¹²⁹La Levels (continued)

E(level) [†]	Jπ§	XREF	T _{1/2} #	Comments
9500 0 9	(17/9 + 21/9)	D		$I_{-} + (17/9)$
2098.8 3	(17/2 t 0 21/2+) (17/2 t 0 21/2+)	D		$J\pi$ : $\gamma$ to $(17/2+)$ .
2001.3 3	(17/2 to 21/2+) (23/2 to 27/2-)	D		$J\pi: \gamma \to (23/2)$
2705.1 5	(23/2 + 0 - 27/2 -)	D		$J\pi: \gamma \to (23/2-)$
2729.5 5	(23/2 to 21/2)	D		$J\pi: \gamma to (17/2+)$
2783 8 3	(23/2, 25/2)	D		$J_{\pi}$ : gammas to (23/2) and (23/2)
2789 7 3	(23/2+)	D		$J\pi$ : $AJ=1$ (M1+E2) $\gamma$ from (25/2+): $\gamma$ to (21/2-)
2794 1+xg 5	(25/2+)	CD		$J\pi$ : in-hand $\Lambda J=1$ M1+E2 v to (23/2+); in-hand v to (21/2+)
2803 0 3	$(19/2 t_0 23/2)$	D		$J\pi$ : $\gamma$ to (19/2-)
$2822.6^{i}$ 3	(23/2+)	CD		$J\pi$ : in-band $\Lambda J=1$ . (M1+E2) v to (21/2+).
2841.0 ^e 3	(23/2+)	CD		$J\pi$ : in-band $\Delta J=2$ y to (19/2+).
2864 1 4	$(23/2 t_0 27/2)$	D		$J\pi$ : $\gamma$ to (23/2-)
2909.7d 3	(25/2+)	CD		$J\pi$ : $\Delta J=1$ . $M1+E2 \gamma$ to $(23/2+)$ : $\gamma$ to $(27/2-)$ .
2911.1 3	(19/2  to  23/2)	D		$J\pi$ : $\gamma$ to (19/2–).
2943.1 4	(19/2  to  23/2+)	D		$J\pi$ ; $\gamma$ to $(19/2+)$ .
2955.2 ^b 4	(25/2-)	D		$J\pi$ : $\gamma$ to $(21/2-)$ : band member.
2955.7? 3		D		The 612.5 keV $\gamma$ may depopulate the 2955.4 keV (25/2-) level, in
				which case 2955.7 level may not exist.
3017.7 ^c 3	(27/2+)	CD		$J\pi$ : $\Delta J=2$ . Q or $\Delta J=0$ . d gammas to $23/2+$ and $27/2-$ :
				positive-parity band member.
3043.8 4	(23/2 to 27/2-)	D		$J\pi$ : $\gamma$ to (23/2–).
3071.0+x ^h 5	(27/2+)	CD		$J\pi$ : in-band (M1+E2) $\gamma$ to (25/2+); in-band $\gamma$ to (23/2+).
3096.0j 3	(25/2+)	CD		$J\pi$ : in-band (M1+E2) $\gamma$ to (23/2+).
3124.4 4	(19/2  to  23/2-)	D		$J\pi$ : $\gamma$ to (19/2-).
3215.3 ^a 3	(27/2-)	D		$J\pi$ : $\Delta J=2$ , Q $\gamma$ to (23/2-); band member.
$3253.5^{@}4$	(31/2-)	CD	0.40 ps 8	$J\pi$ : $\Delta J=2$ , E2 $\gamma$ to (27/2-); band member.
3286.8 4	(19/2  to  23/2-)	D	•	$J\pi$ : $\gamma$ to (19/2–).
3309.8 4	(27/2 to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2–).
3375.9 3	(27/2 to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2–).
3382.8 3	(27/2 to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2–).
3394.0+xg 5	(29/2+)	CD		J $\pi$ : in-band $\Delta$ J=1, M1+E2 $\gamma$ to (27/2+); in-band $\gamma$ to (25/2+).
3411.2 3	(25/2 to 29/2+)	D		$J\pi$ : $\gamma$ to (25/2+).
$3420.6^{i}4$	(27/2+)	CD		J $\pi$ : $\Delta J=1$ , (M1+E2) in-band $\gamma$ to (25/2+).
3474.7 ‡ 3	( $23/2-, 25/2, 27/2+$ )	D		$J\pi$ : gammas to (23/2+) and (27/2-).
3476.8 ^d 3	(29/2+)	CD		J $\pi$ : $\Delta J=1$ , d $\gamma$ to (27/2+); $\gamma$ to 25/2+; band member.
3482.3 3	(27/2 to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2-).
3523.1 3	(27/2 to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2-).
3531.2 4	(19/2 to 23/2-)	D		$J\pi$ : $\gamma$ to (19/2-).
3636.6 4	(23/2- to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2-).
3694.9 3	(23/2-,25/2,27/2+)	D		$J\pi$ : gammas to (27/2-) and (23/2+).
3697.1 4	(23/2 to 27/2+)	D		$J\pi$ : $\gamma$ to (23/2+).
3712.1 4	(27/2 to 31/2-)	D		$J\pi$ : $\gamma$ to (27/2-).
3731.7° 4	(31/2+)	D		$J\pi$ : in-band $\Delta J=2$ , Q $\gamma$ to (27/2+).
$3759.4 + x^{h}5$	(31/2+)	CD		J $\pi$ : in-band $\Delta$ J=1, M1+E2 $\gamma$ to (29/2+); $\gamma$ to (27/2+).
3760.2 ^D 5	(29/2-)	D		J $\pi$ : $\gamma$ to (25/2-); band member.
3783.5J 4	(29/2+)	CD		J $\pi$ : in-band $\Delta$ J=1, M1+E2 $\gamma$ to (27/2+); in-band $\gamma$ to (25/2+).
3857.84	(27/2 to 31/2-)	D		$J\pi: \gamma \text{ to } (27/2-).$
3952.0 4	(27/2 to 31/2-)	D		$J\pi: \gamma \text{ to } (27/2-).$
3998.15	(31/2,33/2,35/2-)	D		$J\pi: \gamma \text{ to } (31/2-).$
$4000.3 \div 4$	(27/2-,29/2,31/2-)	D		$J\pi$ : gammas to (27/2–) and (31/2–).
4042.7÷a 3	(31/2-)	D		$J\pi$ : $\gamma$ to (27/2–) in $\Delta J=2$ band.
4159.1+x ^g 6	(33/2+)	CD		$J\pi$ : in-band $\Delta J=1$ , (M1+E2) $\gamma$ to (31/2+); $\gamma$ to (29/2+).
$4176.7^{-1}4$	(31/2+)	CD		$J\pi$ : in-band $\Delta J=1$ , M1+E2 $\gamma$ to (29/2+).
4198.8° 4	(33/2+)	CD	0 50 10	$J\pi$ : in-band $\Delta J=2$ , Q $\gamma$ to (29/2+); $\Delta J=1$ , (M1+E2) $\gamma$ to (31/2+).
4200.8° 0	(30/2-)	CD	0.50 ps 12	$\exists n: \Delta \exists = 2, \exists 2 \gamma to (\exists 1/2-); \text{ band member.}$
4290.9 0	$(31/2 \ to \ 35/2-)$	D		$J\pi: \gamma \cup (31/2-).$
4555.0° 5	(35/2+)	CD		$J\pi$ : $\Delta J = Z$ , $Q \gamma$ to $(31/2+)$ ; band member.
4098.3+X" 6	(30/2+)	CD		$\sigma_{R}$ : in-pand gammas to $(33/2+)$ and $(31/2+)$ .
4002.3J 4	(33/2+)	CD		$\sigma_{R}$ : In-pand gammas to $(31/2+)$ and $(29/2+)$ .
4907.1" 4	(30/2-)	D		$\sigma_{\mu\nu}$ ; $\gamma_{\nu\nu}$ ( $\sigma_{\mu}/2-$ ); pand member.
5060 0 vg 6	(33/2+) (37/9+)	CD		$\sigma_{R}$ . In-band gammas to $(35/2+)$ and $(31/2+)$ .
5000.9+x5 0	(3(/2+))	CD		on. In-panu gammas to $(35/2+)$ and $(35/2+)$ .
9001.9~ /	(01/47)	UD		on. 20-2, & y to (00/2+), band member.

# $^{129}_{57}$ La₇₂-4

# $^{129}_{57}$ La $_{72}$ -4

### Adopted Levels, Gammas (continued)

## ¹²⁹La Levels (continued)

E(level) [†]	Jπ§	XREF	T _{1/2} #	Comments
$5360.8^{@}8$	(39/2-)	CD	0.37 ps 10	$J\pi$ : $\Delta J=2$ . E2 $\gamma$ to (35/2-); band member.
5476 7 [°] 6	(39/2+)	CD	p	$J\pi$ : $\Delta J=2$ , $\Theta$ v to $(35/2+)$ ; hand member
5507 0Ĵ 6	(37/2+)	C C		$J\pi$ : in-hand gammas to (35/2+) and (33/2+)
5564 2+xh 7	(39/2+)	c		$J\pi$ : in_band gammas to (37/2+) and (35/2+)
5934 21 7	(39/2+)	c		$J\pi$ : in_band gammas to (37/2+) and (39/2+)
6064 9d 12	(41/2+)	c		$J\pi$ : in_band $\gamma$ to $37/2+$ : band member
6092 5+xg 8	(41/2+)	C C		$J\pi$ : in-hand gammas to $(39/2+)$ and $(37/2+)$
6338 221 8	(41/2+)	C C		$J\pi$ : in-hand gammas to (39/2+) and (37/2+)
6488 00 8	(42/2+)	C C		$J_{\pi}$ : in-band $\Delta J_{-2} = 0$ v to $(39/2+)$
6515 5 [@] 10	(43/2-)	C C		$J\pi$ : in-band $AJ=2$ , $Q \neq to (39/2-)$
6628 51rh 0	(43/2-)	C C		$J_{\pi}$ : in band common to $(41/2+)$ and $(20/2+)$
6757 991 0	(43/2+)	C C		$J_{\pi}$ : in band gammas to $(41/2+)$ and $(30/2+)$ .
7122 od 16	(45/2+)	C		$J_{\pi}$ in bond w to $(41/2+)$ and member
7133.5- 10	(43/2+)	C		$J_{\pi}$ in band $\Lambda L_{\pi}^{-2}$ $O_{\pi}$ is (42/2).
7565.4° 9	(47/2+)	C		$J_{\pi}: \Pi - D \Pi \square \Delta J = 2,  \forall f = 0  (43/2+).$
1614.5° 14	(41/2-)	C		$5\pi$ : $\gamma$ to $(45/2-)$ ; band member:
8242.9ª 19	(49/2+)	C		$J\pi$ : $\gamma$ to (43/2+); band member.
8657.7 10	(51/2+)	C		$J\pi$ : in-band $\Delta J=2$ , $Q \gamma$ to $(47/2+)$ .
8856.5 [©] 17	(51/2-)	C		$J\pi$ : $\gamma$ to $(47/2-)$ ; band member.
9425.9ª <i>19</i>	(53/2+)	c		$J\pi$ : $\gamma$ to (49/2+); band member.
9772.9° 13	(55/2+)	C		$J\pi$ : $\gamma$ to $51/2+$ ; band member.
10085.5 ^w 20	(55/2-)	С		$J\pi$ : $\gamma$ to (51/2-); band member.
10952.9° 16	(59/2+)	С		$J\pi$ : $\gamma$ to (55/2+); band member.
11380.5 [@] 22	(59/2-)	С		J $\pi$ : $\gamma$ to (55/2-); band member.
12196.9° <i>19</i>	(63/2+)	С		J $\pi$ : $\gamma$ to (59/2+); band member.
13502.9 ^c 21	(67/2+)	С		$J\pi$ : $\gamma$ to (63/2+); band member.
14920.9 ^c 24	(71/2+)	С		J $\pi$ : $\gamma$ to (67/2+); band member.
16478 ^c 3	(75/2+)	С		$J\pi$ : $\gamma$ to (71/2+); band member.

 †  From least-squares fit to adopted Ey values.

 $\pm$  In 1995Ku29 two different levels are assumed to be depopulated by the two  $\gamma$  rays from this level probably by mistake. They are within the experimental uncertainties, thus evaluators adopt only one level.

\$ from  $\gamma$  decay to levels with known J $\pi$  assuming E1, M1 or E2 transitions unless otherwise noted. For the first three levels 3/2+, 5/2+ and 11/2- spin-parity values are adopted on the basis of the measured M1 and E3 multipolarities of the linking  $\gamma$  rays (1969Al05) in agreement with the level systematics and the theoretical expectations. The spin-parities of the higher-lying levels are determined relative to these spin-parities. For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population.

# from DSAM (2008Sa36) unless otherwise noted.

@ (A):  $\pi 1/2[550], \alpha = -1/2$ .

& (B): π1/2[550],α=+1/2.

a (C):  $\pi 3/2[541], \alpha = -1/2$ .

b (D):  $\pi 3/2[541], \alpha = +1/2$ .

 $\begin{array}{c} c & (E): \ \pi 3/2 [422] \otimes \pi h_{11/2}{}^2, \alpha {=} {-} {1/2}. \\ d & (F): \ \pi 3/2 [422] \otimes \pi h_{11/2}{}^2, \alpha {=} {+} {1/2}. \end{array}$ 

e (G):  $\pi(3/2[422]+1/2[420]), \alpha=-1/2$ . Strongly coupled one-quasiproton band with admixture of of 3/2[422] and 1/2[420] proton configurations.

- f (H):  $\pi(3/2[422]+1/2[420]), \alpha=+1/2$ . Strongly coupled one-quasiproton band with admixture of of 3/2[422] and 1/2[420] proton configurations.
- g (I):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = -1/2$ .
- h (J):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = +1/2$ .
- i (K):  $\pi 1/2[550] \otimes \sqrt{7}/2[523] \otimes \sqrt{5}/2[402], \alpha = -1/2$ .

j (L):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = +1/2$ .

# $\gamma(^{129}La)$

E(level)	$E\gamma^{\dagger}$	Iγ†	Mult. [‡]	δ	α@	Comments
68.18	68.20 6	100	M1 §		3.25	$ \begin{aligned} &\alpha(\mathrm{K}) {=} 2.78 \ 4; \ \alpha(\mathrm{L}) {=} 0.378 \ 6; \ \alpha(\mathrm{M}) {=} 0.0786 \ 12. \\ &\alpha(\mathrm{N}) {=} 0.01728 \ 25; \ \alpha(\mathrm{O}) {=} 0.00281 \ 4; \\ &\alpha(\mathrm{P}) {=} 0.000217 \ 3. \end{aligned} $

Mult.: also from  $\alpha(L) \exp$  in 1969Al05.

# $^{129}_{57}\mathrm{La_{72}-5}$

# Adopted Levels, Gammas (continued)

# $\gamma(^{129}La)$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [‡] δ	α@	Comments
172.33	104.0 3	100	E3	20.8 5	$\alpha(K)=5.24$ 9; $\alpha(L)=12.1$ 3; $\alpha(M)=2.79$ 6. $\alpha(N)=0.591$ 13; $\alpha(O)=0.0817$ 18; $\alpha(P)=0.000262$ 5. Ey: from 1973Le09. AEy estimated by the evaluators. Mult.: from $\alpha(L)exp$ (1969Al05).
916 90	148 9 2	100			B(E3)(W.u.)=0.76 8.
239.62	148.2 3 171.5 <i>1</i>	100.0 7	M1 [§]	0.238	$\begin{split} &\alpha(\mathbf{K}){=}0.203 \ 3; \ \alpha(\mathbf{L}){=}0.0273 \ 4; \ \alpha(\mathbf{M}){=}0.00567 \ 8. \\ &\alpha(\mathbf{N}){=}0.001247 \ 18; \ \alpha(\mathbf{O}){=}0.000203 \ 3; \\ &\alpha(\mathbf{P}){=}1.582{\times}10^{-5} \ 23. \end{split}$
248.45	239.5 2 180.4 <i>1</i>	6.9 <i>3</i> 100.0 <i>20</i>	M1 §	0.207	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1771 \ 25; \ \alpha(\mathbf{L}) = 0.0237 \ 4; \\ &\alpha(\mathbf{M}) = 0.00493 \ 7. \\ &\alpha(\mathbf{N}) = 0.001084 \ 16; \ \alpha(\mathbf{O}) = 0.0001764 \ 25; \\ &\alpha(\mathbf{P}) = 1.3768 \times 10^{-5} \ 20. \end{aligned}$
	248.5 2	17 3	(E2)§	0.0862	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0683 \ 10; \ \alpha(\mathbf{L}) \!=\! 0.01415 \ 21; \\ &\alpha(\mathbf{M}) \!=\! 0.00303 \ 5. \\ &\alpha(\mathbf{N}) \!=\! 0.000653 \ 10; \ \alpha(\mathbf{O}) \!=\! 9.88 \!\times\! 10^{-5} \ 15; \\ &\alpha(\mathbf{P}) \!=\! 4.42 \!\times\! 10^{-6} \ 7. \end{split}$
270.92	271.02	100			
390.40	127.6 3 158.9 <i>1</i>	51.2 23	M1,E2§	0.34 5	$\begin{split} &\alpha({\rm K}){=}0.269 \ 18; \ \alpha({\rm L}){=}0.058 \ 25; \ \alpha({\rm M}){=}0.013 \ 6. \\ &\alpha({\rm N}){=}0.0027 \ 12; \ \alpha({\rm O}){=}0.00041 \ 16; \\ &\alpha({\rm P}){=}1.83{\times}10^{-5} \ 13. \end{split}$
	330.3 <i>2</i>	100 5	M1 , E2 $\S$	0.038 4	$\begin{aligned} &\alpha(\mathbf{K}) = 0.032 \ 4; \ \alpha(\mathbf{L}) = 0.00485 \ 23; \\ &\alpha(\mathbf{M}) = 0.00102 \ 6. \\ &\alpha(\mathbf{N}) = 0.000222 \ 11; \ \alpha(\mathbf{O}) = 3.52 \times 10^{-5} \ 9; \\ &\alpha(\mathbf{P}) = 2.3 \times 10^{-6} \ 4. \end{aligned}$
	398.5 <i>2</i>	84 5	M1 , E2 §	0.023 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.019 \ 3; \ \alpha(\mathbf{L}) = 0.00277 \ 9; \\ &\alpha(\mathbf{M}) = 0.000580 \ 14. \\ &\alpha(\mathbf{N}) = 0.000127 \ 4; \ \alpha(\mathbf{O}) = 2.02 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{P}) = 1.4 \times 10^{-6} \ 3. \end{aligned}$
440.25	191.8 2	2.8 14			u(1)=1.1/10 0.
	201.05	11.0 20			
	372.2 2	100 8	M1 §	0.0302	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0259 \ 4; \ \alpha(\mathbf{L}) = 0.00340 \ 5; \\ &\alpha(\mathbf{M}) = 0.000704 \ 10. \\ &\alpha(\mathbf{N}) = 0.0001549 \ 22; \ \alpha(\mathbf{O}) = 2.53 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{P}) = 1.99 \times 10^{-6} \ 3. \end{aligned}$
	440.1 2	61 3	(E2)§	0.0147	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01226 \ 18; \ \alpha(\mathbf{L}) = 0.00196 \ 3; \\ &\alpha(\mathbf{M}) = 0.000413 \ 6. \\ &\alpha(\mathbf{N}) = 8.98 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 1.408 \times 10^{-5} \ 20; \\ &\alpha(\mathbf{P}) = 8.60 \times 10^{-7} \ 12. \end{aligned}$
442.08	269.7 3	100	Ε2	0.0660	$\alpha(\mathbf{K})=0.0528 \ 8; \ \alpha(\mathbf{L})=0.01044 \ 16; \\ \alpha(\mathbf{M})=0.00223 \ 4. \\ \alpha(\mathbf{N})=0.000481 \ 7; \ \alpha(\mathbf{O})=7.32\times10^{-5} \ 11; \\ \alpha(\mathbf{P})=3.47\times10^{-6} \ 5. \\ \mathbf{B}(\mathbf{E}^2)(\mathbf{W}, \mathbf{u})=107 \ 5. \end{cases}$
446.33	197.9 2	69 <i>3</i>	M1 §	0.1608	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1376\ 20;\ \alpha(\mathbf{L}) = 0.0184\ 3;\\ &\alpha(\mathbf{M}) = 0.00382\ 6.\\ &\alpha(\mathbf{N}) = 0.000840\ 12;\ \alpha(\mathbf{O}) = 0.0001367\ 20;\\ &\alpha(\mathbf{P}) = 1.068 \times 10^{-5}\ 16.\\ &\text{Mult.: also DCO (1972He03).} \end{aligned}$
	378.12	100 12	Q		Mult.: from DCO (1972He03).
464.02	215.6 2	24 6	M1 ( +E2 ) §	0.133 6	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1082 \ I8; \ \alpha(\mathbf{L}) = 0.019 \ 5; \ \alpha(\mathbf{M}) = 0.0041 \ I2. \\ &\alpha(\mathbf{N}) = 0.00089 \ 23; \ \alpha(\mathbf{O}) = 0.00014 \ 3; \\ &\alpha(\mathbf{P}) = 7.6 \times 10^{-6} \ 9. \end{aligned}$
	395.8 2	100 3	M1,E2 [§]	0.023 3	$\begin{aligned} &\alpha(\mathbf{K}) = 0.019 \ 3; \ \alpha(\mathbf{L}) = 0.00283 \ 9; \\ &\alpha(\mathbf{M}) = 0.000591 \ 13. \\ &\alpha(\mathbf{N}) = 0.000129 \ 4; \ \alpha(\mathbf{O}) = 2.06 \times 10^{-5} \ 10; \\ &\alpha(\mathbf{P}) = 1.4 \times 10^{-6} \ 3. \end{aligned}$
	464.0 2	21 3			w(1)=1.TAIU U.
472.21	256.0 3	100 15			

# Adopted Levels, Gammas (continued)

# $\gamma(^{129}\text{La})$ (continued)

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult.‡	δ	α@	Comments
472.21	404.0 2	62 8				
556 002	472.22	100				
587 64	519 5 2	100 1				
567.04	587 6 2	92.8				
619.61	179.1 4	66 31				
010.01	221.5.3	47 13				
	348.5 3	34 6				
	370.7 5	19 9				
	380.1 2	59 13				
	551.3 3	100 19				
645.53	199.5 <i>3</i>	21 7	(M1+E2)		0.168 12	$\alpha(K)=0.136\ 3;\ \alpha(L)=0.025\ 8;\ \alpha(M)=0.0054\ 17.$ $\alpha(N)=0.0012\ 4;\ \alpha(O)=0.00018\ 5;$ $\alpha(P)=9.5\times10^{-6}\ 10.$
	397.3 3	73 13				
	405.7 2	100 9				
	577.3 2	88 10				
652.5	254.05	100 25				
	414 1	$25 \ 13$				
	584.05	$75 \ 25$				
696.56	250.2 3	32 6	$D^{\#}$			
	448.2 3	100 9				
706.43	242.55	28 7				
	260.02	7.0 23				
	308.1 3	37 12				
	458.5 5	23 7				
	466.7 2	100 5				
700 0	638.3 2	14.0 23				
782.3	318.0 5	100 22				
	349 1	22 22 22				
	543 1 5	22 11				
796 21	548 0 2	17 6				
100.21	728.0 2	94 11				
	796.0 2	100 11				
832.32	584.02	100 6				
	764.0 2	63 19				
916.64	474.3 3	100	E2		0.01193	B(E2)(W.u.)=100 15. $\alpha(K)=0.00997 14; \alpha(L)=0.001556 22;$ $\alpha(M)=0.000327 5.$ $\alpha(N)=7.12\times10^{-5} 10; \alpha(O)=1.120\times10^{-5} 16;$ $\alpha(P)=7.04\times10^{-7} 10.$
928.93	232.4 3	234				
	482.6 2	75 13				
	680.5 3	100 50				
934.93	536.6 3	100 30				
	664.0 3	24 6				
	866.6 3	24 12				
966.34	897.9 2	100 22				
000 11	966.6 2	100 11				
992.41	546.1 3	100 9	(M1+E2)			$\begin{aligned} &\alpha = 0.0098 \ 17; \ \alpha(K) = 0.0084 \ 16; \\ &\alpha(L) = 0.00115 \ 13; \ \alpha(M) = 0.00024 \ 3. \\ &\alpha(N) = 5.2 \times 10^{-5} \ 6; \ \alpha(O) = 8.5 \times 10^{-6} \ 11; \\ &\alpha(P) = 6.2 \times 10^{-7} \ 14. \end{aligned}$
	552.4 3	$71 \ 14$				
	743.9 3	27 10				
1015.26	616.7 2	100 23				
	744.52	54 8				
	1015.1 3	15 8				
1021.79	325.3 3	16 4	(M1+E2)		0.0422 6	
1100 10	575.4 3	100 10	Q			
1120.18	018.23 017 99	20 0				
	011.0 4	000				

# Adopted Levels, Gammas (continued)

# $\gamma(^{129}La)$ (continued)

E(level)	${f E}\gamma^{\dagger}$	$I\gamma^\dagger$	Mult. [‡]	δ	α@	Comments
1100 59	678 48 0	100				
1120.57	$678.4^{\circ\circ}2$ 537 7 3	100				
1234.15	588 6 3	9 4 100 <i>10</i>				
1275.09	833.0 2	100 10				
1304.94	388.4 2	22 5	D			
	862.9 3	100 10	M1+E2	-0.91 + 8 - 9		
1315.78	294.1 3	6.5 15				
	619.0 3	100 9	Q			
1328.8	886.7 3					
1524.31	502.5 3	299				
	595.4 3	100 11				
1558.03	641.4 3	100	(E2)			B(E2)(W.u.) < 110.
1586.62	466.5 3	12 3	MITE	.0 5 .0 1		
	670.1 J	100 9	M1+E2	+0.5 + 2 - 1		
1651 1	1144.5 5	14 5				
1654 17	632 4 2	55 13				
1001.11	661.7.3	100 11	D+Q	+0.32		
1724.96	703.1 2	10 3				
	732.7 3	23 5				
	1282.8 3	100 10	D+Q	+0.3 2		
1753.2?	1311.1 3					
1753 . 4	731.6 3		Q			
1803.0	810.7 3					
1851.24	264.8 3	22 5				
	546.4 3	78 19				
	934.5 3	79 18	(D)			
10/0 50	1409.2 3	100 12	Q			
1949.58	391.5 3	21 8				
	1033 0 2	100 12	M1+E2	$-0.7 \pm 2 - 8$		
1951 5	393 5 3	100 12	MI1+112	-0.1 +2-0		
1956.5	722.3 3					
1972.2	667.3 3					
	1055.5 3					
	1530.2 3					
1985.0	669.0 5	46 12				
	1067.8 5	100 16				
2003.8	1561.7 3					
2069.9	754.0 3	100	$Q^{\#}$			
2118.2	1201.6 3	100				
2169.8	864.9 3	100	D			
2206.4	903 2 3	100				
2218.90	1098 7 2					
	1000.12 1197.03	100 18	M1+E2	+0.21 + 7 - 4		
	1522.4 2	45 18				
	1776.7 3	40 18				
2221 . 5	370.3 3	21 5				
	634.8 3	100 10				
	663.4 3	58 12	M1+E2	+0.8 + 12 - 4		
	1304.8 5					
2242.7	439.8 3					
	517.73 71949					
	118.4 J 996 9 9		M1+F9	-03-09		
	967 6 9		WII 7 15 4	-0.0 +2-0		
	1008 5 3					
	1221.0 3		Q			
	1326.0 3		-			
	1800.5 3					
2277.9	1361.3 3	100				
2290.9	1374.32					

# $^{129}_{57}\mathrm{La}_{72}\mathrm{-8}$

# Adopted Levels, Gammas (continued)

# $\gamma(^{129}\text{La})$ (continued)

E(level)	Eγ [†]	Iγ [†]	Mult. [‡]	α@	Comments
2207 6+x	55 9 3	100			
2297.0+x 2298 1	544 4 3	100			
2250.1	1856 2 3				
2343 2	785 3 3	100	E 2		$B(E2)(W_{H}) = 60.15$
2351 8	1435 2 3	100	(D)		
2408 3+x	110 7 3	100	M1+E2#	0 857 15	
2400.011	445 8 3	62.8	$(Q)^{\#}$	0.001 10	
2401.2	873 1 3	100 12	(Q)#		
2452 8	1536 2 2	100 12			
2453 7	895 7 3	100			
2400.1	1546 0 4	100			
2402.0	595 9 9	51 19			
2474.70	623 7 3	100 10			
	916 9 2	20.8			
	1557 8 3	23 0 81 18	0		
2478 0	1091.00	28 6	ષ		
2470.0	724 8 3	20 0			
	010 7 2	100 0			
2400 0	1579 4 9	100 5			
2490.0	1070.4 0	100			
2520.5	216 6 3	100	(M1+F2)#	0 197 2	
2000.4	210.0 3	100	(111+122)	0.127 2	
2572 7+x	164 5 3	100	(M1+F2)#	0 273 5	
2512.1+1	245 A 2	100	(111+122)	0.210 0	
2000.0	045.4 2	100			
2001.3	527.52 1147 1 9	100			
2709.1	1171 5 9	100			
2729.5	1014 9 2	100			
2707.0	259 5 2	02 20			
2103.0	1995 9 3	100 12			
2789 7	840 2 3	97 25			
2109.1	1931 4 3	100 13			
2794 1+x	221.4.2	100 7	M1+E2#	0 119 2	
2134.144	221.0 0	5 0 10	M1+12	0.115 2	
2803 0	1886 3 2	0.0 10			
2822 6	254 3 3	100 10	$(M1 + E2)^{\#}$	0 0817 19	
2022.0	1264 6 3	62 15	(111112)	0.0011 12	
2841 0	771 0 3	100	Q#		
2864 1	1306 1 3	100	4		
2909.7	431.7.3	26 5			
2000	478 3 3	100 9	$M1 + E2^{\#}$	0 0154	
	566.5 2	•			
2911 1	1994 4 2				
2943.1	873.2 3	100			
2955.2	733.7 3	100			
2955.7?	612.5 2	100			Ey: from level scheme figure of $1995Ku29$ . E=611.9 2 in
					table.
3017.7	586.2 3	100 9	Q		
	674.5.3	25 5	х (Д)		
3043.8	1485.8 3				
3071.0+x	277.0 3	100 9	$(M1 + E2)^{\#}$	0.0648 10	
	498.3.3	12.1 14			
3096.0	273.5 3	74 16	$(M1 + E2)^{\#}$	0.0671 10	
	306.2 3	100 16	(M1+E2) [#]	0.0496 7	
3124.4	2207.7 3	100			
3215.3	740.9 3	100 11			
	1657.3 3	47 12	Q		
3253.5	910.5 3	100	E2#		B(E2)(W.u.)=58 12.
3286.8	2370.1 3	100			
3309.8	966.6 3	100			
3375.9	1032.7 2	100			
3382.8	1039.6 2	100			
3394.0+x	323.0 3	100 7	M1+E2#	0.0431 7	

# Adopted Levels, Gammas (continued)

# $\gamma(^{129}La)$ (continued)

E(level)	$E\gamma^{\dagger}$	Ιγ†	Mult.‡	α@	Comments
3394.0+x	599.8 3	27 4			
3411.2	501.5 2				
	627.5 3				
3420.6	325.1 3	100	$(M1 + E2)^{\#}$	0.0423 6	$\alpha(K) = 0.033 \ 4; \ \alpha(L) = 0.0051 \ 3; \ \alpha(M) = 0.00107 \ 7.$
3474.7	633.8 3				$\mathfrak{a}(\mathbf{N})=0.000233 \ 13; \ \mathfrak{a}(\mathbf{O})=3.09\times10^{-1} \ 11; \ \mathfrak{a}(\mathbf{F})=2.4\times10^{-5} \ 5.$
011111	1131.4 2				
3476.8	459.0 3	100 19	D#		
	566.9 3	85 22			
3482 . 3	1139.12	100			
3523.1	1179.9 2	100			
3531.2	2614.5 3	100			
3694 9	853 8 2	100			
000110	1351.9 3				
3697.1	856.1 3				
3712.1	1368.9 3	100			
3731.7	714.0 3	100	Q#		
3759.4 + x	365.5 3	100 7	M1 + E2 [#]	0.03115	
2760 2	688.4 3	44 5			
3760.2	800.03 36253	100 18	M1+F9#	0 0318 5	
5765.5	687 3 2	96 18	W11 + 15 Z ···	0.0318 5	
3857.8	1514.6 3	00 10			
3952.0	1608.8 3				
3998.1	744.5 3				
4000.3	746.9 3				
	1656.9 3				
4042.7	565.8 2				
4150 1.1	827.73	100 8	(M1, F9)#	0 0947 4	
4155.1+X	765 2 3	59 8	(1011+122)"	0.0247 4	
4176.7	392.5 3	100 16	M1+E2#	0.0259 4	
	756.42	76 16			
4198.8	467.0 3	33 8	$(M1 + E2)^{\#}$	0.0166 3	
	722.1 3	100 17	Q#		
4266.8	1013.2 3	100	E2#		B(E2)(W.u.)=27 7.
4296.9	1043.3 3	100	0		
4555.0 4598 3+x	625.53 439 4 3	100 9	Q		
4000.011	838.6 3	72 11			
4602.3	425.7 2	100 23			
	818.7 3	89 17			
4907.1	864.4 3	100			
5046.6	444.6 6	100 19			
5000 0	869.5 8	100 19			
5060.9 + x	462.5 4	799			
5081 9	883 1 6	100 15	Q#		
5360.8	1094.0 6	100	ε2 [#]		B(E2)(W.u.)=25 7.
5476.7	921.7 3	100	$Q^{\#}$		
5507.0	460.6 6	78 17			
	904.5 7	100 23			
5564.2+x	502.9 5	69 <i>12</i>			
5934 9	966.14 497 4 6	100 20 87 90			
0004.4	427.4 0 887 5 7	100 20			
6064.9	983	100 20			
6092.5+x	528.0 6	100 23			
	1032.1 7	80 30			
6338.2?	404.0 6	100 17			
<b>6</b> 4 6 6 5	831&	100	0#		
6488.0	1011.3 5	100	Q#		

_

### Adopted Levels, Gammas (continued)

E(level)	$E\gamma^{\dagger}$	Iγ†	Mult. [‡]	E(level)	$E\gamma^{\dagger}$	$I\gamma^{\dagger}$
6515.5	1154.7 6	100	$\mathbf{Q}^{\#}$	8856.5	1182	100
6638.5+x	546.1 6	100 25	-	9425.9	1183	
	1074.1 9	90 40		9772.9	1115.2 7	100
6757.2?	418.9 6	100 17		10085.5	1229	
	823.0& 3			10952.9	1180	
7133.9	1069			11380.5	1295	
7565.4	1077.45	100	$Q^{\#}$	12196.9	1244	
7674.5	1159			13502.9	1306	
8242.9	1109			14920.9	1418	
8657.7	1092.2.5	100	Q#	16478	1557	

 $\gamma(^{129}La)$  (continued)

[†] From weighted averages of available values in 1997Gi08, 2001Xi01 and 1995Ku29 wherever available. In other cases, values are taken from 1992He03 or 2000Wa28.

[‡] From  $\gamma(\theta)$  and  $\gamma\gamma(\theta)$  data in high-spin experiments (1995Ku29), unless otherwise stated. For levels of known half-lives, RUL used to distinguish between E2, M2 and higher multipolarity transitions.

§ From EKC, ELC and/or K/L ratios (1997Gi08).

 $^{\#}$  From DCO ratio in 1992HeO3 and RUL for E2 and M2 transitions.

@  $\delta(E2/M1){=}0.3$  assumed when not given for transitions from high-spin (J>13/2) levels.

& Placement of transition in the level scheme is uncertain.

(A)  $\pi 1/2[550], \alpha = -1/2$ .

(B)  $\pi 1/2[550], \alpha = +1/2$ .

(C)  $\pi 3/2[541], \alpha = -1/2$ .



(D) <b>π</b> 3/2[541], <b>α</b> =	+1/2.	(E) $\pi 3/2[422]$ (a) $\alpha = -1/2$	$(\pi h_{11/2}^2)$ ,	(F) $\pi 3/2[422] \otimes \pi h_{11/2}^2, \alpha = +1/2.$		
		(75/2+)	16478			
		(10)21)		_		
		(71/2+)	v 14920.9	_		
		(67/2+)	y 13502.9	_		
		(63/2+)	y 12196.9	_		
		(59/2+)	v 10952.9	_		
		(55/2+)	y 9772.9	(52/9+)	0425 0	
				(00/2+)	5420.5	
		(51/2+)	y 8657.7	(49/2+)	v 8242.9	
		(47/2+)	v 7565.4			
		· · ·		(45/2+)	v 7133.9	
		(43/2+)	v 6488.0	_		
				_(41/2+)	v 6064.9	
		(39/2+)	y 5476.7	(37/2+)	v 5081.9	
		(35/2+)	v 4555.0	_		
(29/2-)	3760.2	(31/2+)	¥ 3731.7	(33/2+) (E)(31/2+) (29/2+)	4198.8	
				(25/2+) $(E)(27/2+)$ $(25/2+)$	2909.7	
(25/2-)	<u>v</u> 2955.2	(23/2+)	¥ 3017.7 2431.2	(21/2+)	2478.0	
$\begin{array}{c} (21/2-) \\ \hline (C)(19/2-) \\ \hline (17/2-) \\ \hline \end{array}$	2221.5	$- (A)(27/2-) \qquad \qquad$	1985.0	(A)(27/2-) $(E)(19/2+)$ $(17/2+)$		
(A)(23/2-)	1086.62	(A)(23/2-)		$(1/2+) \qquad \qquad$		
(13/2-) (A)(19/2-)	1120.18	(A)(19/2-)		_		
(A)(15/2-)	·	_				
(A)(11/2-)		_				

 $^{129}_{57}$ La $_{72}$ 

# $^{129}_{57}$ La $_{72}$ -13

# Adopted Levels, Gammas (continued)

(G)  $\pi(3/2[422]+1/2[420]),$  $\alpha=-1/2.$  (H)  $\pi(3/2[422]+1/2[420]), \alpha=+1/2.$ 

(I)  $\begin{aligned} & (I) \\ \pi 1/2[550] \otimes \nu 7/2[523] \otimes \nu 5/2[402], \\ & \alpha {=} {-} 1/2. \end{aligned}$ 

						(0)(01/2+)
						(29/2+)
						(J)(27/2+)
						(25/2+)
						(J)(23/2+)
(23/2+)		2841.0	_			(21/2+)
						(J)(19/2+)
						(17/2+)
(19/2+)	¥	2069.9	_			· · · · · ·
(15/2+)		1315.78	_			
(H)(13/2+)		/	(13/2+)	_	1021.79	_
(11/2+)		696.56	(G)(11/2+)	_\	/	_
(H)(9/2+)		//	(9/2+)		446.33	
(7/2+)	╵──┟─┘	248.45	(G)(7/2+)		//	
(H)(5/2+)	∖└─╨─┟─┘	//	(5/2+)	─∖└─₩─₩	68.18	-
(3/2+)	\¥.Ĭ		(G)(3/2+)			-
(0,2.)		0.0	(3)(3/21)	1		-

 $^{129}_{57}$ La $_{72}$ 

(41/2+)			6092.5+x
(J)(39/2+)			
(37/2+)		¥.	5060.9+x
(J)(35/2+)	<b>I</b>		
(33/2+) (J)(31/2+)	<u>\</u>		4159.1+x
(29/2+) (J)(27/2+)	√↓	$\downarrow$	3394.0+x
(25/2+)	╢──╹	+/	2794.1+x
(3)(23/2+) (21/2+)		T/,	2408.3+x
(J)(19/2+) (17/2+)		Ľ	2242.7+x

 $\begin{array}{c} (J) \\ \pi 1/2 [550] \otimes \nu 7/2 [523] \otimes \nu 5/2 [402], \\ \alpha = + 1/2. \end{array}$ 

(K)  $\begin{array}{c} (K) \\ \pi 1/2 [550] \otimes \nu 7/2 [523] \otimes \nu 5/2 [402], \\ \alpha = -1/2. \end{array}$ 

(L)  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \\ \alpha = +1/2.$ 

(43/2+)		6638.5+x	(43/2+)			6757.2	-		
			(L)(41/2+)	<u>k</u>			(41/2+)		6338.2
(1)(41/2+)	<u> </u>		(39/2+)		ý.	5934.2	(K)(39/2+)	v	
(39/2+)		5564.2+x	_ (L)(37/2+)	v			(37/2+)		¥ 5507.0
(I)(37/2+)	v		(35/2+)		v	5046.6	(K)(35/2+)	v	
(35/2+)		4598.3+x	(L)(33/2+)	v			(33/2+)		¥ 4602.3
(I)(33/2+)			(31/2+)		V	4176 7	(K)(31/2+)		
(31/2+) (1)(29/2+)	\¥				Ť	4170.7	(29/2+)	\¥	3783.5
(27/2+)	\ <u></u>	3071.0+x	(L)(29/2+)	¥		2420 6	$\frac{(K)(27/2+)}{(25/2+)}$		3096.0
(I)(25/2+)		J 9579.7	$\frac{(27/2+)}{(L)(25/2+)}$		¥	3420.0	(K)(23/2+)	ן∟¥	
(23/2+) (I)(21/2+)	N ↓ Ť	2512.1+x	(23/2+)	· · · ·		2822.6	$-\frac{(23/2+)}{(21/2+)}$		2568 4
(19/2+)		2297.6+x	(L)(21/2+)		¥		(21/2+) - (K)(19/2+)	\ \	
(17/2+)	<u> </u>	-]	(19/2+)	r		2351.8	(19/2)	<u> </u>	
			(A)(23/2-)	,					
							-		
			(A)(19/2-)				-		





	ued)				
		Bands			
(G)	(H)	(I)	(J)	(K)	(L)



 $^{129}_{57}\mathrm{La}_{72}$ 

### Level Scheme

Intensities: relative photon branching from each level



Level Scheme (continued)

Intensities: relative photon branching from each level

7	5	2/	+	)	

16478



 $^{129}_{57}$ La $_{72}$ 

Level Scheme (continued)

Intensities: relative photon branching from each level



Level Scheme (continued)

Intensities: relative photon branching from each level

(75/2+)		16478	
(71/2+)		14920.9	
//- ·			
(67/2+)		13502.9	
(63/2+)		12196.9	
(50/0)		11000 5	
(39/2-)		11380.5	
(59/2+)		10952.9	
(55/2-)		10085.5	
(55/2+)		9772.9	
(17/9.)		- 9949 7	
(17/2+)		2242.7	
(15/2+)		-// 2218 90	
(19/2 to 23/2-)		2210.00	
(19/2)		/// 2169.8	
(15/2- to 23/2-)		2118.2	
(19/2+)		///_2069.9	
(15/2 to 19/2-)		///_2003.8	
(19/2+)		1985.0	
(15/2-,17/2,19/2-)		1972.2	
(9/2 + to 17/2 +)		1956.5	
(23/2 to 21/2-)		1951.5	
(21/2-) (19/2-)		1851 24	
(10)2)		1803.0	
(17/2+)		1753.4	
		1753.2	
(15/2+)		1724.96	
(13/2+)		<u>   1654.17</u>	
(15/2 to 19/2-)		1651.1	
(17/2-)		1586.62	
(23/2-)		1558.03	≥1.2 p
(11/2+ to 15/2+)		1924.31	
(19/2+)		1315.78	
(15/2  to  19/2-)		1275 09	
(13/2+)		/// 1234.19	
(13/2-)		/// 1120.18	
(13/2+)	▁\\\\\╙ <del>╪╪╪┥<u>┟</u>┇╋═╤╡<mark>╩╚═╤╤┽┊┊┊┊┊┊┊┊┊┊┊┊┊┊</mark>╝┊╝┊╝┊╝┊╝┊╝┊╝</del>	/// 1021.79	
(11/2+)		992.41	
(19/2-)		916.64	6.0 ps
(11/2+)		696.56	·
(15/2-)		442.08	90 ps
(3/2+)		= 0.0	11.6 m

Level Scheme (continued)

Intensities: relative photon branching from each level

(75/2+)	16478
(71/2+)	14920.9
(67/2+)	13502.9
(63/2+)	12196.9
(59/2-)	11380 5
	11000.0
(59/2+)	10952.9
(55/2-)	10085.5
(55/2+)	9772.9
(53/2+)	9425.9
(11/2 + 4 + 15/2 +)	1594 91
(11/2+ to 13/2+) (15/2 to 19/2-)	/ 1324.51
(15/2+)	1315.78
(17/2-)	//1304.94
(15/2 to 19/2-)	
(13/2-)	///// 1120.18
(13/2+)	
(1/2 to 7/2+)	//////1015.26
(11/2+)	<u> </u>
(1/2  to  9/2+)	
(19/2–)	<u>916.64</u> 6.0 ps
(3/2 + to  9/2 +)	
$\frac{(3/2 + t_0 / 1/2 +)}{(5/2 + t_0 / 2 +)} = $	<u> </u>
(5/2+ to 9/2+)	
(11/2+)	
(1/2 to 9/2+)	652.5
	645.53
	464.02
	<u>442.08</u> 00 pc
	90 ps
$(3/2+,5/2+,7/2+) \qquad \qquad$	^{'';} , ''///////////////////////////////////
$\frac{(1/2 \text{ to } 7/2+)}{(7/2+)}$	⇒ ¹ ^{270.92}
(1/2+) (5/2+)	0 10 239 62
	68.18 0.58 s
	<u> </u>

 $^{129}_{57}$ La $_{72}$ 

Level Scheme (continued)

Intensities: relative photon branching from each level

(75/2+)	16478
(13/2+)	10478
(71/2+)	14920.9
(67/2+)	13502.9
(63/2+)	12196.9
(50/2)	11990 5
(07/2-)	11380.0
(59/2+)	10952.9
(55/2-)	10085.5
(55/2+)	9772.9
(53/2+)	9425.9
(51/2+)	8657.7
(49/2+)	8242.9
(47/2+)	7565.4
(45/2+)	7133.9
(43/2+)	<u> </u>
(41/2+)	6338.2
(39/2+)	5934.2
(39/2–)	5360.8 0.27 pc
(95/0)	0.57 ps
	4507.1
(3/2+) (3/2+ to 9/2+)	
(1/2+ to 7/2+)	
(1/2 to 7/2+)	556.00
(1/2 + to  7/2 +)	
(9/2+)	464.02
	442.08 90 ns
$(7/2+) \qquad \qquad$	
(5/2+)	239.62
(1/2+ to 9/2+) (1/2)	216.30
(11/2-) (5/2+) (11/2-)	$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \frac{112.33}{68.18} = 0.56 \text{ s}$
	₩₩₩¥

 $^{129}_{57}$ La $_{72}$ 

 $^{129}_{57}$ La₇₂–23

# ¹²⁹La IT Decay (0.56 s) 1969Al05

Parent ¹²⁹La: E=172.33 20;  $J\pi$ =(11/2-);  $T_{1/2}$ =0.56 s 5; %IT decay=100. 1969Al05: ¹²¹Sb(¹²C,4n), ^{118,119,120}Sn(¹⁴N,xn), ¹¹⁵In(¹⁸O,4n), E=50-110 MeV; excitation function, semi  $\gamma$ , scin  $\gamma$ , semi ce, HI- $\gamma$ (t), HI-ce(t). Others: 1970Co05, 1973Le09, 1992He03.

¹²⁹La Levels

E(level) [†]	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	Comments
0.0	(3/2+)	11.6 min 2	
68.18 5	(5/2+)		
172.33 20	(11/2-)	0.56 s 5	%IT=100.
			T _{1/2} : from 1969Al05. Other: 0.56 s 6 (1973Le09).
† From Ad	opted Levels.		
			$\gamma^{(129}La)$
$E\gamma^{\dagger}$	E(level)	Ιγ‡	α         Comments

68.20 6	68.18	100	M1	3.25	Mult.: from $\alpha(L)exp=0.44$ 20 (1969Al05).
					$\alpha(K)=2.78$ 4; $\alpha(L)=0.378$ 6; $\alpha(M)=0.0786$ 12.
					$\alpha(N)=0.01728\ 25;\ \alpha(O)=0.00281\ 4;\ \alpha(P)=0.000217\ 3.$
104.0 3	172.33	$18 \ 5$	E3	20.8 5	Mult.: from α(K)exp=5.7 19, K:L:M+N=51 11:100:26 8 (1969Al05).
					$\alpha(K)=5.24$ 9; $\alpha(L)=12.1$ 3; $\alpha(M)=2.79$ 6.
					$\alpha(N)=0.591$ 13; $\alpha(O)=0.0817$ 18; $\alpha(P)=0.000262$ 5.

[†] From Adopted Gammas; 54.4-keV  $\gamma$  reported by 1970Co05 belongs to the ⁷³Ge IT decay (T_{1/2}=0.54 s) (1973Le09). [‡] For absolute intensity per 100 decays, multiply by 0.238 6.



### ¹²⁹La IT Decay (0.56 s) 1969Al05 (continued)

# ¹²⁹Ce & Decay (3.5 min) 1997Gi08,2001Xi01

Parent ¹²⁹Ce: E=0.0;  $J\pi$ =(5/2+);  $T_{1/2}$ =3.5 min 3; Q(g.s.)=5040 40; % \epsilon+% \beta^+ decay=100. ¹²⁹Ce-Q(\epsilon): From 2012Wa38.

 129 Ce-J, $T_{1/2}$ : From  129 Ce Adopted Levels. For J $\pi$  assignment of (5/2+) rather than 7/2+ as proposed in 1998Io01 based on 9/2- for 107.6-keV isomer, see discussion in J $\pi$  comments for the 107.6-keV isomer and ground state in  129 Ce Adopted Levels.

1997Gi08: ¹²⁹Ce from ⁹⁴Mo(⁴⁰Ca, n4p), E=225 MeV; He-jet, Ge G, semi for ce. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\beta\gamma$  coin, x $\gamma$  coin, (ce) $\gamma$  coin, half-life. Deduced conversion coefficients, levels, J,  $\pi$ .

2001Xi01 (also 1997Xi01): ¹²⁹Ce from ¹¹⁷Sn(¹⁶O,4n), E=102 MeV; He-jet, chemical separation, Ge G . Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\beta\gamma$  coin, x $\gamma$  coin. Deduced levels, log *ft* values.

Both studies deduced level feeding intensities. There are disagreements between the two studies.

Others: 1993Al03, 1969ArZZ, 1963La03.

Experimental conversion coefficients are taken from 1997Gi08.

## ¹²⁹La Levels

E(level)#	$J\pi^{\dagger}$	$T_{1/2}^{\dagger}$	E(level)#	$J\pi^{\dagger}$
0.0	(3/2+)	11.6 min 2	587.64 [§] 14	(1/2+ to 7/2+)
68.18 5	(5/2+)		619.60 13	(3/2+ to 9/2+)
216.29 [§] 23	(1/2+ to 9/2+)		645.39 15	(9/2+)
239.61 8	(5/2+)		$652.5^{\ddagger}$ 3	(1/2 to 9/2+)
248.45 8	(7/2+)		706.46 12	(5/2+to 9/2+)
270.91 [§] 13	(1/2 to 7/2+)		782.3 [‡] 3	(5/2+to 9/2+)
398.47 9	(3/2+,5/2+,7/2+)		796.21 [§] 12	(3/2+ to 7/2+)
440.26 13	(7/2+)		832.31 \$ 15	(3/2+ to 9/2+)
446.34 12	(9/2+)		928.87 [§] 19	(7/2+ to 11/2+)
464.02 12	(5/2+,7/2+)		934.92 [§] 18	(1/2 to 9/2+)
472.21 [§] 14	(1/2+ to 7/2+)		966.34 [§] 14	(1/2 to 7/2+)
556.00? [§] 20	(1/2 to 7/2+)		1015.26 \$ 15	(1/2 to 7/2+)

[†] From Adopted Levels.

[‡] Reported only in 1997Gi08.

§ Reported only in 2001Xi01.

[#] From least-squares fit to Eγ data.

				p,e i		
Eε	E(level)	Ιβ+§	Iε§	Log ft [‡]	$\mathrm{I}(\epsilon{+}\beta^{+})^{\dagger} \S$	Comments
(4020 40)	1015.26	0.70 14	0.30 6	6.8	1.0 2	av Eβ=1360 19; εK=0.252 8; εL=0.0344 10; εM+=0.0097 3.
(4070 40)	966.34	0.6 1	0.2 1	6.9	0.8 2	av $E\beta=1383$ 19; $\epsilon K=0.244$ 7; $\epsilon L=0.0333$ 10; $\epsilon M=0.0093$ 3
(4110 40)	934.92	0.86 22	0.34 8	6.7	1.2 3	av E $\beta$ =1398 <i>19</i> ; $\epsilon$ K=0.238 <i>7</i> ; $\epsilon$ L=0.0326 <i>10</i> ; $\epsilon$ M+=0.0091 <i>3</i> .

B+ e Data

			¹²⁹ Ce ε	Decay (3.5	min) 199	97Gi08,2001	Xi01 (continued)
				-	$\beta^+,\epsilon$ Data	(continued)	_
Eε		E(level)	Ιβ+§	Ιε§	Log ft‡	$I(\epsilon+\beta^+)^{\dagger}\$$	Comments
(4110	40)	928.87	0.5 1	0.2 1	7.0	0.72	av Eβ=1401 19; εK=0.237 7; εL=0.0324 10; εM+=0.0091 3.
(4210	40)	832.31	0.89 15	0.31 5	6.8	1.2 2	av Eβ=1445 19; εK=0.222 7; εL=0.0303 9; εM+=0.00850 24.
(4240	40)	796.21	1.3 1	0.46 5	6.6	1.8 2	av Eβ=1462 19; εK=0.216 6; εL=0.0295 9; εM+=0.00829 24.
(4260	40)	782.3	2.4 4	0.81 15	6.4	3.2 6	av E $\beta$ =1469 19; $\epsilon$ K=0.214 6; $\epsilon$ L=0.0293 9; $\epsilon$ M+=0.00821 24.
(4330	40)	706.46	3.3 5	1.0 1	6.3	4.3 6	av $E\beta$ =1504 19; $\epsilon$ K=0.203 6; $\epsilon$ L=0.0278 8; $\epsilon$ M+=0.00779 22.
(4390	40)	652.5	1.8 4	0.53 12	6.6	2.3 5	av E $\beta$ =1529 19; $\epsilon$ K=0.196 6; $\epsilon$ L=0.0268 8; $\epsilon$ M=-0.00751 21
(4390	40)	645.39	1.5 2	0.46 7	6.7	2.0 3	av E $\beta$ =1533 19; $\epsilon$ K=0.195 6; $\epsilon$ L=0.0266 8; $\epsilon$ M+=0.00747 21
(4420	40)	619.60	4.0 7	1.1 2	6.3	5.1 9	av E $\beta$ =1545 19; eK=0.192 6; eL=0.0262 8; eM=-0.00734 21
(4450	40)	587.64	1.7 2	0.48 7	6.6	2.2 3	av E $\beta$ =1560 19; EK=0.188 6; EL=0.0256 7; sM=-0.00718 20
(4480 #	40)	556.00?	0.7 1	0.2 1	7.0	0.9 1	av E $\beta$ =1574 19; $\epsilon$ K=0.184 5; $\epsilon$ L=0.0251 7; $\epsilon$ M+=0.00703 20
(4570	40)	472.21	1.2 2	0.31 4	6.9	1.5 2	av E $\beta$ =1614 19; eK=0.174 5; eL=0.0237 7; eM==0.00665 18
(4580	40)	464 . $02$	2.04	0.51 10	6.6	2.5 5	av E $\beta$ =1617 19; eK=0.173 5; eL=0.0236 7; eM==0.00661 18
(4590#	40)	446.34	1.3 3	0.32 8	6.8	1.6 4	av E $\beta$ =1626 <i>19</i> ; $\epsilon$ K=0.171 <i>5</i> ; $\epsilon$ L=0.0233 <i>7</i> ; $\epsilon$ M+=0.00653 <i>18</i> .
							Log ft: value of 6.8 is too low to be realistic for $5/2+$ to $9/2+$ $\beta$ transition.
(4600	40)	440.26	3.77	0.92 18	6.4	4.6 9	av Eβ=1629 19; εK=0.170 5; εL=0.0232 7; εM+=0.00650 18.
(4640	40)	398.47	1.0 5	0.25 12	7.0	1.3 6	av Eβ=1648 19; εK=0.165 5; εL=0.0226 6; εM+=0.00633 17.
(4770	40)	270.91	0.72	0.2 1	7.2	0.9 2	av Eβ=1708 19; εK=0.152 4; εL=0.0207 6; εM+=0.00582 16.
(4790	40)	248 . $45$	3.4 5	0.72 11	6.5	4.1 6	av Eβ=1719 19; εK=0.150 4; εL=0.0204 6; εM+=0.00573 16.
(4800	40)	239.61	11 2	2.34	6.0	13 2	av Eβ=1723 19; εK=0.149 4; εL=0.0203 6; εM+=0.00570 15.
(4820#	40)	216 . $29$	<0.2	< 0.05	>7.7	<0.3	av Eβ=1734 19; εK=0.147 4; εL=0.0200 6; εM+=0.00562 15.
(4970	40)	68.18	15 3	2.8 5	6.0	18 3	av Eβ=1803 19; εK=0.134 4; εL=0.0182 5; εM+=0.00511 14.
(5040	40)	0.0	22 6	3.9 11	5.84 13	26 7	av E $\beta$ =1836 19; $\epsilon$ K=0.128 4; $\epsilon$ L=0.0175 5; $\epsilon$ M+=0.00489 13.
							$I(\epsilon+\beta^+):$ estimated by 2001Xi01 from growth-decay curve for 278.67 from $^{129}La$ decay.

 †  Values treated by the evaluators as approximate since there are several disagreements between the data from 1997Gi08 and 2001Xi01. The  $\beta$  feeding to ground-state in 2001Xi01 seems to be only an estimated value.

 $^{\pm}$  Values are treated as only approximate and not used for  $J\pi$  assignments.  $^{\$}$  Absolute intensity per 100 decays.  $^{\#}$  Existence of this branch is questionable.

# γ(¹²⁹La)

$E\gamma^{\dagger}$	E(level)	Iγ‡&	Mult.	α	Comments
68.20 6	68.18	30.7	M1	3.25	$\begin{array}{l} \alpha(L) \exp = 0.36 \ 3. \\ \alpha(K) = 2.78 \ 4; \ \alpha(L) = 0.378 \ 6; \ \alpha(M) = 0.0786 \ 12. \\ \alpha(N) = 0.01728 \ 25; \ \alpha(O) = 0.00281 \ 4; \ \alpha(P) = 0.000217 \ 3. \\ I\gamma: \ calculated \ from \ I(\gamma + ce) = 100 \ (2001Xi01) \ using \ \alpha = 3.25 \ from \\ BrIcc \ code. \end{array}$

# $^{129}_{57}\mathrm{La_{72}-26}$

# $^{129}_{57}$ La $_{72}$ -26

# ¹²⁹Ce ε Decay (3.5 min) 1997Gi08,2001Xi01 (continued)

# $\gamma(^{129}La)$ (continued)

$E\gamma^{\dagger}$	E(level)	ί&	Mult.	α	Comments
127.6# 3	398.47	0.3 1	[D.E2]	0.48 36	
148.2# 3	216.29	1.3 1	[D, E2]	0.29 21	
158.9 1	398.47	2.21	M1, E2	0.34 5	$\alpha(K)=0.269$ 18; $\alpha(L)=0.058$ 25; $\alpha(M)=0.013$ 6.
					$\alpha(N)=0.0027$ 12; $\alpha(O)=0.00041$ 16; $\alpha(P)=1.83\times10^{-5}$ 13.
	0.00 01			0.000	$\alpha(K) \exp = 0.24 \ 5; \ K/L = 4.5 \ 6.$
171.5 1	239.61	30.3 2	MI	0.238	$\alpha(\mathbf{K})=0.203 \ 3; \ \alpha(\mathbf{L})=0.0273 \ 4; \ \alpha(\mathbf{M})=0.00567 \ 8.$
					$\alpha(K) = 0.176 \ 9; \ K/L = 6.5 \ 9.$
179.1 [§] 4	619.60	2.1@ 10	[D, E2]	0.16 11	
180.4 1	248.45	13.9 2	M1	0.207	$\alpha(K)=0.1771\ 25;\ \alpha(L)=0.0237\ 4;\ \alpha(M)=0.00493\ 7.$
					$\alpha(N)=0.001084$ 16; $\alpha(O)=0.0001764$ 25; $\alpha(P)=1.376\times 10^{-5}$ 20. $\alpha(K)\exp=0.147$ 11; K/L=7.1 12.
192.0 3	440 . $26$	0.2 1	[M1, E2]	0.189 16	
197.9 2	446.34	2.61	M1 , E2	0.173 12	$\alpha(K)=0.139$ 3; $\alpha(L)=0.026$ 8; $\alpha(M)=0.0056$ 18.
					$\alpha(N)=0.0012$ 4; $\alpha(O)=0.00019$ 5; $\alpha(P)=9.7\times10^{-6}$ 10.
201 08 5	440 96	0 76@ 15	[M1 F9]	0 165 11	$\alpha(K)\exp=0.15\ 4;\ K/L>5.$
215.6 2	464.02	1.5 4	M1.E2	0.1336	$\alpha(K)=0.1082$ 18: $\alpha(L)=0.019$ 5: $\alpha(M)=0.0041$ 12.
21010 2	101102	1.0 1	,	0.100 0	$\alpha(N) = 0.00089 \ 23; \ \alpha(O) = 0.00014 \ 3; \ \alpha(P) = 7.6 \times 10^{-6} \ 9.$
221.5# 3	619.60	1.54	[D, E2]	0.08 5	a(ii)(ii)=0.11 2, ii)124.
239.5 2	239.61	2.1 <i>1</i>	[M1, E2]	0.097 2	
242.5 \$ 5	706.46	$1.2^{@}$ 3	[D, E2]	0.06 4	
248.5 2	248.45	2.5 1	(E2)	0.0862	$\alpha(K)=0.0683 \ 10; \ \alpha(L)=0.01415 \ 21; \ \alpha(M)=0.00303 \ 5.$ $\alpha(N)=0.000653 \ 10; \ \alpha(O)=9.88\times10^{-5} \ 15; \ \alpha(P)=4.42\times10^{-6} \ 7.$
254 08 5	659 5	2 1@ 6	10 291	0 05 2	$\alpha(\mathbf{K})\exp=0.09$ 3; $\mathbf{K}/\mathbf{L}\approx4$ .
$254.0^{\circ}5$ 256.0 [#] 3	472 21	1 3 2	$[\mathbf{D}, \mathbf{E}2]$	0.05.3	
$260.0^{\#} 2$	706.46	0.3 1	[D, E2]	0.05 3	
271.0# 2	270.91	4.3 1	[D, E2]	0.043 27	
308.1 3	706.46	1.6 5			
318.0 \$ 5	782.3	2.7 [@] 6			
330.3 <i>2</i>	398.47	4.32	M1 , E2	0.038 4	$\alpha(K)\exp=0.04$ 2. $\alpha(K)=0.032$ 4; $\alpha(L)=0.00485$ 23; $\alpha(M)=0.00102$ 6. $\alpha(N)=0.000222$ 11: $\alpha(O)=3.52\times10^{-5}$ 9: $\alpha(P)=2.3\times10^{-6}$ 4.
336.0 § 5	782.3	2.7 [@] 6			
342 [§] 1	782.3	0.6 [@] 3			
$348.5^{\#}3$	619.60	1.12			
370.7 5	619.60	0.6@3			
372.28 3	440.26	7.0 ^w 7	М1	0.0302	α(K)=0.0259 4; α(L)=0.00340 5; α(M)=0.000704 10. α(N)=0.0001549 22; α(O)=2.53×10 ⁻⁵ 4; α(P)=1.99×10 ⁻⁶ 3. α(K)exp=0.036 13; K/L>5. In 2001Xi01 the strong 371.7 keV γ is considered as a single γ, in 1997Gi08 it is resolved to 370.7 and 372.2 keV γ rays
050 0 -		a a i	(10.2)	0.0005	in γγ coin.
378.0 2	446.34	3.84	[E2]	0.0230	
380.1 2	619.60	1.94	M1 E9	0 0 9 9 9	$\alpha(\mathbf{K})$ ovr = 0.022 G
333.0 2	404.02	0.22	M1,62	0.023 5	$ \begin{array}{l} \alpha(\mathbf{K}) = 0.023 \ \ 6. \\ \alpha(\mathbf{K}) = 0.019 \ \ 3; \ \ \alpha(\mathbf{L}) = 0.00283 \ \ 9; \ \ \alpha(\mathbf{M}) = 0.000591 \ \ 13. \\ \alpha(\mathbf{N}) = 0.000129 \ \ 4; \ \ \alpha(\mathbf{O}) = 2.06 \times 10^{-5} \ \ 10; \ \ \alpha(\mathbf{P}) = 1.4 \times 10^{-6} \ \ 3. \end{array} $
397 [§] 1	645.39	1.5@ 3			
398.5 <i>2</i>	398.47	3.6 2	M1 , E2	0.023 3	$\alpha(K)\exp=0.024 \ 8.$ $\alpha(K)=0.019 \ 3; \ \alpha(L)=0.00277 \ 9; \ \alpha(M)=0.000580 \ 14.$ $\alpha(N)=0.000127 \ 4; \ \alpha(Q)=2.02\times10^{-5} \ 10; \ \alpha(P)=1.4\times10^{-6} \ 3.$
404.0# 2	472.21	0.8 1			
405.7 2	645.39	1.0 1			
414§ 1	652.5	0.6@ 3			
440.0 2	440.26	4.4 1	(E2)	0.0147	Mult.: $\alpha(K)\exp=0.019 \ 8 \ \text{gives } M1,E2$ , but $\Delta J\pi=(2)$ requires E2. $\alpha(K)=0.01226 \ 18$ ; $\alpha(L)=0.00196 \ 3$ ; $\alpha(M)=0.000413 \ 6$ . $\alpha(N)=8.98\times10^{-5} \ 13$ ; $\alpha(O)=1.408\times10^{-5} \ 20$ ; $\alpha(P)=8.60\times10^{-7} \ 12$ .
$458.5^{\ \ 5}$ 5	706.46	1.0@ 3			
464.02	464 . $02$	1.32			
466.7 2	706.46	4.3 2			

# $^{129}_{57}$ La $_{72}$ -27

#### ¹²⁹Ce & Decay (3.5 min) 1997Gi08,2001Xi01 (continued)

### $\gamma(^{129}La)$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ‡&
$472.2^{\#}2$	472.21	1.0 1
$482.5^{\#}2$	928.87	0.6 1
$519.5^{\#}2$	587.64	2.41
536.6 [#] 3	934.92	1.7 5
543.1 [§] 5	782.3	$0.9^{@}3$
548.0#2	796.21	0.3 1
551.3 3	619.60	3.2 6
556.0#2	556.00?	2.0 1
577.3 2	645.39	1.8 2
584.0 [§] 5	652.5	1.8@ 6
$584.0^{\#}2$	832.31	1.6 1
587.6# 2	587.64	2.22
616.7#2	1015.26	1.3 3
638.4 2	706.46	0.6 1
664.0# 3	934.92	0.4 1
680.5 [#] 3	928.87	0.8 4
728.0#2	796.21	1.72
$744.5^{\#}2$	1015.26	0.7 1
764.0#2	832.31	1.0 3
796.0#2	796.21	1.8 2
866.6# 3	934.92	0.4 2
897.9# 2	966.34	0.9 2
966.6# 2	966.34	0.9 1
1015.1# 3	1015.26	0.2 1

Evaluators consider the placement of the 556.0 keV  $\boldsymbol{\gamma}$  tentative because of the lack of supporting  $\gamma\gamma$  coin or other  $\gamma$  from the level.

Comments

 †  Weighted average of Ey values from 1997Gi08 and 2001Xi01.

[‡] From 2001Xi01 unless if otherwise noted.

Reported only in 1997Gi08.
Reported only in 2001Xi01.
From 1997Gi08, normalized to the 171.5 keV transition.

& For absolute intensity per 100 decays, multiply by 0.47 5.

# ¹²⁹Ce ε Decay (3.5 min) 1997Gi08,2001Xi01 (continued)

### Decay Scheme

Intensities: relative Iy

 $(5/2+) 0.0 - 3.5 \min_{\substack{129\\58} \text{Ce}_{71}} 3.5 \min_{\substack{129\\58} \text{Ce}_{71}} \%_{\epsilon+} \%_{\beta}^{*} = 100 - Q^{*} = 5040^{40}$ 



¹²⁹Ce & Decay (3.5 min) 1997Gi08,2001Xi01 (continued)

Decay Scheme (continued)

Intensities: relative  $\mathrm{I}\gamma$ 

(5/2+) 0.0 3.5 min  $\sqrt[129]{58}Ce_{71}$ % $\epsilon$ +% $\beta$ ⁺=100 Q⁺=5040⁴⁰

(1/2 to 7/2+)								1015 26	$\frac{I\beta^+}{0.70}$		$\frac{\text{Log } ft}{c}$
(1/2 00 1/21)								/	0.70	0.30	0.0
(1/2 to 7/2+)								966.34	0.6	0.2	69
								/	0.0	0.2	0.0
(7/2+ to 11/2+)								- 928.87	0.5	0.2	7.0
								1			
(3/2+ to 9/2+)								/	0.89	0.31	6.8
								/			
(5/2 +  to  9/2 +)								782.3	2.4	0.81	6.4
								1			
(5/2+ to 9/2+)								706.46	3.3	1.0	6.3
								/			
(9/2+)								- 645 39	1 5	0.46	6 7
(3/2+1)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						619.60	1.5	0.40	0.7
(5/2+ 10 5/2+)	,œ	<u>6000000000000000000000000000000000000</u>							4.0	1.1	6.3
(1/2+ to 7/2+)		<u> </u>						587.64	1.7	0.48	6.6
(1/2 to 7/2+)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~?	N 40	0			556.00	0.7	0.2	7.0
		0	2 A 24	సి _ల ి:	~ ~	°?.		,			
		~~0	9.22	1 19 N	*			,			
(1/2+ to 7/2+)	_	N. 5.0		YZ 25	i a a a a a a a a a a a a a a a a a a a	う. <u>か. 0</u> , 0. の い か い		472.21	1.2	0.31	6.9
(5/2+,7/2+)	<u></u>		\$~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N. 0. 0. 0		Never N		464.02	2.0	0.51	6.6
(9/2+)				A.03.05	\$ ?	22 <u>0</u>		446.34	1.3	0.32	6.8
(7/2+)						0,0 0,0		440.26	3.7	0.92	6.4
(3/2+,5/2+,7/2+)					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			398.47	1.0	0.25	7.0
						10 10, 12, 5 12, 5 12, 5 12, 5 13, 5 13, 5 13, 5 13, 5 13, 5 13, 5 14, 1	એ _{.3}	1			
(1/2  to  7/2+)						I' EX EX	ar i	270.91	0.7	0.9	7.9
(7/2+)	<u> </u>	++++		++++	+++	¥ <u>%~~</u>	<u> </u>	248.45	3.4	0.72	6.5
(5/2+)	1		<u> </u>	++++	4		<u> </u>	239.61	11	2.3	6.0
(1/2+ to 9/2+)		V V				~**		216.29	< 0.2	<0.05	>7.7
							<'06 141 08'00	/			
(5/2+)		<u>*     *  </u>	<u> </u>	<u> </u>	_ <u></u> ¥	<u> </u>		68.18 ¥	15	2.8	6.0
								/			
(2/2))				ļ							5.04
(J/2+)	<u>v</u>	<u></u>		<u>V</u>	<u>v</u>	<u> </u>		11.6 min	22	3.9	5.84
		¹²⁹ 57La	72								

### 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28

1992He03:  $^{51}V(^{82}Se,4n\gamma)$  E=67, 290 MeV; Ge  $\gamma,~\gamma\gamma-coin,~\gamma\gamma(\theta).$ 

2000Wa28:  $^{100}Mo(^{34}S,p4ng),$  E=155 MeV. Measured Ey and  $\gamma\gamma$  using EUROBALL-2 spectrometer.

 $\frac{19855m07: \ ^{98}Mo(^{36}S,p4n\gamma)}{122Te(^{11}B,4n\gamma)} E=55, 56.5 \text{ MeV}, \ ^{118}Sn(^{14}N,3n\gamma) E=53, 58, 62, 67, 76 \text{ MeV}; excitation function, Ge \gamma,$  $\gamma\gamma$ -coin,  $\gamma(\theta)$ . 1969Al05: ¹²¹Sb(¹²C,4n), ^{118,119,120}Sn(¹⁴N,xn), ¹¹⁵In(¹⁸O,4n), E=50-110 MeV; excitation function, Ge, scin, Si ce,

 $HI-\gamma(t)$ , HI-ce(t).

### ¹²⁹La Levels

Level scheme is mainly from 1992He03.  $J\pi$  assignment on the basis of  $\gamma$  multipolarities deduced from DCO ratios. Configurations on the basis of CSM analysis, systematics of neighboring nuclei and Total Routhian Surface calculations.

E(level) [‡]	$J\pi^{\dagger}$	T _{1/2}	Comments
0.0%	9/9		
67 58 3	5/2+		
172 18 4	11/2 -	056 55	$T = (r_{0} m I(68.9.104.8.2)(t)(1969A105)$
247 6& 3	7/2+	0.00 5 0	1/2. 10m 100.0,1010 ((0.001100)).
440 98 4	15/2 -	90 ns 4	T · from Doppler_shift recoil_distance method (1975Bu08)
445 18 2	9/2-	50 ps 4	$r_{1/2}$ . from Doppler-smit recon-distance method (1370Da06).
694 7& 4	11/2+		
915 08 5	19/2-	60 ns 9	T: from Doppler_shift recoil_distance method (1975Bu08)
1019 8a 4	13/2	0.0 pb 0	$r_{1/2}$ . The Dopplet since recent distance method (1979) $r_{1/2}$ .
1313 7& 4	15/2+		
1556.0\$ 5	23/2-		
1722.3 7			
1947.9 10			
$1983.0^{\#}5$	19/2+		
2068.1 & 6	19/2+		
2217.4 ^b 5	(13/2+)		
2239.3 9			
2239.3+x ^b 13	(17/2+)		
2293.9+x ^c 14	(19/2+)		
2340.886	27/2-		
2351.7d 9	(19/2+)		
2404.0+x ^b 14	(21/2+)		
$2429.0^{\#}5$	23/2+		
$2476.0^{@}7$	21/2+		
2567.9 ^e 9	(21/2+)		
2567.9+x ^c 14	(23/2+)		
2787.9 9	(23/2+)		
$2788.9 + x^{D}$ 14	(25/2+)		
2821.24 9	(23/2+)		
2839.0% 7	23/2+		
$2907.0^{\circ}$ 6	25/2+		
3014.8" b	21/2+		
2002 70 0	(27/2+)		
3251 1 6	(25/2+) 31/2-		
3388 3+x ^b 15	(29/2+)		
3418.2d 10	(27/2+)		
3473.3@ 6	29/2+		
$3728.7^{\#}6$	31/2+		
3753.5+x ^c 15	(31/2+)		
3780.6 ^e 10	(29/2+)		
4153.1+x ^b 15	(33/2+)		
4173.9d <i>10</i>	(31/2+)		
$4195.0^{@}7$	33/2+		
4264.18 8	35/2-		
4551.7# 7	35/2+		
4591.9+x ^c 15	(35/2+)		
4599.0 ^e 11	(33/2+)		
5043.4 ^u 12	(35/2+)		
$5054.5 + x^{0}$ 15 $5077.5^{0}$ 0	(37/2+)		
0011.0° 9	31/2+		
0000.13 10	09/2-		

_

#### 1992He03,2000Wa28 (continued) 51V(82SE,4NG),100MO(34S,P4NG)

E(level) [‡]	$J\pi^{\dagger}$	E(level)‡	$J\pi^{\dagger}$	E(level) [‡]	$J\pi^{\dagger}$
5473.0# 8	39/2+	6632.2+x ^c 16	(43/2+)	9769.2 [#] 14	(55/2+)
5503.8 ^e 12	(37/2+)	6754.0? ^d 13	(43/2+)	10082.8 \$ 21	55/2-
5557.9+x ^c 15	(39/2+)	7129.5 [@] 17	45/2+	$10949.2^{\#}$ 17	59/2+
5931.0 ^d 12	(39/2+)	7561.7# 11	47/2+	11377.8 [§] 23	59/2-
$6060.5^{@}14$	41/2+	7671.8 [§] 15	47/2-	12193.2# 20	63/2+
6086.1+x ^b 16	(41/2+)	8238.5@ 20	49/2+	$13499.2^{\#}22$	67/2+
6335.0?e 13	(41/2+)	8653.9# 12	51/2+	$14917.2^{\#}24$	71/2+
6484.3 # 9	43/2+	8853.8 [§] 18	51/2-	$16474^{\#}3$	75/2+
6512.8 [§] 11	43/2-	9421.5 [@] 22	53/2+		

¹²⁹La Levels (continued)

 †  As assigned in 2000Wa28 and 1992He03 based on  $\gamma\gamma( heta)$  data and band structures. All assignments are given in parentheses in Adopted Levels since strong supporting arguments for the lower levels (or bandheads are lacking).

 $\ddagger$  From least-squares fit to the EG data.

§ (A):  $\pi 1/2[550], \alpha = -1/2$ .

 (A): h1/2[00], 0=-1/2.
 (B): π3/2[422]⊗πh_{11/2}², α=-1/2.
 (C): π3/2[422]=πh_{11/2}², α=+1/2.
 (D): π(3/2[422]+1/2[420]), α=-1/2. Strongly coupled one-quasiproton band with admixture of of 3/2[422] and 1/2[420] proton configurations.

a (E):  $\pi(3/2[422]+\pi1/2[420]),\alpha=+1/2$ . Strongly coupled one-quasiproton band with admixture of of 3/2[422] and 1/2[420] proton configurations.

b (F):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = +1/2$ .

c (G):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = -1/2$ .

d (H):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = -1/2$ .

e (I):  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402], \alpha = +1/2$ .

## $\gamma(^{129}La)$

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult. [‡]	α#	Comments
55.6 3	2293.9+x				
67.7 3	67.5		M1	3.32 7	α(L)exp=0.44 20.
					$\alpha(K)=2.84$ 6; $\alpha(L)=0.386$ 8; $\alpha(M)=0.0803$ 16.
					$\alpha(N)=0.0177$ 4; $\alpha(O)=0.00287$ 6; $\alpha(P)=0.000221$ 5.
104.8 3	172.1		E3	20.0 4	$\alpha(K)=5.12$ 9; $\alpha(L)=11.54$ 25; $\alpha(M)=2.67$ 6.
					$\alpha(N)=0.566\ 13;\ \alpha(O)=0.0782\ 17;\ \alpha(P)=0.000256\ 5.$
					Ey: from 1973Le09. $\Delta E\gamma$ estimated by the evaluators.
					α(L+M)exp=25 15; K/L=0.51 11.
110.1 3	2404.0+x	152 \$ 10	(M1 + E2)	0.871 15	DCO=0.84 8.
163.9 3	2567.9 + x	233\$ 16	(M1 + E2)	0.2765	DCO=0.95 5.
179.9 3	247.6	106§ 8	(M1)	0.209	$\alpha(K)=0.178 \ 3; \ \alpha(L)=0.0239 \ 4; \ \alpha(M)=0.00497 \ 8;$
					$\alpha(N)=0.001092$ 17; $\alpha(O)=0.000178$ 3.
					$\alpha(P)=1.387\times10^{-5} 21.$
					DCO=1.05 4.
197.4 3	445.1	508 7	(M1)	0.1619	$\alpha(K)=0.1385\ 21;\ \alpha(L)=0.0185\ 3;\ \alpha(M)=0.00385\ 6;$
					$\alpha(N)=0.000846\ 13;\ \alpha(O)=0.0001376\ 21.$
					$\alpha(P)=1.075\times10^{-5}$ 16.
		e			DCO=1.01 2.
216.2 4	2567.9	9 § 2	(M1+E2)	0.1272	DCO=0.84 7.
220.9 3	2788.9+x	251% <i>18</i>	(M1+E2)	0.1202	DCO=0.82 3.
247.34	247.6	168 4			
249.54	694.7	298 7	D		DCO=1.03 3.
253.4 4	2821.2	98 2	(M1+E2)	0.0825 12	DCO=0.83 4.
269.0 3	440.9	973	E2	0.0666	$\alpha(K)=0.0532$ 8; $\alpha(L)=0.01054$ 16; $\alpha(M)=0.00225$ 4.
					$\alpha(N)=0.000486$ 7; $\alpha(O)=7.39\times10^{-5}$ 11; $\alpha(P)=3.49\times10^{-6}$ 5.
		8			DCO=1.31 4; $A_2$ =+0.35 3 (1975Wa07); $A_2$ =+0.24 3 (1973Le09).
272.4 4	3093.7	148 3	(M1+E2)	0.0678 10	DCO=0.92 6.
276.6 3	3065.6+x	2158 20	(M1+E2)	0.0651 10	DCO=0.92 3.
293.8 4	1313.7	682			
305.8 4	3093.7	19 3	(M1+E2)	0.0498 7	DCO=0.88 5.
322.6 4	3388.3+x	186 18	(M1+E2)	0.0432 7	DCO=0.85 5.

		51V(82SE,4N	G),100MO(	34 <b>S,P4NG</b> )	1992He03,2000Wa28 (continued)			
	_			γ( ¹²⁹ La) (	$\gamma(^{129}La)$ (continued)			
$E\gamma^{\dagger}$	E(level)	Ιγ	Mult.‡	α#	Comments			
324.5 5	3418.2	43 7	(M1+E2)	0.0425 6	$ \begin{array}{l} \alpha(K) \!=\! 0.033 \ 4; \ \alpha(L) \!=\! 0.0051 \ 3; \ \alpha(M) \!=\! 0.00108 \ 7. \\ \alpha(N) \!=\! 0.000235 \ 14; \ \alpha(O) \!=\! 3.71 \!\times\! 10^{-5} \ 12; \ \alpha(P) \!=\! 2.4 \!\times\! 10^{-6} \ 5. \end{array} $			
325 1 4	1019 8	12 4	(M1+E2)	0 0423 6	DCO=0.87 5. DCO=0.88 5			
362.3 5	3780.6	28 5	(M1+E2)	0.0319 5	DCO=0.70 8.			
365.0 3	3753 . 5 + x	$122 \ 13$	(M1 + E2)	0.03125	DCO=0.82 5.			
377.6 3	445.1	68 8	(E2)		DCO=1.35 2.			
385.0 5	2788.9+x	15 3	(M1.E9)	0 0959 /	DCO-0.60.7			
399 4 3	4173.9 4153.1+x	25 4	(M1 + E2) (M1 + E2)	0.02584 0.02474	DCO=0.09 7.			
404.0 6	6335.0?	12 2	(111112)	0.0241 4				
418.9 6	6754.0?	$12 \ 2$						
425.2 6	4599.0	$18 \ 4$						
427.4 6	5931.0	13 3						
430.96	2907.0 4591.0+v	337						
438.7 5	4391.9+x 5043.4	16 3						
445.8 3	2429.0	121 15	Q		DCO=1.49 3.			
446.9 4	694.7	87 14						
458.4 4	3473 . 3	80 15	D		DCO=1.10 4.			
460.6 6	5503.8	14 3						
462.5 4	5054.5+x	44 5	р		DCO-0.00.2			
474.3 3	915.0	828 30	E2	0.01193	$\alpha(\mathbf{K})=0.00937 \ 14; \ \alpha(\mathbf{L})=0.001556 \ 22; \ \alpha(\mathbf{M})=0.000327 \ 5. \\ \alpha(\mathbf{N})=7.12\times10^{-5} \ 10; \ \alpha(\mathbf{O})=1.120\times10^{-5} \ 16; \ \alpha(\mathbf{P})=7.04\times10^{-7} \ 10. \\ \mathbf{D} = 0.000327 \ 5. \\ \alpha(\mathbf{D})=1.120\times10^{-5} \ 10; \ \alpha(\mathbf{O})=1.120\times10^{-5} \ 10; \ \alpha(\mathbf{O})=1.120\times10^{-5} \ 10; \ \alpha(\mathbf{D})=1.120\times10^{-5} \ 10; \ $			
478 0 5	2907 0	59 11	(M1+E9)	0 0156	DCO=1.31 4; $A_2$ =+0.32 3 (1975Wa07); $A_2$ =+0.29 4 (1973Le09).			
492.9 6	2476.0	17 5	(111112)	0.0150	D00-0.10 J.			
498.0 4	3065.6+x	26 3						
502.9 5	5557.9 + x	254						
517.0 5	2239.3	21 4						
528.0 6	6086.1 + x	18 4						
540.10 566.3 [@] 5	2907.0	$10^{4}$ $103^{@}22$						
	3473.3	68 [@] 17						
574.6 3	1019.8	91 15	Q		DCO=1.45 4.			
585.8 3	3014.8	$216 \ 25$	Q		DCO=1.47 3.			
599.4 4	3388.3+x	47 6			D00 1 00 5			
618.84 64113	1313.7	83 16 717 40	Q		DCO=1.28 5. $DCO=1.42$ 7: $A_{+}=+0.35$ 3 (1975Wa07): $A_{+}=+0.22$ 6 (1973Le09)			
669.0 5	1983.0	33 8	પ		$DCO=1.12$ 7, $n_2=10.00$ 0 (1510 (1610), $n_2=10.22$ 0 (1610) $DCO=1.15$ 7.			
674.2 5	3014.8	51 7	D		DCO=1.60 15.			
687.0 7	3780.6	275						
687.9 3	3753.5+x	516						
713.93 72175	3728.7	190 22	Q		DCO=1.54 5.			
754.4 4	2068.1	37.9	a A		DCO=1.46 7.			
755.8 7	4173.9	19 4	4					
764.9 3	4153. 1 + x	557						
770.9 4	2839.0	28 7	Q		DCO=1.65 4.			
784.9 3	2340.8	453 40	Q		DCO=1.41 7; $A_2$ =+0.31 4 (1975Wa07); $A_2$ =+0.21 1 (1973Le09).			
818.4 8	4599.0	16 3	0		DC0-1 59 5			
040.0 0	4001.7 6754.0?	104 20	ષ		DOG-1.00 0.			
831&	6335.0?							
838.4 4	4591.9+x	578						
840.0 6	2787.9	13 3						
869.5 8	5043.4	16 3	D					
873.1 3	2429.0	194 22	D O		DCO=1.45 5. DCO=1.28 4			
004.00 887 5 7	5931 0	∠4 δ 15 3	ષ		DOU=1.00 4.			
901.6 5	5054.5 + x	56 8						
904.5 7	5503.8	18 4						

# $^{129}_{57}$ La₇₂-33

## 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28 (continued)

### $\gamma(^{129}\text{La})$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult.‡	Comments
910.3 3	3251.1	268 20	Q	$DCO=1.35$ 10; $A_{0}=+0.26$ 15 (1975Wa07).
921.3 4	5473.0	97 13	ò	DCO=1.55 4.
966.1 4	5557.9 + x	36 7	•	
983	6060.5			
1011.3 5	6484.3	81 11	Q	DCO=1.42 6.
1013.0 4	4264.1	156 14	Q	DCO=1.34 4; $A_0 = +0.02$ 30 (1975Wa07).
1032.1 7	6086.1+x	14 5	·	, <u>2</u>
1033.0 15	1947.9	13 4		
1067.8 5	1983.0	72 11	D	DCO=1.49 8.
1069	7129.5			
1074.1 9	6632.2+x	15 5		
1077.4 5	7561.7	499	Q	DCO=1.59 6.
1092.2 5	8653.9	29 6	Q	DCO=1.46 8.
1094.0 6	5358.1	84 9	Q	DCO=1.56 6.
1109	8238.5			
1115.2 7	9769.2	26 6		
1154.7 6	6512.8	55 9	Q	DCO=1.43 7.
1159	7671.8			
1180	10949.2			
1182	8853.8			
1183	9421.5			
1197.0 6	2217 . 4	58 10	D	DCO=1.06 5.
1229	10082.8			
1232.0 15	2787.9	5 2		
1244	12193.2			
1265 1	2821.2	5 2		
1281.4 6	1722.3	31 5		
1295 &	11377.8			
1306	13499.2			
1418	14917.2			
1437.0 15	2351. 7	$11 \ 3$		
1557	16474			
1772.39	2217 . 4	26 10		
1777.4 8	2217 . 4	23 10		

 †  From 1992He03 unless otherwise noted.

[±] From 1992He03 based on DCO ratios I(35-35)/I(90-35) gated by a known stretched E2 γ. Assigned to be stretched Q or nonstretched dipole for DCO-ratio>1.3 and stretched d for DCO-ratio<1.1. 1992He03 suggest possible M1+E2 mixing for much smaller DCO. Evaluators regard DCO-ratio<1.0 as (M1+E2).

 $\delta = 0$  for mixed transitions. For  $\gamma$  rays with  $E\gamma>300$  keV,  $I\gamma=I(\gamma+ce)$  is assumed.

#  $\delta(E2/M1){=}0.3$  assumed when  $\delta$  not listed.

[®] Multiply placed; intensity suitably divided.

& Placement of transition in the level scheme is uncertain.

(E)5/2+

#### (B) $\pi 3/2[422] \otimes \pi h_{11/2}^2$ , (C) $\pi 3/2[422] \otimes \pi h_{11/2}^2$ , (A) $\pi 1/2[550], \alpha = -1/2$ . (D) $\pi(3/2[422]+1/2[420])$ , $\alpha = -1/2.$ $\alpha = +1/2.$ $\alpha = -1/2$ . 75/2+ 16474 71/2+ 14917.267/2+ 13499.2 12193.2 63/2+ 59/2 -11377.859/2+ 10949.2 55/2 -10082.8 (55/2+) 9769.2 9421.5 53/2+ 51/2 -8853.8 51/2+ 8653.9 49/2+ 8238.547/2 -7671.8 - 47/2+ 7561.7 45/2 +7129.5 43/2-6512.8 43/2+ 6484.3 6060.5 41/2+ 39/2+ 5473.039/2 -5358.1 5077.5 37/2+ 35/2+ 4551.735/2 -4264.1 33/2+ 4195.0 (B)31/2+ 31/2+ 3728.7 29/2+ 3473.3 (B)27/2+ 31/2 -3251.1 2907.0 25/2 +27/2+ 3014.8 23/2+ 2839.0 21/2+ 2476.0 23/2+ 2429.0 (B)23/2+ 2340.8 (A)27/2-27/2-(A)27/2-19/2 +2068.119/2+ 1983.0 (B)19/2+ 15/2 +1313.7(A)23/2-23/2-1556.0(E)13/2+ (D)15/2+ 1 11/2 +694.7 19/2-(A)19/2-915.0 (E)9/2+ 15/2 -440.9 7/2 +247.611/2-172.1(E)5/2+

### 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28 (continued)

 $^{129}_{57}$ La $_{72}$ 

0.0

3/2+

### 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28 (continued)

(E)  $\pi(3/2[422]+\pi 1/2[420])$ , $\alpha$ =+1/2. (F)  $\pi 1/2[550] \otimes \nu 7/2[523] \otimes \nu 5/2[402],$  $\alpha =+1/2.$  (G)  $\pi 1/2[550] \otimes \nu 7/2[523] \otimes \nu 5/2[402],$  $\alpha = -1/2.$ 



# 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28 (continued)

(H)  $\begin{aligned} \pi 1/2[550] \otimes \nu 7/2[523] \otimes \nu 5/2[402], \\ \alpha = -1/2. \end{aligned}$ 

(I)  $\pi 1/2[550] \otimes v7/2[523] \otimes v5/2[402],$  $\alpha = +1/2.$ 

(43/2+)		6754.0			
(I)(41/2+)			(41/2+)		6335.0
(39/2+)	v.	5931.0	(H)(39/2+)	V	
(I)(37/2+)	v		(37/2+)		v 5503.8
(35/2+)	V	5043.4	(H)(35/2+)	,	
(I)(33/2+)	V		(33/2+)		4599.0
(31/2+)	v	4173.9	(H)(31/2+)	_ /	
(I)(29/2+)	V		(29/2+)	<u></u> ۲	3780.6
(27/2+)	· · · ·	3418.2	(25/2+)		3093.7
(I)(25/2+)	V		(H)(23/2+)		V /
(23/2+)	2	2821.2	(23/2+)		
(I)(21/2+)	V		(21/2+)	<u>r</u>	2567.9
(19/2+)		2351.7	(H)(19/2+)	V	
(A)23/2-			_		
	<b>r</b>		_		
(A)19/2-	v		_		

 $^{129}_{57}$ La $_{72}$


 $^{129}_{57} \mathrm{La_{72}-37}$ 

 $^{129}_{57}\mathrm{La_{72}-37}$ 

#### 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28 (continued)

Level Scheme

 $\label{eq:Intensities: relative I gamma} Intensities: relative I gamma % \label{eq:Intensity} Intensity suitably divided$ 



#### 51V(82SE,4NG),100MO(34S,P4NG) 1992He03,2000Wa28 (continued)

Level Scheme (continued)

Intensities: relative  $\ensuremath{I}\ensuremath{\gamma}$ 

@ Multiply placed; intensity suitably divided



 $^{129}_{57}$ La $_{72}$ 

#### ¹¹⁹Sn(¹⁴N,4nγ) 1995Ku29,2008Sa36

1995Ku29: ¹¹⁹Sn(¹⁴N,4nγ), E=59, 62, 65 MeV. Measured Eγ, Ιγ, γγ, γ(θ), γγ(θ) using an array of six Ge detectors.
2008Sa36: ¹²⁰Sn(¹⁴N,5nγ), E=77 MeV. Measured lifetimes by Doppler-shift attenuation method.
1975Wa07: ¹¹⁹Sn(¹⁴N,4nγ) E=67, 75 MeV; Ge γ, γγ-coin, γ(θ).
1975Bu08: ¹¹⁹Sn(¹⁴N,4nγ) E=67 MeV; Doppler-shift recoil-distance method.

### ¹²⁹La Levels

Level scheme is mainly from 1995Ku29.  $J\pi$  assignment on the basis of  $\gamma$  multipolarities deduced from angular correlation or from  $A_2$  and  $A_4$  values.

E(level) [†]	Jπ‡	T _{1/2} §	Comments
6			
$0.0^{1}$	3/2+		
68.185 20	5/2+	0 56 ~ 5	The from Adopted Levels
239 81 3	11/2-	0.30 8 3	$1_{1/2}$ . from Adopted Levels.
235.5 5 248 57 ^f 19	7/2+		
$440.25^{m}20$	7/2+		
442.2° 3	15/2-	90 ps 4	$T_{1/0}$ ; from recoil-distance method (1975Bu08).
446.49g 23	9 / 2 +		1/2
645.913	(9/2+)		
$696.73^{ m f}\ 24$	11/2+		
916.9 ^c 3	19/2-	6.0 ps 9	T _{1/2} : from 1975Bu08.
929.1 ^k 3			
$992.52^{m}23$	11/2+		
1021.95g 24	13/2+		
1120.30 3	(13/2-)		
1120.5? 3			The existence of this level is not discussed in 1995Ku29. Evaluators find it possible that the 1098.7 keV $\gamma$ feeds the 1120.3 keV (13/2-) level, in which case this level may not exist.
$1234$ . 4 1 3	13/2+		
1275.2 3			
1305.1& 3	17/2-		
$1315.9^{1}$ 3	15/2+		
1328.9 4			
1524.5 3	00/0	<b>N1</b> 0	
1558.3° 3	23/2-	≥1.2 ps	
1651 9 1	11/2-		
1654 3 3	13/2+		
1725.1.3	(15/2+)		
1753.3? 4	(,		The existence of this level is not discussed in 1995Ku29. Evaluators find it possible
			that the 1311.1 keV $\gamma$ depopulates the 1753.6 keV 17/2+ level, in which case this level may not exist.
1753.6g 3	17/2+		
1803.1 3			
1851.4ª 3	19/2-		
1949.8 3	21/2-		
1951.0 4			
1930.74 1972.4.3			
1985.3d 3	19/2+		
2003.9 4			
2070 . 1 f 4	19/2+		
2118.54			
2170.04	19/2		
2206.74			
2219.1 3	15/2+		
2221.7b 3	21/2-		
2242.9 ^K 3	17/2+		
2278.2 4			
2291.2 3 2208 2 2			
2343 5 [°] 3	27/2-	0 82 ne 20	
$2352.1^{@}4$	(19/2+)	0.02 ps 20	
2431.9d 3	23/2+		
2453.1 3			
2454.04			

# $^{129}_{57}$ La $_{72}$ -41

 $^{129}_{57}$ La $_{72}$ -41

### ¹¹⁹Sn(¹⁴N,4nγ) 1995Ku29,2008Sa36 (continued)

## ¹²⁹La Levels (continued)

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2} §	Comments
2462.9 5			
2475.0 ^a 3	23/2-		
2478.3 ^e 3	21/2+		
2490.34			
2520.64			
2568.6# 4	(21/2+)		
2599.0 4			
2705 4 4			
2729.8 4			
2767.8 4			
2784.2 ^j 3			
2789.9 3	(23/2+)		
2803.2 3			
2822.9 ^w 4	(23/2+)		In level-scheme table of 1995Ku29 two separate levels are shown, one at 2822.9 decaying through 254.3γ and 1264.6γ; the other at 2822.6 decaying through 1264.4γ. But in the figure only one level is shown by 1995Ku29.
$2841$ . $3^{\mathrm{f}}$ 4	23/2+		
2864.4 4			
2910.1 ^e 3	25/2+		
2911.3 3			
2943.3 D 2955 Ab A	(25/2)		
2956.0? 4	(2072-)		Evaluators find it possible that the 612.5 keV $\gamma$ depopulates the 2955.4 keV (25/2-)
			level, in which case the level may not exist.
3018.0 ^d 4	27/2+		
3044 . 1 4			
3096.3# 4	(25/2+)		
3124.6 4	0 = / 0		
3215.8ª 4	27/2 - 21/2	0 10 = = 8	
$3234.0 \cdot 4$ 3287.0.4	31/2-	0.40 ps 8	
3310.1 4			
3376.2 4			
3383.1 4			
3411.6 ^j 4			
3420.9 4	(27/2+)		
3474.9 4			
3475.1 5 3477 00 4	29/2+		
3482.6 4	20/21		
3523.4 4			
3531.4 4			
3636.9 4			
3695.2 4			
3697.4 5			
3712.4 4 3739 1d 1	31/9+		
3760.4 ^b 5	(29/2-)		
3783.8# 4	(29/2+)		
3858.1 4			
3952.34			
3998.5 5			
4000.4 4			
4000.95			
4043.5a 5	(31/2-)		
4176.9@ 4	(31/2+)		
4199.1 ^e 4	33/2+		
4267.2 ^c 5	35/2-	0.50 ps 12	
4297.3 5			
4362.0?	(31/2+)		No decaying gammas shown by 1995Ku29. See comment for 5200.9 level.
4555.4ª 5	35/2+		

# $^{129}_{57}\mathrm{La_{72}-42}$

### ¹¹⁹Sn(¹⁴N,4nγ) 1995Ku29,2008Sa36 (continued)

## ¹²⁹La Levels (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+) 2+) 2-) ++ 2+) 2+) 2+) 2+) 2+) 2+) 2+)	No decaying gammas This level is shown (to a 4761.8, (33/) the final levels at table. This sequen level sequence of level sequence of	s shown by 1995Ku in the level-schem 2+) level) and 838. t 4761.8 and 4362. nce of three levels x+2356.6, x+1917.4 5200.8, 4761.8, 43	129. See comment for 5200.9 level. the table only by 1995Ku29 decaying through 439.4 $\gamma$ $6\gamma$ (to a 4362.0, (31/2+) level). The decay of 0 is shown neither in the figure nor in the and connecting $\gamma$ rays matches exactly with the 4, x+1517.7 and the $\gamma$ rays between them. Thus the 62.0 very probably does not exist.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+) 2+) 2-) ++ 2+) 2+) 0.37 ps 10 ++ 2+) 2+) 2+)	No decaying gammas This level is shown (to a 4761.8, (33/3 the final levels at table. This sequen level sequence of level sequence of	s shown by 1995Ku in the level-schem 2+) level) and 838. t 4761.8 and 4362. nce of three levels x+2356.6, x+1917.4 5200.8, 4761.8, 43	129. See comment for 5200.9 level. the table only by 1995Ku29 decaying through 439.4 $\gamma$ $6\gamma$ (to a 4362.0, (31/2+) level). The decay of 0 is shown neither in the figure nor in the and connecting $\gamma$ rays matches exactly with the 4, x+1517.7 and the $\gamma$ rays between them. Thus the 62.0 very probably does not exist.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-) ++ 2+) 2-) 0.37 ps 10 ++ 2+) 2+) 2+)	This level is shown (to a 4761.8, (33/3 the final levels at table. This sequen level sequence of level sequence of	in the level-schem 2+) level) and 838. t 4761.8 and 4362. nce of three levels x+2356.6, x+1917.4 5200.8, 4761.8, 43	the table only by 1995Ku29 decaying through 439.4 $\gamma$ 6 $\gamma$ (to a 4362.0, (31/2+) level). The decay of 0 is shown neither in the figure nor in the and connecting $\gamma$ rays matches exactly with the 4, x+1517.7 and the $\gamma$ rays between them. Thus the 62.0 very probably does not exist.						
$5361.1^{\circ} 6 \qquad (39/3)$ $5361.1^{\circ} 6 \qquad (39/3)$ $5361.1^{\circ} 6 \qquad (39/3)$ $5477.1^{\circ} 6 \qquad (39/3)$ $0+x^{\circ} \qquad (17/3)$ $55.9+x^{\circ} 3 \qquad (19/3)$ $166.6+x^{\circ} 4 \qquad (21/3)$ $331.0+x^{\circ} 5 \qquad (237/3)$	2-) 0.37 ps 10 + + 2+) 2+) 2+) 2+) 2+)	This level is shown (to a 4761.8, (33/3 the final levels at table. This sequer level sequence of level sequence of	in the level-schem 2+) level) and 838. t 4761.8 and 4362. nce of three levels x+2356.6, x+1917.4 5200.8, 4761.8, 43	the table only by 1995Ku29 decaying through 439.4 $\gamma$ 6 $\gamma$ (to a 4362.0, (31/2+) level). The decay of 0 is shown neither in the figure nor in the and connecting $\gamma$ rays matches exactly with the 4, x+1517.7 and the $\gamma$ rays between them. Thus the 62.0 very probably does not exist.						
$5361.1^{c} 6 (39/2)$ $5361.1^{c} 6 (39/2)$ $5477.1^{d} 6 (39/2)$ $0+x^{i} (17/2)$ $55.9+x^{h} 3 (19/2)$ $166.6+x^{i} 4 (21/2)$ $331.0+x^{h} 5 (23/2)$	2+) 2-) 0.37 ps 10 + 2+) 2+) 2+)	This level is shown (to a 4761.8, (33/3 the final levels at table. This sequer level sequence of level sequence of	in the level-schem 2+) level) and 838. t 4761.8 and 4362. nce of three levels x+2356.6, x+1917.4 5200.8, 4761.8, 43	te table only by 1995Ku29 decaying through $439.4\gamma$ 6 $\gamma$ (to a 4362.0, (31/2+) level). The decay of 0 is shown neither in the figure nor in the and connecting $\gamma$ rays matches exactly with the 4, x+1517.7 and the $\gamma$ rays between them. Thus the 62.0 very probably does not exist.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-) 0.37 ps 10 2+ 2+) 2+) 2+)		Into level is shown in the level-scheme table only by 1995Ku29 decaying thro (to a 4761.8, $(33/2+)$ level) and $838.6\gamma$ (to a 4362.0, $(31/2+)$ level). The deca the final levels at 4761.8 and 4362.0 is shown neither in the figure nor in table. This sequence of three levels and connecting $\gamma$ rays matches exactly level sequence of x+2356.6, x+1917.4, x+1517.7 and the $\gamma$ rays between then level sequence of 5200.8, 4761.8, 4362.0 very probably does not exist.							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2+) 2+) 2+)									
$\begin{array}{ccccccc} 0+x^{i} & (17/2) \\ 55.9+x^{h} & 3 & (19/2) \\ 166.6+x^{i} & 4 & (21/2) \\ 331.0+x^{h} & 5 & (23/2) \\ 552.4+z^{i} & 5 & (27/2) \\ \end{array}$	2+) 2+) 2+)									
$55.9+x^{h} 3 (19/2)$ $166.6+x^{i} 4 (21/2)$ $331.0+x^{h} 5 (23/2)$ $558.4+x^{i} 5 (25/2)$	2+) 2+)									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2+)									
$331.0 + x^{II} 5$ (23/2										
	2+)									
$202.4 + x^2 = 0$ (20/2)	2+)									
$329.3 + x^{-1} = 3$ (277)	2+)									
$1517 7 + x^h 5$ (31/)	2+)									
$1917.4 + x^{i} 6$ (33/2	2+)									
$2356.6 + x^{h} 6$ (35/	2+)									
$2820.4 + x^{i} 7$ (37/2	2+)									
a (D): π3/2[541],α=-1 b (E): π3/2[541],α=+1	1/2. 1/2									
c (F): $\pi 1/2[550], \alpha = -1$ d (G): $\pi 3/2[422] \otimes \pi h_1$ . e (H): $\pi 3/2[422] \otimes \pi h_1$ . f (I): $\pi (3/2[422]+1/2[$ g (J): $\pi (3/2[422]+1/2[$ h (K): $\pi 1/2[550] \otimes v7/2$ i (L): $\pi 1/2[550] \otimes v7/2$ j (M): γ cascade #1. k (N): γ cascade #2. l (O): γ cascade #3. m (P): γ cascade #4.	1/2. 1/2. 1/2 ² , $\alpha$ =-1/2. 1/2 ² , $\alpha$ =+1/2. [420]), $\alpha$ =-1/2. Strongly [420]), $\alpha$ =+1/2. 2[523] $\otimes$ v5/2[402], $\alpha$ =-1/2 2[523] $\otimes$ v5/2[402], $\alpha$ =+1/2	coupled one-quasiproton 2. Three-quasiparticle ba 2.	.nd with the other	signature of v7/2[523].						
c (F): $\pi 1/2(550), \alpha = -1$ d (G): $\pi 3/2[422] \otimes \pi h_1$ . e (H): $\pi 3/2[422] \otimes \pi h_1$ . f (I): $\pi (3/2[422]+1/2[$ g (J): $\pi (3/2[422]+1/2[$ h (K): $\pi 1/2[550] \otimes v7/2$ i (L): $\pi 1/2[550] \otimes v7/2$ j (M): γ cascade #1. k (N): γ cascade #2. l (O): γ cascade #3. m (P): γ cascade #4.	1/2. 1/2. 1/2 ² , $\alpha = -1/2$ . 1/2 ² , $\alpha = +1/2$ . (420]), $\alpha = -1/2$ . Strongly [420]), $\alpha = +1/2$ . 2[523] $\otimes v5/2[402], \alpha = -1/2$ 2[523] $\otimes v5/2[402], \alpha = +1/2$	coupled one-quasiproton 2. Three-quasiparticle ba 3.	, and with the other $\gamma(^{129}{ m La})$	signature of v7/2[523].						
$ \begin{array}{c} c & (F): \ \pi 1/2 [550], \alpha = -1 \\ d & (G): \ \pi 3/2 [422] \otimes \pi h_1, \\ e & (H): \ \pi 3/2 [422] \otimes \pi h_1, \\ f & (I): \ \pi (3/2 [422] + 1/2 [ \\ g & (J): \ \pi (3/2 [422] + 1/2 [ \\ h & (K): \ \pi 1/2 [550] \otimes v 7/2 \\ i & (L): \ \pi 1/2 [550] \otimes v 7/2 \\ j & (M): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 2. \\ l & (O): \ \gamma \ cascade \ \# 3. \\ m & (P): \ \gamma \ cascade \ \# 4. \\ \end{array} $	Ey Iv	coupled one-quasiproton . Three-quasiparticle ba	 .nd with the other <u>γ(¹²⁹La)</u> α	signature of v7/2[523]. Comments						
c (F): π1/2[550],α=-1 d (G): π3/2[422] $\otimes$ πh ₁ . e (H): π3/2[422] $\otimes$ πh ₁ . f (I): π(3/2[422]+1/2[ g (J): π(3/2[422]+1/2] h (K): π1/2[550] $\otimes$ v7/2 i (L): π1/2[550] $\otimes$ v7/2 j (M): γ cascade #1. k (N): γ cascade #2. l (O): γ cascade #3. m (P): γ cascade #4.	$\frac{1}{1/2}$ $\frac{1}{1/2}^{2}, \alpha = -1/2.$ $\frac{1}{1/2}^{2}, \alpha = +1/2.$ $\frac{1}{2}(20), \alpha = -1/2. \text{ Strongly}$ $\frac{1}{2}(20), \alpha = +1/2.$ $\frac{1}{2}(523) \otimes v5/2[402], \alpha = -1/2.$ $\frac{1}{2}(523) \otimes v5/2[402], \alpha = +1/2.$ $\frac{1}{2}(523) \otimes v5/2[402], \alpha = +1/2.$	coupled one-quasiproton 2. Three-quasiparticle ba 3.	 .nd with the other <u>γ(¹²⁹La)</u> α	signature of v7/2[523]. Comments						
c (F): π1/2[550],α=-1 d (G): π3/2[422] $\otimes$ πh ₁ . e (H): π3/2[422] $\otimes$ πh ₁ . f (I): π(3/2[422]+1/2[ g (J): π(3/2[422]+1/2] h (K): π1/2[550] $\otimes$ v7/2 i (L): π1/2[550] $\otimes$ v7/2 j (M): γ cascade #1. k (N): γ cascade #2. l (O): γ cascade #3. m (P): γ cascade #4. <u>E(level)</u> <u>E</u> 68.18 68 172.4 104	$E_{\gamma} = \frac{I_{\gamma}}{I_{2}} \frac{I_{\gamma}}{\alpha = -1/2} \frac{I_{\gamma}}{I_{2}} \frac{I_{\gamma}}{\alpha = +1/2} \frac{I_{\gamma}}{\alpha = +1/2} \frac{I_{\gamma}}{\alpha = -1/2} \frac{I_{\gamma}}{$	coupled one-quasiproton Three-quasiparticle ba Mult. ô [†]	 and with the other <u>γ(¹²⁹La)</u> α α	signature of v7/2[523]. Comments						
$ \begin{array}{c} c & (F): \ \pi 1/2 [550], \alpha = -1 \\ d & (G): \ \pi 3/2 [422] \otimes \pi h_1 \\ e & (H): \ \pi 3/2 [422] \otimes \pi h_1 \\ f & (I): \ \pi (3/2 [422] + 1/2 [ \\ g & (J): \ \pi (3/2 [422] + 1/2 [ \\ h & (K): \ \pi 1/2 [550] \otimes v7/2 \\ i & (L): \ \pi 1/2 [550] \otimes v7/2 \\ j & (M): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 2. \\ l & (O): \ \gamma \ cascade \ \# 3. \\ \hline m & (P): \ \gamma \ cascade \ \# 4. \\ \hline \end{array} $	$\frac{E\gamma}{1/2} = \frac{1}{2} \frac{1}{2}$	coupled one-quasiproton 2. Three-quasiparticle ba 3. <u>Mult.</u> ô [†]	 and with the other <u>γ(¹²⁹La)</u> <u>α</u> 20.8	signature of v7/2[523]. Comments Mult.: from Adopted Gammas.						
$\begin{array}{c} c & (F): \ \pi 1/2 [550], \alpha = -1 \\ d & (G): \ \pi 3/2 [422] \otimes \pi h_1, \\ e & (H): \ \pi 3/2 [422] \otimes \pi h_1, \\ f & (I): \ \pi (3/2 [422] + 1/2 [ \\ g & (J): \ \pi (3/2 [422] + 1/2 [ \\ h & (K): \ \pi 1/2 [550] \otimes v7/2 \\ i & (L): \ \pi 1/2 [550] \otimes v7/2 \\ j & (M): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 2. \\ l & (O): \ \gamma \ cascade \ \# 3. \\ \hline m & (P): \ \gamma \ cascade \ \# 4. \\ \hline \hline \begin{array}{c} E(level) & E \\ \hline 68 . 18 & 68 \\ 172 . 4 & 104 \\ 239 . 8 & 171 \\ 248 . 57 & 180 \\ \hline \end{array}$	$\frac{E\gamma}{1/2} = \frac{1}{2} (2\pi)^2 $	coupled one-quasiproton 2. Three-quasiparticle ba 3. <u>Mult.</u> <u>ô</u> †	and with the other $\gamma(^{129}La)$ $\alpha$ 20.8	signature of v7/2[523]. Comments Mult.: from Adopted Gammas.						
$\begin{array}{c} c & (F): \ \pi 1/2 [550], \alpha = -1 \\ d & (G): \ \pi 3/2 [422] \otimes \pi h_1, \\ e & (H): \ \pi 3/2 [422] \otimes \pi h_1, \\ f & (I): \ \pi (3/2 [422] + 1/2 [ \\ g & (J): \ \pi (3/2 [422] + 1/2 [ \\ h & (K): \ \pi 1/2 [550] \otimes \nu 7/2 \\ i & (L): \ \pi 1/2 [550] \otimes \nu 7/2 \\ j & (M): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 2. \\ l & (O): \ \gamma \ cascade \ \# 3. \\ m & (P): \ \gamma \ cascade \ \# 4. \\ \hline \begin{array}{c} E(level) & E \\ \hline 68 . 18 & 68 \\ 172 . 4 & 104 \\ 239 . 8 & 171 \\ 248 . 57 & 180 \\ 248 \end{array}$	$E_{\gamma} = I_{\gamma}^{1/2} \sum_{\substack{1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 2}} \sum_{\alpha = -1/2 \\ \alpha = +1/2 \\ (420), \alpha = -1/2 \\ (420), \alpha = -1/2 \\ (420), \alpha = +1/2 \\ (2523) \otimes \sqrt{5/2} [402], \alpha = -1/2 \\ (2523) \otimes \sqrt{5/2} [402], \alpha = +1/2 \\ (2523) \otimes \sqrt{5/2} [402], \alpha = -1/2 \\ (2523) \otimes \sqrt{5/2} [40], \alpha = -1/2 \\ (2523) \otimes \sqrt{5/2} [40], \alpha = -1/2 \\ (2523) \otimes \sqrt{5/2} [40], \alpha = -1/2 \\ (2523) \otimes $	coupled one-quasiproton 2. Three-quasiparticle ba 3. <u>Mult.</u> δ [†]	$\frac{\gamma^{(129}La)}{20.8}$	signature of v7/2[523]. Comments Mult.: from Adopted Gammas.						
$\begin{array}{c} c & (F): \ \pi 1/2 [550], \alpha = -1 \\ d & (G): \ \pi 3/2 [422] \otimes \pi h_1, \\ e & (H): \ \pi 3/2 [422] \otimes \pi h_1, \\ f & (I): \ \pi (3/2 [422] + 1/2 [ \\ g & (J): \ \pi (3/2 [422] + 1/2 [ \\ h & (K): \ \pi 1/2 [550] \otimes v7/2 \\ i & (L): \ \pi 1/2 [550] \otimes v7/2 \\ i & (L): \ \pi 1/2 [550] \otimes v7/2 \\ i & (D): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 2. \\ l & (O): \ \gamma \ cascade \ \# 3. \\ m & (P): \ \gamma \ cascade \ \# 4. \\ \hline \end{array}$	$E_{\gamma} = I_{\gamma}^{1/2} \sum_{\substack{1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 2}} (\alpha = -1/2) \sum_{\substack{1/2 \\ 1/2 \\ 2}} (\alpha = -1$	coupled one-quasiproton 2. Three-quasiparticle ba 3. Mult. $\delta^{\dagger}$	$\frac{\gamma^{(129}La)}{20.8}$	signature of v7/2[523]. Comments Mult.: from Adopted Gammas.						
$\begin{array}{c} c & (F): \ \pi 1/2 [550], \alpha = -1 \\ d & (G): \ \pi 3/2 [422] \otimes \pi h_1, \\ e & (H): \ \pi 3/2 [422] \otimes \pi h_1, \\ f & (I): \ \pi (3/2 [422] + 1/2 [ \\ g & (J): \ \pi (3/2 [422] + 1/2 [ \\ h & (K): \ \pi 1/2 [550] \otimes \nu 7/2 \\ i & (L): \ \pi 1/2 [550] \otimes \nu 7/2 \\ i & (L): \ \pi 1/2 [550] \otimes \nu 7/2 \\ j & (M): \ \gamma \ cascade \ \# 1. \\ k & (N): \ \gamma \ cascade \ \# 2. \\ l & (O): \ \gamma \ cascade \ \# 3. \\ m & (P): \ \gamma \ cascade \ \# 3. \\ m & (P): \ \gamma \ cascade \ \# 4. \\ \hline \end{array}$	$E_{\gamma} = I_{\gamma}^{1/2} \sum_{\substack{1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 2}, \alpha = -1/2. \\ Strongly \\ [420]), \alpha = -1/2. \\ Strongly \\ [420]), \alpha = +1/2. \\ [2523] \otimes v5/2 [402], \alpha = -1/2 \\ [2523] \otimes v5/2 [402], \alpha = +1/2 \\ [2523] \otimes v5/2 [402], \alpha = +1/2 \\ [2523] \otimes v5/2 [402], \alpha = +1/2 \\ [2523] \otimes v5/2 [402], \alpha = -1/2 \\ [2523] \otimes v5/2 \\ [2523] $	coupled one-quasiproton 2. Three-quasiparticle ba 3. <u>Mult.</u> $\delta^{\dagger}$	$\frac{\gamma^{(129}La)}{20.8}$	signature of v7/2[523]. Comments Mult.: from Adopted Gammas.						
c       (F): $\pi 1/2[550], \alpha = -1$ d       (G): $\pi 3/2[422] \otimes \pi h_1$ e       (H): $\pi 3/2[422] \otimes \pi h_1$ f       (I): $\pi (3/2[422] + 1/2[$ g       (J): $\pi (3/2[422] + 1/2[$ h       (K): $\pi 1/2[550] \otimes v7/2$ i       (L): $\pi 1/2[550] \otimes v7/2$ i       (L): $\pi 1/2[550] \otimes v7/2$ j       (M): $\gamma$ cascade #1.         k       (N): $\gamma$ cascade #2.         l       (O): $\gamma$ cascade #3.         m       (P): $\gamma$ cascade #4.         E(level)       E         68.18       68         172.4       104         239.8       171         248.57       180         248       191         372       440         442.2       269	$\frac{E\gamma}{1/2}, \frac{1}{(2, 2)}, \alpha = -1/2, \frac{1}{(2, 2)}, \alpha = +1/2, \frac{1}{(2, 2)}, \alpha = +1/2, \frac{1}{(2, 2)}, \alpha = -1/2, \frac{1}{(2, 2)}, \alpha = -1/2, \frac{1}{(2, 2)}, \alpha = +1/2, \frac{1}{(2, 2)}, \frac{1}{(2, 2)}, \frac{1}{(2, 2)}, \alpha = +1/2, \frac{1}{(2, 2)}, \frac{1}{(2,$	coupled one-quasiproton 2. Three-quasiparticle ba 3. Mult. 8 [†] 23	and with the other $\gamma(^{129}La)$ $\alpha$ 20.8 0.0660	signature of v7/2[523]. Comments Mult.: from Adopted Gammas. $\alpha(K)=0.0528 \ \delta; \ \alpha(L)=0.01044 \ 16; \ \alpha(M)=0.00223 \ 4.$ $\alpha(N)=0.000481 \ 7; \ \alpha(O)=7.32\times10^{-5} \ 11;$ $\alpha(P)=3.47\times10^{-6} \ 5.$ $A_2=+0.292 \ 1; \ A_4=-0.074 \ 1.$						

# $^{129}_{57}$ La $_{72}$ -43

119 sn(14 N 4nx)	1995Ku29 2008Sa36	(continued)
SH( N.4H7)	1 <i>333</i> Mu <i>43</i> ,40003a30	(continueu)

 $\gamma(^{129}La)$  (continued)

E(level)	Eγ	Ιγ	Mult.	δ†	α	Comments
446.49 645.9	378.3 3 199.5 3	100 21 7	(M1+E2)	-1.6 +5-8	0.173 5	$\alpha(K)=0.1368\ 21;\ \alpha(L)=0.029\ 3;\ \alpha(M)=0.0062\ 6.$ $\alpha(N)=0.00133\ 13;\ \alpha(O)=0.000201\ 17;\ \alpha(P)=9.1\times10^{-6}\ 4.$ DCO=0.69 6.
	397.3 3	73 13				
	406.2 3	100 9				
696.73	250.2 3	32 6				
	448.2 3	100 9				
916.9	474.8 3		E2			$A_2 = +0.325 \ I; A_4 = -0.092 \ I; DCO = 1.129 \ 5.$ $\delta(O/Q) = -0.14 \ 4.$
929.1	232.4 3	30 7				
	482.7 3	100				
992.52	546.1 3	100 9	(M1+E2)	+0.11 +10-7		DCO=0.74 6. $\delta$ : or $\delta(Q/D) = -8 + 8 - 3$ .
	552.4 3	$71 \ 14$				
	743.9 3	27 10				
1021.95	325.3 3	$18 \ 4$				
	575.4 3	100 10	Q			DCO=1.06 3.
						$\delta(O/Q) = -0.14$ 7.
1120.3	678.2 3	100 10				
1100 50	947.82	30 8				
1120.5?	678.4÷2	<u> </u>				
1234.4	537.7 3	94				
1975 9	000.00	100 10				
1275.2	833.02	99 5	D			A -10 011 5: A -10 022 6: DCO-0 62 5
1303.1	300.4 2	22 3	D			$\lambda_2 = +0.011$ 5; $\lambda_4 = +0.022$ 6; $DCO = 0.62$ 5. $\delta(Q/D) = +0.1 + 2-1$ or $+8 + 7-4$ .
	862.9 3	100 10	(M1+E2)	-0.91 + 8 - 9		$A_2 = -0.97$ 1; $A_4 = +0.12$ 1; DCO=0.46 2.
1315.9	294.1.3	62	0			
	619.0 3	100 9	Q			$\delta(O/Q) = 0.02 + 3 - 2.$
1328.9	886.7 3					
1524.5	502.5 3	29 9				
	595.4 3	100 11				
1558.3	641.4 3		Q			$A_2 = +0.310$ 2; $A_4 = 0.099$ 2; DCO=1.044 7. $\delta(O/Q) = -0.05$ +4-4.
1586.8	466.5 3	$12 \ 3$				
	670.1 3	100 9	(M1+E2)	+0.5 +2-1		$A_2 = -0.476 \ 5; \ A_4 = +0.046 \ 6; \ DCO = 0.55 \ 3.$ $\delta: \ or \ +2.1 \ +4-5.$
	1144.5 3	$14 \ 3$				
1651.2	1209.0 3					
1654.3	632.4 2	55 13				
	661.7 3	100 11	(M1+E2)	+0.3 2		DCO=0.8 1.
1725.1	703.1 2	10 3				
	732.7 3	23 5	D.0	. 0		DC0 119 C
1759 99	1282.8 3	100 10	D+Q	+0.3 2		DCO=1.13 6.
1753.6	731.6 3		Q			DCO=0.98 7.
1809 1	810 7 9					$\delta(O/Q) = -0.1 \ 2.$
1803.1	810.7 3	00 5				
1001.4	204.0 3	22 J 78 10				
	934 5 3	79 18	(D)			DC0-0.6.2
	554.5 5	15 16				$\delta(Q/D) = -1 + 1 - 2$
	1409.2 3	100 12	Q			$A_2 = +0.28$ 3; $A_4 = -0.09$ 3; DCO=1.1 2. $\delta(\Omega/Q) = -0.2 + 3-2$
1949.8	391.5 3	21 8				
	644.7 3	41 13				
	1033.0 2	100 12	(M1+E2)	-0.7 +2-8		DCO=0.47 2.
1951.8	393.5 3					
1956.7	722.3 3					
1972.4	667.3 3					
	1055.5 3					

# $^{129}_{57}$ La $_{72}$ –44

### ¹¹⁹Sn(¹⁴N,4nγ) 1995Ku29,2008Sa36 (continued)

#### $\gamma(^{129}\text{La})$ (continued)

E(level)	Eγ	Ιγ	Mult.	δ†	Comments
1079 4	1520 0 2				
1972.4		99 F			
1985.5	1068 3 3	100 9	(D)		A = +0.221 0. $A = +0.018$ 0. DCO=0.94.3
	1000.0 0	100 0			$\delta(Q/D) = 0.0.2$
2003.9	1561.7 3				
2070.1	754.0 3				
2118.5	1201.6 3				
2170.0	864.9 3		D		$A_2 = -0.28$ 1; $A_4 = +0.08$ 2.
2206.7	1289.8 3				
2219.1	903.2 3				
	1098.72				
	1197.0 3		M1+E2	+0.21 + 7 - 4	DCO=0.75 5.
	1599 4 9				or $O(Q/D) = +4.4 +8-11$ .
	1776 7 3		(D)		DCO-1 14 7
	1110.1 5				$\delta(Q/D) = -0.2/2.$
2221.7	370.3 3	21 5			
	634.8 3	100 10			
	663.4 3	58 12	M1+E2	+0.8 + 12 - 4	DCO=0.62 6.
					or $\delta(Q/D) = +0.9 + 11-5$ .
	1304.85				
2242 . 9	439.8 3				
	517.7 3				
	718.4 3				
	926.9 3		(M1+E2)	-0.3 + 2 - 3	DCO=0.4 1.
	967 6 9				or $O(Q/D) = -4 + 2 - 7$ .
	1008 5 3				
	1221.0 3		Q		DCO=1.1 2.
			•		$\delta(O/Q) = -0.3 + 2 - 3.$
	1326.03				
	1800.5 3				
2278.2	1361.3 3				
2291.2	1374.32				
2298.2	544.4 3				
0040 5	1856.2 3		FO		
2343.0	180.3 3		ΕZ		$A_2 = +0.253 3$ ; $A_4 = -0.098 3$ ; $DCO = 0.99 2$ . $\delta(O/O) = -0.05 + 7 - 3$
2352.1	1435.2 3		(D)		$A_0 = +0.38$ 5: $A_1 = +0.07$ 5.
2431.9	446.7 3	46 8			2 ' 4
	873.7 3	100 9	(D)		DCO=0.96 3.
					$\delta(Q/D) = 0.0 \ 2.$
2453 . 1	1536.2 2				
2454 . 0	895.7 3				
2462.9	1546.0 4				
2475.0	525.2 2	54 12			
	623.73	100 10			
	910.9 2 1557 8 3	29 0 81 18	0		A = +0.37 3: $A = -0.08$ 4: DCO=1.0.1
	1001.0 0	01 10	4		$\delta(O/Q) = -0.0 \ 2.$
2478.3	493.1 3	28 6			
	724.8 3				
	919.7 3	100 9			
2490.3	1573.4 3				
2520.6	962.3 2				
2568.6	216.6 3				
	398.7 3				
2599.0	845.4 2				
2681.5	927.92				
2100.4 2720 P	1141.12				
2123.0	1014 9 3				
2784.2	352.5 3	93 20			

# $^{129}_{57}\mathrm{La_{72}-45}$

### ¹¹⁹Sn(¹⁴N,4nγ) 1995Ku29,2008Sa36 (continued)

### $\gamma(^{129}\text{La})$ (continued)

E(level)	Εγ	Ιγ	Mult.	Comments
2784.2	1225.9 3	100 12		
2789.9	840.2 3	97 25		
0000 0	1231.4 3	100 13		
2803.2	1886.3 2	100 10		
2022.5	1264 6 3	65 15		
2841 3	771 0 3	05 15		
2864 4	1306 1 3			
2910.1	431.7 3	26 5		
	478.3 3	100 9		
	566.52			
2911.3	1994.4 2			
2943.3	873.2 3			
2955.4	733.7 3			
2956.0?	612.52			Eγ: from level scheme figure of 1995Ku29. E=611.9 2 in table.
3018.0	586.2 3	100 9	Q	$A_2 = +0.333 6; A_4 = -0.105 8.$
	674.5 3	25 5	(D)	DCO=0.87 8. $\delta(Q/D)=-0.5 + 5-4.$
3044.1	1485.8 3			
3096.3	273.5 3			
	306.2 3			
3124.6	2207.7			
3215.8	740.93	100 11		
	1657.3 3	47 12	Q	DCO=1.05 3.
				$\delta(O/Q) = -0.05 + 7 - 10.$
3254.0	910.5 3			$A_2 = +0.26 5 (1975 Wa07).$
3287.0	2370.1 3			
3310.1	966.6 3			
33/0.2	1032.7 2			
3411 6	501 5 2			
5411.0	627 5 3			
3420.9	325.1.3			
3474.9	1131.4 2			
3475.1	633.8 3			
3477.0	459.0 3			
	566.9 3			
3482 . 6	1139.1 2			
3523.4	1179.92			
3531.4	2614.5 3			
3636.9	1293.4 3			
3695.2	853.8 2			
	1351.9 3			
3697.4	856.1 3			
3712.4	1368.9 3			
3760 A	114.03 805.09			
3783 8	362 5 3			
5105.0	687 3 9			
3858 1	1514 6 3			
3952.3	1608.8 3			
3998.5	744.5 3			
4000.4	1656.9 3			
4000.9	746.9 3			
4042.8	565.82			
4043.5	827.7 3			
4176 . 9	392.5 3			
	756.42			
4199.1	467.0 3			
	722.1 3			
4267.2	1013.2 3			
4297.3	1043.3 3			
4000.4	823.3 3			

# $^{129}_{57}$ La $_{72}$ -46

E(level)	Εγ	Ιγ	E(level)	Εγ	I	γ	E(level)	Εγ	Ιγ
4602.6	425.7 2		55.9+x	55.9	3		1152.2+x	599.8 3	29 5
	818.7 3		166.6+x	110.7	3		1517.7+x	365.5 3	100 7
4907.9	864.4 3		331.0+x	164.5	3			688.4 3	499
5082.2	883.1 3		552.4 + x	221.5	3 100	10	1917.4+x	399.9 3	100 8
5200.80?	439.4 3			385.7	3 4	1		765.2 3	53 10
	838.6 3		829.3+x	277.0	3 100	8	2356.6+x	439.4 3	
5361.1	1093.9 3			498.3	3 13	2		838.6 3	
5477 . 1	921.7 3		1152 . $2 + x$	323.0	3 100	) 7	2820.4+x	463.8 3	

#### $^{119}Sn(^{14}N, 4n\gamma)$ 1995Ku29,2008Sa36 (continued)

 $\gamma(^{129}La)$  (continued)

 †  From  $\gamma\gamma(\theta)$  in 1995Ku29.  ‡  Placement of transition in the level scheme is uncertain.

 $^{129}_{57}$ La $_{72}$ -47

¹¹⁹Sn(¹⁴N,4nγ) 1995Ku29,2008Sa36 (continued)

 $(A) (B) (C) \pi 1/2[550], \alpha = + 1/2. (D) \pi 3/2[541], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2. \pi 1/2[550] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2[50] \otimes v 7/2[523] \otimes v 5/2[402], \alpha = -1/2[50] \otimes v 7/2[520] \otimes v 5/2[402], \alpha = -1/2[50] \otimes v 7/2[520] \otimes v 5/2[402], \alpha = -1/2[50] \otimes v 7/2[520] \otimes v 7/2[520]$ 



(E)  $\pi 3/2[541], \alpha = +1/2.$ 

(F)  $\pi 1/2[550], \alpha = -1/2.$ 

(G)  $\pi 3/2[422] \otimes \pi h_{11/2}^2$ ,  $\alpha = -1/2$ .

(H)  $\pi 3/2[422] \otimes \pi h_{11/2}^2$ ,  $\alpha = +1/2$ .



# $^{129}_{57}\mathrm{La_{72}-49}$

(I) $\pi(3/2[422]+1/2[420]),$ $\alpha=-1/2.$	(J) $\pi(3/2[422]+1/2[420]),$ $\alpha=+1/2.$	<b>π1/2[550]⊗ν7/2</b>	(K) [523]⊗ν5/2[402],α=- 1/2.	(L) $\pi 1/2[550] \otimes \sqrt{7}2[523] \otimes \sqrt{5}/2[402], \alpha = +$ 1/2. (37/2+) 2820.4+x		
				(01/21)		DODOLITIK
		(35/2+)	2356.6+x	(K)(35/2+)	<u> </u>	
		(L)(33/2+)		(33/2+)		1917.4+x
		(31/2+)	v 1517.7+x	(K)(31/2+)	V	
		(L)(29/2+)	V	(29/2+)	¥	1152.2+x
		(27/2+) (L)(25/2+)	v 829.3+x	(K)(27/2+)	V	552.4+x
		(23/2+) (L)(21/2+) (19/2+) (L)(17/2+) (L)(17/2+) (19/2+) (L)(17/2+) (L)(17/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2+) (19/2	331.0+x 55.9+x	(23/2+) $(21/2+)$ $(K)(19/2+)$ $(17/2+)$		∫ 166.6+x ∫ 0+x





 $^{129}_{57}\mathrm{La}_{72}$ 

(M) γ cascade #1.

(N)  $\gamma$  cascade #2.

(O) γ cascade #3.

(P)  $\gamma$  cascade #4.



## $^{129}_{57}$ La₇₂-51

		¹¹⁹ Sn( ¹⁴ N,4n)	) 199	95Ku29,2008Sa36			
			Ba	nds for ¹²⁹ La			
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)



# $^{129}_{57}\mathrm{La_{72}-52}$





 $^{129}_{57}$ La $_{72}$ 

Level Scheme



Level Scheme (continued)



Level Scheme (continued)



Level Scheme (continued)

(37/2+)		2820.4+x	
(35/2+)		2356.6+x	
(33/2+)		1917.4+x	
(31/2+)		1517.7+x	
(29/2+)		1152.2+x	
(27/2+)		829.3+x	
(25/2+)		552.4+x	
(23/2+)		331.0+x	
(19/2+)		55.9+x	
(39/2-)		5361.1	0.37 ps
37/9+		5082 2	1
(35/2_)		4907.9	
(33/2+) (33/2+)		4761.8	
35/2+		4555.4	
(31/2+)		4362.0	
(31/2+)		4176.9	
(01/21/)		2059.2	
(20/2+)		2782.2	
(29/2+)		3636 9	
		3474.9	
27/2-		3215.8	
27/2+		3018.0	
		2278.2	
		2118.5	
		1951.8	
(15/2+)		1725.1	
		1524.5	
11/9+		696 73	
(9/2+)	)	645.9	
9/2+		446.49	
15/2-		442.2	90 ps
7/2+		440.25	
7/2+		248.57	
11/2-	╢╨┷╧╪╧╤╤╤╧╧╧╧╝	172.4	0 50
5/2+		68.18	0.56 s
3/2+		0.0	

 $^{129}_{58}$ Ce $_{71}$ -1

#### Adopted Levels, Gammas

 $Q(\beta^{-})=-6510\ 40;\ S(n)=8820\ 40;\ S(p)=4950\ 60;\ Q(\alpha)=960\ 30\ 2012Wa38.$ 

 $S(2n)=20450 \ 40, \ S(2p)=8050 \ 30, \ Q(\epsilon p)=1802 \ 28 \ (2012Wa38).$ 

 1969ArZZ: ¹²⁹Ce produced and identified in ¹¹⁴Cd(²⁰Ne,5n) reaction followed by half-life measurement. Previous report (1963La03) of ≈13 min half-life for ¹²⁹Ce was not confirmed by 1969ArZZ. 1977Gi17 identified ¹²⁹Ce through in-beam  $\gamma$ -ray studies but did not measure its half-life. Later decay studies: 1993Al03, 1997Gi08, 2001Xi01.

### ¹²⁹Ce Levels

#### Cross Reference (XREF) Flags

A  $^{129}\mathrm{Pr}~\epsilon$  Decay (30 s)

B ¹⁰⁰Mo(³⁴S,5nγ)

 $\begin{array}{l} & \text{Int}(-5,517) \\ \text{C} & ^{104}\text{Pd}(^{28}\text{Si},2\text{pn}\gamma) \\ \text{D} & ^{116}\text{Sn}(^{16}\text{O},3n\gamma),^{117}\text{Sn}(^{16}\text{O},4n\gamma) \end{array}$ 

E(level) [‡]	$J\pi^{\dagger}$	XREF	T _{1/2}	Comments
0.0b	(5/2+)	ABCD	3.5 min <i>3</i>	%ε+%β ⁺ =100. Jπ: 1998Io01 proposed 7/2+ based on 9/2- for the 107.6-keV isomer. See detailed Jπ comment for adopted (7/2-) assignment for 107.6 level, consequently (5/2+) for the ground state from $\Delta J$ =1, (E1) nature of g.s. transition from the 107.6 level. T _{1/2} : from 1993Al03 (total absorption γ-ray spectrometer). Other: 2. $T_{1/2}$ : from 1993Al03 (total absorption γ-ray spectrometer).
				3.5 min 5 (1969ArZZ). Value of $\approx$ 13 min (1963La03) is not confirmed by 1969ArZZ.
0.0+x	(1/2+)	Α		E(level): x<0.5 keV from parallel decay paths from the 918.8 level to g.s. and the 0.0+x level. This level is expected to be an isomer.
0 + y ^f	(9/2-)	в		
39.50+x 9	(3/2+)	Α		
107.60° <i>16</i>	(7/2-)	ABCD	60 ns 2	$\mu=-0.648 35 (1998Io01).$ Q=1.32 13 (1998Io01,2014StZZ). $\mu: from g=-0.185 10 (1998Io01, TDPAD method) and using Jπ=7/2-rather than 9/2- as suggested in 1998Io01. 2014StZZ quote\mu=-0.83 5, based on 9/2 for 107.6 level.Q: TDPAD method (1998Io01).T1/2: γγ(t) (1998Io01). Other: 62 ns 5 from γγ(t) (1977Gi17).Jπ: 9/2- is proposed in 1998Io01 based on quadrupole interactionTDPAD experiment, where fitting of the hyperfine structure isbetter for 9/2- (reduced \chi^2=2.7) than for 7/2- (reduced \chi^2=12).However, with 9/2- assignment, the \alpha=1/2 signature branch wouldbecome the favored branch, in contradiction with many neutronh11/2 bands in this mass region. 1998Io01 authors were aware ofthis issue and to counteract they tentatively introduced a new11/2- level at 119.4 keV based on an apparent common energydifference of =12 keV between three sets of γ rays in 129Pr to129Ce decay. But there has been no direct experimental evidencefor this new 11/2- level at 119.4 keV based on the high-statisticstriple γ coincidence data in 100Mo(34S,5nγ) (2009Pa40), and otherexperiments. Thus the evaluators have assigned (7/2-) for the107.6-keV isomer, consequently (5/2+) (rather than 7/2+ proposedby 1998Io01) for the g.s. based on ΔJ=1, (E1) transition from the107.6 level to g.s. The assignments for the 107.6 level and g.sare given in parentheses here since a direct measurement of any ofthese spins is not yet available, except for the work of 1998Io01,which seems to give a contradictory result for spin assignment of107.6 level. The assignments for the 107.6 level and g.s. adoptedhere are supported by theoretical model calculations in 2010Bh03and 1985Ha34. For levels populated in high-spin studies, ascendingorder of spins with excitation energy is assumed based on yrastpattern of population.T1,0: \gamma(t) (1998Io01). Other: 62 ns 5 from \gamma(t) (1977Gi17).$
144.38 ^c 9	(7/2+)	ABCD		1/2 ···
189.59 ^d 19	(9/2-)	ABCD		

(9/2-)	AI
(5/2+)	Α
(9/2+,7/2+)	Α
(7/2+)	Α
	(9/2-) (5/2+) (9/2+,7/2+) (7/2+)

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}2$

### Adopted Levels, Gammas (continued)

# ¹²⁹Ce Levels (continued)

E(level)‡	$J\pi^{\dagger}$	XREF	T _{1/2}	Comments
334.93 ^e 25	(11/2-)	ABCD		
348.01 ^b 17	(9/2+)	ABCD		
419.9+y ^{@1} 10	(13/2-)	BC		
589.68 ^c 22	(11/2+)	ABCD		
595.5d 3	(13/2-)	BCD		
613.59 16		Α		
616.9+x 5		Α		
671.41+x 22	(9/2+)	Α		
748.09 24		Α		
781.1 4		Α		
789.8+x 5		Α		
805.7 ^e 3	(15/2-)	BCD		
806+x 3	(11/2+)	Α		
808.6 4		Α		
820.3 4		А		
830.0 3		Α		
831.41+x 22		Α		
835.0+x.4		А		
868.4 ^b 3	(13/2+)	ABCD		
918 86+x 21	(,	A		
$967 2 + v^{@f} 11$	(17/2-)	BC		
979 9 3	(1, 1, 2, )	A		
1134 0+x 5	(3/2, 5/2)	Δ		
1135 5 1	(0/2,0/2)	Δ		
1177 50 2	(15/9)	PCD	0 51 pa# 6	O(transition) = 7.1.8 (20011;60)
1100 7d 4	(15/2+)	BCD	0.51 ps 0	$Q(transition) = 1.1 \ \delta \ (2001L105).$
1100.7-4	(17/2-)	, BCD		
1229.6 5		A		
1324.6 11		A		
1337.6 3		A		
1340+x 3	(3/2,5/2)	A		
1347.5+x 10	(10)0	A		
1422.48 4	(19/2-)	BCD	1.24 ps# 10	$Q(transition) = 4.35 \ I8 \ (1998L132,2001L169).$
1445.4 <i>10</i>		A		
1514.604	(17/2+)	BCD		
1550.5 5		Α		
$1568.1 + y^{@1}$ 11	(21/2-)	BC		
1678.5 + x 4	(3/2,5/2)	A		
1825.9 + x 4		Α	#	
1870.1° 4	(19/2+)	BCD	0.46 ps# 4	Q(transition)=4.9 4 (2001Li69).
1909.0ª 4	(21/2-)	BCD	0.20 ps 8 6	Q(transition)=6.50 9 (2009Li67).
2008.9 4		Α	8	
2150.4 ^e 4	(23/2-)	BCD	0.61 ps§ 34	Q(transition)=4.0 14 (2009Li67).
<u>,</u>				T _{1/2} : other: 1.01 ps <i>19</i> (1998Li32,2001Li69).
$2202.0+y^{\dagger}$ 12	(25/2-)	BC		
2233.1 ^b 4	(21/2+)	BCD		
2536.2 ^a 4	(23/2+)	BCD	0.374 ps# 35	Q(transition)=5.3 5 (2001Li69).
2622.1° 5	(23/2+)	В		
2665.5d 5	(25/2-)	BCD	0.334 ps§ 22	Q(transition)=3.57 11 (2009Li67).
2776.0 5	(25/2+)	BCD		
2867.1 ^b 6	(25/2+)	в		
2889.7 ^e 5	(27/2-)	BCD	0.89 ps [§] 29	Q(transition)=2.9 6 (2009Li67).
				$T_{1/2}$ : other: 0.47 ps 4 (1998Li32,2001Li69).
2901.2+y ^f 12	(29/2-)	в		
3011.2 ^a 5	(27/2+)	BCD	1.74 ps# 25	Q(transition)=4.5 3 (2001Li69).
3145.5° 6	(27/2+)	В		
3208.2d 5	(29/2-)	BCD	1.14 ps§ 26	Q(transition)=5.1 5 (2009Li67).
3291.8& 5	(29/2+)	BCD	-	
3447.1 ^b 7	(29/2+)	в		
3461.2 ^e 5	(31/2-)	BCD	0.78 ps [§] 27	Q(transition)=4.6 9 (2009Li67).
	<i>,</i>	-	•	T _{1/2} : other: 0.92 ps 11 (1998Li32,2001Li69).
3586.1 ^a 5	(31/2+)	BCD	<1.8 ps [#]	$T_{1/2}$ : effective half-life, not corrected for side feeding.
				Q(transition) > 3.2 (2001Li69).
3675.4+v ^f 12	(33/2-)	BC		

### $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}3$

#### Adopted Levels, Gammas (continued)

#### ¹²⁹Ce Levels (continued)

E(level) [‡]	$J\pi^{\dagger}$	XREF	T _{1/2}	Comments
3788 2d 5	(33/2-)	BCD	0.30 ps \$ 24	$\Omega(\text{transition}) = 6.3, 19, (2009Li67)$
3803 7° 7	(31/2+)	B	0.00 p5 24	Q(((ansition)=0.0 10 (2000)).
3934 4& 6	(33/2+)	BC		
4117 4 ^e 6	(35/2-)	BCD	0 33 ps \$ 25	Q(transition) = 4.7.15.(2009Li67)
	( ,		p	$T_{1,0}$ : other: 0.69 ps 8 (1998Li32.2001Li69).
4179.0 ^b 8	(33/2+)	в		-1/2
4295.0a 6	(35/2+)	BC		
4507.4 ^d 6	(37/2-)	BC	<0.33 ps [§]	Q(transition)>3.5 (2009Li67).
$4526.4 + v^{f}$ 13	(37/2-)	BC	1	
4596.9 [°] 10	(35/2+)	в		
4711.9& 6	(37/2+)	в		
4910.7 ^e 6	(39/2-)	BCD	<0.28 ps§	$T_{1/2}$ : other: <0.6 ps (effective half-life,1998Li32,2001Li69). Q(transition)>3.2 (2009Li67).
5048.8 ^b 10	(37/2+)	В		
5135.8 ^a 6	(39/2+)	BC		
5367.0d 6	(41/2-)	BC		
5449.8+y ^f 13	(41/2-)	BC		
5468.0 ^c 11	(39/2+)	в		
5619.3 ^{&amp;} 6	(41/2+)	BC		
5836.8 ^e 6	(43/2-)	BC		
6009.8 ^b 12	(41/2+)	В		
6105.3 ^a 7	(43/2+)	BC		
6361.4d 7	(45/2-)	BC		
6448.4+y ^f 14	(45/2-)	BC		
6649.1 ^{&amp;} 9	(45/2+)	BC		
6884.8 ^e 8	(47/2-)	BC		
6970.8 ^b 13	(45/2+)	В		
7193.1 ^a 10	(47/2+)	BC		
7479.7 ^d 10	(49/2-)	BC		
7520.8+y ^f 17	(49/2-)	BC		
7789.9& <i>11</i>	(49/2+)	BC		
8038.5 ^e 10	(51/2-)	BC		
8385.0a 11	(51/2+)	BC		
$8667.8 + y^{t} 20$	(53/2-)	BC		
8711.9 ^d 11	(53/2-)	BC		
9033.6 ^{&amp;} 12	(53/2+)	В		
9282.5 ^e 12	(55/2-)	BC		
9672.0a 13	(55/2+)	В		
$9890.3 + y^{\dagger} 22$	(57/2-)	BC		
10045.3d 13	(57/2-)	в		
10601.4 ^e 13	(59/2-)	В		
$11189.4 + y^{-1}24$	(61/2-)	BC		
11470.3ª <i>14</i>	(61/2-)	В		
11979.4° 15	(63/2-)	В		
$12565 + y^{1} 3$	(65/2-)	BC		
$14021+y^{-3}$	(69/2-)	BC		
10004+y+ 3	(73/2-)	В		
$1/1/0+y^{4}$	(11/2-)	В		
18905+y ¹ 4	(81/2-)	в		

[†] Spin and parity values are those proposed by 2009Pa40 on the basis of cranked-shell model analysis and measured  $\gamma$  multipolarities. Bandhead spins and parities were estimated from Nilsson levels for N=71. For some low-spin levels populated only in  $\epsilon$  decay, the assignments are from 1996Gi08 based on systematics and models. The evaluators consider all J $\pi$  assignments as tentative, including those for the g.s. and for the 60-ns isomer at 108 keV.

^{$\pm$} From least-squares fit to the adopted E $\gamma$  data. E $\gamma$  data in XREF=D differ considerably from the adopted E $\gamma$  values, therefore level energies at high spins in XREF=D differ by about 4 keV from the adopted level energies. However, it does not affect the level identification.

§ From DSAM (2009Li67).

# From DSAM (1998Li32,2001Li69) unless otherwise stated. Both papers report same lifetimes for 19/2- to 39/2- levels in the 7/2[523] band. 2001Li69 report, in addition, lifetimes for 15/2+ to 31/2+ levels in the 5/2[402] band.

@ Possibly feeds lowest members of positive-parity band. No linking transitions were found.

& (A):  $vh_{11/2} \otimes \pi(h_{11/2}, g_{7/2}), \alpha = +1/2$ . Quasiparticle configuration=fEB. Band crossing at  $\hbar \omega = 0.294$  MeV.

a (B):  $vh_{11/2} \otimes \pi(h_{11/2},g_{7/2}), \alpha = -1/2$ . Quasiparticle configuration=eEB. Band crossing at ho=0.301 MeV.

Footnotes continued on next page

#### Adopted Levels, Gammas (continued)

### ¹²⁹Ce Levels (continued)

b (C):  $vd_{5/2}$ ,  $\alpha = +1/2$ . Quasiparticle configuration=a below, aEF above the band crossing. Band crossing at  $\hbar\omega=0.318$  MeV. Second band crossing at  $\hbar\omega=0.48$  MeV due to pair of  $\pi h_{11/2}$  neutrons.

^c (D):  $vd_{5/2}$ ,  $\alpha = -1/2$ . Quasiparticle configuration=b below, bEF above the band crossing. Band crossing at h $\omega = 0.318$  MeV.

d (E):  $vh_{11/2}^{0/2}, \alpha = +1/2$ . Quasiparticle configuration=f below, fEF above the band crossing. Band crossing at  $\hbar\omega = 0.312$  MeV.

e (F):  $vh_{11/2}$ ,  $\alpha = -1/2$ . Quasiparticle configuration=e below, eEF above the band crossing. Band crossing at  $\hbar\omega = 0.325$  MeV.

f (G):  $v_1/2$ [541],  $\alpha = +1/2$ . Decoupled enhanced deformation band. Interpreted as SD band in 1996Ga13 on the basis of Q(intrinsic) measurement. Possible transitions to band based on 5/2+ and its signature partner.

### $\gamma(^{129}{ m Ce})$

E(level)	$E\gamma^{\dagger}$	Iγ [†]	Mult. [‡]	δ‡ α§	Comments
39.50+x	39.5 1	100	[M1]	2.62 5	$\alpha(L)=2.07$ 4; $\alpha(M)=0.434$ 7. $\alpha(N)=0.0962$ 16; $\alpha(O)=0.01554$ 25; $\alpha(D)=0.001162$ 10
107.60	107.7 2	100	(E1)	0.198	
144.38	144.3 1	100	[M1+E2]	0.432 14	$\begin{aligned} &\alpha(\mathbf{K}) = 0.361 \ 6; \ \alpha(\mathbf{L}) = 0.056 \ 7; \ \alpha(\mathbf{M}) = 0.0118 \ 16. \\ &\alpha(\mathbf{N}) = 0.0026 \ 4; \ \alpha(\mathbf{O}) = 0.00041 \ 5; \\ &\alpha(\mathbf{P}) = 2.73 \times 10^{-5} \ 6. \end{aligned}$
189.59	81.9 1	100	[M1+E2]	2.27 18	$\alpha(K)=1.82$ 4; $\alpha(L)=0.36$ 12; $\alpha(M)=0.08$ 3. $\alpha(N)=0.017$ 6; $\alpha(O)=0.0026$ 8; $\alpha(P)=0.000136$ 3.
243.31+x	203.8 2	100 5	[M1+E2]	0.1629 25	$\begin{aligned} &\alpha(\mathbf{K}) = 0.1379 \ 21; \ \alpha(\mathbf{L}) = 0.0198 \ 12; \ \alpha(\mathbf{M}) = 0.0042 \ 3. \\ &\alpha(\mathbf{N}) = 0.00092 \ 6; \ \alpha(\mathbf{O}) = 0.000148 \ 8; \\ &\alpha(\mathbf{P}) = 1.05 \times 10^{-5} \ 3. \end{aligned}$
	243.3 1	794	[E2]	0.0957	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0749 \ 11; \ \alpha(\mathbf{L}) = 0.01633 \ 23; \\ &\alpha(\mathbf{M}) = 0.00354 \ 5. \\ &\alpha(\mathbf{N}) = 0.000769 \ 11; \ \alpha(\mathbf{O}) = 0.0001152 \ 17; \\ &\alpha(\mathbf{P}) = 4.78 \times 10^{-6} \ 7. \end{aligned}$
279.01	134.6 2	16.4 23	[M1+E2]	0.527 19	$ \begin{aligned} &\alpha(K)=0.440 \ \ 8; \ \ \alpha(L)=0.069 \ \ 10; \ \ \alpha(M)=0.0146 \ \ 23. \\ &\alpha(N)=0.0032 \ \ 5; \ \ \alpha(O)=0.00051 \ \ 7; \\ &\alpha(P)=3.32\times10^{-5} \ \ 7. \end{aligned} $
	279.0 1	100 5	[M1,E2]	0.0691 <i>12</i>	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0588 \ 13; \ \alpha(\mathbf{L}) = 0.00813 \ 19; \\ &\alpha(\mathbf{M}) = 0.00170 \ 5. \\ &\alpha(\mathbf{N}) = 0.000377 \ 10; \ \alpha(\mathbf{O}) = 6.08 \times 10^{-5} \ 12; \\ &\alpha(\mathbf{P}) = 4.46 \times 10^{-6} \ 13. \end{aligned}$
331.30+x	88.0 5	8.8 12	[M1+E2]	1.83 14	$\alpha(K)=1.48$ 4; $\alpha(L)=0.28$ 8; $\alpha(M)=0.060$ 19. $\alpha(N)=0.013$ 4; $\alpha(O)=0.0020$ 6; $\alpha(P)=0.000111$ 3.
	291.8 2	100 5	[E2]	0.0532	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0426 ~ 6; ~ \alpha(\mathbf{L}) \!=\! 0.00835 ~ 12; ~ \alpha(\mathbf{M}) \!=\! 0.00180 ~ 3. \\ &\alpha(\mathbf{N}) \!=\! 0.000392 ~ 6; ~ \alpha(\mathbf{O}) \!=\! 5.94 \!\times\! 10^{-5} ~ 9; \\ &\alpha(\mathbf{P}) \!=\! 2.80 \!\times\! 10^{-6} ~ 4. \end{split}$
334.93	145.3 2	100 3	(M1)	0.412	$\begin{split} &\alpha(K) \!=\! 0.351 \ 6; \ \alpha(L) \!=\! 0.0478 \ 7; \ \alpha(M) \!=\! 0.01000 \ 15. \\ &\alpha(N) \!=\! 0.00222 \ 4; \ \alpha(O) \!=\! 0.000359 \ 6; \\ &\alpha(P) \!=\! 2.72 \!\times\! 10^{-5} \ 4. \end{split}$
	227.8 5	32 15	(E2)	0.1189 <i>19</i>	$ \begin{split} &\alpha(K) \!=\! 0.0922 \; 15; \; \alpha(L) \!=\! 0.0210 \; 4; \; \alpha(M) \!=\! 0.00456 \; 8. \\ &\alpha(N) \!=\! 0.000989 \; 17; \; \alpha(O) \!=\! 0.0001475 \; 24; \\ &\alpha(P) \!=\! 5.81 \!\times\! 10^{-6} \; 9. \\ &I\gamma: \; data \; are \; discrepant \; with \; values \; of \; 11.0 \; 10 \\ ∈ \; \epsilon \; decay, \; 60.5 \; 14 \; in \; (^{34}S, n\gamma) \; and \; 24 \; 4 \; in \\ \end{split} $
348.01	203.5 2	100 3	(M1+E2) -0.4	40 8 0.1642 24	( ¹⁶ O,3nγ). Unweighted average is taken. $\alpha(K)=0.1381\ 20; \ \alpha(L)=0.0207\ 8; \ \alpha(M)=0.00436\ 17.$ $\alpha(N)=0.00096\ 4; \ \alpha(O)=0.000153\ 5;$ $\alpha(P)=1\ 0.05\times10^{-5}\ 20$
	348.7 3	31.2 24	(E2)	0.0306	$\begin{aligned} \alpha(K) = 0.0249 \ 4; \ \alpha(L) = 0.00447 \ 7; \\ \alpha(M) = 0.000957 \ 14. \\ \alpha(N) = 0.000209 \ 3; \ \alpha(O) = 3.21 \times 10^{-5} \ 5; \\ \alpha(P) = 1.679 \times 10^{-6} \ 24. \end{aligned}$ IY: others: 22.5 19 in $\epsilon$ decay, 74 9 and 46 7 in ( ¹⁶ O, 3ny); the latter are in severe disagreement
419.9+y	419.9# 10	100			

# $^{129}_{58}\mathrm{Ce}_{71}\text{--}5$

			_	γ( ¹²⁹ Ce) (α	continued)	
				÷	e	
E(level)	<u>Εγ</u> †	Ιγ†	Mult.Ŧ	δ‡	α \$	Comments
589.68	241.8 3	100 5	(M1+E2)	-0.25 8	0.1019	$\alpha(K)=0.0867$ 14; $\alpha(L)=0.0120$ 3; $\alpha(M)=0.00252$ 6. $\alpha(N)=0.000558$ 13; $\alpha(O)=8.99\times10^{-5}$ 18; $\alpha(P)=6.60\times10^{-6}$ 12
	444.9 3	58 4	(E2)		0.01492	$\alpha(K) = 0.00316  12.$ $\alpha(K) = 0.01237  18;  \alpha(L) = 0.00202  3;$ $\alpha(M) = 0.000428  6.$ (N) $\alpha = 0.000428  6.$
						$\alpha(N)=9.40 \times 10^{-5}$ 14; $\alpha(O)=1.464 \times 10^{-5}$ 21; $\alpha(P)=8.59 \times 10^{-7}$ 13. I $\gamma$ : others: 103 4 in $\epsilon$ decay, 244 12 and
595.5	260.7 3	100 4	(M1+E2)	0.72	0.0812 15	108 11 in $({}^{14}\text{O},3\pi\gamma)$ are in disagreement. $\alpha(\mathbf{K})=0.0678$ 18; $\alpha(\mathbf{L})=0.0106$ 5; $\alpha(\mathbf{M})=0.00224$ 10. $\alpha(\mathbf{N})=0.000493$ 21; $\alpha(\mathbf{O})=7.76\times10^{-5}$ 25; $\alpha(\mathbf{P})=4.96\times10^{-6}$ 22
	405.8 3	25.8 16	(E2)		0.0194	$\alpha(\mathbf{K}) = 0.01601 \ 23; \ \alpha(\mathbf{L}) = 0.00270 \ 4; \\ \alpha(\mathbf{M}) = 0.000576 \ 9. \\ \alpha(\mathbf{N}) = 0.0001576 \ 9. \\ \alpha(\mathbf{N}) = 0.0001561 \ 18; \ \alpha(\mathbf{Q}) = 1.95 \times 10^{-5} \ 3; $
						$\alpha(P)=1.102\times10^{-6}$ I6. Iy: others: 127 5 and 72 5 in ( ¹⁶ O,3ny) are in
613 59	334 5 2	16 7 21				disagreement.
010100	506.1 2	100 3				
616.9+x	373 1	4.2 8				
	577.5 5	100 8				
671.41+x	340 1	9.3 19				
	428.1 2	100 4				
748.09	558.5 2 640 5 2	100 6				
781.1	≈446	<11				
10111	591.5 3	100 6				
	$\approx 6.75$	665				
789.8 + x	546.55	100				
805.7	210.2 3	60.0 25	(M1+E2)	-1.1 1	0.1526 23	$\begin{aligned} \alpha(\mathbf{K}) = 0.1228 \ 19; \ \alpha(\mathbf{L}) = 0.0235 \ 7; \ \alpha(\mathbf{M}) = 0.00504 \ 15. \\ \alpha(\mathbf{N}) = 0.00110 \ 4; \ \alpha(\mathbf{O}) = 0.000168 \ 5; \\ \alpha(\mathbf{P}) = 8.48 \times 10^{-6} \ 17. \end{aligned}$
						in disagreement
	470.7 3	100 4	(Q)			in alongi comonti.
806+x	$\approx 4.75$	100				
808.6	619 1	100 6				
	701.0 3	69 4				
820.3	630 1	76 6				
820 0	712.8 3	100 7				
000.0	722.4.3	10.0 14				
831.41+x	≈501	4.6 15				
	588.12	100 3				
835.0+x	591.7 3	100				
868.4	278.7 3	100 4	[M1+E2]		0.0693 12	$\begin{aligned} &\alpha(\mathbf{K})=0.0590 \ 13; \ \alpha(\mathbf{L})=0.00815 \ 20; \\ &\alpha(\mathbf{M})=0.00171 \ 5. \\ &\alpha(\mathbf{N})=0.000378 \ 10; \ \alpha(\mathbf{O})=6.10\times10^{-5} \ 12; \\ &\alpha(\mathbf{P})=4 \ 48\times10^{-6} \ 14 \end{aligned}$
	520.6 3	88 5	(Q)			Iv: other: 154 15 in ( 16 O,3nv) is in disagreement.
918.86+x	305.32	43 3				
0.05	675.5 3	100 7				
967.2+y	547.3 3	100				
919.9	189.13	81 6 100 6				
1134.0+x	1094.5 5	100				
1135.5	1027.9 3	100				

Adopted Levels, Gammas (continued)

# $^{129}_{58}$ Ce $_{71}$ -6

$\gamma(^{129}\text{Ce})$ (continued)				continued)		
E(level)	$E\gamma^{\dagger}$	Ιγ†	Mult.‡	δ‡	α§	Comments
1177.5	309.5 3	48 3	(M1+E2)	-0.8 4	0.0496 24	B(M1)(W.u.)=(0.28 12); B(E2)(W.u.)=(1.3×10 ³ 8). α(K)=0.042 3; α(L)=0.00633 21; α(M)=0.00134 6. α(N)=0.000295 11; α(O)=4.66×10 ⁻⁵ 10; α(P)=3.0×10 ⁻⁶ 3. Iγ: others: 29 3 and 100 6 in ( ¹⁶ O,3nγ), the former value in disagreement. δ: B(E2)(W.u.) is too high for T _{1/21/2} =0.51 ps and δ(E2/M1)=0.8 4; RUL<300 suggests either δ(0,2,or,o,lowrap holf life)
	587.5 3	100 6	(E2)		0.00703	B(E2)(W.u.)=270 40. $\alpha(K)=0.00591$ 9; $\alpha(L)=0.000884$ 13; $\alpha(M)=0.000187$ 3. $\alpha(N)=4.11\times10^{-5}$ 6; $\alpha(O)=6.49\times10^{-6}$ 10; $\alpha(P)=4.20\times10^{-7}$ 6
1186.7	381.2 <i>3</i>	46 4	[M1+E2]		0.0303 8	$\begin{aligned} \alpha(\mathbf{K}) = 0.0259 \ 7; \ \alpha(\mathbf{L}) = 0.00349 \ 6; \\ \alpha(\mathbf{M}) = 0.000729 \ 11. \\ \alpha(\mathbf{N}) = 0.0001617 \ 24; \ \alpha(\mathbf{O}) = 2.61 \times 10^{-5} \ 5; \\ \alpha(\mathbf{P}) = 1.96 \times 10^{-6} \ 7. \end{aligned}$
	591.2 3	100 7	Q			
1229.6	1040.05	100 10				
	1122 1	48 5				
1324.6	$1217 \ 1$	100				
1337.6	$\approx 990$	<14				
	1193.2 3	100 5				
	1230 1	21.9 14				
1340+x	1300 3	100 6				
1347.5 + x	$1104 \ 3$	$20 \ 3$				
	1308 1	100 10				
1422.4	236.0 3	18.0 14	(M1+E2)		0.1087	$\begin{array}{l} \alpha(\mathrm{K}) = 0.0923 \ 16; \ \alpha(\mathrm{L}) = 0.0130 \ 6; \ \alpha(\mathrm{M}) = 0.00273 \ 12. \\ \alpha(\mathrm{N}) = 0.000604 \ 25; \ \alpha(\mathrm{O}) = 9.7 \times 10^{-5} \ 4; \\ \alpha(\mathrm{P}) = 7.00 \times 10^{-6} \ 19. \\ \mathrm{Lx} \ \text{other:} \ 11 \ 9 \ 13 \ \text{in} \ (^{16}\mathrm{O} \ 3nx) \end{array}$
	616.5 3	100	(E2)		0.00622	$\begin{array}{l} \text{B(E2)(W,u.)=110 \ 10} & \text{I} & \text{(C)}, \text{on} p, \\ \text{B(E2)(W,u.)=110 \ 9.} \\ \alpha(\text{K)=0.00524 \ 8; \ \alpha(\text{L})=0.000774 \ 11; \\ \alpha(\text{M})=0.0001630 \ 23. \\ \alpha(\text{N})=3.59\times10^{-5} \ 5; \ \alpha(\text{O})=5.69\times10^{-6} \ 8; \\ \alpha(\text{P})=3.74\times10^{-7} \ 6 \end{array}$
1445.4	1301 <i>1</i>	100				α(1)=0.14×10 0.
1514.6	337.1 3	53 3	(M1+E2)		0.0418 10	<ul> <li>α(K)=0.0356 9; α(L)=0.00485 7;</li> <li>α(M)=0.001014 16.</li> <li>α(N)=0.000225 4; α(O)=3.63×10⁻⁵ 6;</li> <li>α(P)=2.70×10⁻⁶ 9.</li> <li>Iγ: others: 30 3 and 32 5 in (¹⁶O,3nγ) are in disagreement.</li> </ul>
	646.1 3	100 6	(Q)			
1550.5	960.8 4	100				
1568.1+y	600.9 3	100				
1678.5+x	1639.0 3	100				
1825.9+x	1154.5 3	100				
1870.1	355.5 3	44 3	[M1+E2]		0.0363 9	$\begin{split} &\alpha(\mathbf{K}) = 0.0310 \ \ s; \ \ \alpha(\mathbf{L}) = 0.00420 \ \ \ 6; \\ &\alpha(\mathbf{M}) = 0.000879 \ \ \ 13. \\ &\alpha(\mathbf{N}) = 0.000195 \ \ \ 3; \ \ \alpha(\mathbf{O}) = 3.15 \times 10^{-5} \ \ \ 5; \\ &\alpha(\mathbf{P}) = 2.35 \times 10^{-6} \ \ \ 8. \\ &I\gamma: \ \ others: \ 11 \ \ 4 \ \ in \ \ (^{16}\mathbf{O}, 3n\gamma) \ \ is \ \ in \\ & disagreement. \end{split}$
	692.7 <i>3</i>	100 8	[E2]		0.00466	$ \begin{array}{l} \alpha({\rm K}) = \stackrel{\sim}{0.00394}  6; \ \alpha({\rm L}) = 0.000566  8; \\ \alpha({\rm M}) = 0.0001190  17. \\ \alpha({\rm N}) = 2.62 \times 10^{-5}  4; \ \alpha({\rm O}) = 4.17 \times 10^{-6}  6; \\ \alpha({\rm P}) = 2.83 \times 10^{-7}  4. \\ {\rm B}({\rm E2})({\rm W}.{\rm u}.) = 137  18. \end{array} $

Adopted Levels, Gammas (continued)

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}7$

#### Adopted Levels, Gammas (continued)

#### $\gamma(^{129}\text{Ce})$ (continued)

E(level)	${f E}\gamma^{\dagger}$	Iγ [†]	Mult.‡	δ‡	α§	Comments
1909.0	486.6 3	48 5	[M1+E2]		0.0162 5	$\begin{array}{l} \alpha({\rm K}) \!=\! 0.0139 \; 5; \; \alpha({\rm L}) \!=\! 0.00184 \; 4; \; \alpha({\rm M}) \!=\! 0.000385 \; 8. \\ \alpha({\rm N}) \!=\! 8.53 \!\times\! 10^{-5} \; 18; \; \alpha({\rm O}) \!=\! 1.38 \!\times\! 10^{-5} \; 4; \\ \alpha({\rm P}) \!=\! 1.05 \!\times\! 10^{-6} \; 4. \\ {\rm I}\gamma: \; {\rm others:}\; 15 \; 3 \; {\rm in} \; ({\rm I}^{16} 0, 3n\gamma) \; {\rm is}\; {\rm in} \\ {\rm diagramment} \end{array}$
	722.3 3	100 7	[E2]		0.00421	$\begin{aligned} &\text{B(E2)(W.u.)} = 250 \ 80. \\ &\alpha(\text{K}) = 0.00357 \ 5; \ \alpha(\text{L}) = 0.000508 \ 8; \\ &\alpha(\text{M}) = 0.0001066 \ 15. \\ &\alpha(\text{N}) = 2.35 \times 10^{-5} \ 4; \ \alpha(\text{O}) = 3.75 \times 10^{-6} \ 6; \\ &\alpha(\text{P}) = 2.57 \times 10^{-7} \ 4. \end{aligned}$
2008.9 2150.4	1864.5 3 241.4 3	100 11.7 <i>13</i>	(M1+E2)		0.1022 16	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
						$\alpha(P) = 6.59 \times 10^{-6}$ 18.
	727.9 3	100 5	(E2)		0.00413	P(12.5 II from (100,3nγ) agrees well.B(E2)(W.u.)=100 60.α(K)=0.00351 5; α(L)=0.000498 7;α(M)=0.0001045 15.
						$\alpha(N)=2.31\times10^{-5} 4; \ \alpha(O)=3.68\times10^{-6} 6; \ \alpha(P)=2.52\times10^{-7} 4$
2202.0+v	633.9 3	100				$u(1) = 2.02 \times 10^{-4}$
2233.1	363.1 3	45 4	(M1+E2)	-0.95 75	0.031 4	α(K)=0.026 4; α(L)=0.00394 7; α(M)=0.000832 12. $α(N)=0.000183 3; α(O)=2.90\times10^{-5} 9;$ $α(P)=1.9\times10^{-6} 4.$ Iy: other: 31 6 from ( ¹⁶ O,3nγ).
	718.4 3	100 6	(Q)			
2536.2	303.2 3	67 4	(M1+E2)	-0.95 75	0.052 4	B(M1)(W.u.)=(0.4 4); B(E2)(W.u.)=(2.8×10 ³ 24). α(K)=0.043 5; α(L)=0.0068 4; α(M)=0.00144 11. α(N)=0.000318 21; α(O)=4.99×10 ⁻⁵ 19; α(P)=3.1×10 ⁻⁶ 6. Iγ: other: 32 4 from ( ¹⁶ O,3nγ) is in disagreement. δ: B(E2)(W.u.) is too high for $T_{1/21/2}$ =0.51 ps and δ(E2/M1)=0.95 75; RUL<300 suggests either δ<0.2 or longer half-life.
	666.1 <i>3</i>	100 5	[E2]		0.00513	B(E2)(W.u.)=175 20. $\alpha(K)=0.00433$ 6; $\alpha(L)=0.000628$ 9; $\alpha(M)=0.0001320$ 19. $\alpha(N)=2.91\times10^{-5}$ 4; $\alpha(O)=4.62\times10^{-6}$ 7; $\alpha(P)=3.10\times10^{-7}$ 5.
2622.1	389.0 6	<70				
	752.1 6	100 17				
2665.5	515.2 3	687	[M1+E2]		0.0140 5	$ α(K)=0.0120 4; α(L)=0.00159 4; α(M)=0.000332 7. $ $ α(N)=7.37 \times 10^{-5} 16; α(O)=1.20 \times 10^{-5} 3; $ $ α(P)=9.1 \times 10^{-7} 4. $ Iy: other: 33 7 from ( ¹⁶ O,3nγ) is in disagreement.
	756.6 3	100 <i>12</i>	[E2]		0.00377	B(E2)(W.u.)=105 17. $\alpha$ (K)=0.00320 5; $\alpha$ (L)=0.000451 7; $\alpha$ (M)=9.47×10 ⁻⁵ 14. $\alpha$ (N)=2.09×10 ⁻⁵ 3; $\alpha$ (O)=3.33×10 ⁻⁶ 5; $\alpha$ (P)=2.31×10 ⁻⁷ 4.
2776.0	239.8 3	100 4	(M1+E2)	-0.25 8	0.1042	$ \begin{array}{l} \alpha({\rm K}) = 0.0886 \ 14; \ \alpha({\rm L}) = 0.0123 \ 3; \ \alpha({\rm M}) = 0.00258 \ 7. \\ \alpha({\rm N}) = 0.000571 \ 13; \ \alpha({\rm O}) = 9.20 \times 10^{-5} \ 19; \\ \alpha({\rm P}) = 6.75 \times 10^{-6} \ 13. \end{array} $
	542.9 3	42 4				Iy: other: 162 13 from $(^{16}O, 3n\gamma)$ is in severe
9967 1	945 0 9	100 9				disagreement.
2001.1	243.03 633.96	<26				

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-8}$

#### Adopted Levels, Gammas (continued)

#### $\gamma(^{129}\text{Ce})$ (continued)

E(level)	$E\gamma^{\dagger}$	$\underline{  } I\gamma^{\dagger}$	Mult.‡	δ‡	α§	Comments
2889.7	224.3 3	27.3 18	[M1+E2]		0.1250 19	$\begin{split} &\alpha(K) \!=\! 0.1060 \ 18; \ \alpha(L) \!=\! 0.0150 \ 7; \ \alpha(M) \!=\! 0.00316 \ 16. \\ &\alpha(N) \!=\! 0.00070 \ 4; \ \alpha(O) \!=\! 0.000112 \ 5; \\ &\alpha(P) \!=\! 8.04 \!\times\! 10^{-6} \ 22. \\ &I\gamma: \ other: \ 10.4 \ 8 \ from \ (^{16}O, 3n\gamma) \ is \ in \end{split}$
	739.3 3	100 5	(E2)		0.00398	disagreement. B(E2)(W.u.)=57 19. $\alpha$ (K)=0.00338 5; $\alpha$ (L)=0.000478 7; $\alpha$ (M)=0.0001004 14. $\alpha$ (N)=2.22×10 ⁻⁵ 4; $\alpha$ (O)=3.53×10 ⁻⁶ 5; $\alpha$ (P)=2.43×10 ⁻⁷ 4.
2901.2+y	699.2 3	100				
3011.2	235.2 3	100 4	[M1+E2]		0.1098	$\begin{split} &\alpha({\rm K}){=}0.0932\ 16;\ \alpha({\rm L}){=}0.0131\ 6;\ \alpha({\rm M}){=}0.00276\ 13.\\ &\alpha({\rm N}){=}0.00061\ 3;\ \alpha({\rm O}){=}9.8{\times}10^{-5}\ 4;\\ &\alpha({\rm P}){=}7.07{\times}10^{-6}\ 19. \end{split}$
	474.9 3	85 5	[E2]		0.01243	$\begin{split} &\alpha(K) = 0.01034 \ 15; \ \alpha(L) = 0.001648 \ 24; \\ &\alpha(M) = 0.000350 \ 5. \\ &\alpha(N) = 7.68 \times 10^{-5} \ 11; \ \alpha(O) = 1.200 \times 10^{-5} \ 17; \\ &\alpha(P) = 7.23 \times 10^{-7} \ 11. \\ &\Gamma; \ other: \ 100 \ 8 \ from \ (^{16}O, 3n\gamma). \\ &B(E2)(W.u.) = 150 \ 24. \end{split}$
3145.5	278.4.3	100 7				
	523 5 6	45.8				
3208.2	318.5 3	100 4	(M1+E2)	-0.09 6	0.0492	$\alpha(\mathbf{K})=0.0421 \ 7; \ \alpha(\mathbf{L})=0.00561 \ 8; \\ \alpha(\mathbf{M})=0.001173 \ 17. \\ \alpha(\mathbf{N})=0.000260 \ 4; \ \alpha(\mathbf{O})=4.22\times10^{-5} \ 6; \\ (\mathbf{D}) \ 0.22 \ 10^{-5} \ 6; \\ \alpha(\mathbf{N})=0.000265 \ 4; \ \alpha(\mathbf{O})=4.22\times10^{-5} \ 6; \\ \alpha(\mathbf{O})=0.000265 \ 4; \ \alpha(\mathbf{O})=0.000265 \ 4; \ \alpha(\mathbf{O})=4.22\times10^{-5} \ 6; \\ \alpha(\mathbf{O})=0.000265 \ 4; \ \alpha(\mathbf{O})=4.22\times10^{-5} \ 6; \\ \alpha(\mathbf{O})=0.000265 \ 4; \ \alpha(\mathbf{O})=0.000265 \ $
	542.7 3	47 3	[E2]		0.00865	$\begin{split} &\alpha(\mathbf{r}) = 0.22 \times 10^{-5} S, \\ &\mathbf{B}(\mathbf{M}1)(\mathbf{W}.\mathbf{u}.) = (0.39 \ 10); \ \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = (21 \ +28 - 21), \\ &\alpha(\mathbf{K}) = 0.00725 \ 11; \ \alpha(\mathbf{L}) = 0.001108 \ 16; \\ &\alpha(\mathbf{M}) = 0.000234 \ 4, \\ &\alpha(\mathbf{N}) = 5.15 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 8.11 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{N}) = 5.15 \times 10^{-7} \ 0. \end{split}$
						<ul> <li>α(P)=5.13×10⁻⁷ 8.</li> <li>Iγ: other: 81 6 from (¹⁶O,3nγ) is in disagreement.</li> <li>B(E2)(W.u.)=84 21.</li> </ul>
3291.8	280.7 3	100 5				
	516.0 6	29 4				I $\gamma$ : other: 57 7 from ( ¹⁶ O,3n $\gamma$ ) is in disagreement.
3447.1	301.8 6	100 9				
	579.9 6	95 19				
3461.2	253.1 3	100 4	[M1+E2]		0.0899 14	$\begin{split} &\alpha({\rm K}){=}0.0764 \ 15; \ \alpha({\rm L}){=}0.0107 \ 4; \ \alpha({\rm M}){=}0.00224 \ 8. \\ &\alpha({\rm N}){=}0.000495 \ 17; \ \alpha({\rm O}){=}7.97{\times}10^{-5} \ 22; \\ &\alpha({\rm P}){=}5.80{\times}10^{-6} \ 17. \end{split}$
	571.4 3	31.0 21	[E2]		0.00756	B(E2)(W.u.)=68 25. $\alpha(K)=0.00635$ 9; $\alpha(L)=0.000956$ 14; $\alpha(M)=0.000202$ 3. $\alpha(N)=4.44\times10^{-5}$ 7; $\alpha(O)=7.01\times10^{-6}$ 10; $\alpha(P)=4.50\times10^{-7}$ 7. Iy: other: 156 22 from ( ¹⁶ O,3ny) is in severe disagreement
3586.1	294.2 3	100 5	[M1+E2]		0.0599 12	$\begin{aligned} &\alpha(\mathbf{K})=0.0510 \ 12; \ \alpha(\mathbf{L})=0.00702 \ 14; \\ &\alpha(\mathbf{M})=0.00147 \ 4. \\ &\alpha(\mathbf{N})=0.000326 \ 7; \ \alpha(\mathbf{O})=5.25\times10^{-5} \ 9; \\ &\alpha(\mathbf{P})=3.87\times10^{-6} \ 12. \end{aligned}$
	574.9 3	89 6	[E2]		0.00744	B(E2)(W.u.)>59. $\alpha(K)=0.00625 \ 9; \ \alpha(L)=0.000940 \ 14;$ $\alpha(M)=0.000198 \ 3.$ $\alpha(N)=4.37\times10^{-5} \ 7; \ \alpha(O)=6.89\times10^{-6} \ 10;$ $\alpha(P)=4.44\times10^{-7} \ 7.$ Iy: other: 200 25 from ( ¹⁶ O,3ny) is in severe disagreement.
3675.4+y	774.2 3	100				

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-9}$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\text{Ce})$ (continued)

E(level)	$E\gamma^{\dagger}$	Ιγ†	Mult.‡	<u>α</u> §	Comments
3788.2	327.1 3	100 4	[M1+E2]	0.0452 10	$\alpha(K)=0.0386$ 10; $\alpha(L)=0.00526$ 8; $\alpha(M)=0.001100$ 18. $\alpha(N)=0.000244$ 4; $\alpha(Q)=3.94\times10^{-5}$ 6; $\alpha(P)=2.93\times10^{-6}$ 10
	579.9 3	40 3	[E2]	0.00727	B(E2)(W.u.)=210 170. α(K)=0.00611 9; $α(L)=0.000917$ 13; $α(M)=0.000194$ 3. $α(K)=4.26\times10^{-5}$ 6; $α(O)=6.73\times10^{-6}$ 10; $α(P)=4.34\times10^{-7}$ 7. Iy: other: 164 15 from ( ¹⁶ O,3nγ) is in severe disagreement.
3803.7	356.6 6	92 16			
	658.2 6	100 20			
3934.4	348.2 3	62 6			
	642.6 3	100 9			
4117.4	329.2 3	100 4	[M1+E2]	0.0445 10	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.0379 \ 10; \ \alpha(\mathbf{L}) = 0.00517 \ 8; \ \alpha(\mathbf{M}) = 0.001082 \ 18. \\ &\alpha(\mathbf{N}) = 0.000240 \ 4; \ \alpha(\mathbf{O}) = 3.87 \times 10^{-5} \ 6; \ \alpha(\mathbf{P}) = 2.88 \times 10^{-6} \ 9. \end{aligned} $
	656.3 3	62 4	[E2]	0.00532	B(E2)(W.u.)=140 110. α(K)=0.00449 7; α(L)=0.000653 10; α(M)=0.0001374 20. α(N)= $3.03\times10^{-5}$ 5; α(O)= $4.81\times10^{-6}$ 7; α(P)= $3.21\times10^{-7}$ 5. Iγ: other: 137 17 from ( $^{16}O,3n\gamma$ ) is in severe disagreement.
4179.0	375.46	62 15			
	731.8 6	100 26			
4295.0	360.7 3	100 8			
	708.9 3	100 10			
4507.4	390.0 3	100 5	[M1+E2]	0.0285 8	$ \begin{aligned} &\alpha(K) = 0.0244 \ 7; \ \alpha(L) = 0.00328 \ 5; \ \alpha(M) = 0.000686 \ 10. \\ &\alpha(N) = 0.0001522 \ 23; \ \alpha(O) = 2.46 \times 10^{-5} \ 5; \ \alpha(P) = 1.85 \times 10^{-6} \ 7. \end{aligned} $
	719.1 3	64 6	[E2]	0.00426	$ \begin{split} &\alpha({\rm K}){=}0.00361 \ 5; \ \alpha({\rm L}){=}0.000514 \ 8; \ \alpha({\rm M}){=}0.0001079 \ 16. \\ &\alpha({\rm N}){=}2.38{\times}10^{-5} \ 4; \ \alpha({\rm O}){=}3.79{\times}10^{-6} \ 6; \ \alpha({\rm P}){=}2.59{\times}10^{-7} \ 4. \\ &{\rm B}({\rm E2})({\rm W.u.}){>}88. \end{split} $
4526.4 + y	851.0 3	100			
4596.9	793.2 6	100			
4711.9	417.0 3	73 7			
	777.4 3	100 10			
4910.7	403.4 3	100 7	[M1+E2]	0.0262 7	$\alpha(\mathbf{K})=0.0224\ 7;\ \alpha(\mathbf{L})=0.00300\ 5;\ \alpha(\mathbf{M})=0.000628\ 10.$ $\alpha(\mathbf{N})=0.0001391\ 22;\ \alpha(\mathbf{O})=2.25\times10^{-5}\ 4;\ \alpha(\mathbf{P})=1.70\times10^{-6}\ 6.$
	793.2 3	967	[E2]	0.00338	B(E2)(W.u.)>80. $\alpha$ (K)=0.00287 4; $\alpha$ (L)=0.000401 6; $\alpha$ (M)=8.40×10 ⁻⁵ 12. $\alpha$ (N)=1.86×10 ⁻⁵ 3; $\alpha$ (O)=2.97×10 ⁻⁶ 5; $\alpha$ (P)=2.07×10 ⁻⁷ 3.
5048.8	869.8 6	100			
5135.8	423.9 3	77 8			
	840.8 3	100 14			
5367.0	456.3 3	95 16			
	859.6 3	100 9			
5449.8+y	923.4 3	100			
5468.0	871.1 6	100			
5619.3	483.6 6	64 8			
5000 0	907.4 3	100 10			
0.000	409.93 096 1 9	100 9 66 10			
6009 8	961 0 [@] 6	100			
6105.3	486.0 6	78 19			
0100.0	969.6 6	100 22			
6361.4	524.56	74 12			
	994.3 6	100 16			
6448.4 + y	998.6 3	100			
6649.1	1029.8 6	100			
6884.8	5 2 3 [#]				Ey: from $(^{28}\text{Si},2\text{pny})$ only.
	1048.1 6	100			
6970.8	961.0 ^{#@} 6	100			
7193.1	1087.8 6	100			
7479.7	1118.3 6	100			
7520.8 + y	1072.4 10	100			
7789.9	1140.86	100			
8038.5	1153.76	100			
8385.0	1191.8 6	100			
8667.8+y	1147.0 10	100			
8711.9	1232.26	100			

#### Adopted Levels, Gammas (continued)

#### $\gamma(^{129}Ce)$ (continued) $I\gamma^{\dagger}$ $E\gamma^{\dagger}$ Iγ† E(level) $E\gamma^{\dagger}$ E(level) 9033.6 1243.7 6 100 11470.3 1425.0 6 $1\,0\,0$ 1378.0 6 9282.5 1244.0 6 11979.4 $1\,0\,0$ 100 1287.0# 6 9672.0 100 $1\,2\,5\,6\,5+y$ 1375.6 10 100 9890.3+y 1456.4 10 1222.5 10 100 14021 + y100 10045.3 1333.46 $1\,0\,0$ 15554+y 1533.0 10 $1\,0\,0$ 10601.41318.9 6 $1\,0\,0$ 17178+y 1623.5 10 $1\,0\,0$ 11189.4+y 1299.1 10 $1\,0\,0$ 18905+y 1727.0 10 $1\,0\,0$

[†] Most data are from  $^{100}Mo(^{34}S,5n\gamma)$ . Weighted averages taken from  $\varepsilon$  decay, ( $^{34}S,5n\gamma$ ) and  $^{116}Sn(^{16}O,3n\gamma)$  for levels below  $\approx 500$  keV, where the values are in general agreement. Above this energy, levels populated in  $\varepsilon$  decay and high-spin reactions do not much overlap, the values are either from  $\varepsilon$  decay or from  $^{100}Mo(^{34}S,5n\gamma)$ .

[±] From γ anisotropies (1977Gi17) and γ(θ) (1984Ar13); RUL for E2 and M2 used when level lifetimes are available or with assumed  $\approx$ 10 ns coincidence resolving time in γγ data.

 $\$   $\delta(E2/M1){=}0.3$  assumed when not given.

 $^{\#}$  Placement of transition in the level scheme is uncertain.

@ Multiply placed.

# $^{129}_{58}\mathrm{Ce}_{71}\text{--}11$

Adopted Levels, Gammas (continued)

(A)  $vh_{11/2} \otimes \pi(h_{11/2}, g_{7/2}),$  $\alpha = +1/2.$  (B)  $vh_{11/2} \otimes \pi(h_{11/2}, g_{7/2}),$  $\alpha = -1/2.$ 

(C)  $vd_{5/2}$ ,  $\alpha = +1/2$ .

	(55/2+)	9672.0	_	
(53/2+) 9033.6				
	_			
	(51/2+)	¥ 8385.0	_	
(49/2+) 7789.9				
(40/24) 1105.5	-			
	(47/2+)	y 7193.1	(45/9+)	6070 8
(45/2+) 6649.1			(43/2+)	0970.8
	-			
	(43/2+)	¥ 6105.3	- <u>(41/2+)</u>	<u> </u>
(41/2+) 5619.3	(A)(41/2+)		_	
(B)(39/2+)	(39/2+)	y 5135.8	-(37/2+)	5048.8
(37/2+) 4711.9	(A)(37/2+)		_	
(B)(35/2+)	(35/2+)	<u>4295.0</u>	(33/2+)	4179.0
(33/2+) (B)(31/2+) (3934.4)	(A)(33/2+)	2596.1	(D)(31/2+)	
(29/2+) 3291.8	(A)(29/2+)		(D)(27/2+)	
(B)(27/2+)	_(27/2+)	3011.2	(25/2+)	2867.1
$\begin{array}{c c} (25/2+) \\ \hline (B)(23/2+) \\ \hline \psi \end{array} \begin{array}{c} 2776.0 \\ \hline \end{array}$	(A)(25/2+)		(D)(23/2+)	
(C)(21/2+)	(C)(21/2+)	<u> </u>	(21/2+) (D)(19/2+)	
	(D)(19/2+)	v	(17/2+)	1514.6
			(D)(15/2+)	
			(13/2+) (D)(11/2+)	<u>\</u> <u>868.4</u>
			(9/2+)	<u> </u>
			(D)(7/2+)	
			(5/2+)	└── <b>─</b> ↓ 0.0

 $^{129}_{58}\mathrm{Ce}_{71}$ 

#### Adopted Levels, Gammas (continued)

(63/2-)

(D)  $vd_{5/2}$ ,  $\alpha = -1/2$ .

(E)  $vh_{11/2}, \alpha = +1/2$ .

(F)  $vh_{11/2}, \alpha = -1/2$ .

11979.4

	(61/2-)		11470.3	_		
				(59/2)		10601.4
				(00/2)		10001.4
	(57/2-)		10045.3	_		
				(55/2-)		9282.5
	(53/2-)	1	8711.9	-		
				(51/2-)		8038.5
	(49/2-)		7479.7			
				-		
				(47/2-)		6884.8
	(45/2-)		6361.4	(E)(45/2-)	w	
	(10)2 )		000111	(1)(10)1	V	
	(F)(43/2-)	V.		(43/2-)	Y	5836.8
(39/2+) 5468.0	- (41/2-)		5367.0	(E)(41/2-)	<u> </u>	4010.7
	(F)(39/2-)			(39/2-) - (F)(37/2-)	١ .	, / 4910.7
(35/2+) 4596.9	(37/2-)	<u>¥</u>	4507.4	-(35/2-)	$\backslash$	4117.4
	(F)(35/2-)	,	₽	- (E)(33/2-)	\¥	
(31/2+) 3803.7	(33/2-)	¥	3788.2	- (31/2-)	<u>//</u>	3461.2
(C)(29/2+)	$-\frac{(F)(31/2-)}{(20/2)}$	,		- (E)(29/2-)	<u>∖</u> ¥	/
(27/2+) <u>V</u> 3145.5	$-\frac{(29/2-)}{(F)(27/2-)}$	¥,	3208.2	- (27/2-)		2889.7
(C)(25/2+)	(25/2-)	V	2665.5	-(E)(25/2-)		
(23/2+) 2622.1	(F)(23/2-)	,		-(23/2-)	\¥	
(19/2+)	(21/2-)	V	1909.0	-(19/2-)		1422.4
(C)(17/2+)	(F)(19/2-)	,	⊏/	(E)(17/2-)	\/ <u> </u>	
(15/2+)	(17/2-)	Ļ	1186.7	- (15/2-)	.)) .	805.7
(C)(13/2+)	$-\frac{(F)(15/2-)}{(13/2-)}$	· · · · · · · · · · · · · · · · · · ·	- 595 5	- (E)(13/2-)	\\ <u> </u>	□//
(11/2+) $(2)(2)(2)$ $(2)(2)(2)$	$-\frac{(13/2-)}{(F)(11/2-)}$	<u> </u>		-(11/2-)		
(C)(9/2+)			189.59	-(E)(9/2-)	\\¥;	107.60
(1/2+) (1/4.38)	(F)(7/2-)	¥		-(C)(5/2+)		
(0)(0)#1)	_				<u>v</u>	

#### Adopted Levels, Gammas (continued)

#### (G) v1/2[541], $\alpha = +1/2$ .



### $^{129}_{58}$ Ce₇₁-14

 $^{129}_{58}$ Ce $_{71}$ -14



#### Adopted Levels, Gammas (continued)

Level Scheme

Intensities: relative photon branching from each level * Multiply placed



15554+y

#### Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level * Multiply placed



(73/2-)



 $^{12\,9}_{5\,8}\mathrm{Ce}_{71}$
### Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level * Multiply placed



### Adopted Levels, Gammas (continued)

Level Scheme (continued)

Intensities: relative photon branching from each level * Multiply placed

(81/2-)	18905+y	
(77/2-)	 17178+y	
(73/9)	15554+1	
(13/2-)	10004+9	
(69/2-)	14021+y	
(65/2-)	12565+y	
(63/9_)	11070 /	
(05/2-)	 11070.4	
(61/2-)	 - 11189.4+y	
(50/8)	10001 4	
(59/2-)	10601.4	
(57/2-)	 10045.3	
(55/2+)	9672.0	
(53/2+)	9033.6	
(51/9)	= 8285 0	
(51/2-)	 8038.5	
(40/2)	 -	
(49/2-)	- 1419.1	
(47/2-)	 - 6884.8	
(45/2-)	- 6361.4	
(43/2-)	5836.8	
(41/2-)	5367.0	
(39/2-)	4910.7	<0.28 ng
(37/2-)	4526.4+y	<0.20 ps
(33/2+)	4179.0	
(33/2-)	3788.2	0.30 ps
(27/2+)	2011.9	
(7/2+)	331.30+x	1.74 ps
(9/2+,7/2+)	279.01	
$\frac{(5/2+)}{(0/2-)}$	243.31+x	
(9/2-) (7/2+)	 144.38	
(7/2-)	107.60	60 ns
(3/2+)	39.50+x	
(5/2+)	0.0+x	35 min
		0.0 min

 $^{129}_{58}$ Ce₇₁-19

## ¹²⁹Pr ε Decay (30 s) 1996Gi08

 $Parent \ ^{129}Pr: \ E=0.0; \ J\pi=(3/2+); \ T_{1/2}=30 \ s \ 4; \ Q(g.s.)=6510 \ 40; \ \%\epsilon+\%\beta^+ \ decay\approx 100.$ 

¹²⁹Pr-Q(ε): From 2012Wa38.

 $^{129}\mathrm{Pr}{-}J,\mathrm{T_{1/2}:}$  From  $^{129}\mathrm{Pr}$  Adopted Levels.

¹²⁹Pr-E: Assumed contribution from only one activity.

1996Gi08:  $^{94,96}Mo(^{40}Ca,X),$  E=255 MeV; Ge detectors, He-jet; measured  $\gamma\gamma(t)-$ , (x ray) $\gamma(t)-coin.$  Other: 1977Bo02.

From assignment of 9/2- to the 60-ns isomer at 108 keV, 1998Io01 assigned 7/2+ to g.s. and increased spin by one unit all the positive- parity levels. For the negative-parity band, a new level was proposed at 119.4 keV with  $J\pi$ =11/2- and energies of higher levels were adjusted accordingly, and the spins increased by 2 units. The placements of 6197, 7017, 10287, 10407, and 12177 were revised also. These modifications of the decay scheme proposed in 1998Io01 have not been adopted by the evaluators, since the spin of 9/2 for the 60-ns isomer at 107.6 is not considered by the evaluators as definitely determined. The experimental quadrupole interaction pattern (figure 1 in 1998Io01) fits 9/2 better than 7/2, but the fit for 9/2 still suffers from somewhat large  $\chi^2$  of 2.7. Assignment of 9/2- for the isomer also leads to serious discrepancies with band structures and theoretical predictions.

#### No meaningful $\varepsilon$ and $\beta^+$ feedings can be deduced since feeding to ground state of ¹²⁹Ce is unknown and multipolarities of several low-energy transitions, with expected large conversion coefficients, are unknown. For these reasons, the decay scheme cannot be normalized to obtain $\gamma$ -ray intensities per 100 ¹²⁹Pr nuclei.

## ¹²⁹Ce Levels

E(level) [†]	$J\pi^{\ddagger}$	T _{1/2}	Comments
0.0	(5/2+)	3.5 min <i>3</i>	J $\pi$ : see discussion in Adopted Levels for (5/2+) assignment rather than 7/2+ as proposed by 19981001
0.0+x	(1/2+)		E(level): x<0.5 keV from parallel decay paths from the 918.8 level to g.s. and the 0.0+x level; expected to be an isomer.
39.50+x 9	(3/2+)		
107.58 10	(7/2-)	60 ns 2	J $\pi$ : see discussion in Adopted Levels for (7/2-) assignment rather than 9/2- as proposed by 1998Io01. Two: from Adopted Levels.
144.41 15	(7/2+)		1/2 .
189.55 13	(9/2-)		
243.30 + x 9	(5/2+)		
279.02 9	(9/2+.7/2+)		
331 30 + x 20	(7/2+)		
334.89 14	(11/2-)		
347.72 25	(9/2+)		
589.10 25	(11/2+)		
613.60 16	(,		
616.9 + x 5			
671.40+x 22	(9/2+)		
748.06 20			
781.1 4			
789.8+x 5			
806+x 3	(11/2+)		
808.6 3			
820.3 3			
830.02 24			
831.41+x 22			
835.0+x 4			
866.7 11	(13/2+)		
918.8+x 4			
979.92 24			
1134.0+x 5	(3/2,5/2)		
1135.5 4			
1229.6 5			
1324.6 10			
1337.6 4			
1340+x 3	(3/2,5/2)		
1347.5+x 10			
1445.4 11			
1549.95			
1678.5 + x 4	(3/2,5/2)		
1825.9+x 4			
2008.9 4			

 $^{129}_{58}$ Ce₇₁-19

## ¹²⁹Pr & Decay (30 s) 1996Gi08 (continued)

¹²⁹Ce Levels (continued)

 †  From least-squares fit to Ey data, 305.3y not used in the fitting procedure.  ‡  From Adopted Levels.

γ(¹²⁹Ce)

Εγ	E(level)	Ιγ	Mult.	α#	Comments
3951	39 50+x	50 6			
81.9 <i>1</i>	189.55	18.3 15			
88.0 5	331.30+x	5.3 7			
107.6 1	107.58	100	[E1]	0.199	$\alpha(K)=0.1692\ 24;\ \alpha(L)=0.0234\ 4;\ \alpha(M)=0.00487\ 7.$
					$\alpha(N)=0.001065 \ 16; \ \alpha(O)=0.0001660 \ 24; \ \alpha(P)=1.030\times 10^{-5} \ 15.$ B(E1)(W,u,)=2.96×10 ⁻⁶ 10.
134.6 2	279.02	6.4 9			
144.4 2	144.41	904			
145.42	334.89	$21 \ 1$			
203.32	347 . $72$	16 2			
203.82	243.30 + x	117 6			
227.3 1	334.89	2.3 2			
$241^{\dagger}$ 1	589.10	$17^{+}3$			
243.3 1	243.30+x	93 5			
279.0 1	279.02	392			
291.8 2	331.30+x	60 3			
305.3 2	918.8+x	12.4 8			
334.5 2	613.60	4.0 5			
340 I	671.40+x	2.55			
≈348 '	347.72	3.6 3			
313 1	616.9+x	07 I			
420.12 ×441.98.2	071.40+x	27 1 60 0 [‡]			
444 7 2	589 10	17 5 5			
≈446	781.1	<1			
≈475	806+x	<1			
$\approx 501$	831.41+x	3 1			
506.1 2	613.60	24 2			
519 <i>1</i>	866.7	<2			
546.5 5	789.8 + x	$50^{\ddagger}5$			
558.52	748.06	13.8 8			
577.5 5	616.9+x	$120 \ddagger 9$			
588.12	831.41+x	662			
591.5 3	781.1	9.4 6			
591.7 3	835.0+x	10 1			
619 1	808.6	13.4 8			
640 5 3	748.06	J.2 4 1 8 1			
040.5 5	830 02	4.8.4			
≈675	781.1	6.2 5			
675.5 3	918.8+x	292			
701.0a 3	808.6	9.3 6			
712.8 3	820.3	6.8 5			
722.4 3	830 . $02$	292			
789.7 3	979.92	6.2 5			
873.0 3	979.92	7.75			
960.8 4	1549.9	8.6 6			
≈990	1337.6	<2			
1027.9 3	1135.5	11.2 8			
1040.0° 5	1229.6	4.24			
1101 2	1104.U+X	1.U Z 9.0.2			
1122 1	1229 6	2.0.5			
1154.5 3	1825.9 + x	15.4 8			
1193.2 3	1337.6	14.6 7			
1217& 1	1324.6	6.5 5			
1230 1	1337.6	3.2 2			

## ¹²⁹Pr ε Decay (30 s) 1996Gi08 (continued)

#### $\gamma(^{129}Ce)$ (continued)

Eγ	E(level)	Ιγ		
1300 3	1340+x	31 2		
1301 1	1445.4	5.05		
1308 1	1347.5 + x	10 1		
1639.0 3	1678.5 + x	$21 \ 1$		
1864.5 3	2008.9	<2		

† Complex line.

- [‡] Intensity estimated from A=129 on-line singles spectra in 92Mo( 40 Ca,X), E=190 MeV, and normalized to I $\gamma(203.8\gamma)$  and I $\gamma(243.3\gamma)$ .
- \$ The  $\gamma$  line in coin with Ce x rays only.

 $^{\#}$   $\delta(E2/M1){=}0.3$  assumed when not given.

[®] Based on their assignment of 9/2- for the 107.6 isomer, 1998Io01 proposed that  $1040.0\gamma$  and  $1027.9\gamma$  deexcite a new level at 1147.6; former transition to 107.6 level and the latter to a newly proposed 11/2- level at 119.4 keV. The evaluators have not adopted this proposal.

& Based on their assignment of 9/2- for the 107.6 isomer, 1998Io01 proposed that 1217γ deexcites level at 1337.6 to a newly proposed 11/2- level at 119.4 keV. The evaluators have not adopted this proposal.

^a Based on their assignment of 9/2- for the 107.6 isomer, 1998Io01 proposed that  $619\gamma$  and  $701.0\gamma$  deexcite level at 820.4; former transition to a 201.3, 13/2- level and the latter to a newly proposed 11/2- level at 119.4 keV. The evaluators have not adopted this proposal.

 $^{x}~\gamma$  ray not placed in level scheme.



## $^{129}_{58}$ Ce $_{71}$ -23

### 100 Mo( 34 S,5n $\gamma$ ) 2009Pa40

2009Pa40: E=155 MeV; measured Eγ, Iγ, γγ-coin using the EUROGAM 2 spectrometer at CRN, Strasbourg. The EUROGAM 2 array consisted of 30 tapered coaxial, 24 four-element clover escape suppressed HPGe detectors. Comparison with cranked Woods-Saxon calculations and systematics of other light odd-N cerium isotopes.

 $Configuration\ assignments\ in\ 2009Pa40\ were\ made\ through\ comparison\ with\ Woods-Saxon\ cranking\ calculations.$ 

2009Li67: ⁹⁶Mo(³⁷Cl,p3nγ) E=155 MeV. Measured lifetimes by Doppler-shift attenuation method (DSAM) using 15 Compton-suppressed HPGe detectors at CIAE, Beijing. Also there is a short report by the same group as 2009Li67 in Chin. Phys. C 32, s2-141 (2008).

## ¹²⁹Ce Levels

Quasiparticle labels with main components:

a:  $v5/2[402], \alpha=+1/2$ .

b:  $v5/2[402], \alpha = -1/2$ . e:  $v7/2[523], \alpha = -1/2$ . f:  $v7/2[523], \alpha = +1/2$ .

A: π5/2[413],α=+1/2. B: π5/2[413],α=-1/2.

E:  $\pi 1/2[550], \alpha = -1/2.$ 

F:  $\pi 1/2[550], \alpha = +1/2$ .

E(level) [†]	Jπ	T _{1/2} ‡	Comments
0 0&	5/2+		
0 + y ? d	(9/2-)		Jπ: (13/2+) implied from data on 104PD(28SL2PNG) (1996Ga13).
107.8° 3	7/2-	60 ns 2	$T_{1/2}$ : from Adopted Levels.
144.73ª 24	7/2+		1/2
190.3 ^b 4	9 / 2 -		
335.8° 4	11/2 -		
348.57& 24	9 / 2 +		
419.9+y ^{§d} 10	(13/2-)		
590.5 ^a 3	11/2+		
596.3 ^b 5	13/2-		
806.5 ^c 5	15/2-		
869.1 ^{&amp;} 3	13/2+		
967.2+y§d 11	(17/2-)		
1178.3 ^a 4	15/2+		
1187.5 ^b 5	17/2-		
1423.3° 5	19/2-		
1515.3 & 4	17/2+		
1568.1+y ^{§d} 11	(21/2-)		
1870.8 ^a 4	19/2+		
1909.8 ^b 5	21/2-	0.20 ps 6	Q(transition)=6.50 9 (2009Li67).
2151.2° 5	23/2-	0.61 ps 34	Q(transition)=4.0 14 (2009Li67).
2202.0+y ^d 12	(25/2-)		
2233.8& 4	21/2+		
$2537.0^{@}5$	23/2+		
2622.8 ^a 6	23/2+		
2666.4 ^b 6	25/2-	0.334 ps 22	Q(transition)=3.57 11 (2009Li67).
2776.7#5	25/2+		
2867.8 ^{&amp;} 6	25/2+		
2890.6° 6	27/2-	0.89 ps 29	Q(transition)=2.9 6 (2009Li67).
2901.2+y ^d 12	(29/2-)		
$3011.9^{@}5$	27/2+		
3146.2 ^a 6	27/2+		
3209.1 ^b 6	29/2-	1.14 ps 26	Q(transition)=5.1 5 (2009Li67).
$3292.6^{\#}6$	29/2+		
3447.9 % 7	29/2+		
3462.0 ^c 6	31/2-	0.78 ps 27	Q(transition)=4.6 9 (2009Li67).
3586.9@6	31/2+		
3675.4+y ^d 12	(33/2-)		
3789.1 ^b 6	33/2-	0.30 ps 24	Q(transition)=6.3 19 (2009Li67).
3804.4 ^a 8	31/2+		
3935.1# 6	33/2+		
4118.3 ^c 6	35/2-	0.33 ps 25	Q(transition)=4.7 15 (2009Li67).
4179.8 & 8	33/2+		
4295.8 6	35/2+		
4508.2 ^b 7	37/2-	<0.33 ps	Q(transition)>3.5 (2009Li67).
4526.4+y ^d 13	(37/2-)		

## $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}24$

-

## ¹⁰⁰Mo(³⁴S,5nγ) 2009Pa40 (continued)

## ¹²⁹Ce Levels (continued)

E(level) [†]	Jπ	[‡]	Comments
4597.6 ^a 10	35/2+		
$4712.7^{\#}6$	37/2+		
4911.5 ^c 7	39/2-	<0.28 ps	$\Theta(\text{transition}) > 3.2$ (2009Li67).
5049.6 & 10	37/2+	1	
5136.5@ 6	39/2+		
5367.8 ^b 7	41/2-		
5449.8+y ^d 13	(41/2-)		
5468.7 ^a 12	39/2+		
5620.1 # 7	41/2+		
5837.7°7	43/2-		
6010.6& 12	41/2+		
6106.1@ 8	43/2+		
6362.1 ^b 8	45/2-		
6448.4+y ^d 14	(45/2-)		
6649.9# 9	45/2+		
6885.8° 9	47/2-		
6971.6 ^{&amp;} 13	45/2+		
7193.9 [@] 10	47/2+		
7480.5 ^b 10	49/2-		
7520.8+y ^d 17	(49/2-)		
7790.7# 11	49/2+		
8039.5° 11	51/2-		
$8385.7^{@}12$	51/2+		
8667.8+y ^d 20	(53/2-)		
8712.7 ^b <i>12</i>	53/2-		
$9034.4^{\#}$ 13	(53/2+)		
9283.5 ^c 13	55/2-		
$9672.7^{@}13$	(55/2+)		
9890.3+y ^d 22	(57/2-)		
L0046.1 ^b 13	57/2-		
10602.4° 14	59/2-		
L1189.4+y ^d 24	(61/2-)		
L1471.1 ^b <i>15</i>	61/2-		
11980.4 ^c 15	63/2-		
12565+y ^d 3	(65/2-)		
14021+y ^d 3	(69/2-)		
15554+y ^d 3	(73/2-)		
L7178+y ^d 4	(77/2-)		
18905+y ^d 4	(81/2-)		

 †  From least-squares fit to the Ey data.

 ‡  From DSAM (2009Li67) unless otherwise stated.

§ Possibly feeds lowest members of positive-parity band. No linking transitions were found.

 $(B): vh_{11/2} \otimes \pi(h_{11/2}, g_{7/2}), \alpha = -1/2. \ Quasiparticle \ configuration = eEB. \ Band \ crossing \ at \ h\omega = 0.301 \ MeV.$ 

& (C):  $vd_{5/2}^{-}$ ,  $\alpha = +1/2$ . Quasiparticle configuration=a below, aEF above the band crossing. Band crossing at  $\hbar\omega=0.318$  MeV. Second band crossing at  $\hbar\omega=0.48$  MeV due to pair of  $\pi h_{11/2}$  neutrons.

a (D):  $vd_{5/2}$ ,  $\alpha = -1/2$ . Quasiparticle configuration=b below, bEF above the band crossing. Band crossing at  $\hbar\omega = 0.318$  MeV.

 $b \quad (E): \ vh_{1/2}^{-,\omega_{2}+1/2}. \ Quasiparticle \ configuration=f \ below, \ fEF \ above \ the \ band \ crossing. \ Band \ crossing \ at \ h\omega=0.312 \ MeV.$ 

^c (F):  $vh_{11/2}, \alpha = -1/2$ . Quasiparticle configuration=e below, eEF above the band crossing. Band crossing at  $\hbar\omega = 0.325$  MeV.

d (G): 1/2 (J2[541],  $\alpha = +1/2$ . Decoupled enhanced deformation band. Interpreted as SD band in 1996Ga13 on the basis of Q(intrinsic) measurement. Possible transitions to band based on 5/2+ and its signature partner.

### γ(¹²⁹Ce)

Multipolarities are assumed in 2009Pa40 as stretched quadrupoles (E2) for in-band transitions and dipoles (M1(+E2)) for interband transitions.

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult.	α	Comments
82.3 3	190.3	>110			
107.8 3	107.8	30 <i>3</i>	[E1]	0.198 4	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}25$

¹⁰⁰ Mo( ³⁴ S,5nγ) 2009Pa	40 (continued)
------------------------------------------------	----------------

### $\gamma(^{129}\text{Ce})$ (continued)

${f E}\gamma^{\dagger}$	E(level)	Ιγ	$\mathbf{E}\gamma^{\dagger}$	E(level)	Ιγ
144 6 3	144 73	>120	600 9 3	1568 1+v	999
145 7 3	335 8	89.3	616 5 3	1423 3	100
203.6 3	348.57	91 3	633.9 3	2202.0+v	9.3 9
210.2 3	806.5	47.4 20	633.9 6	2867.8	< 5.0
224.3 3	2890.6	17.2 11	642.6 3	3935.1	22.3 19
228.2 3	335.8	53.8 12	646.1 3	1515.3	49 3
235.2 3	3011.9	38.0 16	656.3 3	4118.3	25.4 17
236.0 3	1423 . 3	18.0 14	658.2 6	3804.4	7.7 15
239.8 3	2776.7	36.5 16	666.1 3	2537.0	36.7 19
241.4 3	2151.2	10.8 12	692.7 3	1870.8	38 <i>3</i>
241.8 3	590.5	53.5 24	699.2 3	2901.2+y	8.28
245.0 3	2867.8	19.3 15	708.9 3	4295.8	16.8 16
203.1 3	596 2	924	710.4 3	2233.8	39.0 23
200.7 3	3146 2	74 5 91 5 15	719.1 3	4008.2	10.0 10 31 3 21
278.7.3	869 1	41 1 15	722.5 3 727 9 3	2151 2	92 5
280.7 3	3292.6	33.6 16	731.8 6	4179.8	8.6 22
294.2 3	3586.9	29.9 14	739.3 3	2890.6	63 3
301.8 6	3447.9	9.1 8	752.1 6	2622.8	7.1 19
303.2 3	2537.0	24.7 14	756.6 3	2666.4	25 3
309.5 3	1178.3	25.1 14	774.2 3	3675.4 + y	7.5 8
318.5 3	3209.1	56.021	777.4 3	4712.7	16.1 16
327.1 3	3789.1	48.6 20	793.2 6	4597.6	< 5.0
329.2 3	4118.3	41.3 18	793.2 3	4911.5	20.5 16
337.1 3	1515.3	26.0 16	840.8 3	5136.5	13.3 18
348.2 3	3935.1	13.8 13	851.0 3	4526.4+y	6.27
348.7 3	348.57	28.4 22	859.6 3	5367.8	19.0 17
355.53	1870.8	16.9 13	869.8 6	5049.6	<5.0
360 7 3	4295 8	16 8 14	907 4 3	5620 1	
363.1 3	2233.8	17.6 15	923.4 3	5449.8+v	4.8.7
375.4 6	4179.8	5.3 13	926.1 3	5837.7	10.7 16
381.2 3	1187.5	21.3 17	961.0 [§] 6	6010.6	< 5.0
389.0 6	2622.8	< 5.0		6971.6	< 5.0
390.0 3	4508.2	25.0 13	969.6 6	6106.1	6.4 14
403.4 3	4911.5	21.4 14	994.3 6	6362.1	9.7 16
405.8 3	596.3	19.1 12	998.6 <i>3</i>	6448.4 + y	4.4 7
417.03	4712.7	11.7 12	1029.8 6	6649.9	7.1 14
419.97 10	419.9+y	<2.0	1048.1 6	6885.8	8.8 14
423.9 3	5136.5	10.2 11	1072.4 10	7520.8+y	3.36
445.93	590.5	30.9 19	1087.8 6	7193.9	5.6 13
458.5 5	5837 7	16 9 14	1110.5 0	7480.5	5.5 15
470 7 3	806 5	79.3	1140.0 0 1147 0 10	8667 8+v	2 1 6
474.9 3	3011.9	32.4 19	1153.7 6	8039.5	<5.0
483.6 6	5620.1	9.1 12	1191.8 6	8385.7	< 5.0
486.0 6	6106.1	5.0 12	1222.5 10	9890.3+y	1.6 5
486.6 3	1909.8	14.9 17	1232.26	8712.7	< 5.0
515.2 3	2666.4	16.9 18	1243.76	9034.4	< 5.0
516.0 6	3292.6	9.6 12	$1244.0_{6}$	9283.5	< 5.0
520.6 3	869.1	36.021	1287.0 [‡] 6	9672.7	< 5.0
523.5 6	3146.2	9.6 17	1299.1 10	11189.4+y	<1.0
524.5 6	6362.1	7.2 12	1318.9 6	10602.4	< 5.0
042.73	3209.1	26.3 16	1333.4 6	10046.1	< 5.0
042.93 547.99	2110.7	10.3 10	137806 137806	12909+y	<1.0
541.55	3462 0	28 5 19	1425 0 6	11471 1	<5.0
574.9.3	3586 9	26.5 19	1456 4 10	14021+v	<1 0
579.9 6	3447.9	8.6 17	1533.0 10	15554 + v	<1.0
579.9 3	3789.1	19.2 16	1623.5 10	17178 + v	<1.0
587.5 3	1178.3	52 3	1727.0 10	18905+y	<1.0
591.2 3	1187.5	46 3		-	

Footnotes continued on next page

## $^{129}_{58}$ Ce $_{71}$ -26

¹⁰⁰Mo(³⁴S,5nγ) 2009Pa40 (continued)

 $\gamma(^{129}\text{Ce})$  (continued)

- [†] General uncertainty stated for bands 1,2 and 3 in 2009Pa40 is 0.3 keV for I $\gamma$ >10, rising to 0.6 keV for weaker transitions. The evaluators assign 0.6 keV for transitions with I $\gamma$ <10. For band 4, stated uncertainty is 0.3 keV for I $\gamma$ >4 rising to 1 keV for weaker transitions. The evaluators assign 1 keV for transitions with I $\gamma$ <4.
- ^{$\ddagger$} Placement of transition in the level scheme is uncertain.

§ Multiply placed.

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}27$

## $^{100}Mo(^{34}S,5n\gamma)$ 2009Pa40 (continued)

(A)  $vh_{11/2} \otimes \pi(h_{11/2}, g_{7/2}),$  $\alpha = +1/2.$  (B)  $vh_{11/2} \otimes \pi(h_{11/2}, g_{7/2}), \\ \alpha = -1/2.$ 

(C)  $vd_{5/2}$ ,  $\alpha = +1/2$ .

(D)  $vd_{5/2}$ ,  $\alpha = -1/2$ .

		(55/2+)		9672.7	-					
(53/2+)	9034.4									
		-								
		51/2+		y 8385.7	-					
49/2+	7790.7	_								
		1.5.10								
		47/2+		/ 7193.9	45/2+		6971.6			
45/2+	6649.9	_						_		
		43/2+	,	6106.1	41/0		0010.0			
11/2	F 0 0 0 1	(1) (1)			- 41/2+	Ň	6010.6	-		
41/2+	5620.1	(A)41/2+	<u>V</u>		-			39/2+		5468.7
(B)39/2+ v		39/2+	,	5136.5	- 37/2+		5049.6	_		
37/2+	4712.7	(A)37/2+	v		_			35/2+	,	4597.6
(B)35/2+		_ 35/2+	·,	4295.8	33/2+	_	4179.8	_		
<u>33/2+</u> (P)21/2	<u>3935.1</u>	(A)33/2+	¬k		(D)31/2+			31/2+	۰ ۱	3804.4
29/2+	3292.6	(A)29/2+	· ٬	3586.9	<u>29/2+</u>		3447.9	(C)29/2+	1	2146.9
(B)27/2+	ப்	27/2+	<u> </u>	3011.9	$\frac{(D)27/2+}{25/2+}$	\	2867.8	(C)25/2+	\	
25/2+	2776.7	(A)25/2+			(D)23/2+			23/2+	<u></u>	2622.8
(B)23/2+ ¥		23/2+	·'	2537.0	21/2+	<u> </u>	2233.8	(C)21/2+		
(C)21/2+ V		(C)21/2+	, <u> </u> ¥		(D)19/2+			19/2+	\¥	
		(D)19/2+	¥		$\frac{17/2+}{(D)15/2+}$	\¥		(C)17/2+ 15/2+	\'	
					13/2+	$\sqrt{-1}$	869.1	(C)13/2+	\ <u>¥</u>	
					(D)11/2+	<u>\</u>	- /	11/2+		590.5
					9/2+		348.57	(C)9/2+	<u>,                                    </u>	
					(D)7/2+	\¥		7/2+	\¥,	
					0/2+		0.0	(C)5/2+	V	-

## ¹⁰⁰Mo(³⁴S,5nγ) 2009Pa40 (continued)

(E) $vh_{11/2}, \alpha = +1/2$	2.		(F) $vh_{11/2}, \alpha = -1/2$	(G) v1/2[541], $\alpha$ =+1/2.		
					(81/2-)	18905+y
					(77/2-)	v 17178+v
					(73/2-)	v 15554+y
					(69/2-)	y 14021+y
					(65/2)	y 12565±v
		62/9		11080 4	(03/2-)	¥ 12303+y
61/2-	11471 1	63/2-		11980.4	-	
		_			(61/2-)	v 11189.4+y
		59/2-		v 10602.4	_	
57/2-	v 10046.1	_			(57/2-)	y 9890.3+y
		55/2-		y 9283.5	_	
53/2-	v 8712.7	_			(53/2-)	v 8667.8+y
		51/2-		× 8039.5		
49/2-	v 7480.5				- (49/2-)	v 7520.8+y
		47/2_		6885.8		
45/2-	6362.1			0000.0	(45/2-)	y 6448.4+y
(F)43/2-		43/2-		v 5837.7	_	
41/2-	v 5367.8	(E)41/2- - 39/2-	v	4911.5	_ (41/2–)	y 5449.8+y
(F)39/2- 37/2-	4508.2	- (E)37/2- - 35/2-	\	4118.3	(27/2)	4596 4
(F)35/2- 33/2-	3789.1	- (E)33/2- - 31/2-		3462.0	- <u>(37/2-)</u> -	¥920.4+y
(F)31/2- 29/2-	3209.1	- <u>(E)29/2</u> -	∖		(33/2-)	y 3675.4+y
(F)27/2- 25/2-	2666.4	- <u>21/2</u> - - <u>(E)25/2</u> -	\¥	2890.6	- (29/2-)	y 2901.2+y
(F)23/2-	1000 8	- <u>23/2-</u> - <u>(E)21/2-</u>	\¥			
(F)19/2-	1105.8	- <u>19/2</u> - - <u>(E)17/2</u> -	<u>  </u>		(25/2-)	¥ 2202.0+y
(F)15/2		$- \frac{15/2}{(E)13/2}$	₩₩	806.5	(21/2-)	v 1568.1+y
13/2- (F)11/2-	596.3	-11/2-	тт	335.8	(17/2-)	y 967.2+y
<u>9/2</u>	190.3	$-\frac{7/2}{(C)^{5/2}}$	V	107.8	$\frac{(13/2-)}{(9/2-)}$	¥ 419.9+y
		(0)0/2+				

 $^{^{129}}_{58}\mathrm{Ce}_{71}$ 

## $^{129}_{58}$ Ce₇₁-29

 $^{129}_{58}$ Ce $_{71}$ -29



¹⁰⁰Mo(³⁴S,5nγ) 2009Pa40 (continued)

Level Scheme

Intensities: relative Ιγ * Multiply placed



## $^{100}Mo(^{34}S,5n\gamma)$ 2009Pa40 (continued)

Level Scheme (continued)

Intensities: relative Ιγ * Multiply placed



## $^{100}Mo(^{34}S,5n\gamma)$ 2009Pa40 (continued)

Level Scheme (continued)

Intensities: relative Ιγ * Multiply placed

(81/2-)	18905+y	
(77/2-)	 17178+y	
(50/0)		
(73/2-)	 15554+y	
(69/2-)	14021+y	
(65/9)	19565	
(05/2-)	12505+y	
63/2-	 11980.4	
(01/0.)	 	
(61/2-)	11189.4+y	
59/2-	 10602.4	
57/2 -	10046.1	
(55/2+)	9672.7	
(52/2))	0024 4	
(33/2+)	5034.4	
51/2+	8385.7	
51/2-	8039.5	
49/2-	7480.5	
47/2_	6885 8	
45/2-	6362.1	
43/2-	5837.7	
41/2-	5367.8	
39/2-	4911.5	<0.28 ps
(37/2-)	4526.4+y	
33/2+	4179.8	
29/2+	3447.9	0.30 ps
27/2+	3011.9	
11/2+	590.5	
(13/2-)	419.9+y	
9/2+	348.57	
9/2-	190.3	
7/2+	 144.73	
$\frac{7/2}{(0/2)}$	107.8	60 ns
(9/2-)	<u>0+y</u>	

 $^{129}_{58}\mathrm{Ce}_{71}$ 

## ¹⁰⁴Pd(²⁸Si,2pnγ) 1996Ga13

1996Ga13: E=125 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , lifetimes by Doppler- shift attenuation method (DSAM) using the  $8\pi$  array of 20 Compton- suppressed detectors and 27 BGO inner array detectors at Chalk-River facility. Deduced SD band and extended previously known strongly coupled normal bands to 51/2+ and 55/2-.

## ¹²⁹Ce Levels

E(level) [†]	Jπ	T _{1/2}	Comments
0.0‡	5/2+		
107.0# 10	7/2-	60 ns 2	T ₁₀ ; from Adopted Levels.
144.4 [§] 8	7 / 2 +		1/2
$189.2^{@}$ 13	9 / 2 -		
$334.8^{\#}13$	11/2 -		
347.6 [‡] 8	9 / 2 +		
589.58 10	11/2+		
$594.9^{\circ}14$	13/2 - 15/2		
804.9"15 $867.5 \ddagger 11$	13/2 - 13/2 +		
1176 6§ 12	15/2+		
$1185.7^{@}$ 15	17/2 -		
1421.4 # 16	19/2-		
1513.3 [‡] <i>13</i>	17/2+		
1869.1 [§] 13	19/2+		
$1907.7^{@}17$	21/2-		
2148.2# 17	23/2-		
2231.1+ 14	21/2+		
2534.38 15	23/2+		
$2003.4^{\circ}$ 18 2773 8 [‡] 15	25/2-		
$2887.3^{\#}$ 18	27/2-		
3009.28 16	27/2+		
$3205.4^{@}$ 19	29/2-		
3289.4 ± 17	29/2+		
3458.1# 20	31/2-		
3583.38 17	31/2+		
3784.7@ 20	33/2-		
3932.3+ 18	33/2+		
4113.3" 21	35/2-		
4291.4018 $4503.0^{@}21$	37/2-		
$4709.2^{\ddagger}$ 19	37/2+		
4906.1# 22	39/2-		
5132.8 \$ 20	39/2+		
$5362.1^{@}22$	41/2-		
5616.2 [‡] 22	41/2+		
5832.1# 22	43/2-		
6100.88 22	43/2+		
$6356.1^{\circ} 23$	45/2-		
$6879.1^{\#}24$	47/2 -		
7186.8 [§] 24	47/2+		
7474.1@ 25	49/2-		
7785‡ 3	49/2+		
8032# 3	51/2-		
83798 3	51/2+		
8707 ^w 3	53/2-		
9275" 3 0+v&	$33/2 - J_{\approx}(17/2 + )$		$F( evel\rangle)$ this level is at 419.94v in Adonted Levels with $J\pi - (13/2)$ based on level
0 T y	0-(11/21)		scheme from 2009Pa40 in $({}^{34}S, 5n\gamma)$ .
			$J\pi$ : 17/2 and positive parity are preferred (1996Ga13) on the basis of coincidences observed between SD band transitions and those of 5/2[402] positive parity band, 2009Pa40 propose (13/2-).
0			Possible transitions to 13/2+ and 17/2+ levels of 5/2[402] band.
547.0+y ^{&amp;} 10	J+2		Possible transition to 17/2+ level of 5/2[402] band.
$1148.0+y^{\infty}$ 15	J+4		
$1102.0+y^{\infty}$ 18 2480 0+v& 20	J+0 J+8		
2100.0Ty 20	510		
		(	Continued on next page (footnotes at end of table)

## $^{129}_{58}$ Ce $_{71}$ -34

### ¹⁰⁴Pd(²⁸Si,2pnγ) 1996Ga13 (continued)

## ¹²⁹Ce Levels (continued)

E(level) [†]	Jπ
3253.0+y& 23	J + 1 0
4102.0+y& 25	J + 1 2
5025+y& 3	J+14
6022+y& 3	J + 1 6
7093+y& 3	J+18
8239+y& 4	J + 2 0
9460+y& 4	J + 2 2
10758+y& 4	J + 2 4
12133+y& 4	J + 2 6
13584+y& 4	J + 2 8

 †  From least-squares fit to Ey data, assuming 1 keV uncertainty for each  $\gamma$  ray.

- ‡  (A): v5/2[402],  $\alpha \text{=+1/2}$  Q(transition)=3.5 5 (1996Ga13) from DSAM data.
- § (B):  $v5/2[402], \alpha = -1/2$ .

# (C): v7/2[523],  $\alpha = -1/2$ .

@ (D):  $v7/2[523], \alpha=+1/2$ .

(D): V1/2[523],u=+1/2.
 & (E): SD band. Possible intruder neutron orbitals: i_{13/2}[660]1/2 or h_{9/2}/f_{7/2} [541]1/2 with preference for the latter two (1996Ga13). Q(transition)=6.3 4 (1996Ga13) from DSAM data for ten γ rays in the cascade. The band intensity=1.7% of total intensity of 5/2[402] and 7/2[523] bands (1996Ga13). The same band is populated in (³⁴S,5nγ) reaction and shown in Adopted Levels, where 419.9+y level corresponds to 0+y level here.

### $\gamma(^{129}{ m Ce})$

Eγ	E(level)	Εγ	E(level)	Εγ	E(level)
82	189.2	418	4709.2	722	1907.7
107	107.0	424	5132.8	727	2148.2
144	144.4	445	589.5	739	2887.3
145	334.8	456	5362.1	756	2663.4
203	347.6	470	804.9	773	3253.0+y
210	804.9		5832.1	777	4709.2
224	2887.3	475	3009.2	793	4906.1
228	334.8	486	1907.7	841	5132.8
235	3009.2	515	2663.4	849	4102.0+y
236	1421.4	516	3289.4	859	5362.1
239	2773.8	520	867.5	907	5616.2
240	2148.2	523	6879.1	923	5025 + y
242	589.5	524	6356.1	926	5832.1
253	3458.1	542	3205.4	968	6100.8
260	594.9	543	2773.8	994	6356.1
278	867.5	547	547.0+y	997	6022+y
280	3289.4	571	3458.1	1029	6645.2
294	3583.3	574	3583.3	1047	6879.1
303	2534.3	579	3784.7	1071	7093+y
309	1176.6	587	1176.6	1086	7186.8
318	3205.4	591	1185.7	1118	7474.1
327	3784.7	601	1148.0+y	1140	7785
329	4113.3	616	1421.4	1146	8239+y
337	1513.3	634	1782.0+y	1153	8032
348	347.6	643	3932.3	1192	8379
349	3932.3	646	1513.3	1221	9460 + y
356	1869.1	655	4113.3	1233	8707
359	4291.4	665	2534.3	1243	9275
362	2231.1	692	1869.1	1298	10758 + y
381	1185.7	698	2480.0+y	1375	12133 + y
390	4503.0	708	4291.4	1451	13584 + y
403	4906.1	718	2231.1		
406	594.9		4503.0		

¹⁰⁴Pd(²⁸Si,2pnγ) 1996Ga13 (continued)

(A)  $v5/2[402], \alpha=+1/2$ 

(B)  $v5/2[402], \alpha = -1/2$ .

(C)  $v7/2[523], \alpha = -1/2$ .

						55/2 -			9275
		51/2+		1	8379	51/2-			8032
49/2+	7785					47/2-		/	6879 1
10/21		-				(D)45/9			6075.1
		47/2+		4	7186.8	(D)45/2-			[
						43/2-			5832.1
45/2+	¥ 6645.2	43/2+			6100.8	(D)41/2-			/
41/2+	5616.2	39/2+	\	1 /	5132.8	39/2-	\\└_¥	—/	4906.1
37/2+	4709.2	(A)37/2+	<u> </u>	t í	/	(D)37/2-		· //	/
(B)35/2+	¥_//	35/2+	$\mathbb{N}$	1 //	4291.4	35/2-		//	4113.3
33/2+	3932.3	(A)33/2+		v //,	/	(D)33/2-	/// <b>x</b>	—//	//
(B)31/2+	J ///	31/2+		Τ_//	3583.3	31/2-	///¥	<u>'</u>	3458.1
29/2+	3289.4	(A)29/2+	\\\ <b>_*</b>	±_//		(D)29/2-	///	//	//
(B)27/2+	///	27/2+	<u></u>	¥_//.	3009.2	27/2-		ال	2887.3
25/2+	2773.8	(A)25/2+	///└──¥────	+_//		(D)25/2-	\\\¥	//	/
(B)23/2+		23/2+	///	¥_//	2534 3	23/2-		//	2148 2
21/2+		(A)91/9+	/// <b></b>	↓_//		(D)21/2_	\\\ <u>¥</u>	//	//
(B)10/2		10/21/24			1960 1	10/2	\\\ <u> </u>	<u>'</u> /	1491 4
17/0		(A)17/0	<u></u>	¥/	1009.1	(D)17/0	\ <u>\</u>	/	1421.4
		(A)17/2+	<u></u>	+/	11170.0	(D)17/2-		<u>'/</u>	
(B)15/2+	¥//	15/2+	<u></u>	¥/	1176.6	15/2-	\ <u>\</u> ₩	//	804.9
13/2+	<u> </u>	(A)13/2+	\ <u> </u>	+	·	(D)13/2-		/	/
(B)11/2+	¥//	11/2+	//	¥/	589.5	11/2-	\\ <u> </u>	/	334.8
9/2+		(A)9/2+	\ <u> </u>	<u>↓</u> _/	l	(D)9/2-	//¥	<u>'</u>	//
(B)7/2+	<b>*</b> ↓/	7/2+	\ <u> </u>		144.4	7/2-	\ <u></u>	,/	107.0
5/2+		(A)5/2+	V	¥ —	/	(A)5/2+	<u> </u>		IJ

#### ¹⁰⁴Pd(²⁸Si,2pnγ) 1996Ga13 (continued)

(D)  $v7/2[523], \alpha = +1/2$ .

# J+28 13584+y 12133+y 10758+y ∤

J+26

(E) SD band.

J+24	¥	10758+y
J+22	¥	9460+y
J+20	<u>+</u>	8239+y
J+18	V	7093+y
T 10		
J+10	Ť	6022+y
J+14	<u>+</u>	5025+y
J+12	<u>+</u>	4102.0+y
J+10	<u>+</u>	3253.0+y
1+8		2480 0±v
9+0	Ť	2400.0+y
J+6	¥	1782.0+y
J+4	Ļ	1148.0+v
-	Ť	1110.01y
J+2	¥	547.0+y
J≈(17/2+)	V	0+y



 $^{129}_{58}\mathrm{Ce}_{71}$ 

# $^{129}_{58}\mathrm{Ce}_{71}\text{--}37$

	¹⁰⁴ Pd( ²⁸ Si,	,2pnγ) 1996Ga13	(continued)	
		Bands for ¹²⁹ Ce		
(A)	(B)	(C)	(D)	<u>J+28 (E)</u>
				1451
				J+26
				<u>5+20</u>
				1375
				<u>J+24 v</u>
				1298
				<u>J+22</u>
				1221
				J+20 ¥
				J+18
				1071
				<u>J+16</u>
				997
				923
				<u>J+12</u>
				849 J+10
				773
				698
				634
				601 J+2
		55/2-		547 J≈(17/2)
		1243 —	53/2-	
40/2	51/2+	51/2- v	1233	
1140		1153 <u> </u>	v 49/2-	
45/2+	1086	<u>47/2-</u> v	1118	
1029	<u> </u>		45/2-	
<u>41/2+ v</u>	968	$\frac{43/2}{926}$	994 v 41/2-	
907 37/2+	$\frac{\sqrt{39/2+}}{\sqrt{24}}$	$\frac{39/2}{403}$	859	
777 418 33/2+	<u>35/2+</u>	$35/2 - \sqrt{230}$	718	
643 349 29/2+	$\frac{1}{294} - \frac{708}{\sqrt{31/2+}}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>33/2-</u> 579	
$\frac{516}{25/2+\sqrt{516}}$	$y = 5/4 - \frac{1}{\sqrt{27/2}}$	$27/2 - \psi$ $224 - 318$	$\frac{\psi 29/2}{542}$	
21/2+ 543 21/2+ 269	$\frac{\sqrt{23/2+}}{665}$	739 $51523/2 - 4$ $340$	756	
718 17/2+	$\frac{19/2}{19/2}$	$727$ $19/2 - \psi$ $486$ $\psi$	<u>+ 21/2</u> 722	
646 337 13/2+ v	$\frac{15/2}{587}$	$\frac{616}{15/2}$	<u> </u>	
$\frac{9/2+}{520}$ $\frac{278}{12}$	242   445   7/2+	$\frac{470}{11/2}$	$\frac{13/2}{406}$ 9/2-	
<u>5/2+ v</u>	144	107		

 $^{129}_{58}\mathrm{Ce}_{71}$ 

¹⁰⁴Pd(²⁸Si,2pnγ) 1996Ga13 (continued)

Level Scheme



## ¹⁰⁴Pd(²⁸Si,2pnγ) 1996Ga13 (continued)

Level Scheme (continued)



60 ns

### 116 Sn $(^{16}$ O,3n $\gamma)$ , 117 Sn $(^{16}$ O,4n $\gamma)$ 1984Ar13,1977Gi17

1984Ar13: E=73-85 MeV. Measured Ey, Iy, yy, y(0) using four Escape-Suppressed Ge detectors (ESS) at the Niels Bohr Institute.

1977Gi17:  $^{116}Sn(^{16}O,3n\gamma)$  E=55-85 MeV. Measured Ey, Iy,  $\gamma\gamma$ ,  $\gamma\gamma(t),~\gamma(\theta),$  and excitation function.

 $1998 Li32,\ 2001 Li69:\ ^{116} Sn(^{16} O, 3n\gamma) \ E=73 \ MeV. \ Measured \ lifetimes \ by \ Doppler-shift \ attenuation \ method \ (DSAM) \ using \ Normalized and \ (DSAM) \ using \ (DSAM) \ (DSAM$ seven Compton-suppressed HPGe detectors at CIAE, Beijing. Lifetimes for 19/2- to 39/2- levels in the 7/2[523] band in both papers, lifetimes for 15/2+ to 31/2+ levels in the 5/2[402] band in 2001Li69 only.

1998Io01: ¹¹⁶Sn(¹⁶O, 3nγ) E=70 MeV; measured I $\gamma$ (t), I $\gamma$ (t, $\theta$ ,H). Deduced T_{1/2}, g-factors, quadrupole moments, pulsed beam. Time-differential perturbed angular distribution (TDPAD) method. Experiments at LNL-GASP facility, Legnaro.

From assignment of 9/2- to the 60-ns isomer at 108 keV, 1998IoO1 assign 7/2+ to g.s. and increase spin by one unit for all the positive- parity levels. For the negative-parity band, a new level is proposed at 119 keV with  $J\pi$ =11/2- and energies of higher levels are adjusted accordingly, and the spins increased by 2 units. These modifications proposed by 1998Io01 are not adopted by the evaluators, since the spin of 9/2 for the 60-ns isomer at 108 is not considered by the evaluators as definitely determined. The experimental quadrupole interaction pattern (figure 1 in 1998Io01) fits 9/2 better than 7/2, but the fit for 9/2 still suffers from somewhat large  $\chi^2$ of 2.7.

### ¹²⁹Ce Levels

E(level)	Jπ‡	$T_{1/2}^{\dagger}$	Comments
0.0 [§]	5/2+		
108.10@ 20	7/2-	60 ns 2	$g=-0.185 \ I0 \ (1998I_001); \ Q=1.32 \ I3 \ (1998I_001).$
			g,Q: from Time-differential perturbed angular distribution (TDPAD) method (1998Io01). J $\pi$ : 9/2- proposed in 1998Io01 based on quadrupole interaction TDPAD experiment, fit for 9/2- is claimed to be better than that for 7/2 but for 9/2 $x^2$ is also 2.7
			$T_{\text{res}}$ (y(t) (19981001) Other 62 ns 5 from y(t) (1977617)
$144.34^{\#}$ 10	7/2+		$1_{1/2}$ . (No) (10001001). Other, 02 hs o from (No) (1010011).
190.5& 8	9/2-		
335.7@8	11/2 -		
348.09 20	9 / 2 +		
589.2# 4	11/2+		
596.0& 8	13/2-		
805.8@ 8	15/2-		
867.5 [§] 5	13/2+		
1175.8# 5	15/2+	0.51 ps 6	Q(transition)=7.1 8 (2001Li69).
1186.5 ^{&amp;} 9	17/2 -		
1421.8 [@] 10	19/2-	1.24 ps 10	Q(transition)=4.35 18 (1998Li32,2001Li69).
1512.6 [§] 6	17/2+		
1867.7# 8	19/2+	0.46 ps 4	Q(transition)=4.9 4 (2001Li69).
1906.6& <i>11</i>	21/2-		
2148.6@ 11	23/2-	1.01 ps 19	Q(transition)=3.0 3 (1998Li32,2001Li69).
2230.6 \$ 8	21/2+		
2533.6# 10	23/2+	0.374 ps 35	Q(transition)=5.3 5 (2001Li69).
2663.6 ^{&amp;} 12	25/2-		
2772.6 [§] 11	25/2+		
2887.6 [@] 13	27/2-	0.471 ps 42	Q(transition)=4.07 18 (1998Li32,2001Li69).
3007.6# 12	27/2+	1.74 ps 25	Q(transition)=4.5 3 (2001Li69).
3205.6& 14	29/2-		
3285.68 13	29/2+		
3458.6 [@] 14	31/2-	0.92 ps 11	Q(transition)=4.3 3 (1998Li32,2001Li69).
3581.6# 14	31/2+	<1.8 ps	$T_{1/2}$ : effective half-life, not corrected for side feeding. Q(transition)>3.2 (2001Li69).
3784.6 25	33/2-		
4114.6 [@] 16	35/2-	0.69 ps 8	Q(transition)=3.45 21 (1998Li32,2001Li69).
$4905.6^{@}$ 19	39/2-	<0.60 ps	$T_{1/2}$ : effective half-life, not corrected for side feeding.
			Q(transition)>3.0 (1998Li32,2001Li69).
			Weakly populated level. Besides the $791\gamma$ , there may be other transitions from this level.

[†] From DSAM (1998Li32,2001Li69) unless otherwise stated. Both papers report same lifetimes for 19/2- to 39/2- levels in the 7/2[523] band. 2001Li69 report, in addition, lifetimes for 15/2+ to 31/2+ levels in the 5/2[402] band.

 ‡  As proposed in 1984Ar13 on the basis of  $\gamma(\theta)$  data, band structures, comparison with cranked-shell model calculation for available Nilsson orbitals. In Adopted Levels, Gammas dataset, all J $\pi$  assignments are given in parentheses since the spins of

the ground state and the 60-ns isomer are not definite. § (A):  $v5/2[402], \alpha=+1/2$ .

Footnotes continued on next page

Level scheme is from 1984Ar13. Level scheme in 1977Gi17 contains both band members but level energies are different due to assignment of 827 and 1087 and revised placements of 1447, 1457 in 1984Ar13. Some revisions were also proposed in 1998Io01, but as discussed above, these are not adopted by the evaluators.

## $^{129}_{58}$ Ce₇₁-41

## $^{116}Sn(^{16}O, 3n\gamma), ^{117}Sn(^{16}O, 4n\gamma) \qquad 1984Ar13, 1977Gi17 \ (continued)$

# ¹²⁹Ce Levels (continued)

### $\gamma(^{129}\text{Ce})$

 $A_2$  and  $A_4$  coefficients are from 1984Ar13 unless otherwise noted. A composite line at 788.4 with I $\gamma$ =11.3 25 and placed from (23/2+) level in 1977Gi17 is omitted here as no such line is reported in 1984Ar13.

$E\gamma^{\dagger}$	E(level)	Ιγ#	Mult.@	<b>δ</b> &	αa	I(γ+ce)§	Comments
82	190.5	30 6	[M1]		2.09	94 20	$ce(K)/(\gamma+ce)=0.577$ 5; $ce(L)/(\gamma+ce)=0.0791$ 13; $ce(M)/(\gamma+ce)=0.0166$ 3
108.1 [‡] 2	108.10	100 7	(E1)		0.196	120 8	$\begin{split} & \operatorname{ce(M)}((\gamma + ce) = 0.0166 \ \ 5. \\ & \alpha(K) = 1.783 \ \ 25; \ \ \alpha(L) = 0.244 \ \ 4; \\ & \alpha(M) = 0.0512 \ \ 8; \ \ \alpha(N) = 0.01135 \ \ 16; \\ & \alpha(O) = 0.00184 \ \ 3. \\ & \operatorname{ce(N)}((\gamma + ce) = 0.000594 \ \ 10; \\ & \operatorname{ce(P)}((\gamma + ce) = 0.000594 \ \ 10; \\ & \operatorname{ce(P)}((\gamma + ce) = 0.100594 \ \ 10; \\ & \operatorname{ce(P)}((\gamma + ce) = 0.1396 \ \ 18; \\ & \operatorname{ce(L)}((\gamma + ce) = 0.0193 \ \ 3; \\ & \operatorname{ce(N)}((\gamma + ce) = 0.000879 \ \ 14; \\ & \operatorname{ce(O)}((\gamma + ce) = 0.0001370 \ \ 21; \end{split}$
144.3 1	144.34	40.7 21	[M1+E2]		0.432 14	59 <i>3</i>	$\begin{array}{c} ce(P)/(\gamma+ce)=8.50\times 10^{-6} \ 13.\\ \alpha(K)=0.1670 \ 25; \ \alpha(L)=0.0231 \ 4;\\ \alpha(M)=0.00481 \ 8; \ \alpha(N)=0.001052 \ 16;\\ \alpha(O)=0.0001639 \ 25.\\ B(E1)(W.u.)=2.92\times 10^{-6} \ 10.\\ ce(K)/(\gamma+ce)=0.252 \ 4;\\ ce(L)/(\gamma+ce)=0.039 \ 5;\\ ce(M)/(\gamma+ce)=0.0082 \ 11.\\ ce(N)/(\gamma+ce)=0.00181 \ 24;\\ ce(O)/(\gamma+ce)=0.00029 \ 4;\\ \end{array}$
145.1 2	335.7	46 3	(M1)		0.413	66 4	$\begin{split} & \operatorname{ce}(P)/(\gamma+\operatorname{ce})=1.90\times10^{-5} 5.\\ & \alpha(K)=0.361 \ \ 6; \ \ \alpha(L)=0.056 \ \ 7; \\ & \alpha(M)=0.0118 \ \ 16; \ \ \alpha(N)=0.0026 \ \ 4.\\ & \alpha(O)=0.00041 \ \ 5; \ \ \alpha(P)=2.73\times10^{-5} \ \ 6.\\ & \operatorname{A_2}=-0.52 \ \ 5 \ \ (1977\mathrm{Gi}17).\\ & \operatorname{ce}(K)/(\gamma+\operatorname{ce})=0.250 \ \ 3; \\ & \operatorname{ce}(L)/(\gamma+\operatorname{ce})=0.0339 \ \ 5; \\ & \operatorname{ce}(M)/(\gamma+\operatorname{ce})=0.00710 \ \ 11. \end{split}$
and of a							$\begin{aligned} &\alpha(K) = 0.353 \ 6; \ \alpha(L) = 0.0480 \ 7; \\ &\alpha(M) = 0.01004 \ 15; \ \alpha(N) = 0.00223 \ 4; \\ &\alpha(O) = 0.000361 \ 6. \\ &ce(N)/(\gamma + ce) = 0.001576 \ 24; \\ &ce(O)/(\gamma + ce) = 0.000255 \ 4; \\ &ce(P)/(\gamma + ce) = 1.93 \times 10^{-5} \ 3. \end{aligned}$
203.6*2	348.09	21 2	(M1+E2) –	0.40 8	U.1640 <i>24</i>	24 2	$\begin{array}{l} A_2 = -0.38 \ 3; \ A_4 = -0.02 \ 2. \\ ce(K)/(\gamma + ce) = 0.1184 \ 16; \\ ce(L)/(\gamma + ce) = 0.0177 \ 7; \\ ce(M)/(\gamma + ce) = 0.00374 \ 15. \\ \alpha(K) = 0.1379 \ 20; \ \alpha(L) = 0.0206 \ 8; \\ \alpha(M) = 0.00435 \ 17; \ \alpha(N) = 0.00096 \ 4; \\ \alpha(O) = 0.000153 \ 5. \\ ce(N)/(\gamma + ce) = 0.00083 \ 3; \\ ce(O)/(\gamma + ce) = 0.000131 \ 5; \\ ce(P)((\gamma + ce) = 8.88 \times 10^{-6} \ 17. \end{array}$

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}42$

# ¹¹⁶Sn(¹⁶O,3nγ),¹¹⁷Sn(¹⁶O,4nγ) 1984Ar13,1977Gi17 (continued)

$\gamma(^{129}\text{Ce})$ (continued)										
$E\gamma^{\dagger}$	E(level)	Ιγ#	Mult.@	δ&	<u></u> αa	I(γ+ce)§	Comments			
209.9 [‡] 2	805.8	13 1	(M1+E2)	-1.1 <i>I</i>	0.1532 23	15 1	$\begin{array}{l} A_2 = -0.81 \ 2; \ A_4 = +0.11 \ 3. \\ ce(K)/(\gamma + ce) = 0.1069 \ 14; \\ ce(L)/(\gamma + ce) = 0.0204 \ 6; \\ ce(M)/(\gamma + ce) = 0.00439 \ 13. \\ \alpha(K) = 0.1233 \ 18; \ \alpha(L) = 0.0236 \ 7; \\ \alpha(M) = 0.00507 \ 15; \ \alpha(N) = 0.00111 \ 4; \\ \alpha(O) = 0.000169 \ 5. \\ ce(N)/(\gamma + ce) = 0.00096 \ 3; \\ ce(O)/(\gamma + ce) = 0.000147 \ 4; \\ ce(P)/(\gamma + ce) = 7.38 \times 10^{-6} \ 15. \end{array}$			
224	2887.6	2.5 2	[M1+E2]		0.1255	2.8 2	$\begin{split} & \operatorname{ce}(\mathbf{K})/(\gamma+\operatorname{ce}) = 0.0945 \ 14; \\ & \operatorname{ce}(\mathbf{L})/(\gamma+\operatorname{ce}) = 0.0134 \ 6; \\ & \operatorname{ce}(\mathbf{M})/(\gamma+\operatorname{ce}) = 0.00282 \ 14. \\ & \operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce}) = 0.00062 \ 3; \\ & \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce}) = 0.000100 \ 4; \\ & \operatorname{ce}(\mathbf{P})/(\gamma+\operatorname{ce}) = 7.17 \times 10^{-6} \ 19. \\ & \alpha(\mathbf{K}) = 0.1064 \ 17; \ \alpha(\mathbf{L}) = 0.0151 \ 7; \\ & \alpha(\mathbf{M}) = 0.00317 \ 16; \ \alpha(\mathbf{N}) = 0.00070 \ 4; \\ & \alpha(\mathbf{O}) = 0.000113 \ 5. \end{split}$			
228	335.7	11 2	(E2)		0.1186	12 2	$\begin{array}{l} A_2 = +0.20 \ 5; \ A_4 = -0.05 \ 5. \\ ce(K)/(\gamma + ce) = 0.0822 \ 11; \\ ce(L)/(\gamma + ce) = 0.0187 \ 3; \\ ce(M)/(\gamma + ce) = 0.00406 \ 6. \\ \alpha(K) = 0.0920 \ 13; \ \alpha(L) = 0.0209 \ 3; \\ \alpha(M) = 0.00454 \ 7; \ \alpha(N) = 0.000986 \ 14; \\ \alpha(O) = 0.0001470 \ 21. \\ ce(N)/(\gamma + ce) = 0.000881 \ 13; \\ ce(O)/(\gamma + ce) = 0.0001814 \ 19; \\ ce(O)/((\gamma + ce) = 5.18 \times 10^{-6} \ 8. \end{array}$			
235b	1421.8	5.7 ^b 6	(M1+E2)		0.1100	6.3 ^b 7	$\begin{aligned} &A_{2} = -0.38 \ 7 \ (1977 \text{Gi}17). \\ &\text{ce}(\text{K})/(\gamma + \text{ce}) = 0.0841 \ 13; \\ &\text{ce}(\text{L})/(\gamma + \text{ce}) = 0.0119 \ 5; \\ &\text{ce}(\text{M})/(\gamma + \text{ce}) = 0.00249 \ 11. \\ &\text{ce}(\text{N})/(\gamma + \text{ce}) = 0.000551 \ 23; \\ &\text{ce}(\text{O})/(\gamma + \text{ce}) = 8.8 \times 10^{-5} \ 3; \\ &\text{ce}(\text{O})/(\gamma + \text{ce}) = 6.38 \times 10^{-6} \ 17. \\ &\text{\alpha}(\text{K}) = 0.0934 \ 16; \ \alpha(\text{L}) = 0.0132 \ 6; \\ &\text{\alpha}(\text{M}) = 0.00276 \ 13; \ \alpha(\text{N}) = 0.00061 \ 3; \\ &\text{\alpha}(\text{O}) = 9 \ 8 \times 10^{-5} \ 4. \end{aligned}$			
	3007.6	12b <i>I</i>	[M1+E2]		0.1100	13 ^b 1	$ce(K)/(\gamma+ce)=0.0841 \ I3;ce(L)/(\gamma+ce)=0.0119 \ 5;ce(M)/(\gamma+ce)=0.00249 \ I1.ce(N)/(\gamma+ce)=0.000551 \ 23;ce(O)/(\gamma+ce)=8.8\times10^{-5} \ 3;ce(P)/(\gamma+ce)=6.38\times10^{-6} \ I7.\alpha(K)=0.0934 \ I6; \ \alpha(L)=0.0132 \ 6;\alpha(M)=0.00276 \ I3; \ \alpha(N)=0.00061 \ 3;\alpha(O)=9.8\times10^{-5} \ 4.$			
239	2772.6	8 1	(M1+E2)	-0.25 8	0.1051	9 1	$\begin{split} \mathbf{A}_2 = -0.54 \ 10; \ \mathbf{A}_4 = +0.11 \ 8. \\ \mathbf{ce}(\mathbf{K})/(\gamma + \mathbf{ce}) = 0.0809 \ 11; \\ \mathbf{ce}(\mathbf{L})/(\gamma + \mathbf{ce}) = 0.01123 \ 25; \\ \mathbf{ce}(\mathbf{M})/(\gamma + \mathbf{ce}) = 0.00235 \ 6. \\ \mathbf{\alpha}(\mathbf{K}) = 0.0895 \ 14; \ \mathbf{\alpha}(\mathbf{L}) = 0.0124 \ 3; \\ \mathbf{\alpha}(\mathbf{M}) = 0.00260 \ 7; \ \mathbf{\alpha}(\mathbf{N}) = 0.000576 \ 13; \\ \mathbf{\alpha}(\mathbf{O}) = 9.29\times10^{-5} \ 19. \\ \mathbf{ce}(\mathbf{N})/(\gamma + \mathbf{ce}) = 0.000522 \ 12; \\ \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 8.40\times10^{-5} \ 17; \\ \mathbf{ce}(\mathbf{C})/(\gamma + \mathbf{ce}) = 6.17\times10^{-6} \ 11. \\ \mathbf{\delta}: \ -2.2 \ 5 \ \text{also possible but less} \\ \text{likely due to } \Delta \mathbf{J} = 1 \ \text{coupled} \\ \text{structure.} \end{split}$			

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}43$

# $^{129}_{58}\mathrm{Ce}_{71}\mathrm{-}43$

				γ( ¹²⁹ C	e) (continued)		
$E\gamma^{\dagger}$	E(level)	Ιγ#	Mult.@	δ&	αa	I(γ+ce)§	Comments
241	589.2	9 1	(M1+E2)	-0.25 8	0.1028	10 1	$\begin{split} & A_2 = -0.47 \ 8; \ A_4 = +0.02 \ 8. \\ & ce(K)/(\gamma + ce) = 0.0793 \ 11; \\ & ce(L)/(\gamma + ce) = 0.01100 \ 24; \\ & ce(M)/(\gamma + ce) = 0.00231 \ 6. \\ & \alpha(K) = 0.0875 \ 13; \ \alpha(L) = 0.0121 \ 3; \\ & \alpha(M) = 0.00254 \ 6; \ \alpha(N) = 0.000563 \ 13; \\ & \alpha(O) = 9.07 \times 10^{-5} \ 18. \\ & ce(N)/(\gamma + ce) = 0.000511 \ 12; \\ & ce(O)/(\gamma + ce) = 8.23 \times 10^{-5} \ 16; \\ & ce(P)/(\gamma + ce) = 6.04 \times 10^{-6} \ 11. \\ & \delta: \ -2.1 \ 4 \ also \ possible \ but \ less \\ & likely \ due \ to \ \Delta J = 1 \ coupled \ structure \end{split}$
242	2148.6	3.5 3	[M1+E2]		0.1015	3.9 <i>3</i>	ce(K)/( $\gamma$ +ce)=0.0783 13; ce(L)/( $\gamma$ +ce)=0.0783 13; ce(L)/( $\gamma$ +ce)=0.00231 10. ce(N)/( $\gamma$ +ce)=0.000511 20; ce(O)/( $\gamma$ +ce)=8.21×10 ⁻⁵ 25; ce(P)/( $\gamma$ +ce)=5.94×10 ⁻⁶ 17. $\alpha$ (K)=0.0821 15; $\alpha$ (L)=0.0121 5; $\alpha$ (M)=0.00254 11; $\alpha$ (N)=0.000562 22; $\alpha$ (O)=9.0×10 ⁻⁵ 3.
253	3458.6	92	[M1+E2]		0.0900 14	10 2	$\begin{aligned} & ce(K)/(\gamma+ce)=0.0702 \ I2; \\ & ce(L)/(\gamma+ce)=0.0098 \ 4; \\ & ce(M)/(\gamma+ce)=0.000455 \ I6; \\ & ce(O)/(\gamma+ce)=0.000455 \ I6; \\ & ce(O)/(\gamma+ce)=7.32\times10^{-5} \ 20; \\ & ce(P)/(\gamma+ce)=5.32\times10^{-6} \ I5. \\ & \alpha(K)=0.0765 \ I4; \ \alpha(L)=0.0107 \ 4; \\ & \alpha(M)=0.00224 \ 8; \ \alpha(N)=0.000496 \ I7; \\ & \alpha(M)=0.00254 \ 0.076 \ 21 \end{aligned}$
260.4‡ 3	596.0	19 <i>I</i>	(M1+E2)	-0.72	0.0814 <i>15</i>	21 1	$\begin{split} & u(0)=7.98\times10^{-2}21, \\ A_2=-0.66\ 2;\ A_4=0.00\ 2. \\ ce(K)/(\gamma+ce)=0.0629\ 15; \\ ce(L)/(\gamma+ce)=0.00298\ 4; \\ ce(M)/(\gamma+ce)=0.00208\ 10. \\ \alpha(K)=0.0680\ 18;\ \alpha(L)=0.0106\ 5; \\ \alpha(M)=0.00225\ 10;\ \alpha(N)=0.000494\ 21; \\ \alpha(O)=7.8\times10^{-5}\ 3. \\ ce(N)/(\gamma+ce)=0.000457\ 19; \\ ce(O)/(\gamma+ce)=7.21\times10^{-5}\ 24; \\ ce(P)((\gamma+ce)=4.60\times10^{-6}\ 21. \end{split}$
278	867.5	13 <i>I</i>	[M1+E2]		0.0697 12	14 1	$ce(1)/(\gamma+ce)=0.0555 \ 11;$ $ce(L)/(\gamma+ce)=0.00767 \ 18;$ $ce(M)/(\gamma+ce)=0.00161 \ 5.$ $ce(N)/(\gamma+ce)=0.000356 \ 9;$ $ce(O)/(\gamma+ce)=5.74\times10^{-5} \ 12;$ $ce(P)/(\gamma+ce)=4.21\times10^{-6} \ 13.$ $\alpha(K)=0.0594 \ 13; \ \alpha(L)=0.00821 \ 20;$ $\alpha(M)=0.00172 \ 5; \ \alpha(N)=0.000381 \ 10;$ $\alpha(O)=6.14\times10^{-5} \ 12.$
	3285.6	14 <i>I</i>	[M1+E2]		0.0697 <i>12</i>	15 <i>1</i>	$\begin{split} & \operatorname{ce}(K)/(\gamma+\operatorname{ce}) = 0.0555 \ 11; \\ & \operatorname{ce}(L)/(\gamma+\operatorname{ce}) = 0.00767 \ 18; \\ & \operatorname{ce}(M)/(\gamma+\operatorname{ce}) = 0.00161 \ 5. \\ & \operatorname{ce}(N)/(\gamma+\operatorname{ce}) = 0.000356 \ 9; \\ & \operatorname{ce}(O)/(\gamma+\operatorname{ce}) = 5.74 \times 10^{-5} \ 12; \\ & \operatorname{ce}(P)/(\gamma+\operatorname{ce}) = 4.21 \times 10^{-6} \ 13. \\ & \alpha(K) = 0.0594 \ 13; \ \alpha(L) = 0.00821 \ 20; \\ & \alpha(M) = 0.00172 \ 5; \ \alpha(N) = 0.000381 \ 10; \\ & \alpha(O) = 6.14 \times 10^{-5} \ 12. \end{split}$

## $^{116}Sn(^{16}O, 3n\gamma), ^{117}Sn(^{16}O, 4n\gamma) \qquad 1984Ar13, 1977Gi17 \ (continued)$

# $^{129}_{58}$ Ce $_{71}$ -44

# ¹¹⁶Sn(¹⁶O,3nγ),¹¹⁷Sn(¹⁶O,4nγ) 1984Ar13,1977Gi17 (continued)

				γ( ¹²⁹ Ce	e) (continued)		
$E\gamma^{\dagger}$	E(level)	Ιγ#	Mult.@	δ&	αa	I(γ+ce)§	Comments
296	3581.6	4.0 5	[M1+E2]		0.0589 <i>11</i>	4.2 5	ce(K)/( $\gamma$ +ce)=0.0474 10; ce(L)/( $\gamma$ +ce)=0.00652 13; ce(M)/( $\gamma$ +ce)=0.00137 3. ce(N)/( $\gamma$ +ce)=0.00130 7; ce(O)/( $\gamma$ +ce)=4.88×10 ⁻⁵ 8; ce(P)/( $\gamma$ +ce)=3.60×10 ⁻⁶ 11. $\alpha$ (K)=0.0502 11; $\alpha$ (L)=0.00690 14; $\alpha$ (M)=0.00145 3; $\alpha$ (N)=0.000320 7; $\alpha$ (D)=5.17×10 ⁻⁵ 9.
303	2533.6	5.2 6	(M1+E2)	-0.95 7 <i>5</i>	0.052 4	5.56	$\begin{split} & \mathbf{A}_2 = -0.49 \ 5; \ \mathbf{A}_4 = -0.05 \ 5. \\ & \mathbf{ce}(\mathbf{K})/(\gamma + \mathbf{ce}) = 0.041 \ 4; \\ & \mathbf{ce}(\mathbf{L})/(\gamma + \mathbf{ce}) = 0.0065 \ 4; \\ & \mathbf{ce}(\mathbf{M})/(\gamma + \mathbf{ce}) = 0.00303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.00303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.00303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.00303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.00303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.00303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.000303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.000303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.000303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.000303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.000303 \ 20; \\ & \mathbf{ce}(\mathbf{O})/(\gamma + \mathbf{ce}) = 0.000303 \ 20; \\ & \mathbf{ce}(\mathbf{O}) = 0.000318 \ 21; \\ & \mathbf{ce}(\mathbf{O}) = 0.000318 \$
308.3 [‡] 3	1175.8	5.3 6	(M1+E2)	-0.8 4	0.0501 24	5.6 6	$\begin{array}{l} A_2 = -0.60 \ 7; \ A_4 = -0.02 \ 7. \\ ce(K)/(\gamma + ce) = 0.0400 \ 24; \\ ce(L)/(\gamma + ce) = 0.00610 \ 20; \\ ce(M)/(\gamma + ce) = 0.00129 \ 5. \\ ce(N)/(\gamma + ce) = 0.000284 \ 10; \\ ce(O)/(\gamma + ce) = 2.9 \times 10^{-5} \ 10; \\ ce(P)/(\gamma + ce) = 2.9 \times 10^{-5} \ 3. \\ \alpha(K) = 0.042 \ 3; \ \alpha(L) = 0.00641 \ 21; \\ \alpha(M) = 0.00135 \ 6; \ \alpha(N) = 0.000298 \ 11; \\ \alpha(O) = 4.72 \times 10^{-5} \ 11. \\ B(M1)(W.u.) = (0.20 \ 9); \\ P(F2)(W.w.) = (0.210 \ 9); \end{array}$
318	3205.6	16 <i>I</i>	(M1+E2)	-0.09 6	0.0494	17 1	$\begin{split} & \text{B}(\text{E2})(\text{''}, \text{t.}) = (9, \times 10^{-6} \text{ f}), \\ & \text{A}_2 = -0.26 \text{ f};   \text{A}_4 = -0.02 \text{ f}, \\ & \text{ce}(\text{E})/(\gamma + \text{ce}) = 0.0403 \text{ f}; \\ & \text{ce}(\text{L})/(\gamma + \text{ce}) = 0.00137         $
326	3784.6	6.7 10	[M1+E2]		0.0456 10	7 1	$\begin{split} & \operatorname{ce}(K)/(\gamma+\operatorname{ce}) = 0.0372 \ 9; \\ & \operatorname{ce}(L)/(\gamma+\operatorname{ce}) = 0.00507 \ 8; \\ & \operatorname{ce}(M)/(\gamma+\operatorname{ce}) = 0.001062 \ 18. \\ & \operatorname{ce}(N)/(\gamma+\operatorname{ce}) = 0.000235 \ 4; \\ & \operatorname{ce}(O)/(\gamma+\operatorname{ce}) = 3.80 \times 10^{-5} \ 6; \\ & \operatorname{ce}(P)/(\gamma+\operatorname{ce}) = 2.82 \times 10^{-6} \ 9. \\ & \alpha(K) = 0.0389 \ 10; \ \alpha(L) = 0.00531 \ 8; \\ & \alpha(M) = 0.001111 \ 18; \ \alpha(N) = 0.000246 \ 4; \\ & \alpha(O) = 3.97 \times 10^{-5} \ 6. \end{split}$
330	4114.6	5.8 10	[M1+E2]		0.0442 10	6 1	$\begin{split} & \operatorname{ce}(\mathbf{K})/(\gamma+\operatorname{ce}) = 0.0361 \ 9; \\ & \operatorname{ce}(\mathbf{L})/(\gamma+\operatorname{ce}) = 0.00492 \ 8; \\ & \operatorname{ce}(\mathbf{M})/(\gamma+\operatorname{ce}) = 0.001029 \ 17. \\ & \operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce}) = 0.000228 \ 4; \\ & \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce}) = 3.68 \times 10^{-5} \ 6; \\ & \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce}) = 2.74 \times 10^{-6} \ 9. \\ & \alpha(\mathbf{K}) = 0.0377 \ 10; \ \alpha(\mathbf{L}) = 0.00513 \ 8; \\ & \alpha(\mathbf{M}) = 0.001074 \ 17; \ \alpha(\mathbf{N}) = 0.000238 \ 4; \\ & \alpha(\mathbf{O}) = 3.85 \times 10^{-5} \ 6. \end{split}$

$\gamma$ ⁽¹²⁹ Ce) (continued)										
$E\gamma^{\dagger}$	E(level)	Ιγ#	Mult.@	δ&	αa	I(γ+ce)§	Comments			
336.8 [‡] 3	1512.6	5.1 5	(M1+E2)		0.0419 10	5.3 <i>5</i>	$\begin{split} A_2 &= -0.55 \ 10 \ (1977 \text{Gi17}). \\ \mathbf{ce}(\mathbf{K})/(\gamma + \mathbf{ce}) &= 0.0343 \ 9; \\ \mathbf{ce}(\mathbf{L})/(\gamma + \mathbf{ce}) &= 0.00466 \ 7; \\ \mathbf{ce}(\mathbf{M})/(\gamma + \mathbf{ce}) &= 0.000976 \ 15. \\ \mathbf{ce}(\mathbf{N})/(\gamma + \mathbf{ce}) &= 0.000216 \ 4; \\ \mathbf{ce}(\mathbf{C})/(\gamma + \mathbf{ce}) &= 3.49 \times 10^{-5} \ 5; \\ \mathbf{ce}(\mathbf{P})/(\gamma + \mathbf{ce}) &= 2.60 \times 10^{-6} \ 9. \\ \alpha(\mathbf{K}) &= 0.0357 \ 9; \ \alpha(\mathbf{L}) &= 0.00486 \ 7; \\ \alpha(\mathbf{M}) &= 0.001017 \ 16; \ \alpha(\mathbf{N}) &= 0.000225 \ 4; \end{split}$			
348.7 [‡] 4	348.09	15.5 <i>19</i>	[E2]		0.0306	16 2	$\begin{aligned} &\alpha(O)=3.64\times10^{-5} \ 6. \\ &ce(K)/(\gamma+ce)=0.0241 \ 4; \\ &ce(L)/(\gamma+ce)=0.000929 \ 14. \\ &\alpha(K)=0.0249 \ 4; \ \alpha(L)=0.000477; \\ &\alpha(M)=0.000957 \ 14; \ \alpha(N)=0.0002093; \\ &\alpha(O)=3.21\times10^{-5} \ 5. \\ &ce(N)/(\gamma+ce)=0.0002033; \\ &ce(O)/(\gamma+ce)=3.12\times10^{-5} \ 5; \\ &(D)/(\gamma+ce)=3.12\times10^{-5} \ 5; \end{aligned}$			
355	1867.7	2.1 8	[M1+E2]		0.0365 9	2.2 8	$ce(P)/(\gamma+ce)=1.630\times10^{-6} 24.$ $ce(K)/(\gamma+ce)=0.0300 8;$ $ce(L)/(\gamma+ce)=0.00407 6;$ $ce(M)/(\gamma+ce)=0.000851 12.$ $ce(N)/((\gamma+ce)=3.05\times10^{-5} 5;$ $ce(O)/(\gamma+ce)=3.05\times10^{-6} 8.$ $\alpha(K)=0.0311 8; \alpha(L)=0.00422 6;$ $\alpha(M)=0.000882 13; \alpha(N)=0.000196 3;$			
363	2230.6	4.79	(M1+E2) –	0.95 7 <i>5</i>	0.031 4	4.89	$\begin{aligned} &\alpha(0)=3.16\times10^{-5} 5. \\ A_2=-0.57 6; A_4=0.00 6. \\ &ce(K)/(\gamma+ce)=0.025 4; \\ &ce(L)/(\gamma+ce)=0.00382 7; \\ &ce(M)((\gamma+ce)=0.000807 12. \\ &\alpha(K)=0.026 4; \alpha(L)=0.00394 7; \\ &\alpha(M)=0.000832 12; \alpha(N)=0.000183 3; \\ &\alpha(O)=2.91\times10^{-5} 9. \\ &ce(N)/(\gamma+ce)=0.000178 3; \\ &ce(O)/(\gamma+ce)=2.82\times10^{-5} 9; \\ &ce(O)/(\gamma+ce)=2.82\times10^{-5} 9; \\ &ce(O)/(\gamma+ce)=1.9\times10^{-6} 4. \end{aligned}$			
380.5 [‡] 4	1186.5	8.4 7	(M1+E2)		0.0304 8	8.6 7	$\begin{split} & \text{cell } n(\gamma + \text{cell } -1.3 \times 10^{-4}. \\ & \text{A}_2 = -0.66 \ 9 \ (1977 \text{Gil7}). \\ & \text{celk })((\gamma + \text{ce}) = 0.0252 \ 7; \\ & \text{celk })((\gamma + \text{ce}) = 0.00340 \ 5; \\ & \text{celk })((\gamma + \text{ce}) = 0.0001517 \ 24; \\ & \text{celk })/((\gamma + \text{ce}) = 0.0001577 \ 24; \\ & \text{celk })/((\gamma + \text{ce}) = 2.55 \times 10^{-5} \ 5; \\ & \text{celk })/((\gamma + \text{ce}) = 1.91 \times 10^{-6} \ 7. \\ & \alpha(\text{K}) = 0.0260 \ 8; \ \alpha(\text{L}) = 0.00350 \ 6; \\ & \alpha(\text{M}) = 0.000733 \ 11; \ \alpha(\text{N}) = 0.0001624 \ 24; \\ & \alpha(\text{O}) = 2.63 \times 10^{-5} \ 5. \end{split}$			
405.5 [‡] 4	596.0	24 1	(E2)		0.0195	24 1	$\begin{split} & \operatorname{ce}(\mathbf{K})/(\gamma+\operatorname{ce})=0.01574\ 23;\\ & \operatorname{ce}(\mathbf{L})/(\gamma+\operatorname{ce})=0.00266\ 4;\\ & \operatorname{ce}(\mathbf{M})/(\gamma+\operatorname{ce})=0.000566\ 9.\\ & \operatorname{ce}(\mathbf{N})/(\gamma+\operatorname{ce})=0.0001240\ 18;\\ & \operatorname{ce}(\mathbf{O})/(\gamma+\operatorname{ce})=1.92\times10^{-5}\ 3;\\ & \operatorname{ce}(\mathbf{P})/(\gamma+\operatorname{ce})=1.083\times10^{-6}\ 16.\\ & \alpha(\mathbf{K})=0.01605\ 23;\ \alpha(\mathbf{L})=0.00271\ 4;\\ & \alpha(\mathbf{M})=0.000577\ 9;\ \alpha(\mathbf{N})=0.0001264\ 19;\\ & \alpha(\mathbf{M})=1.96\times10^{-5}\ 3. \end{split}$			

 $\alpha(0)=1.96\times10^{-3}$  3. A₂=+0.24 3; A₄=-0.08 4.

# $^{129}_{\phantom{1}58}\mathrm{Ce}_{71}\!\!-\!\!46$

# $^{129}_{\phantom{0}58}\mathrm{Ce}_{71}\!\!-\!\!46$

		116 Sn( 16	0,3nγ), ¹¹⁷ 8	$\sin(^{16}\text{O},4n\gamma)$	1984Ar13,1	977Gi17 (continued)
				$\gamma(^{129}{ m Ce})$ (continued)		
$E\gamma^{\dagger}$	E(level)	Ιγ#	Mult.@	α	I(γ+ce)§	Comments
444.8 [‡] 5	589.2	22 1	(E2)	0.01493	22 1	ce(K)/( $\gamma$ +ce)=0.01219 18; ce(L)/( $\gamma$ +ce)=0.00199 3; ce(M)/( $\gamma$ +ce)=0.000422 6. ce(N)/( $\gamma$ +ce)=9.27×10 ⁻⁵ 14; ce(O)/( $\gamma$ +ce)=1.444×10 ⁻⁵ 21; ce(P)/( $\gamma$ +ce)=8.47×10 ⁻⁷ 13. $\alpha$ (K)=0.01237 18; $\alpha$ (L)=0.00202 3; $\alpha$ (M)=0.000429 7; $\alpha$ (N)=9.41×10 ⁻⁵ 14; $\alpha$ (O)=1.465×10 ⁻⁵ 22. A = 0.21 9 (1977Gi17)
469.8 5	805.8	52 3	(Q)		$52 \ 3$	$A_2 = +0.30$ 6; $A_4 = -0.01$ 7.
474	3007.6	12 1	(4)		12 1	$m_2^{-1000000}, m_4^{-10000000}$
485	1906.6	2.5 5			2.5 5	
513	3285.6	8 1			8 1	
515	2663.6	5 1			5 1	
519.4 5	867.5	202	(Q)		20 2	A ₂ =+0.19 8 (1977Gi17).
542	2772.6	13 1			13 1	2
	3205.6	13 <i>1</i>			13 1	
571	3458.6	$14 \ 2$			14 2	
574	3581.6	8 1			8 1	
579	3784.6	11 <i>1</i>			11 1	
586.7 [‡] 6	1175.8	18 <i>I</i>	(E2)	0.00706	18 <i>I</i>	$\begin{split} A_2 &= +0.42 \ 9 \ (1977 \text{Gi17}). \\ &\text{ce}(\text{K})/(\gamma + \text{ce}) = 0.00589 \ 9; \ \text{ce}(\text{L})/(\gamma + \text{ce}) = 0.000882 \ 13; \\ &\text{ce}(\text{M})/(\gamma + \text{ce}) = 0.000186 \ 3. \\ &\text{ce}(\text{N})/(\gamma + \text{ce}) = 4.09 \times 10^{-5} \ 6; \\ &\text{ce}(\text{O})/(\gamma + \text{ce}) = 6.47 \times 10^{-6} \ 10; \\ &\text{ce}(\text{P})/(\gamma + \text{ce}) = 4.19 \times 10^{-7} \ 6. \\ &\text{\alpha}(\text{K}) = 0.00593 \ 9; \ \alpha(\text{L}) = 0.000888 \ 13; \ \alpha(\text{M}) = 0.000187 \ 3; \\ &\text{\alpha}(\text{N}) = 4.12 \times 10^{-5} \ 6; \ \alpha(\text{O}) = 6.51 \times 10^{-6} \ 10. \\ &\text{B}(\text{E2})(\text{W.u.}) = 310 \ 50. \end{split}$
590.6 [‡] 6	1186.5	18 2	Q		$18 \ 2$	$A_2 = +0.50$ 7; $A_4 = -0.18$ 7.
616.2 [‡] 6	1421.8	48 2	(E2)	0.00623	48 2	$\begin{split} &A_2 = +0.7 \ 2; \ A_4 = 0.0 \ 2. \\ &ce(K)/(\gamma + ce) = 0.00521 \ 8; \ ce(L)/(\gamma + ce) = 0.000770 \ 11; \\ &ce(M)/(\gamma + ce) = 0.0001623 \ 24. \\ &ce(N)/(\gamma + ce) = 3.57 \times 10^{-5} \ 5; \ ce(O)/(\gamma + ce) = 5.66 \times 10^{-6} \ 8; \\ &ce(P)/(\gamma + ce) = 3.72 \times 10^{-7} \ 6. \\ &\alpha(K) = 0.00525 \ 8; \ \alpha(L) = 0.000775 \ 11; \\ &\alpha(M) = 0.0001633 \ 24; \ \alpha(N) = 3.60 \times 10^{-5} \ 6; \\ &\alpha(O) = 5.69 \times 10^{-6} \ 9. \\ &B(E2)(W.u.) = 117 \ 12. \end{split}$
645.1‡7	1512.6	17 1	(Q)		17 1	$A_2 = +0.17 \ 9 \ (1977Gi17).$
656	4114.6	8 1			8 1	
666	2533.6	16 2			16 2	
692	1867.7	202			20 2	
718.0+ 7	2230.6	15 2	(Q)		15 2	$A_2 = +0.34 \ 12; \ A_4 = -0.02 \ 9.$
720 726.8 [‡] 7	1906.6 2148.6	17 2 28 2	(E2)	0.00415	172 282	$\begin{array}{l} A_2 = +0.15 \ 8; \ A_4 = -0.02 \ 8. \\ ce(K)/(\gamma + ce) = 0.00350 \ 5; \ ce(L)/(\gamma + ce) = 0.000498 \ 7; \\ ce(M)/(\gamma + ce) = 0.0001045 \ 15. \\ ce(N)/(\gamma + ce) = 2.31 \times 10^{-5} \ 4; \ ce(O)/(\gamma + ce) = 3.67 \times 10^{-6} \ 6; \\ ce(P)/(\gamma + ce) = 2.52 \times 10^{-7} \ 4. \\ \alpha(K) = 0.00352 \ 5; \ \alpha(L) = 0.000500 \ 8; \ \alpha(M) = 0.0001049 \ 15; \\ \alpha(N) = 2.32 \times 10^{-5} \ 4; \ \alpha(O) = 3.69 \times 10^{-6} \ 6. \\ B(F2)(W, u) = 63 \ 14. \end{array}$
739	2887.6	24 2	(E2)	0.00399	24 2	$A_2 = +0.28 \ 11; \ A_4 = -0.05 \ 8.$
						$\begin{split} & \operatorname{ce}(\mathbf{K})/(\gamma + \operatorname{ce}) = 0.00337 \ 5; \ \operatorname{ce}(\mathbf{L})/(\gamma + \operatorname{ce}) = 0.000477 \ 7; \\ & \operatorname{ce}(\mathbf{M})/(\gamma + \operatorname{ce}) = 0.0001001 \ 14. \\ & \operatorname{ce}(\mathbf{N})/(\gamma + \operatorname{ce}) = 2.21 \times 10^{-5} \ 3; \ \operatorname{ce}(\mathbf{O})/(\gamma + \operatorname{ce}) = 3.52 \times 10^{-6} \ 5; \\ & \operatorname{ce}(\mathbf{P})/(\gamma + \operatorname{ce}) = 2.42 \times 10^{-7} \ 4. \\ & \alpha(\mathbf{K}) = 0.00338 \ 5; \ \alpha(\mathbf{L}) = 0.000479 \ 7; \ \alpha(\mathbf{M}) = 0.0001005 \ 14; \\ & \alpha(\mathbf{N}) = 2.22 \times 10^{-5} \ 4; \ \alpha(\mathbf{O}) = 3.54 \times 10^{-6} \ 5. \\ & \mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 126 \ 18. \end{split}$
757 ×788.4	2663.6	15 2			15 2	Eγ: complex line reported in 1977Gi17 only.
791	4905.6	4 1			4 1	· · · · · · · · · · · · · · · · · · ·

Footnotes continued on next page

 $\gamma(^{129}Ce)$  (continued)

- †  From 1984Ar13 unless otherwise stated.
- [‡] From 1977Gi17, value from 1984Ar13 is in agreement but less precise. Uncertainty is 0.1% in 1977Gi17, the evaluators assign minimum uncertainty of 0.2 keV. § From 1984Ar13.

- [#] Deduced by the evaluators from I( $\gamma$ +ce) given by 1984Ar13. [@] From  $\gamma(\theta)$  data in 1984Ar13 and 1977Gi17. The  $\Delta J$ =2, quadrupole transitions are most likely E2, and  $\Delta J$ =1, D+Q are most likely (M1+E2) for  $\Delta J=1$  coupled-band structures. RUL for E2 and M2 used when level lifetimes are available or with assumed  $\approx 10$  ns coincidence resolving time in  $\gamma\gamma$  data. & From  $\gamma(\theta)$  (1984Ar13); with sign reversed to make it consistent with Krane-Steffen convention.
- a  $\delta(E2/M1)=0.3$  assumed when not given for M1+E2 transition.
- ^b Multiply placed; intensity suitably divided.
- $x \gamma$  ray not placed in level scheme.

(A) $v5/2[402], \alpha=+1/2$ .			(B) ν	5/2[402],α=	-1/2.	(C) $v7/2[523], \alpha = -1/2.$			(D) v7	(D) $v7/2[523], \alpha=+1/2.$	
						39/2-		4905.6	-		
						25/9		41146			
								4114.0	-		
						(D)33/2-	v		33/2-		3784.6
			31/2+		3581.6	_					
						31/2-		3458.6	(C)31/2-	v	
29/2+		3285.6	(A)29/2+	v		_					
						(D)29/2-	V		29/2-		<u> 3205.6</u>
(B)97/9+			97/9+		3007.6						
			21/21	ľ	0001.0	- 27/2-	,	2887.6	(C)27/2-	V	
25/2+		2772.6	(A)25/2+					200110	(0)21/2		
				•		(D)25/2-			25/2-		v 2663.6
(B)23/2+	,		23/2+		2533.6	_					
21/2+	T Y	2230.6	(A)21/2+	<u> </u>		- 23/2-	,	2148.6	(C)23/2-	Ļ	
			10/0			(D)21/2-	V		21/2-		v 1906.6
(B)19/2+	<u> </u>		19/2+		1867.7	_					
17/2+		1512.6	(A)17/2+	v							
		1012.0	(11)11/21	<b>t</b>		19/2-		1421.8	(C)19/2-	v	
(B)15/2+			15/2+		1175.8	(D)17/2-	v		17/2-		v 1186.5
18/0		0.05 5	(1)10/0								
_13/2+	¥	867.5	(A)13/2+	¥		15/2-	,	805.8	(C)15/2-	v	
(B)11/2+	¥		11/2+	¥	589.2	(D)13/2-	¥		13/2-		¥ 596.0
9/2+	¥	348.09	(A)9/2+	¥		11/2		y 335.7	(C)11/2-	¥	
(B)7/2+			7/2+		144.34	(D)9/2-	V		9/2-		190.5
r/0.	¥		(A) = (0	<b>*</b>		- 7/2-	,	108.10	(C)7/2-	¥	
ə/2+	V	0.0	(A)5/2+	¥		(A)5/2+	<u>¥</u>		-		



¹¹⁶Sn(¹⁶O,3nγ),¹¹⁷Sn(¹⁶O,4nγ) 1984Ar13,1977Gi17 (continued)

Level Scheme

 $Intensities: \ relative \ I\gamma \\ @ \ Multiply \ placed; \ intensity \ suitably \ divided \\$ 



 $^{12\,9}_{5\,8}\mathrm{Ce}_{71}$ 

#### Adopted Levels, Gammas

 $Q(\beta^-) = -7460 \ SY; \ S(n) = 11510 \ 40; \ S(p) = 1530 \ 40; \ Q(\alpha) = 1560 \ 40 \ 2012 Wa38.$ 

Estimated uncertainty=200 for  $Q(\beta^-)$  (2012Wa38).

$$\begin{split} & \text{S}(2n) = 21370 \ 200 \ (\text{syst}), \ \text{S}(2p) = 6460 \ 40, \ \text{Q}(p) = 1560 \ 60 \ (2012Wa38). \\ & 1977Bo02: \ ^{129}\text{Pr} \ \text{produced and identified in} \ ^{102}\text{Pd}, ^{106}\text{Cd}(^{32}\text{S},\text{X}) \ \text{reactions followed by half-life measurement.} \end{split}$$

Later decay studies: 1996Gi08.

## ¹²⁹Pr Levels

#### Cross Reference (XREF) Flags

A  $^{129}\mathrm{Nd}\ \epsilon$  Decay: Mixed B ⁹⁴Mo(⁴⁰Ca,3p2nγ)

E(level)	$J\pi^{\dagger}$	XREF	T _{1/2}	Comments
0.0&	(3/2+)	AB	30 s 4	$\%\epsilon+\%\beta^+=100.$ E(level): tentatively assigned as g.s. by the evaluators. T _{1/2} : weighted average of 24 s 5 (1977Bo02) and 32 s 3 (1996Gi08).
91.10 [@] 10	(5/2+)	AB		1/2 0 0 0
241.82& 16	(7/2+)	AB		
327.3 4	(5/2+,7/2+)	А		
382.57 [‡] 24	(11/2-)	А		E(level): proposed by 1997Gi07 to be an isomer but no half-life data are available in the literature, 2012Au07 suggest 1 ms from systematics.
$418.43^{@}23$	(9/2+)	AB		
437.7 4		Α		
452.7 3	(1/2+,3/2+)	Α		
462.1 4		Α		
471.2124	(7/2+,9/2+)	Α		
497.3 [§] 4	(9/2+)	AB	$\approx 6.0  n \ s$	$T_{1/2}$ : from $\gamma\gamma(t)$ (1990JaZU) in high-spin studies, not clear whether the value listed by the authors is the mean lifetime or half-life. It is assumed as half-life here.
516.83 18	(7/2-)	А		
569.3 4	(+)	А		
580.3 4	(+)	Α		
620.0 ‡ 23	(15/2-)	В		
632.44& 25	(11/2+)	AB		
$682.3^{\#}4$	(11/2+)	AB		
724.5 4	(7/2+,9/2+,11/2+)	Α		
728.87 20	(9/2-)	Α		
889.2 [§] 15	(13/2+)	в		
$900.9^{@}$ 12	(13/2+)	в		
975.00 10		Α		
986.10 14	(5/2+,7/2+)	Α		
1035.0 [‡] 21	(19/2-)	В		
$1118.9^{\#}$ 16	(15/2+)	в		
1147.0& 13	(15/2+)	В		
1368.68 17	(17/2+)	В		
$1492.9^{@}$ 16	(17/2+)	В		
1595.0 ‡ 21	(23/2-)	в		
1636.9# 17	(19/2+)	В		
1744.0 2 16	(19/2+)	В		
1922.28 18	(21/2+)	В		
2153.0 ^w 22	(21/2+)	В		
2225.0# 19	(23/2+)	В		
2267.0+22	(27/2-)	В		
2311.0 19	(23/2+)	В		A possible 1297 $\gamma$ to 11/2- band is not shown.
2546.38 19	(25/2+)	В		
2585.0° 23	(25/2+)	В		A
2759.0% 21	(27/2+)	В		A possible 1185 $\gamma$ to 11/2- band is not shown.
$2004.0^{\pm} 20$	(2/2+)	в		
3020.07 24	( 0 1 / 2 - ) ( 0 0 / 0 + )	в		
3016.0 25	(29/2+)	в		
0208.4° 20	(29/2+)	в		A possible 1065 to 11/2 hand is not shown
3611 6# 22	(01/2+) (31/2+)	D B		A possible 10007 to 11/2- band is not snown.
3695@ 3	(33/2+)	В		
	(	~		

## $^{129}_{59}$ Pr $_{70}$ -2

### Adopted Levels, Gammas (continued)

## ¹²⁹Pr Levels (continued)

E(level)	$J\pi^{\dagger}$	XREF	Comments
3830 [‡] 3	(35/2-)	В	
3998.0 & 24	(35/2+)	в	A possible 9997 to 11/2- band is not shown.
4013.4 \$ 23	(33/2+)	В	
4457@ 3	(37/2+)	В	
4701  3	(39/2-)	В	
4821& 3	(39/2+)	В	
5348 [@] 3	(41/2+)	В	
5654 [‡] 3	(43/2-)	В	
5771 ^{&amp;} 3	(43/2+)	В	
6349@ 4	(45/2+)	В	
6704 ‡ 3	(47/2-)	В	
$7466^{@}4$	(49/2+)	В	
$7858^{\ddagger}4$	(51/2-)	В	

 †  From systematics of decoupled  $h_{11/2}$  proton band in neighboring odd Pr nuclei. All assignments are considered as tentative including that for the g.s. For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population.

 ‡  (A):  $\pi h_{11/2}$  band. Possible Nilsson configuration=3/2[541] (1993We05).

(A): πn_{11/2} band. Possible I
(B): πg_{9/2}, α=+1/2.
# (C): πg_{9/2}, α=-1/2.
@ (D): The g.s. band,α=+1/2.
& (E): The g.s. band,α=-1/2.

 $\gamma(^{129}\mathrm{Pr})$ 

E(level)	$\mathbf{E}\gamma$	Ιγ	Mult.	α	Comments
91.10	91.1 1	100			
241.82	150.8 2	100 12			
	241.8 3	24 7			
327.3	236.2 3	100			
382.57	140.94	100 33	[M2]	3.64 7	$\alpha(K)=2.90\ 5;\ \alpha(L)=0.583\ 11;\ \alpha(M)=0.1283\ 23.$
					$\alpha(N)=0.0287$ 6; $\alpha(O)=0.00454$ 9; $\alpha(P)=0.000298$ 6.
	291.6 4	89 33	[E3]	0.220	$\alpha(K)=0.1437\ 22;\ \alpha(L)=0.0598\ 10;\ \alpha(M)=0.01355\ 21.$
					$\alpha(N)=0.00295$ 5; $\alpha(O)=0.000423$ 7; $\alpha(P)=9.55\times10^{-6}$ 14.
418.43	176.6 3	100 17			
	327.2 3	83 17			
437.7	346.6 ‡ 3	100†‡			
452.7	452.7 3	100			
462.1	371.0 3	100			
471.21	229.5 3	46 15			
	380.0 3	100 23			
497.3	255.5 3	100			
516.83	134.04	100 15	[E2]	0.752 14	$\alpha(K)=0.502$ 9; $\alpha(L)=0.195$ 4; $\alpha(M)=0.0437$ 9.
					$\alpha(N)=0.00948$ 18; $\alpha(O)=0.00135$ 3; $\alpha(P)=2.79\times10^{-5}$ 5.
	275.0 1	176			
569.3	116.6‡ 2	100‡			
580.3	127.6 2	100			
620.0	238	100	(E2)	0.1064	
632.44	214.0 1	<83			
	391.0 5	100 33			
682 3	185 0 1	100			
724.5	482.7 3	100			
728.87	212.0 1	<33			
	346.6 3	100†‡ 20			
	487 0 5	100			
889 2	208	100			
	394				
900 9	268				
000.0	483				
975 00	882 0 1	48 8			Ev. noor fit. level-energy difference=883.9
0.0.00	975 0 1	100 16			21. poor int, iotor energy anterence=000.0.
	010.01	100 10			
### $\gamma(^{129}Pr)$ (continued)

E(level)	Εγ	Ιγ	Mult.	α	E(level)	Εγ	Ιγ
986.10	895.0 1	100			2759.0	448	
1035.0	415	100	(E2)	0.0190	2884.6	338	
1118.9	230					660	
	438				3020.0	753	100
1147.0	246				3076.0	491	
	514				3238.4	354	
1368.6	250					692	
	479				3311.0	552	
1492.9	592				3611.6	727	
1595.0	560	100	(E2)	0.0083 4	3695	619	
1636.9	268				3830	810	
	518				3998.0	687	
1744.0	597				4013.4	775	
1922.2	285				4457	762	
	554				4701	871	
2153 . 0	1118				4821	823	
2225 . 0	303				5348	891	
	588				5654	953	
2267.0	672	100			5771	950	
2311.0	567				6349	10018	
2546.3	321				6704	1050	
	624				7466	1117§	
2585.0	432				7858	1154	
	990						

 †  346.6  $\gamma$  is a doublet with separate intensities quoted in 1997GiO but the authors did not specify these intensities with levels. The evaluators have arbitrarily assigned higher intensity to the decay of the low-lying level. Multiply placed; intensity suitably divided. Placement of transition in the level scheme is uncertain.

## $^{129}_{59}$ Pr₇₀-4

### Adopted Levels, Gammas (continued)



 $^{129}_{59}\mathrm{Pr}_{70}$ 

(E) The g.s. band, $\alpha = -1/2$ 



# $^{129}_{59}\mathrm{Pr}_{70}\text{--}6$



Level Scheme

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided



Level Scheme (continued)

Intensities: relative photon branching from each level @ Multiply placed; intensity suitably divided

(51/2-)		7858	
(49/2+)		7466	
<u>.</u>			
(47/2-)		6704	
(45/2+)		6349	
(43/2-)		5654	
(41/2+)		5348	
(39/2-)		4701	
(37/2+)		4457	
(35/2+)		3998.0	
(35/2-)		3830	
(31/2+)		3611.6	
(29/2+)		- 3238.4	
(31/2-)		- 3020.0	
(27/2+)		2759.0	
(25/2+)		- 2546.3	
(23/2+)		2311.0	
(11/2+)		682.3	
(11/2+)		632.44	
(15/2-)		620.0	
(+)		580.3	
(+) (7/2 )		516.92	
(9/2+)		497.3	<u> </u>
(7/2+,9/2+)		471.21	≈60 ns
		462.1	
(1/2+,3/2+)		452.7	
		437.7	
(9/2+)		418.43	
(11/2-)	→ 「 一 一 一 一 一 一 一 一 一 一 一 一 一	382.57	
(5/2+,7/2+)		327.3	
(1/2+) (5/2+)		91 10	
(3/2+)	╮ <u>؇_؇</u> ᡶ <u>؇؇</u>	0.0	80
(******/	<u> </u>	0.0	30 s

 $^{129}_{59}$ Pr₇₀-9

### ¹²⁹Nd ε Decay: Mixed 1997Gi07,2010Xu12

 $\begin{array}{l} \label{eq:parent 129Nd: E=0+Z; } &J\pi = (1/2+); \ T_{1/2} = 2.6 \ s \ 4; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = 100. \\ \mbox{Parent } ^{129}\mbox{Nd: E=0; } J\pi = (5/2+); \ T_{1/2} = 6.7 \ s \ 4; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ Q(g.s.) = 7460 \ syst; \ \% \epsilon + \% \beta^+ \ decay = ? \\ \mbox{Parent } ^{129}\mbox{Nd: E=0+x; } J\pi = (7/2-); \ T_{1/2} = 7 \ s; \ M = (7/2-); \ T_{1/2} = 7 \ s; \ M = (7/2-); \ T_{1/2} = 7 \ s; \ M = (7/2-); \$ 

 $^{129}\mathrm{Nd}(0+Z)-J,\mathrm{T}_{1/2}:$  From Adopted Levels for all the three activities.

¹²⁹Nd(0+Z)-Q(ε): 7460 200 (syst,2012Wa38).

1997Gi07:  129 Nd activity produced in bombardment of  92 Mo and  94 Mo targets by E=210, 255 MeV  40 Ca beam at Grenoble, IGISOL technique to identify A=129 isotopes. Measured Ey, Iy, I $\beta$ ,  $\gamma\gamma(t)$  and  $(x ray)(\gamma)(t)$ , half-life of ¹²⁹Nd g.s.

This work is a short note; complete details of the level scheme are not available. 2010Xu12: ¹²⁹Nd formed in ⁹⁶Ru(³⁶Ar,3p) at 220 MeV and ⁹²Mo(⁴⁰Ca,3p) at 173 MeV; tape transport system, measured  $E\gamma$ ,  $I\gamma,~\gamma\gamma,~(x~ray)\gamma$  coin, (proton) $\gamma$  coin, decay curves for half-life determination. Other:

¹²⁹Pr Levels

E(level) [†]	Jπ	T _{1/2}	Comments
0.0+	(3/2+)		
91.10+ 10	(5/2+)		
241.82+ 16	(7/2+)		
327.3 4	(5/2+,7/2+)		
382.57 24	(11/2-)		E(level): proposed by 1997Gi07 to be an isomer but no half-life data are available.
418.43 [‡] 23	(9/2+)		
437.7 4			
452.7 3	(1/2+,3/2+)		
462.1 4			
471.21 24	(7/2+,9/2+)		
497.3 4	(9/2+)	$\approx 60$ ns	
516.83 18	(7/2-)		
569.3 4	(+)		
580.3 4	(+)		
$632$ . $44^{\ddagger}$ 25	(11/2+)		
682.3 4	(11/2+)		
724.5 4	(7/2+,9/2+,11/2+)		
728.87 20	(9/2-)		
975.00 10			
986.10 14	(5/2+,7/2+)		

 †  From least-squares fit to Ey data. Due to poor fit, the 882y was omitted in this procedure.

[‡] (A): g.s. band.

### $\gamma(^{129}Pr)$

Eγ	E(level)	Ιγ	Mult.	α	Comments
91.1 [‡] 1	91.10	100			
^x 116.6 [§] 1		80 [§] 10			
116.6 ^{‡§} 2	569.3	15§ 1			
127.6 2	580.3	8 4			
$134.0^{\ddagger}4$	516.83	35 5	[E2]	0.752 14	$\alpha(K)=0.502$ 9; $\alpha(L)=0.195$ 4; $\alpha(M)=0.0437$ 9.
					$\alpha(N)=0.00948 \ 18; \ \alpha(O)=0.00135 \ 3; \ \alpha(P)=2.79\times10^{-5} \ 5.$
					Ey: 2010Xu12 assign this $\gamma$ to 2.6-s activity of $^{129}Nd,$ and in coin with a 399.0 $\gamma.$
140.9 4	382.57	93	[M2]	3.64 7	$\alpha(K)=2.90\ 5;\ \alpha(L)=0.583\ 11;\ \alpha(M)=0.1283\ 23.$
					$\alpha(N)=0.0287$ 6; $\alpha(O)=0.00454$ 9; $\alpha(P)=0.000298$ 6.
150.8 [‡] 2	241.82	43 5			
176.6 [‡] 3	418.43	18 3			
185.0 <i>1</i>	682.3	< 5			
212.0 1	728.87	<5			
214.0 1	632.44	<5			
229.5 3	471.21	6 2			
236.2 [‡] 3	327.3	17 3			
$241.8^{\ddagger}$ 3	241.82	$11 \ 3$			
255.5 [‡] 3	497.3	20 4			
275.0 1	516.83	6 2			
291.6 4	382.57	83	[E3]	0.220	$\alpha(K)=0.1437\ 22;\ \alpha(L)=0.0598\ 10;\ \alpha(M)=0.01355\ 21.$
			-		$\alpha(N)=0.00295\ 5;\ \alpha(O)=0.000423\ 7;\ \alpha(P)=9.55\times10^{-6}\ 14.$

## $^{129}_{59}$ Pr₇₀-10

#### ¹²⁹Nd & Decay: Mixed 1997Gi07,2010Xu12 (continued)

### $\gamma(^{129}Pr)$ (continued)

$\mathbf{E}\gamma$	E(level)	Ιγ	Comments
397 94 3	118 13	15 3	
346 6 \$ 3	437 7	3518 5	
010.000	728.87	15 [†] § 3	
371.0 [‡] 3	462.1	13 3	
380.0 [‡] 3	471.21	13 3	
391.0 5	632.44	6 2	
x399.0			Ey: from 2010Xu12, in coin with 134.0y, both assigned to the decay of 2.6-s activity.
452.7 ‡ 3	452.7	30 4	
482.7 [‡] 3	724.5	13 3	
487.0 5	728.87	<5	
882.0 1	975.00	12 2	Eγ: poor fit, level-energy difference=883.9.
895.0 1	986.10	12 2	
975.0 1	975.00	25 4	

 †  346.6 $\gamma$  is a doublet with separate intensities given in 1997Gi07, but the authors did not specify these intensities with levels. The evaluators have arbitrarily assigned higher intensity to the decay of the low-lying level.  $\ddagger \gamma$  also reported in 2010Xu12 with the same energy as in 1997Gi07. No intensity is given.

 $\label{eq:main_state} \begin{cases} & Multiply placed; intensity suitably divided. \\ & \gamma \; ray \; not \; placed \; in \; level \; scheme. \end{cases}$ 

## $^{129}_{59}\mathrm{Pr}_{70}\mathrm{-11}$

¹²⁹Nd & Decay: Mixed 1997Gi07,2010Xu12 (continued)

### (A) g.s. band



 $^{129}_{59}\mathrm{Pr}_{70}$ 





### ¹²⁹Nd & Decay: Mixed 1997Gi07,2010Xu12 (continued)

 94 Mo( 40 Ca,3p2n $\gamma$ ) 1998Sm08,1998SmZX

Includes  $^{58}\rm{Ni}(^{74}Se,2pn\gamma)$  and  $^{107}\rm{Ag}(^{28}Si,2p2n\gamma).$ 

- 1998Sm08 (also 1998SmZX thesis): E=180 MeV. Measured Eγ, Ιγ, γγ, γγ(θ), particle-γ coin using GAMMASPHERE array with 92 detectors and MICROBALL array of particle detectors. The ground state band is shown only in figure 4.19 in 1998SmZX thesis 1998SmZX also quote A. Galindo-Uribarri et al., Report AECL-11132, p3.1.15 (1994), for transitions in bands 2 and 3.
- 1993We05:  $^{107}Ag(^{28}Si,2p2n\gamma)$  E=93 MeV; BGO shielded Ge array, measured Ey, Iy,  $\gamma\gamma,~\gamma(\theta).$  The

 $237-414-559-672-754-811-906-991 \gamma$  cascade assigned to the  $\pi h_{11/2}$  and 3/2[541] Nilsson configuration was found in this work. The last two  $\gamma$  rays of 906 and 991 keV were not confirmed in 1998Sm08 or 1987WaZK. Others:

1987WaZK (also 1986JaZP): ⁵⁸Ni(⁷⁴Se,2pn $\gamma$ ); BGO shielded Ge Polytessa array, E $\gamma$ ,  $\gamma\gamma$ . Level scheme figure lists energies for two bands and spins for one band, no intensities are given. The h_{11/2} band established with  $\gamma$ cascade: 238-416-561-674-755-812- 874-954-1056-1157, from 11/2- to 51/2-. Other two cross linked bands, not connected to h_{11/2} band, were defined by  $\Delta J=1 \gamma$  cascade: 186-210-230-250-266-286-304-322-339-355-374, and all the cross over quadrupole transitions: 396-481-556-626-695 and 440-519-591-661-730  $\gamma$  cascades. All these structures are verified in 1998Sm08.

1990JaZU:  $^{92}, ^{94}Mo(^{40}Ca, X),$  measured  $\gamma\gamma(t).$  An isomer of 60-ns lifetime is reported.

### ¹²⁹Pr Levels

E(level) [†]	Jπ	T _{1/2}	Comments
0.0 ^a	3 / 2 +		
90.4& 8	5/2+		
241.6 ^a 8	7 / 2 +		
361 ^{‡§} 3	11/2 -		
417.8& 10	9 / 2 +		
495.6# 13	9 / 2 +	$\approx 60$ ns	$T_{1/2}$ : from $\gamma\gamma(t)$ (1990JaZU) in high-spin studies, not clear whether the value listed by the
			authors is the mean lifetime or half-life. It is assumed as half-life here.
599.0 ^{‡§} 23	15/2-		
633.1ª <i>11</i>	11/2+		
680.9@ 15	11/2+		

## $^{129}_{59}$ Pr $_{70}$ -14

## $^{129}_{59}$ Pr $_{70}$ -14

#### $^{94}Mo(^{40}Ca, 3p2n\gamma)$ 1998Sm08,1998SmZX (continued)

¹²⁹Pr Levels (continued)

	1				
E(level) [†]	Jπ	E(level) [†]	Jπ	E(level) [†]	Jπ
"		± ¢			
$889.2^{\#}15$	13/2+	2246.0+ <i>§</i> 22	27/2-	3998.0 ^a 24	35/2+
900.9 ^{&amp;} 12	13/2+	2311.0 ^a 19	23/2+	$4013.4^{\#}23$	33/2+
1014.0 ^{‡§} 21	19/2-	$2546.3^{\#}$ 19	25/2+	4436 [‡] & 3	37/2+
$1118.9^{@}$ 16	15/2+	2564.0 ^{‡&amp;} 23	25/2+	4680 ^{‡§} 3	39/2-
1147.0 <i>a 13</i>	15/2+	2759.0 ^a 21	27/2+	4821 ^a 3	39/2+
1368.6# 17	17/2+	2884.6@ 20	27/2+	$5327$ $\ddagger \& 3$	41/2+
1492.9& 16	17/2+	2999.0 ^{‡§} 24	31/2-	5633 ^{‡§} 3	43/2-
1574.0 ^{‡§} 21	23/2-	3055.0 [‡] & 25	29/2+	5771 ^a 3	43/2+
1636.9@ 17	19/2+	3238.4 # 20	29/2+	6328 ^{‡&amp;} 4	45/2+
1744.0 ^a 16	19/2+	3311.0 ^a 22	31/2+	6683 ^{‡§} 3	47/2-
$1922.2^{\#}$ 18	21/2+	3611.6@ 22	31/2+	7445 * 4	49/2+
2132.0 ^{‡&amp;} 22	21/2+	3674 ^{‡&amp;} 3	33/2+	7837 ^{‡§} 4	51/2 -
2225.0@ 19	23/2+	3809‡§ 3	35/2-		

 $^{\dagger}\,$  From least-squares fit to Ey data, assuming 1 keV uncertainty for each  $\gamma$  ray.

 $\pm$  Note that the level energy is 382.57 for 11/2- bandhead in Adopted Levels based on  129 Nd  $\epsilon$  decay (1997Gi07), thus all level energies based on the 11/2- state have been adjusted upwards by  $\approx$ 21 keV in Adopted Levels.

(A):  $\pi h_{11/2}$  band. Possible Nilsson configuration=3/2[541] (1993We05). (A):  $\pi h_{11/2}$  band. Possible Nilsson configuration=3/2[541] (1993We05). (B):  $\pi g_{9/2}$ ,  $\alpha = +1/2$ . (C):  $\pi g_{9/2}$ ,  $\alpha = -1/2$ . (D): The g.s. band, $\alpha = +1/2$ . Band from 1998SmZX thesis.

a (E): The g.s. band,  $\alpha = -1/2$ .

### $\gamma(^{129}Pr)$

 $\rm A_2$  and  $\rm A_4$  coefficients are from 1993We05.

$\mathbf{E}\gamma$	E(level)	$I\gamma^\dagger$	Mult.‡	α	Comments
90	90.4				
151	241.6				
176	417.8				
185	680.9				
208	889.2				
215	633.1				
230	1118.9				
238	599.0	67.8 22	(E2)	0.1064	A ₂ =+0.51 10; A ₄ =-0.18 14. $\alpha(K)=0.0823$ 12; $\alpha(L)=0.0189$ 3; $\alpha(M)=0.00415$ 6. $\alpha(N)=0.000908$ 13; $\alpha(O)=0.0001344$ 19; $\alpha(P)=5.16\times10^{-6}$ 8.
242	241.6				
246	1147.0				
250	1368.6				
254	495.6				
268	900.9				
	1636.9				
285	1922.2				
303	2225 . 0				
321	2546.3				
327	417.8				
338	2884.6				
354	3238.4				
392	633.1				
394	889.2				
415	1014.0	100 2	(E2)	0.0190	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01559 \ 22; \ \alpha(\mathbf{L}) = 0.00267 \ 4; \ \alpha(\mathbf{M}) = 0.000574 \ 8. \\ &\alpha(\mathbf{N}) = 0.0001268 \ 18; \ \alpha(\mathbf{O}) = 1.95 \times 10^{-5} \ 3; \ \alpha(\mathbf{P}) = 1.064 \times 10^{-6} \ 15. \\ &\mathbf{A}_{2} = +0.45 \ 17; \ \mathbf{A}_{4} = -0.09 \ 10. \end{aligned}$
432	2564.0				∠ ` <b>*</b>
438	1118.9				
448	2759.0				
479	1368.6				
483	900.9				
491	3055.0				
514	1147.0				

## $^{129}_{59}\mathrm{Pr}_{70}\mathrm{-}15$

		_	⁹⁴ Mo( ⁴⁰	Ca,3p2ny)	1998Sm08,1998SmZX (continued)
				_	γ( ¹²⁹ Pr) (continued)
Εγ	E(level)	Iγ [†]	Mult. [‡]	α	Comments
518	1636.9				
552	3311.0				
554	1922.2	80.2	(129)	0 00894	«(W)-0.00607.10, «(I)-0.001077.15, «(M)-0.000990.4
560	1574.0	80 3	(E2)	0.00834	$\alpha(\mathbf{N})=0.0069^{-1}10^{-5} \text{ (a}(\mathbf{D})=0.0010^{-1}15^{-5} \text{ (a}(\mathbf{N})=0.000225^{-2}.$ $\alpha(\mathbf{N})=5.09\times10^{-5} 8^{-5} \text{ (a}(\mathbf{O})=7.95\times10^{-6} 12^{-5} \text{ (a}(\mathbf{P})=4.90\times10^{-7} 7.$ $A_{2}=+0.34 7^{-5} A_{4}=-0.06 10.$
567	2311.0				2 · *
588	2225.0				
592	1492.9				
597	1744.0				
619	3674				
624	2546.3				
660	2884.6				
672	2246 . 0	36.5 12			
687	3998.0				
692	3238.4				
727	3611.6				
753	2999.0	15.99			
762	4436				
775	4013.4				
810	3809				
823	4821				
871	4680				
891	5327				
950	5771				
953	5633				
990	2564.0				
9998	3998.0				
1001*	6328				
10658	0083 2211 0				
1117#	0011.U 7445				
1110	1440				
1154	2132.U				
1195	1001				
12078	2709.0 9911 0				
14310	2011.0				

[†] From 1993We05 in ¹⁰⁷Ag(²⁸Si,2p2nγ).

^{$\ddagger$} From  $\gamma(\theta)$  data of 1993We05. Mult=Q refers to  $\Delta J=2$ , quadrupole. 1993We05 assign E2, also supported by RUL assuming  $\approx 10$  ns coincidence resolving time. § The  $\gamma$  not listed in Adopted Levels, Gammas due to energy mismatch.

 $^{\#}$  Placement of transition in the level scheme is uncertain.



⁹⁴Mo(⁴⁰Ca,3p2nγ) 1998Sm08,1998SmZX (continued)

 $^{129}_{59}\mathrm{Pr}_{70}$ 

19/2 +

15/2 +

11/2 +

(B)17/2+

(B)13/2+

(B)9/2+

1368.6

889.2

495.6

1574.0

1014.0

599.0

361

23/2 -

19/2 -

15/2-

11/2-

(C)19/2+

(C)15/2+

(C)11/2+

(E)7/2+

17/2 +

13/2+

9/2+

_

1636.9

1118.9

680.9

(A)23/2-

(A)19/2-

(E)11/2+

(E)7/2+ 5/2+

(E)3/2+

1492.9

900.9

417.8

90.4

17/2 +

13/2+

9/2+

⁹⁴Mo(⁴⁰Ca,3p2nγ) 1998Sm08,1998SmZX (continued)

(E) The g.s. band, $\alpha = -1/2$ 



## $^{129}_{59}\mathrm{Pr}_{70}\mathrm{-18}$



 $^{12\,9}_{5\,9}\mathrm{Pr}_{70}$ 

⁹⁴Mo(⁴⁰Ca,3p2nγ) 1998Sm08,1998SmZX (continued)

Level Scheme

Intensities: relative  $I\gamma$ 



 $^{129}_{59}\mathrm{Pr}_{70}$ 

≈60 ns

#### Adopted Levels, Gammas

 $Q(\beta^{-})=-9430 SY; S(n)=10070 SY; S(p)=3270 SY; Q(\alpha)=1920 SY 2012Wa38.$ 

Estimated (2012Wa38) uncertainties: 360 for  $Q(\beta^-)$ , 280 for S(n) and  $Q(\alpha)$ , 200 for S(p).

Q(ep)=5930 200, S(2n)=22920 360, S(2p)=4910 200 (syst,2012Wa38).

1977Bo02: ¹²⁹Nd produced and identified, measured half-life, delayed protons.

 $1985 Wi07: \ assignment: \ {}^{92}Mo, {}^{96}Ru({}^{40}Ca, X), \ on-line \ mass \ spectrometer; \ measured \ delayed \ protons, \ x-rays, \ px-, \ p\gamma-coin.$ 

1997Gi07:  129 Nd activity produced in bombardment of  92 Mo and  94 Mo targets by E=210, 255 MeV  40 Ca beam at Grenoble,

IGISOL technique to identify A=129 isotopes. Measured E $\gamma$ , I $\gamma$ , I $\beta$ ,  $\gamma\gamma(t)$  and  $(x ray)(\gamma)(t)$ , half-life of ¹²⁹Nd g.s. All  $\gamma$ -ray data (energies, intensities, multipolarities) and the level scheme are from ⁹²Mo(⁴⁰Ca,2pn $\gamma$ ) reaction. In ¹²⁹Pm decay only one  $\gamma$  ray of 99 keV is reported.

### ¹²⁹Nd Levels

### Cross Reference (XREF) Flags A 129Pm ε Decay (2.4 s)

				$B^{92}Mo({}^{40}Ca,2pn\gamma)$
F(level)	Iπ [†]	YRFF	T	Comments
E(level)	57.	<u>AUDI</u>	1/2	Comments
0.0	(5/2+)		6.7 s 4	$\%\epsilon + \%\beta^{+} = 100; \ \%\epsilon p > 0.$
				$\rm T_{1/2};$ weighted average of 7 s 1 (1997Gi07) and 6.7 s 4 (weighted average of 4 measurements in 2010Xu12); both from decay curves of $\gamma$ rays. Others: 4.9 s 2
				(1985Wi07), 5.9 s 6 (1977Bo02), both from decay curve of delayed protons. J $\pi$ : from statistical model prediction (1985Wi07). 7/2- proposed in theoretical
0 + x §	(7/2-)	в	≈7 s	calculations (1997Mo25); 5/2+ from systematics in 2012Au07. %r+%R ⁺ =?
	(1) = )	2		$T_{1/2}$ : assumed by the evaluators to be comparable to that for g.s. See also discussion in 2010Xu12.
0 + y #	(1/2-)	AB		
$0 + z^{\&}$	(1/2+)	в	2.6 s 4	$\%\epsilon + \%\beta^+ = ?$ ; $\%\epsilon p = ?$
				$J\pi$ : possible configuration=1/2[411].
				$T_{1/2};$ from decay curves for 134.07 and 399.07 (2010Xu12); 1347 and 3997 seen in coincidence.
21.7+z ^a 3	(3/2+)	в		
53.8+y [@] 4	(3/2-)	в		
91.0+z ^b 4	(5/2+)	в		
99.0+y [#] 2	(5/2-)	AB		
130.4+x [‡] 2	(9/2-)	в		
178.8+z& 2	(5/2+)	в		
229.9+z ^a 3	(7/2+)	в		
232.6+y [@] 3	(7/2-)	в		
236.9+z ^c 4	(7/2+)	в		
292.6+x§ 2	(11/2-)	в		
308.5+y [#] 3	(9/2-)	в		
415.7+z ^b 4	(9/2+)	В		
491.0+x [‡] 2	(13/2-)	В		
497.3+z& 3	(9/2+)	в		
530.1+y [@] 3	(11/2-)	в		
581.7+z ^a 3	(11/2+)	в		
629.3+z ^c 4	(11/2+)	В		
$630.8 + y^{\#} 3$	(13/2-)	В		
710.7+x§ 2	(15/2-)	В		
$868.4 + z^{b}4$	(13/2+)	в		
$936.3 + z^{-3}$	(13/2+)	в		
942.8+y [@] 4	(15/2-)	В		
969.7 + x + 2	(17/2-)	В		
$1054.2 + z^{a}$ 4	(15/2+)	В		
$1064.7 + y^{\#}4$	(17/2-)	В		
1136.9+z ^c 4	(15/2+)	В		
1235.1+x8 3	(19/2-)	В		
$1419.4 + z^{10}4$	(17/2+)	В		
1461.8+y ^w 4	(19/2-)	В		
$1471.8 + z^{\infty} 4$	(17/2+)	В		
1543.0+x+3	(21/2-)	В		
$1603.7 + y^{\pi} 4$	(21/2-)	В		
$1020.0+z^{a}$ 4	(19/2+)	в		
1/30.3+z 4	(19/2+)	в		

### Adopted Levels, Gammas (continued)

### $^{129}\mathrm{Nd}$ Levels (continued)

E(level)	$J\pi^\dagger$	XREF	E(level)	$J\pi^{\dagger}$	XREF	E(level)	$J\pi^{\dagger}$	XREF
1843.9+x [§] 3	(23/2-)	В	$4575.7 + y^{\#} 6$	(37/2-)	В	8796.7+x [§] 6	(55/2-)	В
2034.7+z ^b 4	(21/2+)	в	4703.9+z ^b 5	(37/2+)	В	$9024.0+z^{a}$ 7	(55/2+)	В
$2067.6 + y^{@}4$	(23/2-)	в	$4772.2 + x^{\$} 4$	(39/2-)	в	9176.9+y [@] 7	(55/2-)	В
2076.6+z& 4	(21/2+)	в	$5032.4 + y^{@}6$	(39/2-)	В	9337.2+z ^c 19	(55/2+)	в
2187.3+x [‡] 3	(25/2-)	в	5115.8+z ^a 6	(39/2+)	В	9535.6+x [‡] 6	(57/2-)	В
2236.8+y [#] 5	(25/2-)	в	5192.8+z ^c 6	(39/2+)	В	9643.5+z ^b 7	(57/2+)	В
2248.4+z ^a 4	(23/2+)	в	$5210.8 + x^{\ddagger} 4$	(41/2-)	В	9796.1+y# 16	(57/2-)	В
2379.2+z ^c 4	(23/2+)	в	$5487.5+y^{\#}6$	(41/2-)	В	10019.4 + x  6	(59/2-)	В
2516.2+x [§] 3	(27/2-)	в	5522.2+z ^b 6	(41/2+)	В	10222.2+z ^a 7	(59/2+)	В
2666.0+z ^b 4	(25/2+)	в	5644.3+x [§] 4	(43/2-)	В	10416.0+y [@] 8	(59/2-)	В
2734.9+z& 4	(25/2+)	в	$5935.3+y^{@}6$	(43/2-)	В	$10857.6 + x^{\ddagger} 6$	(61/2-)	в
2739.3+y [@] 5	(27/2-)	в	5973.6+z ^a 6	(43/2+)	В	10902.5+z ^b 12	(61/2+)	В
2881.7+x [‡] 4	(29/2-)	в	6079.2+z ^c 6	(43/2+)	В	11009.1+y [#] 19	(61/2-)	в
2909.7+z ^a 5	(27/2+)	в	$6142.9 + x^{\ddagger} 4$	(45/2-)	в	11326.4+x § 6	(63/2-)	в
2949.2+y [#] 5	(29/2-)	в	6415.4+z ^b 6	(45/2+)	в	11511.1+z ^a 8	(63/2+)	в
3053.8+z ^c 4	(27/2+)	в	$6472.1+y^{\#}7$	(45/2-)	В	11721.0+y@ 13	(63/2-)	В
3232.5+x [§] 4	(31/2-)	в	$6606.4 + x^{\$}5$	(47/2-)	В	12221.5+z ^b 16	(65/2+)	В
3292.6+z ^b 4	(29/2+)	в	6901.2+z ^a 7	(47/2+)	В	12263.5+x [‡] 6	(65/2-)	в
3418.6+z& 7	(29/2+)	в	$6927.2+y^{@}7$	(47/2-)	В	$12265.1 + y^{\#} 21$	(65/2-)	в
3459.3+y [@] 5	(31/2-)	в	$7078.2 + z^{c}$ 12	(47/2+)	в	$12720.4 + x^{\$}$ 7	(67/2-)	в
3594.4+z ^a 5	(31/2+)	в	7176.0+x [‡] 5	(49/2-)	В	12892.1+z ^a 13	(67/2+)	в
3609.8+x [‡] 4	(33/2-)	в	7395.6+z ^b 6	(49/2+)	В	13090.1+y@ 16	(67/2-)	в
3712.9+z ^c 5	(31/2+)	в	7528.1+y# 7	(49/2-)	В	13575.5+z ^b 19	(69/2+)	в
3730.4+y [#] 6	(33/2-)	в	7658.3+x § 5	(51/2-)	в	13746.5+x [‡] 12	(69/2-)	в
3960.5+z ^b 5	(33/2+)	в	7916.4+z ^a 7	(51/2+)	В	14202.4+x \$ 12	(71/2-)	В
3978.6+x [§] 4	(35/2-)	в	8010.9+y [@] 7	(51/2-)	В	14365.1+z ^a 16	(71/2+)	В
4214.4+y [@] 6	(35/2-)	в	8178.2+z ^c 16	(51/2+)	В	14528.1+y [@] 19	(71/2-)	В
4321.2+z ^a 5	(35/2+)	В	8307.3+x [‡] 5	(53/2-)	В	15765.4+x [§] 16	(75/2-)	в
4374.5+x [‡] 4	(37/2-)	В	8471.7+z ^b 7	(53/2+)	В			
4413.4+z ^c 5	(35/2+)	в	8636.1+y [#] 12	(53/2-)	в			

 †  Assignments for excited states are from  92 Mo( 40 Ca,2pn\gamma), based on  $\gamma$ -ray multipolarities from angular correlation data, band assignments and comparisons with cranked-shell model calculations. All assignments have been taken from 2002Ze01, except parentheses have been added by the evaluators due to lack of strong supporting arguments, including those for the g.s. and isomers. For levels populated in high-spin studies, ascending order of spins with excitation energy is assumed based on yrast pattern of population. [‡] (A): ν7/2[523],α=+1/2.

§ (B): v7/2[523],α=-1/2.

# (C):  $v1/2[541], \alpha = +1/2$ .

@ (D):  $v1/2[541], \alpha = -1/2$ .

& (E): v1/2[411],α=+1/2.

^a (F):  $v1/2[411], \alpha = -1/2$ .

^b (G):  $v5/2[402], \alpha = +1/2$ .

c (H):  $v5/2[402], \alpha = -1/2$ .

### $\gamma(^{129}\text{Nd})$

E(level)	Εγ	Ιγ	Mult. [†]	α‡	Comments
99.0+y	99.0 2	100	(E2)	2.27	$\alpha(K) = 1.241 \ 19; \ \alpha(L) = 0.801 \ 14; \ \alpha(M) = 0.182 \ 3.$
130.4+x	130.5 2		(M1+E2)	0.680 19	$\alpha(\mathbf{N})=0.0394$ 7; $\alpha(\mathbf{O})=0.00508$ 9; $\alpha(\mathbf{P})=0.42\times10^{-5}$ 9. $\alpha(\mathbf{K})=0.564$ 9; $\alpha(\mathbf{L})=0.091$ 13; $\alpha(\mathbf{M})=0.020$ 3. $\alpha(\mathbf{N})=0.0044$ 7; $\alpha(\mathbf{O})=0.00064$ 8; $\alpha(\mathbf{P})=3.57\times10^{-5}$ 11.
178.8+z	157.02	100 14	(M1+E2)	0.400 8	$\alpha(\mathbf{K})=0.335 \ 6; \ \alpha(\mathbf{L})=0.052 \ 5; \ \alpha(\mathbf{M})=0.0111 \ 12.$ $\alpha(\mathbf{N})=0.0025 \ 3; \ \alpha(\mathbf{O})=0.00037 \ 3; \ \alpha(\mathbf{P})=2.12\times10^{-5} \ 7.$
	178.8 2	43 7			
229.9 + z	138.8 2	25 8	(M1+E2)	0.569 14	$\alpha(K)=0.474\ 8;\ \alpha(L)=0.075\ 10;\ \alpha(M)=0.0162\ 23.$ $\alpha(N)=0.0036\ 5;\ \alpha(O)=0.00053\ 6;\ \alpha(P)=3.00\times 10^{-5}\ 9.$
	208.2 2	100 17	(E2)	0.1713	$\alpha(K)=0.1278$ 19; $\alpha(L)=0.0340$ 5; $\alpha(M)=0.00755$ 11. $\alpha(N)=0.001649$ 24; $\alpha(O)=0.000225$ 4; $\alpha(P)=6.55\times10^{-6}$ 10.
232.6+y	133.6 2	100 64	(M1+E2)	0.636 17	$\alpha(K)=0.528 \ 8; \ \alpha(L)=0.085 \ 12; \ \alpha(M)=0.018 \ 3.$ $\alpha(N)=0.0041 \ 6; \ \alpha(O)=0.00060 \ 7; \ \alpha(P)=3.34 \times 10^{-5} \ 10.$

 $\gamma(^{129}\text{Nd})$  (continued)

E(level)	Εγ	Ιγ	Mult.†	ά	Comments
232.6+y	178.8 2	86 14	(E2)	0.286	$\alpha(K)=0.206\ 3;\ \alpha(L)=0.0626\ 10;\ \alpha(M)=0.01399\ 21.$ $\alpha(N)=0.00305\ 5;\ \alpha(O)=0.000411\ 6;\ \alpha(P)=1.023\times10^{-5}\ 15.$
236.9+z	146.1 2	100	(M1+E2)	0.492 11	$\alpha(K)=0.410$ 7; $\alpha(L)=0.064$ 8; $\alpha(M)=0.0138$ 18. $\alpha(N)=0.0031$ 4; $\alpha(Q)=0.00046$ 5; $\alpha(P)=2.60\times 10^{-5}$ 8.
292.6+x	162.5 2	100 6	(M1+E2)	0.363 6	$\alpha(K) = 0.304 \ 5; \ \alpha(L) = 0.046 \ 5; \ \alpha(M) = 0.0100 \ 10.$ $\alpha(N) = 0.00222 \ 21; \ \alpha(Q) = 0.00033 \ 3; \ \alpha(P) = 1.93 \times 10^{-5} \ 6.$
	292.5 2	24.2 16	(E2)	0.0567	$\alpha(K)=0.0447$ 7; $\alpha(L)=0.00939$ 14; $\alpha(M)=0.00206$ 3. $\alpha(N)=0.000452$ 7; $\alpha(O)=6.35\times10^{-5}$ 9; $\alpha(P)=2.45\times10^{-6}$ 4.
308.5+y	76.02	$11 \ 3$			
	209.5 2	100 19	(E2)	0.1677	$\alpha(K)=0.1254$ 18; $\alpha(L)=0.0332$ 5; $\alpha(M)=0.00736$ 11. $\alpha(N)=0.001609$ 24; $\alpha(O)=0.000220$ 4; $\alpha(P)=6.44\times10^{-6}$ 10.
415.7+z	179.1 2	100 9	(M1 + E2)	0.276	$\alpha(K)=0.232$ 4; $\alpha(L)=0.035$ 3; $\alpha(M)=0.0074$ 6. $\alpha(N)=0.00166$ 13; $\alpha(Q)=0.00247$ 15; $\alpha(P)=1.47\times10^{-5}$ 5
	324.5 2	88 6	(E2)	0.0411	$\alpha(K) = 0.0328 5; \alpha(L) = 0.00649 10; \alpha(M) = 0.001417 20.$ $\alpha(K) = 0.00312 5; \alpha(Q) = 4.2 \times 10^{-5} 7; \alpha(P) = 1.82 \times 10^{-6} 3$
491.0+x	198.6 2	100 5	(M1+E2)	0.207	$\alpha(\mathbf{K}) = 0.174 \ 4; \ \alpha(\mathbf{L}) = 0.0256 \ 15; \ \alpha(\mathbf{M}) = 0.0055 \ 4.$
		F F 9	(	0 0000	$\alpha(\mathbf{N}) = 0.00122 \ 8; \ \alpha(\mathbf{O}) = 0.000183 \ 9; \ \alpha(\mathbf{P}) = 1.11 \times 10^{\circ} \ 4.$
	360.5 2	22 3	(E2)	0.0298	$\alpha(\mathbf{K})=0.0241$ 4; $\alpha(\mathbf{L})=0.00452$ 7; $\alpha(\mathbf{M})=0.000983$ 14. $\alpha(\mathbf{N})=0.000217$ 2; $\alpha(\mathbf{O})=2.00\times10^{-5}$ 5; $\alpha(\mathbf{P})=1.261\times10^{-6}$ 20
497 3+7	267 5 2	58 7	(M1 + E2)	0 0912 20	$\alpha(K) = 0.000217 \ 5, \ \alpha(G) = 5.05 \times 10^{-5}, \ \alpha(K) = 1.301 \times 10^{-2} \ 20.$
401.012	201.0 2	00 /	(111112)	0.0012 20	$\alpha(N)=0.000521 \ 13; \ \alpha(O)=7.85\times10^{-5} \ 14; \ \alpha(P)=4.92\times10^{-6} \ 18.$
	318.4 2	100 7	(E2)	0.0435	$\alpha(K)=0.0347$ 5; $\alpha(L)=0.00694$ 10; $\alpha(M)=0.001516$ 22.
					$\alpha(N)=0.000334$ 5; $\alpha(O)=4.71\times10^{-5}$ 7; $\alpha(P)=1.92\times10^{-6}$ 3.
530.1+y	221.5 2	506			
	297.52	100 11	(E2)	0.0538	$\alpha(K)=0.0425$ 6; $\alpha(L)=0.00883$ 13; $\alpha(M)=0.00193$ 3.
					$\alpha(N)=0.000425$ 6; $\alpha(O)=5.98\times10^{-5}$ 9; $\alpha(P)=2.33\times10^{-6}$ 4.
581.7+z	344.82	7.68	(E2)	0.0341	$\alpha(K)=0.0274$ 4; $\alpha(L)=0.00526$ 8; $\alpha(M)=0.001146$ 17.
					$\alpha(N)=0.000253$ 4; $\alpha(O)=3.59\times10^{-5}$ 5; $\alpha(P)=1.539\times10^{-6}$ 22.
	351.62	100 5	(E2)	0.0322	$\alpha(K)=0.0259$ 4; $\alpha(L)=0.00492$ 7; $\alpha(M)=0.001071$ 16.
					$\alpha(N)=0.000236\ 4;\ \alpha(O)=3.36\times10^{-5}\ 5;\ \alpha(P)=1.458\times10^{-6}\ 21.$
629.3+z	213.7 2	100 7	(M1+E2)	0.169 3	$\alpha(\mathbf{K})=0.142$ 3; $\alpha(\mathbf{L})=0.0207$ 10; $\alpha(\mathbf{M})=0.00442$ 23.
	202 2 2	79.9	(	0 0999	$\alpha(\mathbf{N}) = 0.000995; \alpha(\mathbf{O}) = 0.0001486; \alpha(\mathbf{P}) = 9.0\times10^{-5}3.$
	392.3 2	12 3	(E2)	0.0235	$\alpha(\mathbf{N})=0.01089 \ 5; \ \alpha(\mathbf{L})=0.00341 \ 5; \ \alpha(\mathbf{M})=0.000140 \ 11.$
630 8±v	322 4 2	100	(E2)	0 0419	$\alpha(K) = 0.0334 5; \alpha(L) = 0.00664 10; \alpha(M) = 0.001450 21$
000.019	011.4 2	100	(12)	0.0410	$\alpha(N)=0.000319$ 5: $\alpha(O)=4.52\times10^{-5}$ 7: $\alpha(P)=1.86\times10^{-6}$ 3
710.7+x	219.8 2	100 5	(M1 + E2)	0.156 3	$\alpha(K) = 0.132$ 3: $\alpha(L) = 0.0191$ 8: $\alpha(M) = 0.00407$ 19.
			(,		$\alpha(N)=0.00091$ 4; $\alpha(O)=0.000137$ 5; $\alpha(P)=8.4\times10^{-6}$ 3.
	418.1 2	97 5	(E2)	0.0193	$\alpha(K)=0.01582\ 23;\ \alpha(L)=0.00277\ 4;\ \alpha(M)=0.000601\ 9.$
					$\alpha(N)=0.0001328 \ 19; \ \alpha(O)=1.91\times 10^{-5} \ 3; \ \alpha(P)=9.11\times 10^{-7} \ 13.$
868.4+z	239.3 2	696	(M1 + E2)	0.1234 23	$\alpha(K)=0.1044$ 25; $\alpha(L)=0.0150$ 5; $\alpha(M)=0.00319$ 12.
					$\alpha(N)=0.000713\ 25;\ \alpha(O)=0.000107\ 3;\ \alpha(P)=6.64\times 10^{-6}\ 23.$
	452.72	100 6	(E2)	0.01546	$\alpha(K)=0.01271$ 18; $\alpha(L)=0.00216$ 3; $\alpha(M)=0.000466$ 7.
					$\alpha(N)=0.0001032$ 15; $\alpha(O)=1.496\times 10^{-5}$ 21; $\alpha(P)=7.38\times 10^{-7}$ 11.
936.3+z	354.32	364			
	439.1 2	100 8	(E2)	0.01684	$\alpha(K)=0.01382\ 20;\ \alpha(L)=0.00237\ 4;\ \alpha(M)=0.000513\ 8.$
0.4.0	010 0 5				$\alpha(N)=0.0001135 \ 16; \ \alpha(O)=1.643\times10^{-5} \ 24; \ \alpha(P)=8.00\times10^{-7} \ 12.$
942.8+y	312.0 5	<20	(10)	0.0001	
	412.6 2	100 10	(E2)	0.0201	$\alpha(\mathbf{K}) = 0.01642 \ 23; \ \alpha(\mathbf{L}) = 0.00289 \ 4; \ \alpha(\mathbf{M}) = 0.000627 \ 9.$
060 7	250 0 2	74 4	(M1 + F9 )	0 0005 21	$\alpha(\mathbf{K}) = 0.0001386\ 20;\ \alpha(\mathbf{U}) = 2.00\times10^{-5};\ \alpha(\mathbf{F}) = 9.43\times10^{-1}\ 14.$
505.1+x	235.0 2	14 4	(111+12)	0.0555 21	$\alpha(N)=0.000570$ 15: $\alpha(\Omega)=8.59\times10^{-5}$ 17: $\alpha(P)=5.36\times10^{-6}$ 19
	478 6 2	100 5	(E2)	0 01326	$\alpha(K) = 0.000570^{-15}, \alpha(C) = 0.00182^{-3}, \alpha(K) = 0.000392^{-6}$
	1.0.0 2	100 0	(==)	0.01020	$\alpha(N)=8.69\times10^{-5}$ 13; $\alpha(O)=1.264\times10^{-5}$ 18: $\alpha(P)=6.39\times10^{-7}$ 9.
1054.2+z	472.7 2	100	(E2)	0.01372	$\alpha(K)=0.01131$ 16; $\alpha(L)=0.00189$ 3; $\alpha(M)=0.000407$ 6.
			. /		$\alpha(N)=9.02\times10^{-5}$ 13; $\alpha(O)=1.312\times10^{-5}$ 19; $\alpha(P)=6.60\times10^{-7}$ 10.
1064.7+y	434.0 2	100	(E2)	0.01740	$\alpha(K)=0.01427\ 20;\ \alpha(L)=0.00246\ 4;\ \alpha(M)=0.000533\ 8.$
-					$\alpha(N)=0.0001178\ 17;\ \alpha(O)=1.703\times10^{-5}\ 24;\ \alpha(P)=8.25\times10^{-7}\ 12.$
1136.9+z	268.52	47 3	(M1+E2)	0.0903 20	$\alpha(K)=0.0765\ 20;\ \alpha(L)=0.01084\ 24;\ \alpha(M)=0.00230\ 6.$
					$\alpha(N) {=} 0.000515 \ 12; \ \alpha(O) {=} 7.77 {\times} 10^{-5} \ 14; \ \alpha(P) {=} 4.87 {\times} 10^{-6} \ 18.$
	507.42	100 7	(E2)	0.01132	$\alpha({\rm K}){=}0.00938\ 14;\ \alpha({\rm L}){=}0.001526\ 22;\ \alpha({\rm M}){=}0.000328\ 5.$
					$\alpha({\rm N}){=}7.28{\times}10^{-5}~11;~\alpha({\rm O}){=}1.063{\times}10^{-5}~15;~\alpha({\rm P}){=}5.50{\times}10^{-7}~8.$

# $^{129}_{60}$ Nd $_{69}$ -4

# $^{129}_{60}\rm Nd_{69}{-4}$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\text{Nd})$ (continued)

E(level)	Εγ	Ιγ	Mult. [†]	α‡	Comments
1235.1+x	265.6 2	472	(M1+E2)	0.0930 20	$\alpha(K)=0.0788\ 21;\ \alpha(L)=0.0112\ 3;\ \alpha(M)=0.00238\ 6.$
	524.3 2	100	(E2)	0.01037	$\alpha(\mathbf{N})=0.000531 \ 13; \ \alpha(\mathbf{O})=8.01\times10^{-5} \ 15; \ \alpha(\mathbf{P})=5.01\times10^{-5} \ 18.$ $\alpha(\mathbf{K})=0.00861 \ 12; \ \alpha(\mathbf{L})=0.001385 \ 20; \ \alpha(\mathbf{M})=0.000298 \ 5.$ $\alpha(\mathbf{K})=6.61\times10^{-5} \ 10, \ \alpha(\mathbf{O}) \ 6.65\times10^{-5} \ 14, \ \alpha(\mathbf{D}) = 5.7\times10^{-7} \ 8.$
1419.4+z	282.1 2	47 3	(M1+E2)	0.0790 18	$\alpha(\mathbf{N}) = 0.01 \times 10^{-1} I_{1}^{0} \alpha(\mathbf{O}) = 9.06 \times 10^{-1} I_{1}^{0} \alpha(\mathbf{P}) = 5.07 \times 10^{-1} 8.$ $\alpha(\mathbf{K}) = 0.0670 I_{8}^{0} \alpha(\mathbf{L}) = 0.00945 I_{8}^{0} \alpha(\mathbf{M}) = 0.00201 5.$ $\alpha(\mathbf{N}) = 0.000449 g_{1} \alpha(\mathbf{O}) = 6.78 \times 10^{-5} I_{1}^{0} \alpha(\mathbf{P}) = 4.26 \times 10^{-6} I_{6}^{0}$
	482.6 5	<11	(E2)	0.01296	$\alpha(\mathbf{K})=0.01071 \ I6; \ \alpha(\mathbf{L})=0.00177 \ 3; \ \alpha(\mathbf{M})=0.000382 \ 6. \\ \alpha(\mathbf{K})=8.47 \times 10^{-5} \ I3; \ \alpha(\mathbf{O})=1.233 \times 10^{-5} \ I8; \ \alpha(\mathbf{P})=6.25 \times 10^{-7} \ 9. $
	551.3 2	100 8	(E2)	0.00909	$ \begin{array}{l} \alpha({\rm K}){=}0.00757 \ 11; \ \alpha({\rm L}){=}0.001197 \ 17; \ \alpha({\rm M}){=}0.000257 \ 4. \\ \alpha({\rm N}){=}5.70{\times}10^{-5} \ 8; \ \alpha({\rm O}){=}8.37{\times}10^{-6} \ 12; \ \alpha({\rm P}){=}4.47{\times}10^{-7} \ 7. \end{array} $
1461.8+y	397.2 2	204			
	518.8 2	100 8	(E2)	0.01066	$ \begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.00885 \ 13; \ \alpha(\mathbf{L}) \!=\! 0.001429 \ 20; \ \alpha(\mathbf{M}) \!=\! 0.000307 \ 5. \\ &\alpha(\mathbf{N}) \!=\! 6.81 \!\times\! 10^{-5} \ 10; \ \alpha(\mathbf{O}) \!=\! 9.96 \!\times\! 10^{-6} \ 14; \ \alpha(\mathbf{P}) \!=\! 5.20 \!\times\! 10^{-7} \ 8. \end{aligned} $
1471.8+z	535.4 2	100	(E2)	0.00981	$ \begin{split} &\alpha(\mathbf{K}){=}0.00816 \ 12; \ \alpha(\mathbf{L}){=}0.001303 \ 19; \ \alpha(\mathbf{M}){=}0.000280 \ 4. \\ &\alpha(\mathbf{N}){=}6.21{\times}10^{-5} \ 9; \ \alpha(\mathbf{O}){=}9.10{\times}10^{-6} \ 13; \ \alpha(\mathbf{P}){=}4.81{\times}10^{-7} \ 7. \end{split} $
1543.0+x	308.1 2	55 3	(M1+E2)	0.0624 16	$ \begin{array}{l} \alpha({\rm K}){=}0.0530 \ 16; \ \alpha({\rm L}){=}0.00741 \ 11; \ \alpha({\rm M}){=}0.00157 \ 3. \\ \alpha({\rm N}){=}0.000352 \ 6; \ \alpha({\rm O}){=}5.32{\times}10^{-5} \ 8; \ \alpha({\rm P}){=}3.37{\times}10^{-6} \ 13. \end{array} $
	573.2 2	100 5	(E2)	0.00822	$ \begin{array}{l} \alpha({\rm K}){=}0.00686 \ 10; \ \alpha({\rm L}){=}0.001072 \ 15; \ \alpha({\rm M}){=}0.000230 \ 4. \\ \alpha({\rm N}){=}5.10{\times}10^{-5} \ 8; \ \alpha({\rm O}){=}7.50{\times}10^{-6} \ 11; \ \alpha({\rm P}){=}4.06{\times}10^{-7} \ 6. \end{array} $
1603.7+y	539.1 2	100	(E2)	0.00964	$ \begin{array}{l} \alpha({\rm K}){=}0.00801 \ 12; \ \alpha({\rm L}){=}0.001277 \ 18; \ \alpha({\rm M}){=}0.000274 \ 4. \\ \alpha({\rm N}){=}6.09{\times}10^{-5} \ 9; \ \alpha({\rm O}){=}8.92{\times}10^{-6} \ 13; \ \alpha({\rm P}){=}4.73{\times}10^{-7} \ 7. \end{array} $
1620.6+z	566.6 2	100	(E2)	0.00847	$ \begin{array}{l} \alpha({\rm K}){=}0.00706 \ 10; \ \alpha({\rm L}){=}0.001107 \ 16; \ \alpha({\rm M}){=}0.000238 \ 4. \\ \alpha({\rm N}){=}5.27{\times}10^{-5} \ 8; \ \alpha({\rm O}){=}7.75{\times}10^{-6} \ 11; \ \alpha({\rm P}){=}4.18{\times}10^{-7} \ 6. \end{array} $
1730.3+z	311.0 2	$27 \ 3$			
	593.4 2	100 7	(E2)	0.00752	$ \begin{array}{l} \alpha({\rm K})=0.00629 \ 9; \ \alpha({\rm L})=0.000972 \ 14; \ \alpha({\rm M})=0.000208 \ 3. \\ \alpha({\rm N})=4.63\times10^{-5} \ 7; \ \alpha({\rm O})=6.82\times10^{-6} \ 10; \ \alpha({\rm P})=3.73\times10^{-7} \ 6. \end{array} $
1843.9+x	300.92	35.2 22	(M1+E2)	0.0665 17	$ \begin{array}{l} \alpha({\rm K}) = 0.0564 \ 16; \ \alpha({\rm L}) = 0.00791 \ 13; \ \alpha({\rm M}) = 0.00168 \ 3. \\ \alpha({\rm N}) = 0.000376 \ 6; \ \alpha({\rm O}) = 5.68 \times 10^{-5} \ 8; \ \alpha({\rm P}) = 3.59 \times 10^{-6} \ 13. \end{array} $
	608.8 2	100 6	Q		
2034.7+z	304.7 2	29.2 24	(M1+E2)	0.0643 16	$ \begin{array}{l} \alpha({\rm K}) = 0.0546 \ 16; \ \alpha({\rm L}) = 0.00764 \ 12; \ \alpha({\rm M}) = 0.00162 \ 3. \\ \alpha({\rm N}) = 0.000363 \ 6; \ \alpha({\rm O}) = 5.49 \times 10^{-5} \ 8; \ \alpha({\rm P}) = 3.47 \times 10^{-6} \ 13. \end{array} $
	615.1 2	100 9	Q		
2067.6+y	464.0 5	<18			
	605.8 2	100 9			
2076.6+z	604.72	100	Q (MILER)	0 0460 19	$-(\mathbf{T}) = 0.0000 + 10 + 0.00000 + 0.00000 + 0.000000 + 1700000000000000000000000000000$
2187.3+X	343.4 2	39 3	(MI+E2)	0.0468 13	$\alpha(\mathbf{N})=0.00398 \ 13; \ \alpha(\mathbf{L})=0.00322 \ 8; \ \alpha(\mathbf{M})=0.001171 \ 17.$ $\alpha(\mathbf{N})=0.000262 \ 4; \ \alpha(\mathbf{O})=3.97\times10^{-5} \ 7; \ \alpha(\mathbf{P})=2.53\times10^{-6} \ 10.$
2226 8±v	633 1 2	100 5	Q O		
2230.0+y 2248.4+z	628 0 2	100	۹ ۵		
2379.2+z	344.8 2	28.3	પ		
2010.212	648.7 2	100 6	Q		
2516.2 + x	329.02	28.6 12	4		
	672.3 2	100 6	0		
2666.0+z	286.9 2	14.5 19	(M1+E2)	0.0755 18	$\begin{array}{l} \alpha({\rm K}){=}0.0641 \ 18; \ \alpha({\rm L}){=}0.00902 \ 16; \ \alpha({\rm M}){=}0.00192 \ 4. \\ \alpha({\rm N}){=}0.000428 \ 8; \ \alpha({\rm O}){=}6.47{\times}10^{-5} \ 10; \ \alpha({\rm P}){=}4.08{\times}10^{-6} \ 15. \end{array}$
	417.8 2	13.2 24	(M1+E2)	0.0281 9	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0239 \; 8; \; \alpha({\rm L}) \!=\! 0.00327 \; 7; \; \alpha({\rm M}) \!=\! 0.000693 \; 13. \\ \alpha({\rm N}) \!=\! 0.000155 \; 3; \; \alpha({\rm O}) \!=\! 2.35 \!\times\! 10^{-5} \; 6; \; \alpha({\rm P}) \!=\! 1.52 \!\times\! 10^{-6} \; 6. \end{array} $
	589.2 2	23.7 26	(E2)	0.00766	$ \begin{array}{l} \alpha({\rm K}) {=} 0.00640 \hspace{.1cm} 9; \hspace{.1cm} \alpha({\rm L}) {=} 0.000992 \hspace{.1cm} 14; \hspace{.1cm} \alpha({\rm M}) {=} 0.000213 \hspace{.1cm} 3. \\ \alpha({\rm N}) {=} 4.72 {\times} 10^{-5} \hspace{.1cm} 7; \hspace{.1cm} \alpha({\rm O}) {=} 6.95 {\times} 10^{-6} \hspace{.1cm} 10; \hspace{.1cm} \alpha({\rm P}) {=} 3.80 {\times} 10^{-7} \hspace{.1cm} 6. \end{array} $
	631.12	100 8	Q		
2734.9 + z	658.32	100			
2739.3+y	671.7 2	100			
2881.7 + x	365.62	32.4 14			
	694.4 2	100 6	Q		
2909.7 + z	661.3 2	100	Q		
2949.2 + y	712.3 2	100	Q		
3053.8+z	674.6 2	100			
3232.5 + x	351.0 2	33 3			
	716.2 2	100 6	Q		
3292.6+z	626.6 2	100	Q		
3418.6+z	683.7 5	100			
3459.3+y	720.02	100			

# $^{129}_{60}\mathrm{Nd}_{69}\mathrm{-}5$

### Adopted Levels, Gammas (continued)

### $\gamma(^{129}\text{Nd})$ (continued)

E(level)	Εγ	Ιγ	Mult. [†]	E(level)	Eγ	Ιγ	Mult. [†]
3594.4+z	684.7 2	100	Q	7395.6+z	980.2 <i>2</i>	100	
3609.8+x	377.1 2	37.3 17	•	7528.1+y	1056.0 2	100	Q
	728.1 2	100 7	Q	7658.3+x	1051.9 2	100	•
3712.9+z	659.1 2	100	-	7916.4+z	1015.2 2	100	
3730.4 + y	781.2 2	100	Q	8010.9+y	1083.7 2	100	
3960.5+z	667.9 2	100	Q	8178.2+z	1100 1	100	
3978.6+x	368.62	41.2 20		8307.3+x	1131.3 2	100	
	746.3 2	100 6	Q	8471.7+z	1076.1 2	100	
4214.4 + y	755.12	100		8636.1+y	1108 1	100	
4321.2+z	726.8 2	100	Q	8796.7+x	1138.4 2	100	
4374.5+x	396.0 2	36.0 16		9024.0+z	1107.6 2	100	
	764.6 2	100 5	Q	9176.9+y	1166.0 2	100	
4413.4+z	700.5 2	100		9337.2+z	1159 <i>1</i>	100	
4575.7+y	845.3 2	100	Q	9535.6+x	1228.3 2	100	
4703.9 + z	743.4 2	100	Q	9643.5+z	1171.8 2	100	
4772.2+x	398.0 2	34 3		9796.1+y	1160 <i>1</i>	100	
	793.5 2	100 5	Q	10019.4+x	1222.7 2	100	
5032.4+y	818.0 2	100		10222.2+z	1198.2 2	100	
5115.8+z	794.6 2	100	Q	10416.0+y	1239.1 2	100	
5192.8 + z	779.4 2	100		10857.6+x	1322.0 2	100	
5210.8 + x	438.3 2	27 3		10902.5+z	1259 1	100	
	836.2 2	100 6	Q	11009.1+y	1213 1	100	
5487.5+y	911.8 2	100	Q	11326.4 + x	1307.0 2	100	
5522.2+z	818.3 2	100	Q	11511.1+z	1288.9 2	100	
5644.3+x	433.0 2	28 3		11721.0+y	1305 1	100	
	872.5 2	100 8	Q	12221.5+z	1319 <i>1</i>	100	
5935.3+y	902.9 2	100		12263.5+x	1405.92	100	
5973.6+z	857.8 2	100	Q	12265.1+y	1256 1	100	
6079.2 + z	886.4 2	100		12720.4 + x	1394.02	100	
6142.9 + x	498.52	27 5		12892.1+z	1381 1	100	
	932.12	100 9		13090.1+y	1369 1	100	
6415.4 + z	893.2 2	100		13575.5+z	1354§ <i>1</i>	100	
6472.1+y	984.62	100	Q	13746.5+x	1483 <i>1</i>	100	
6606.4 + x	962.12	100	Q	14202.4+x	1482 1	100	
6901.2 + z	927.6 2	100		14365.1+z	1473 <i>1</i>	100	
6927.2 + y	991.92	100		14528.1+y	1438 <i>1</i>	100	
7078.2 + z	999 1	100		15765.4 + x	1563 <i>1</i>	100	
7176.0+x	1033.1 2	100					

[†] From  $\gamma(\theta)(DCO)$  data in  ${}^{92}Mo({}^{40}Ca, 2pn\gamma)$ . The mult=Q indicates  $\Delta J=2$ , quadrupole (most likely E2) and D+Q indicates  $\Delta J=1$ , dipole+quadrupole (most likely M1+E2). Mult=(E2) or (M1+E2) assigned based on RUL for E2 and M2 with the assumption of  $\approx 10$  ns resolving time in  $\gamma\gamma$  coincidence experiments. [‡]  $\delta(E2/M1)=0.30$  assumed for M1+E2 transitions.

§ Placement of transition in the level scheme is uncertain.

(A) ν7/2[523],α=+1	/2	( <b>B</b>	) v7/2[523],α=·	-1/2	(C) v1/2[54	1],α=+1/2
		(75/2-)		15765.4+x		
		(10/2)		101001111	-	
		(71/2-)	1	14202.4+x	_	
_(69/2-)	13746.5+x	_				
		(67/2-)		v 12720.4+x	_	
(65/2-)	/ 12263.5+x	-			(65/2-)	12265.1+y
		(63/2-)		v 11326.4+x	_	
(61/2-)	10857.6+x	_			(61/2-)	y 11009.1+y
		(59/2-)		v 10019.4+x		
_(57/2–)	9535.6+x	_			(57/2-)	¥ 9796.1+y
		(55/2-)		x 8796.7+x	- (53/2-)	¥ 8636.1+v
(53/2-)	/ 8307.3+x	_				
		(51/2-)		v 7658.3+x	_(49/2-)	y 7528.1+y
(49/2–)	7176.0+x	_				
		(47/2-)	,	6606.4+x	- (45/2)	6479 1
(45/2-)	6142.9+x				(43/2-)	0472.1+y
$(\mathbf{P})(42/2)$		(42/9)		5644.2		
(41/2)	, 5910 8 J	(4)(41/2)		0044.5+X	(41/2-)	y 5487.5+y
(41/2-)	5210.8+X	(A)(41/2-)	V	4779.9	_	
$(B)(39/2-)$ $\psi$	4974 5	(4)(27/2)		4112.2+X	(37/2-)	¥ 4575.7+y
(B)(35/2_)	4374.3+X	(35/2_)	¥	3978.6+x	_	
(33/2-)	/ 3609.8+x	(A)(33/2-)	V	0010.011	(33/2-)	y 3730.4+y
(B)(31/2-)		(31/2-)		y 3232.5+x	_	
(29/2-)	2881.7+x	(A)(29/2-)	v		(29/2-)	y 2949.2+y
(B)(27/2-)	2187 3+x	(27/2-) (A)(25/2-)	, ,	2516.2+x	-	0004.0
(B)(23/2-)		(23/2-)	\¥	1843.9+x	_ <u>(20/2</u> –) _	y 2230.8+y
(21/2–) W (B)(19/2–)	⊥ 1543.0+x	(A)(21/2-) (19/2-)		1235.1+x	(21/2-)	y 1603.7+y
(17/2-)	969.7+x	(A)(17/2-)		710.7+x	(17/2-)	1064.7+y
	491.0+x	(A)(13/2-)	\ <u> </u>		(9/2-)	308.5+y
(B)(11/2-) (9/2-)	130.4+x	(11/2-) (A)(9/2-)	<u> </u>	292.6+x	(D)(7/2-) (5/2-)	99.0+y
(B)(7/2-)		(7/2-)	<i>ــــــــــــــــــــــــــــــــــــ</i>	0+x	(1/2-)	0+y

 $^{129}_{60}$ Nd₆₉

# $^{129}_{60}$ Nd $_{69}$ -7

### Adopted Levels, Gammas (continued)

(D)  $v1/2[541], \alpha = -1/2$ 

(E)  $v1/2[411], \alpha=+1/2$ 

(F)  $v1/2[411], \alpha = -1/2$ 

(71/2-)	14528.1+y					
					(71/2+)	14365.1+z
(67/2-)	13090.1+y					
					(67/2+)	v 12892.1+z
(63/2-)	y 11721.0+y					
					(63/2+)	v 11511.1+z
· ·- ·						
(59/2-)	¥ 10416.0+y				(59/2+)	v 10222 2+z
					(00/21)	1011111
(55/2-)	y 9176.9+y				(55)	0004.0
					(55/2+)	y 9024.0+z
(51/2-)	8010.9+y				(51/9)	7016 417
					(31/2+)	7910.4+2
(47/2-)	6927.2+y				(47/2+)	6901.2+z
(18/8.)	5005.0				(13/2+)	5973 6+7
(43/2-)	y 5935.3+y				(40/2+)	5515.0+2
					(30/2+)	5115 8+7
(39/2-)	y 5032.4+y				(00/2+)	5115.0+2
					(35/2+)	4321.2+z
(35/2-)	¥ 4214.4+y				<u></u>	
(31/2-)	v 3459.3+v	(29/2+)		3418 6+7	(31/2+)	y 3594.4+z
		(20/21)		0410.012	-	
(27/2-)	2739 3+v				(27/2+)	2909.7+z
(23/2-)	2067.6+y	(25/2+)		2734.9+z	_	
(C)(21/2-)					(99/9.)	
(19/2-)	1461.8+y	(21/2+)		2076.6+z	(23/2+)	2240.4+Z
(C)(17/2-)	_//	(17/2+)		1471.8+z		
(15/2-)	942.8+y	(13/2+)		936.3+z	(19/2+)	v 1620.6+z
(C)(13/2-)		(F)(11/2+)		/	(15/2+)	1054.2+z
(11/2-)	530.1+y	(9/2+)		497.3+z	<u>(11/2+)</u>	581.7+z
(0)(9/2-)	232 6+1	(F)(7/2+)	-\\\ <b>\</b>	//	(H)(7/2+)	
(C)(5/2-)	252.0+y	(5/2+)	╷║└═╨┯═╋	<u>   178.8+z</u>	(1/2+)	229.9+z
(3/2-)	53.8+v	$(\mathbf{F})(3/2+)$	∖└──¥──┥		(3/2+)	<u>21 7+7</u>
		(1/47)	ل	U U T Z		AT.174

### Adopted Levels, Gammas (continued)

(G)  $v5/2[402], \alpha=+1/2$ 

(H)  $v5/2[402], \alpha=-1/2$ 



 $^{129}_{60}\mathrm{Nd}_{69}$ 

 $^{129}_{60}\rm Nd_{69}{-8}$ 

(A)

(<u>B(75/2-)</u>

(C)

(D)

Adopted Levels, Gammas (continued) Bands for ¹²⁹Nd (E) (F) (G) (H)

	1563						
			(71/2-)				
	(71/2)				(71/2+)		
(69/2-)			1438		1473	(69/2+)	
	1482					(00)-17	
1483			(67/2-)		(67/9.).		
	(67/2-)				(67/2+)	1354	
(65/9))		$(65/2_{-})$	1369			(07/0)	
(03/2-)	1394.0	(03/2-)	-		1381	(65/2+)	
		1050	v(63/2-)				
1405.9	y(63/2-)	1256			<u>(63/2+)</u> v	1319	
	(00/2 )	(61/2)	1305				
<u>(61/2–) v</u>	1007.0	(01/2 )	- 1		1288.9	(61/2+) v	
	1307.0	1919	(59/2-)				
1322.0	(50/2)	1210			(59/2+) y	1259	
	<u>(39/2-)</u>	(57/2-)	1239 1				
(57/2–) v					1198.2	(57/2+)	
	1222.7	1160	v(55/2-)				(55/2+)
1228.3	y(55/2-)				(55/2+) y	1171.8	
		(53/2-) v	- 1166.0		1107.6	(53/2+)	1159
(53/2-) y	1138.4				1107.6	(00/21)	(51/2+)
		1108	<u>(51/2-)</u>		(51/2+)v	107.6.1	
1131.3	v(51/2-)	(49/2-)					11,00
(40/2)		(10/2 ))	- 1083.7		1015.2	(49/2+)v	
(45/2-)	1051.9	1056.0	(47/2-)		(47/2+)		(47/2+)
1033.1	(47/2-)				<u>(</u>	580.2	000
		(45/2-) v	- 991.9		927.6	(45/2+)v	999
(45/2-) v	962.1	984.6	(43/2)		(43/2+)	803.2	(43/2+)
932 1	(43/2-)	504.0	(40/2)		<u> </u>	035.2	89 <i>6</i> 4
433	3.0	<u>(41/2–)</u>	902.9		857.8	(41/2+)	
(41/2-) ¥	872.5	911.8	(39/2-)		(39/2+)v	818.3	<u>(39/2+)</u>
836.2	v(39/2-)				794.6	(37/2+)v	779.4
(37/2-)	8.0 793.5	(37/2-) v	- 818.0		(35/2+)	749.4	v(35/2+)
396.0	100.0	845.3	<u>(35/2-)</u>		(33/2+)	(143.4	700.5
764.6	¥(35/2-) 8.6	(33/2-)	755.1		726.8	(33/2+)¥	
( <u>33/2–)</u>	746.3	<u> </u>		(29/2+)	(31/2+) v	667.9	(50.1
728.1	¥(31/2-)	781.2	720.0	699.7	684.7	(29/2+) v	
(29/2-)	716.2	(29/2–) v	$ \downarrow^{(27/2-)}$	(25/2+)	(27/2+) y	626.6	
694.4 365.6	v(27/2-)	712.3	<u> </u>	(20/2+)	661.3	(25/2+)	<u>674.6</u> 286.9
(25/2-)	9.0 672.3	(25/2-) v	- 671.7	(91/9.)	$(23/2+)_{V}$	589.2 631.1	344.8
644.2 343.4	(23/2-)	633.1	464 0 a = = =	(21/2+) V	 628.0	¥ (21/2+)¥	¥ 648.7
(21/2-)	0.9 608.8	(21/2-)	(10/2)	604.7	(19/2+)v	615.1	$\frac{\sqrt{(19/2+)}}{311.0}$
308.1 573.2	v(19/2-)	539.1	397.2 518.8	535 4	566.6	(17/2+)¥	282.1 593.4
(17/2-)	5.6 524.3	(17/2-) ¥	(15/2-)	(13/2+)	(15/2+) ¥		268.5 507 4
478.6 $13/2 ) 478.6$ $129.0$ $219$	$9.8 \frac{\psi(15/2-)}{10.1}$	(13/2-)	312.0 $412.6$	439.1	$354.3 \qquad 472.7 \\ (11/2+) \qquad \qquad$	452.7	239.3' $(11/2+)$
360.5 198.6 10	418.1	(9/2-) ¥	221.5 297.5 (7/2-)	(5/2+) 318.4	267.5 351.6 (7/2+)	$344.8 \frac{(9/2+)}{324.5}$	-179.1 $392.3$ $(7/2+)$
(9/2-) y 130.5	$\frac{1}{2}$ 292.5 $\frac{1}{\sqrt{2}}$ (7/2-)	$\binom{5/2}{1/2}$	$133.6 - 178.8 \overline{3/2}$	$\frac{(3/2+)}{(1/2+)}78.8^{-1}$	$-157.0$ $\overline{(3/2+208.2)}$	-138.8 (5/2+) ¥	146.1



6.7 s

Level Scheme (continued)

Intensities: relative photon branching from each level



Level Scheme (continued)

Intensities: relative photon branching from each level

(75/2-)		15765.4+x	
(71/2-)		14528.1+y	
(71/2-)		14202.4+x	
(00/0)		10555.5	
(69/2+)		13575.5+z	
(67/2-)		13090.1+y	
(67/2-)		12720.4+x	
(65/2+)		12221.5+z	
(63/2-)		11721.0+y	
(63/2-)		11326.4+x	
(61/2-)		10857.6+x	
(59/2)		10416 0+v	
(59/2-)			
(57/2))			
(57/2+) (55/2+)		9337.2+z	
(55/2+)		9024.0+z	
(53/2-)		8636.1+y	
(53/2-)			
(51/2+)		7916.4+z	
(17/2–)		1064.7+y	
(15/2+)		<u> </u>	
(17/2–)		$= // \frac{969.7 + x}{2}$	
(15/2-)		=/// <u>942.8+y</u>	
(13/2+)		-/// 936.3+z	
(13/2+) (15/2)		$\frac{868.4+z}{710.7+x}$	
(13/2-) (13/2-)		$\frac{110.7+x}{630.8+x}$	
(11/2+)	7	$\frac{629.3+z}{629.3+z}$	
(11/2+)	7	//// 581.7+z	
(11/2-)		530.1+y	
(9/2+)	7	///// 497.3+z	
(13/2 -)	7	///// 491.0+x	
(9/2+)		///// 415.7+z	
(9/2-)		/////_308.5+y	
(11/2-)		/////_292.6+x	
(7/2+)		/////_236.9+z	
(7/2-)		/////_232.6+y	
(7/2+)		///// 229.9+z	
(5/2+)		///// 178.8+z	
(9/2-)		/////_130.4+x	
(5/2-)		/////_99.0+y	
(5/2+)	₩₩₩₩₩₩₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>	///// 91.0+z	
(3/2-)		///// 53.8+y	
(3/2+)		///// 21.7+z	
(1/2+)	<u>↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓</u>	///// 0+z	96
(1/2-)	<u>│////////////////////////////////////</u>	///// 0+y	2.0
(7/2-)		///// 0+x	~7 .
(5/2+)			≈7 s

≈7 s 6.7 s

### 129Pm ε Decay (2.4 s) 2004Xu05

 $Parent \ 129Pm: \ E=0.0; \ J\pi=(5/2-); \ T_{1/2}=2.4 \ s \ 9; \ Q(g.s.)=9430 \ syst; \ \%\epsilon+\%\beta^+ \ decay=100.$ 

129Pm-J,T_{1/2}: From ¹²⁹Pm Adopted Levels.

 $129Pm-Q(\epsilon)$ : 9430 360 (syst,2012Wa38).

2004Xu05: The  129 Pm isotope was obtained by bombarding a  92 Mo target with a  40 Ca $^{12+}$  beam at E=232 MeV. The beam energy at target center could be varied from 164-190 MeV. Measured Ey,  $\gamma\gamma(t)$ , (charged particle) $\gamma$  (coin), (x ray) $\gamma$ (coin) with two coaxial HPGe(GMX) detectors for  $\gamma$ -rays and a HPGe planar detector for x-ray spectroscopy. In order to improve the energy resolution for low-energy  $\gamma$ -rays, in some runs a second HPGe planar detector was used instead of one of the two coaxial HPGe(GM-X) detectors. 2000Soll: First identification of ¹²⁹Pm isotope in ⁹⁰Zr(¹⁹⁷Au,X) reaction at 30 MeV/nucleon; MSU A1200 fragment

separator used.

### ¹²⁹Nd Levels

E(level)	$J\pi^{\dagger}$
0 + y	(1/2-)
99+y	(5/2-)

 †  As quoted by 2004Xu05 based on results in 2002Ze01.

 $\gamma(^{129}\mathrm{Nd})$ 

Eγ	E(level)	Mult.	α	Comments
99	99+y	(E2)	2.27	$\alpha(K)=1.241$ 19; $\alpha(L)=0.801$ 14; $\alpha(M)=0.182$ 3.
				$\alpha(N)=0.0394$ 7; $\alpha(O)=0.00508$ 9; $\alpha(P)=5.42\times10^{-5}$ 9.
				Εγ: from 2004Xu05.
				$\alpha(\exp)=2.0$ (2004Xu05).



#### 129Pm ε Decay (2.4 s) 2004Xu05 (continued)

### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01

2002Ze01: E=170, 184 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ ,  $\gamma\gamma(\theta)$ (DCO) using CLARION array of 11 segmented Clover Ge spectrometers within BGO anti-Compton shields, and ten single-volume Ge detectors. DCO=1 and approximately 0.5 is expected for stretched quadrupole and stretched dipole transitions, respectively. Charged particles were detected by HyBall array of 95 CsI scintillators in a  $4\pi$  geometry.

1987WaZK:  58 Ni( 74 Se,2pn $\gamma$ ). BGO shielded Ge array,  $\gamma$ ,  $\gamma\gamma$ -coin. Level scheme from 1987WaZK is a short note giving no details. A strongly-coupled band proposed by 1987WaZK is the same as 7/2[523] band proposed by 2002Ze01, but in 1987WaZK no spin-parity assignments were made and the cascade was known up to E $\gamma$ =794 keV, i.e. up to 39/2-.

### ¹²⁹Nd Levels

E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	Jπ‡
0 + x [#]	7/2-	1620.6+z ^b 4	19/2+	5032.4+y & 6	(39/2-)
$0 + y^{@}$	1/2-	1730.3+z ^d 4	19/2+	5115.8+z ^b 6	39/2+
$0 + z^{a}$	1/2+	$1843.9 + x^{\#}3$	23/2-	5192.8+z ^d 6	(39/2+)
21.7+z ^b 3	3/2+	2034.7+z ^c 4	21/2+	5210.8+x § 4	41/2-
53.8+y& 4	3/2-	2067.6+y& 4	(23/2-)	$5487.5+y^{@}6$	41/2-
$91.0 + z^{c} 4$	5 / 2 +	2076.6+z ^a 4	21/2+	$5522.2+z^{c}6$	41/2+
$99.0 + y^{@}2$	5/2-	2187.3+x [§] 3	25/2-	$5644.3 + x^{\#}4$	43/2-
130.4+x [§] 2	9/2-	$2236.8+y^{@}5$	25/2-	5935.3+y& 6	(43/2-)
178.8+z ^a 2	5 / 2 +	2248.4+z ^b 4	23/2+	5973.6+z ^b 6	43/2+
229.9+z ^b 3	7 / 2 +	2379.2+z ^d 4	23/2+	6079.2+z ^d 6	(43/2+)
232.6+y& 3	7/2-	2516.2+x [#] 3	27/2-	6142.9+x § 4	(45/2-)
236.9+zd 4	7 / 2 +	2666.0+z ^c 4	25/2+	6415.4+z ^c 6	(45/2+)
292.6+x [#] 2	11/2-	2734.9+z ^a 4	(25/2+)	$6472.1+y^{@}7$	45/2-
308.5+y [@] 3	9/2-	2739.3+y & 5	(27/2-)	$6606.4 + x^{\#}5$	47/2-
415.7+z ^c 4	9 / 2 +	2881.7+x [§] 4	29/2-	6901.2+z ^b 7	(47/2+)
491.0+x [§] 2	13/2-	2909.7+z ^b 5	27/2+	6927.2+y & 7	(47/2-)
497.3+z ^a 3	9 / 2 +	$2949.2 + y^{@}5$	29/2-	7078.2+z ^d 12	(47/2+)
530.1+y& 3	11/2 -	3053.8+zd 4	(27/2+)	7176.0+x § 5	(49/2-)
581.7+z ^b 3	11/2+	$3232.5 + x^{\#} 4$	31/2-	7395.6+z ^c 6	(49/2+)
629.3+z ^d 4	11/2+	3292.6+z ^c 4	29/2+	7528.1+y@ 7	49/2-
630.8+y [@] 3	13/2 -	3418.6+z ^a 7	(29/2+)	7658.3+x [#] 5	(51/2-)
$710.7 + x^{\#}2$	15/2-	3459.3+y& 5	(31/2-)	7916.4+z ^b 7	(51/2+)
868.4+z ^c 4	13/2+	3594.4+z ^b 5	31/2+	8010.9+y& 7	(51/2-)
936.3+z ^a 3	13/2+	3609.8+x [§] 4	33/2-	8178.2+z ^d 16	(51/2+)
942.8+y& 4	15/2-	3712.9+z ^d 5	(31/2+)	8307.3+x § 5	(53/2-)
969.7+x [§] 2	17/2 -	3730.4+y@ 6	33/2-	8471.7+z ^c 7	(53/2+)
1054.2+z ^b 4	15/2+	3960.5+z ^c 5	33/2+	8636.1+y [@] 12	(53/2-)
1064.7+y [@] 4	17/2 -	3978.6+x [#] 4	35/2-	8796.7+x [#] 6	(55/2-)
1136.9+z ^d 4	15/2+	4214.4+y& 6	(35/2-)	9024.0+z ^b 7	(55/2+)
1235.1+x [#] 3	19/2-	4321.2+z ^b 5	35/2+	9176.9+y& 7	(55/2-)
1419.4+z ^c 4	17/2+	4374.5+x [§] 4	37/2-	9337.2+z ^d 19	(55/2+)
1461.8+y& 4	19/2-	4413.4+z ^d 5	(35/2+)	9535.6+x [§] 6	(57/2-)
1471.8+z ^a 4	17/2+	4575.7+y [@] 6	37/2-	$9643.5 + z^{c}$ 7	(57/2+)
1543.0+x [§] 3	21/2 -	4703.9+z ^c 5	37/2+	9796.1+y [@] 16	(57/2-)
1603.7+y [@] 4	21/2 -	4772.2+x [#] 4	39/2-	10019.4+x [#] 6	(59/2-)

### 92 Mo( 40 Ca,2pn $\gamma$ ) 2002Ze01 (continued)

### ¹²⁹Nd Levels (continued)

E(level) [†]	Jπ [‡]	E(level) [†]	$J\pi^{\ddagger}$	E(level) [†]	$J\pi^{\ddagger}$
10222.2+z ^b 7	(59/2+)	11721.0+y& 13	(63/2-)	13575.5+z ^c 19	(69/2+)
10416.0+y& 8	(59/2-)	12221.5+z ^c 16	(65/2+)	13746.5+x [§] 12	(69/2-)
10857.6+x [§] 6	(61/2-)	12263.5+x § 6	(65/2-)	$14202.4 + x^{\#}12$	(71/2-)
10902.5+z ^c 12	(61/2+)	12265.1+y [@] 21	(65/2-)	14365.1+z ^b 16	(71/2+)
11009.1+y@ 19	(61/2-)	$12720.4 + x^{\#} 7$	(67/2-)	14528.1+y& 19	(71/2-)
11326.4+x [#] 6	(63/2-)	12892.1+z ^b 13	(67/2+)	$15765.4 + x^{\#} 16$	(75/2-)
11511.1+z ^b 8	(63/2+)	13090.1+y& 16	(67/2-)		

[†] From least-squares fit to  $E\gamma$  data. It should be noted that level energies for band #2: 1/2[541],  $\alpha = -1/2$  as quoted by by 2002Ze01 in Table I should be adjusted upwards by 54 keV above the 3/2- level. Similarly, for band #3, 1/2[411],  $\alpha = -1/2$ , energies quoted by 2002Ze01 should be adjusted upwards by 22 keV above the 3/2+ level. (An e-mail reply on Jan 16/02 from one of the authors D.J. Hartley confirms this change.).

 $\ddagger$  Assignments are as proposed by 2002Ze01, based on  $\gamma$ -ray multipolarities from angular correlation data, band assignments and comparisons with cranked-shell model calculations. All assignments are the same in Adopted Levels, except that parentheses have been added there due to lack of strong supporting arguments.

§ (A): v7/2[523],  $\alpha = +1/2$ .

[#] (B): v7/2[523],  $\alpha = -1/2$ .

@ (C): v1/2[541],  $\alpha=+1/2$ .

& (D): v1/2[541],  $\alpha = -1/2$ .

^a (E): v1/2[411],  $\alpha$ =+1/2.

b (F): v1/2[411],  $\alpha = -1/2$ .

c (G): v5/2[402],  $\alpha=+1/2$ .

d (H): v5/2[402],  $\alpha = -1/2$ .

### $\gamma(^{129}\text{Nd})$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
99.0 2 99.0+y 18 9 (E2) 2.27 DCO=1.0 <i>I</i> . $\alpha(K)=1.241$ <i>I</i> 9; $\alpha(L)=0.801$ <i>I</i> 4; $\alpha(M)=0.182$ 3. $\alpha(N)=0.0394$ 7; $\alpha(O)=0.00508$ 9; $\alpha(P)=5.42\times10^{-5}$ 9. 130.5 2 130.4+x (M1+E2) 0.680 <i>I</i> 9 DCO=0.63 4.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\alpha(N) = 0.0394 \ 7; \ \alpha(O) = 0.00508 \ 9; \ \alpha(P) = 5.42 \times 10^{-5} \ 9.$ 130.5 2 130.4+x (M1+E2) 0.680 19 DCO=0.63 4.	
$130.5\ 2$ $130.4+x$ (M1+E2) $0.680\ 19$ DCO=0.63 4.	
$\alpha(K)=0.564 \ 9; \ \alpha(L)=0.091 \ 13; \ \alpha(M)=0.020 \ 3.$	
$\alpha(N)=0.0044$ 7; $\alpha(O)=0.00064$ 8; $\alpha(P)=3.57\times10^{-5}$ 11.	
$133.6\ 2 \qquad 232.6+y \qquad 14\ 9 \qquad (M1+E2) \qquad 0.636\ 17 \qquad \alpha(K)=0.528\ 8;\ \alpha(L)=0.085\ 12;\ \alpha(M)=0.018\ 3.6566666666666666666666666666666666666$	
$\alpha(N)=0.0041$ 6; $\alpha(O)=0.00060$ 7; $\alpha(P)=3.34\times10^{-5}$ 10.	
DCO=0.9 2.	
138.8 2 229.9+z 13 4 (M1+E2) 0.569 14 $\alpha$ (K)=0.474 8; $\alpha$ (L)=0.075 10; $\alpha$ (M)=0.0162 23.	
$\alpha(N)=0.0036$ 5; $\alpha(O)=0.00053$ 6; $\alpha(P)=3.00\times10^{-5}$ 9.	
DCO=0.43 6.	
146.1 2 236.9+z 38 13 (M1+E2) 0.492 11 $\alpha$ (K)=0.410 7: $\alpha$ (L)=0.064 8: $\alpha$ (M)=0.0138 18.	
$\alpha(N)=0.0031$ 4: $\alpha(O)=0.00046$ 5: $\alpha(P)=2.60\times10^{-5}$ 8.	
DCO=0.47.2.	
157.0 2 178.8+z 14.2 (M1+E2) 0.400.8 $\alpha$ (K)=0.355.6; $\alpha$ (L)=0.052.5; $\alpha$ (M)=0.0111 12.	
$\alpha(N)=0.0025$ 3; $\alpha(O)=0.00037$ 3; $\alpha(P)=2.12\times10^{-5}$ 7.	
DCO=0.55.5	
162 5 2 292 6+x 124 7 (M1+E2) 0 363 6 $\alpha(K)=0.304.5$ ; $\alpha(L)=0.046.5$ ; $\alpha(M)=0.0100.70$	
$\alpha(N)=0.00222.21$ , $\alpha(O)=0.00033.3$ , $\alpha(P)=1.93\times10^{-5}.6$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$179 1 2 415 7_{\pm7} 32 3 (M1\pm F2) 0 276 ar(K)=0.023 4 ar(L)=0.025 3 ar(M)=0.0074 6$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$D_{1}^{(1)} = 0.0100 \ 10, \ 0.00247 \ 10; \ 0.019 = 1.47 \times 10^{-5}.$	
DCU=0.45 / DCU=	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\alpha(N)=0.00122$ 8; $\alpha(O)=0.000183$ 9; $\alpha(P)=1.11\times 10^{-6}$ 4.	

### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

### $\gamma(^{129}\text{Nd})$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult.‡	α§	Comments
208.2 2	229.9+z	53 <i>9</i>	(E2)	0.1713	$\alpha(K)=0.1278$ 19; $\alpha(L)=0.0340$ 5; $\alpha(M)=0.00755$ 11. $\alpha(N)=0.001649$ 24; $\alpha(O)=0.000225$ 4; $\alpha(P)=6.55\times10^{-6}$ 10.
209.5 2	308.5+y	377	(E2)	0.1677	$\alpha(K)=0.1254$ 18; $\alpha(L)=0.0332$ 5; $\alpha(M)=0.00736$ 11. $\alpha(N)=0.001609$ 24; $\alpha(O)=0.000220$ 4; $\alpha(P)=6.44\times10^{-6}$ 10. DCO=0.96 7.
213.7 2	629.3+z	29 <i>2</i>	(M1+E2)	0.169 3	$\begin{array}{l} \alpha({\rm K}){=}0.142 \ 3; \ \alpha({\rm L}){=}0.0207 \ 10; \ \alpha({\rm M}){=}0.00442 \ 23. \\ \alpha({\rm N}){=}0.00099 \ 5; \ \alpha({\rm O}){=}0.000148 \ 6; \ \alpha({\rm P}){=}9.0{\times}10^{-6} \ 3. \\ {\rm DCO}{=}0.65 \ 3. \end{array}$
219.8 2	710.7+x	774	(M1+E2)	0.156 3	$\begin{array}{llllllllllllllllllllllllllllllllllll$
221.52	530.1+y	9 1			
239.3 2	868.4+z	22 2	(M1+E2)	0.1234 23	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.1044 \ 25; \ \alpha(\mathbf{L}) = 0.0150 \ 5; \ \alpha(\mathbf{M}) = 0.00319 \ 12. \\ &\alpha(\mathbf{N}) = 0.000713 \ 25; \ \alpha(\mathbf{O}) = 0.000107 \ 3; \ \alpha(\mathbf{P}) = 6.64 \times 10^{-6} \ 23. \\ &\mathbf{DCO} = 0.72 \ 5. \end{aligned} $
259.0 2	969.7+x	58 3	(M1+E2)	0.0995 21	$\begin{array}{l} \alpha({\rm K}){=}0.0843 \ 22; \ \alpha({\rm L}){=}0.0120 \ 3; \ \alpha({\rm M}){=}0.00255 \ 8. \\ \alpha({\rm N}){=}0.000570 \ 15; \ \alpha({\rm O}){=}8.59{\times}10^{-5} \ 17; \ \alpha({\rm P}){=}5.36{\times}10^{-6} \ 19. \\ {\rm DCO}{=}0.47 \ 5. \end{array}$
265.6 2	1235.1+x	472	(M1+E2)	0.0930 20	$\alpha(K)=0.0788 \ 21; \ \alpha(L)=0.0112 \ 3; \ \alpha(M)=0.00238 \ 6.$ $\alpha(N)=0.000531 \ 13; \ \alpha(O)=8.01\times10^{-5} \ 15; \ \alpha(P)=5.01\times10^{-6} \ 18.$ DCO=0.40 7.
267.5 2	497.3+z	8 1	(M1+E2)	0.0912 20	$\begin{array}{l} \alpha({\rm K}){=}0.0773 \ 20; \ \alpha({\rm L}){=}0.01095 \ 25; \ \alpha({\rm M}){=}0.00233 \ 6. \\ \alpha({\rm N}){=}0.000521 \ 13; \ \alpha({\rm O}){=}7.85{\times}10^{-5} \ 14; \ \alpha({\rm P}){=}4.92{\times}10^{-6} \ 18. \\ {\rm DCO}{=}0.9 \ 1. \end{array}$
268.5 2	1136.9+z	14 1	(M1+E2)	0.0903 20	$\begin{split} &\alpha({\rm K}){=}0.0765\ 20;\ \alpha({\rm L}){=}0.01084\ 24;\ \alpha({\rm M}){=}0.00230\ 6.\\ &\alpha({\rm N}){=}0.000515\ 12;\ \alpha({\rm O}){=}7.77{\times}10^{-5}\ 14;\ \alpha({\rm P}){=}4.87{\times}10^{-6}\ 18.\\ &{\rm DCO}{=}0.57\ 5. \end{split}$
282.1 2	1419.4+z	17 1	(M1+E2)	0.0790 18	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0670 \; 18; \; \alpha({\rm L}) \!=\! 0.00945 \; 18; \; \alpha({\rm M}) \!=\! 0.00201 \; 5. \\ \alpha({\rm N}) \!=\! 0.000449 \; 9; \; \alpha({\rm O}) \!=\! 6.78 \!\times\! 10^{-5} \; 11; \; \alpha({\rm P}) \!=\! 4.26 \!\times\! 10^{-6} \; 16. \\ {\rm DCO} \!=\! 0.72 \; 9. \end{array} $
286.9 2	2666.0+z	5.57	(M1+E2)	0.0755 18	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0641 \; 18; \; \alpha({\rm L}) \!=\! 0.00902 \; 16; \; \alpha({\rm M}) \!=\! 0.00192 \; 4. \\ \alpha({\rm N}) \!=\! 0.000428 \; 8; \; \alpha({\rm O}) \!=\! 6.47 \!\times\! 10^{-5} \; 10; \; \alpha({\rm P}) \!=\! 4.08 \!\times\! 10^{-6} \; 15. \\ {\rm DCO} \!=\! 0.5 \; 1. \end{array} $
292.5 <i>2</i>	292.6+x	302	(E2)	0.0567	DCO=0.72 6. $\alpha(K)=0.0447$ 7; $\alpha(L)=0.00939$ 14; $\alpha(M)=0.00206$ 3. $\alpha(N)=0.000452$ 7; $\alpha(O)=6.35\times10^{-5}$ 9; $\alpha(P)=2.45\times10^{-6}$ 4.
297.5 2	530.1+y	18 2	(E2)	0.0538	$ \begin{array}{l} \alpha({\rm K}){=}0.0425 \ 6; \ \alpha({\rm L}){=}0.00883 \ 13; \ \alpha({\rm M}){=}0.00193 \ 3. \\ \alpha({\rm N}){=}0.000425 \ 6; \ \alpha({\rm O}){=}5.98{\times}10^{-5} \ 9; \ \alpha({\rm P}){=}2.33{\times}10^{-6} \ 4. \\ {\rm DCO}{=}1.1 \ 1. \end{array} $
300.9 2	1843.9+x	322	(M1+E2)	0.0665 17	$\begin{array}{l} \alpha({\rm K}){=}0.0564 \ 16; \ \alpha({\rm L}){=}0.00791 \ 13; \ \alpha({\rm M}){=}0.00168 \ 3. \\ \alpha({\rm N}){=}0.000376 \ 6; \ \alpha({\rm O}){=}5.68{\times}10^{-5} \ 8; \ \alpha({\rm P}){=}3.59{\times}10^{-6} \ 13. \\ {\rm DCO}{=}0.43 \ 5. \end{array}$
304.7 2	2034.7+z	9.9 8	(M1+E2)	0.0643 16	$\begin{array}{l} \alpha({\rm K}){=}0.0546 \ 16; \ \alpha({\rm L}){=}0.00764 \ 12; \ \alpha({\rm M}){=}0.00162 \ 3. \\ \alpha({\rm N}){=}0.000363 \ 6; \ \alpha({\rm O}){=}5.49{\times}10^{-5} \ 8; \ \alpha({\rm P}){=}3.47{\times}10^{-6} \ 13. \\ {\rm DCO}{=}0.69 \ 9. \end{array}$
308.1 2	1543.0+x	422	(M1+E2)	0.0624 16	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.0530 \; 16; \; \alpha({\rm L}) \!=\! 0.00741 \; 11; \; \alpha({\rm M}) \!=\! 0.00157 \; 3. \\ \alpha({\rm N}) \!=\! 0.000352 \; 6; \; \alpha({\rm O}) \!=\! 5.32 \!\times\! 10^{-5} \; 8; \; \alpha({\rm P}) \!=\! 3.37 \!\times\! 10^{-6} \; 13. \\ {\rm DCO} \!=\! 0.45 \; 2. \end{array} $
311.0 2	1730.3 + z	8 1			
312.0 5	942.8+y	<4			
318.4 2	497.3+z	13.7 9	(E2)	0.0435	$ \begin{array}{l} \alpha({\rm K}){=}0.0347 \ 5; \ \alpha({\rm L}){=}0.00694 \ 10; \ \alpha({\rm M}){=}0.001516 \ 22. \\ \alpha({\rm N}){=}0.000334 \ 5; \ \alpha({\rm O}){=}4.71{\times}10^{-5} \ 7; \ \alpha({\rm P}){=}1.92{\times}10^{-6} \ 3. \\ {\rm DCO}{=}1.02 \ 9. \end{array} $
322.4 2	630.8+y	38 3	(E2)	0.0419	$\begin{split} &\alpha({\rm K}){=}0.0334~5;~\alpha({\rm L}){=}0.00664~10;~\alpha({\rm M}){=}0.001450~21.\\ &\alpha({\rm N}){=}0.000319~5;~\alpha({\rm O}){=}4.52{\times}10^{-5}~7;~\alpha({\rm P}){=}1.86{\times}10^{-6}~3.\\ &{\rm DCO}{=}0.87~7. \end{split}$
324.5 2	415.7+z	28 2	(E2)	0.0411	$ \begin{split} &\alpha(K){=}0.0328 \ 5; \ \alpha(L){=}0.00649 \ 10; \ \alpha(M){=}0.001417 \ 20. \\ &\alpha(N){=}0.000312 \ 5; \ \alpha(O){=}4.42{\times}10^{-5} \ 7; \ \alpha(P){=}1.82{\times}10^{-6} \ 3. \\ &DCO{=}0.97 \ 6. \end{split} $
329.02	2516.2 + x	24 1			

### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

### $\gamma(^{129}\text{Nd})$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult. [‡]	δ	Comments
343.4 2	2187.3+x	292	(M1+E2)	0.0468 13	$\alpha$ (K)=0.0398 <i>13</i> ; $\alpha$ (L)=0.00552 <i>8</i> ; $\alpha$ (M)=0.001171 <i>17</i> . $\alpha$ (N)=0.000262 <i>4</i> ; $\alpha$ (O)=3.97×10 ⁻⁵ <i>7</i> ; $\alpha$ (P)=2.53×10 ⁻⁶ <i>10</i> . DCO=0.57 <i>3</i>
344.8 2	581.7+z	5.76	(E2)	0.0341	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0274 \ 4; \ \alpha(\mathbf{L}) = 0.00526 \ 8; \ \alpha(\mathbf{M}) = 0.001146 \ 17. \\ &\alpha(\mathbf{N}) = 0.000253 \ 4; \ \alpha(\mathbf{O}) = 3.59 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 1.539 \times 10^{-6} \ 22. \\ &\mathbf{DCO} = 0.71 \ 9. \end{aligned}$
	2379. 2 + z	9 1			
351.0 2	3232.5 + x	24 2			
351.6 2	581.7+z	754	(E2)	0.0322	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0259 \ 4; \ \alpha(\mathbf{L}) = 0.00492 \ 7; \ \alpha(\mathbf{M}) = 0.001071 \ 16. \\ &\alpha(\mathbf{N}) = 0.000236 \ 4; \ \alpha(\mathbf{O}) = 3.36 \times 10^{-5} \ 5; \ \alpha(\mathbf{P}) = 1.458 \times 10^{-6} \ 21. \\ &\mathbf{DCO} = 0.94 \ 5. \end{aligned}$
354.32 360.52	936.3+z 491.0+x	9 <i>1</i> 53 3	(E2)	0.0298	$\alpha(K)=0.0241$ 4; $\alpha(L)=0.00452$ 7; $\alpha(M)=0.000983$ 14. $\alpha(N)=0.000217$ 3; $\alpha(O)=3.09\times10^{-5}$ 5; $\alpha(P)=1.361\times10^{-6}$ 20. DCO=1.0 1.
365.62	2881.7 + x	23 1			
368.62	3978.6 + x	21 1			
377.12	3609.8 + x	22 1			
392.3 <i>2</i>	629.3+z	21 1	(E2)	0.0233	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.0189 \ 3; \ \alpha(\mathbf{L}) \!=\! 0.00341 \ 5; \ \alpha(\mathbf{M}) \!=\! 0.000740 \ 11. \\ &\alpha(\mathbf{N}) \!=\! 0.0001634 \ 23; \ \alpha(\mathbf{O}) \!=\! 2.35 \!\times\! 10^{-5} \ 4; \ \alpha(\mathbf{P}) \!=\! 1.080 \!\times\! 10^{-6} \ 16. \\ &\mathbf{DCO} \!=\! 1.09 \ 9. \end{split}$
396.0 2	4374.5 + x	13.7 6			
397.22	1461.8+y	5 1			
398.0 2	4772.2 + x	13 1			
412.6 2	942.8+y	202	(E2)	0.0201	$\alpha(\mathbf{K})=0.01642\ 23;\ \alpha(\mathbf{L})=0.00289\ 4;\ \alpha(\mathbf{M})=0.000627\ 9.$ $\alpha(\mathbf{N})=0.0001386\ 20;\ \alpha(\mathbf{O})=2.00\times10^{-5}\ 3;\ \alpha(\mathbf{P})=9.43\times10^{-7}\ 14.$ DCO=1.0 1.
417.8 2	2666.0+z	5.09	(M1+E2)	0.0281 9	$ \begin{aligned} &\alpha(\mathbf{K}) \!=\! 0.0239 \; 8; \; \alpha(\mathbf{L}) \!=\! 0.00327 \; 7; \; \alpha(\mathbf{M}) \!=\! 0.000693 \; 13. \\ &\alpha(\mathbf{N}) \!=\! 0.000155 \; 3; \; \alpha(\mathbf{O}) \!=\! 2.35 \!\times\! 10^{-5} \; 6; \; \alpha(\mathbf{P}) \!=\! 1.52 \!\times\! 10^{-6} \; 6. \\ &\mathbf{DCO} \!=\! 0.63 \; 7. \end{aligned} $
418.1 2	710.7+x	754	(E2)	0.0193	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.01582\ 23;\ \alpha(\mathbf{L}) \!=\! 0.00277\ 4;\ \alpha(\mathbf{M}) \!=\! 0.000601\ 9.\\ &\alpha(\mathbf{N}) \!=\! 0.0001328\ 19;\ \alpha(\mathbf{O}) \!=\! 1.91 \!\times\! 10^{-5}\ 3;\ \alpha(\mathbf{P}) \!=\! 9.11 \!\times\! 10^{-7}\ 13.\\ &\mathbf{DCO} \!=\! 0.94\ 7. \end{split}$
433.02	5644.3+x	6.77			
434.0 2	1064.7+y	302	(E2)	0.01740	$\begin{split} &\alpha(K) \!=\! 0.01427 \ 20; \ \alpha(L) \!=\! 0.00246 \ 4; \ \alpha(M) \!=\! 0.000533 \ 8. \\ &\alpha(N) \!=\! 0.0001178 \ 17; \ \alpha(O) \!=\! 1.703 \!\times\! 10^{-5} \ 24; \ \alpha(P) \!=\! 8.25 \!\times\! 10^{-7} \ 12. \\ &DCO \!=\! 1.01 \ 7. \end{split}$
438.32	5210.8+x	8.8 9			
439.1 2	936.3+z	252	(E2)	0.01684	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01382 \ 20; \ \alpha(\mathbf{L}) = 0.00237 \ 4; \ \alpha(\mathbf{M}) = 0.000513 \ 8. \\ &\alpha(\mathbf{N}) = 0.0001135 \ 16; \ \alpha(\mathbf{O}) = 1.643 \times 10^{-5} \ 24; \ \alpha(\mathbf{P}) = 8.00 \times 10^{-7} \ 12. \\ &\mathbf{DCO} = 0.91 \ 7. \end{aligned}$
452.7 2	868.4+z	322	(E2)	0.01546	$\begin{split} &\alpha(\mathbf{K}) \!=\! 0.01271 \ 18; \ \alpha(\mathbf{L}) \!=\! 0.00216 \ 3; \ \alpha(\mathbf{M}) \!=\! 0.000466 \ 7. \\ &\alpha(\mathbf{N}) \!=\! 0.0001032 \ 15; \ \alpha(\mathbf{O}) \!=\! 1.496 \!\times\! 10^{-5} \ 21; \ \alpha(\mathbf{P}) \!=\! 7.38 \!\times\! 10^{-7} \ 11. \\ &\mathbf{DCO} \!=\! 0.88 \ 6. \end{split}$
464.0 5	2067.6+y	<4			
472.7 2	1054.2+z	654	(E2)	0.01372	$\begin{aligned} &\alpha(\mathbf{K}) = 0.01131 \ 16; \ \alpha(\mathbf{L}) = 0.00189 \ 3; \ \alpha(\mathbf{M}) = 0.000407 \ 6. \\ &\alpha(\mathbf{N}) = 9.02 \times 10^{-5} \ 13; \ \alpha(\mathbf{O}) = 1.312 \times 10^{-5} \ 19; \ \alpha(\mathbf{P}) = 6.60 \times 10^{-7} \ 10. \\ &\mathbf{DCO} = 1.09 \ 7. \end{aligned}$
478.6 2	969.7+x	784	(E2)	0.01326	$\alpha(K)=0.01095 \ 16; \ \alpha(L)=0.00182 \ 3; \ \alpha(M)=0.000392 \ 6.$ $\alpha(N)=8.69\times10^{-5} \ 13; \ \alpha(O)=1.264\times10^{-5} \ 18; \ \alpha(P)=6.39\times10^{-7} \ 9.$ DCO=0.91 8.
482.6 5	1419.4+z	<4	(E2)	0.01296	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.01071 \ 16; \ \alpha({\rm L}) \!=\! 0.00177 \ 3; \ \alpha({\rm M}) \!=\! 0.000382 \ 6. \\ \alpha({\rm N}) \!=\! 8.47 \!\times\! 10^{-5} \ 13; \ \alpha({\rm O}) \!=\! 1.233 \!\times\! 10^{-5} \ 18; \ \alpha({\rm P}) \!=\! 6.25 \!\times\! 10^{-7} \ 9. \\ {\rm DCO} \!=\! 0.9 \ 1. \end{array} $
498.5 2	6142.9+x	6 1	(7.6.)	0.01.77	
507.42	1136.9+z	302	(E2)	0.01132	$ \begin{array}{l} \alpha({\bf K}) \!=\! 0.00938 \ 14; \ \alpha({\bf L}) \!=\! 0.001526 \ 22; \ \alpha({\bf M}) \!=\! 0.000328 \ 5. \\ \alpha({\bf N}) \!=\! 7.28 \!\times\! 10^{-5} \ 11; \ \alpha({\bf O}) \!=\! 1.063 \!\times\! 10^{-5} \ 15; \ \alpha({\bf P}) \!=\! 5.50 \!\times\! 10^{-7} \ 8. \\ {\bf DCO} \!=\! 0.92 \ 9. \end{array} $
518.8 2	1461.8+y	25 2	(E2)	0.01066	$\begin{split} &\alpha({\rm K}){=}0.00885 \ 13; \ \alpha({\rm L}){=}0.001429 \ 20; \ \alpha({\rm M}){=}0.000307 \ 5. \\ &\alpha({\rm N}){=}6.81{\times}10^{-5} \ 10; \ \alpha({\rm O}){=}9.96{\times}10^{-6} \ 14; \ \alpha({\rm P}){=}5.20{\times}10^{-7} \ 8. \\ &{\rm DCO}{=}1.0 \ 3. \end{split}$

### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

### $\gamma(^{129}\text{Nd})$ (continued)

$\mathbf{E}\gamma^{\dagger}$	E(level)	Ιγ	Mult.‡	δ	Comments
524.3 2	1235.1+x	100	(E2)	0.01037	$ \begin{split} &\alpha(\mathbf{K}) {=} 0.00861 \ 12; \ \alpha(\mathbf{L}) {=} 0.001385 \ 20; \ \alpha(\mathbf{M}) {=} 0.000298 \ 5. \\ &\alpha(\mathbf{N}) {=} 6.61 {\times} 10^{-5} \ 10; \ \alpha(\mathbf{O}) {=} 9.66 {\times} 10^{-6} \ 14; \ \alpha(\mathbf{P}) {=} 5.07 {\times} 10^{-7} \ 8. \end{split} $
535.4 2	1471.8+z	25 2	(E2)	0.00981	DCO=0.99 9. $\alpha(K)=0.00816\ 12;\ \alpha(L)=0.001303\ 19;\ \alpha(M)=0.000280\ 4.$ $\alpha(N)=6.21\times10^{-5}\ 9;\ \alpha(O)=9.10\times10^{-6}\ 13;\ \alpha(P)=4.81\times10^{-7}\ 7.$ DCO=0.9 1
539.1 2	1603.7+y	28 2	(E2)	0.00964	$\alpha(K)=0.00801 \ 12; \ \alpha(L)=0.001277 \ 18; \ \alpha(M)=0.000274 \ 4. \\ \alpha(N)=6.09\times10^{-5} \ 9; \ \alpha(O)=8.92\times10^{-6} \ 13; \ \alpha(P)=4.73\times10^{-7} \ 7. \\ DCO=1.12 \ 4.$
551.3 2	1419.4+z	36 <i>3</i>	(E2)	0.00909	$\alpha(K)=0.00757 \ 11; \ \alpha(L)=0.001197 \ 17; \ \alpha(M)=0.000257 \ 4.$ $\alpha(N)=5.70\times10^{-5} \ 8; \ \alpha(O)=8.37\times10^{-6} \ 12; \ \alpha(P)=4.47\times10^{-7} \ 7.$ DCO=1.00 8.
566.6 2	1620.6+z	573	(E2)	0.00847	$\alpha(K)=0.00706\ 10;\ \alpha(L)=0.001107\ 16;\ \alpha(M)=0.000238\ 4.$ $\alpha(N)=5.27\times10^{-5}\ 8;\ \alpha(O)=7.75\times10^{-6}\ 11;\ \alpha(P)=4.18\times10^{-7}\ 6.$ DCO=0.97 6.
573.2 2	1543.0+x	764	(E2)	0.00822	$ \begin{array}{l} \alpha({\rm K}) \!=\! 0.00686 \ 10; \ \alpha({\rm L}) \!=\! 0.001072 \ 15; \ \alpha({\rm M}) \!=\! 0.000230 \ 4. \\ \alpha({\rm N}) \!=\! 5.10 \!\times\! 10^{-5} \ 8; \ \alpha({\rm O}) \!=\! 7.50 \!\times\! 10^{-6} \ 11; \ \alpha({\rm P}) \!=\! 4.06 \!\times\! 10^{-7} \ 6. \\ {\rm DCO} \!=\! 0.96 \ 7. \end{array} $
589.2 2	2666.0+z	9 1	Q		DCO=0.9 1.
593.4 2	1730.3+z	30 <i>2</i>	(E2)	0.00752	$ \begin{array}{l} \alpha(\mathrm{K}) \!=\! 0.00629 \ 9; \ \alpha(\mathrm{L}) \!=\! 0.000972 \ 14; \ \alpha(\mathrm{M}) \!=\! 0.000208 \ 3. \\ \alpha(\mathrm{N}) \!=\! 4.63 \!\times\! 10^{-5} \ 7; \ \alpha(\mathrm{O}) \!=\! 6.82 \!\times\! 10^{-6} \ 10; \ \alpha(\mathrm{P}) \!=\! 3.73 \!\times\! 10^{-7} \ 6. \end{array} $
					DCO=1.1 1.
604.7 2	2076.6+z	23 2	Q		DCO=1.1 2.
605.8 2	2067.6+y	22 2			
608.8 2	1843.9+x	91 5	Q		DCO=0.98 5.
615.12	2034.7+z	34 3	Q		DCO=1.15 9.
626.6 2	3292.6+z	36 3	Q		DCO=0.88 5.
628.0 2	2248.4+z	54 3	Q		DCO=0.95 6.
631.1 2	2666.0+z	38 3	Q		DCO=1.01 6.
633.1 2	2236.8+y	26 2	Q		DCO=0.93 7.
644.2 2	2187.3+x	75 4	Q		DCO=1.14 8.
648.72	2379.2+z	32 2	Q		DCO=1.0 1.
658.3 2	2734.9+z	16 2			
659.1 2	3712.9+z	14 2	0		
661.3 2	2909.7+z	48 3	Q		DC0=1.10 5.
667.92	3960.0+z	25 2	Q		DC0=0.87 3.
672 2 2	2739.3+y 2516.2+x	21 3	0		DC0-1.04.7
674 6 2	2010.2+x	22 2	4		D00-1.04 7.
683 7 5	3418 6+7	~1			
684 7 2	3594 4+7	33 2	0		DCO-0.93.5
694 4 2	2881 7+x	71 4	ч О		DCO-0.99 4
700 5 2	4413 4+z	10 1	પ		500-0.00 4.
712.3 2	2949.2+v	25 2	Q		DCO=0.94 7.
716.2 2	3232.5+x	724	õ		DCO=0.94 4.
720.0 2	3459.3+v	19 2	4		
726.8 2	4321.2+z	32 2	0		DCO=1.05 5.
728.1 2	3609.8+x	59 4	Q		DCO=1.04 4.
743.4 2	4703.9+z	20 2	Q		DCO=0.89 8.
746.3 2	3978.6+x	51 3	Q		DCO=0.92 6.
755.1 2	4214.4+y	16 1	-		
764.6 2	4374.5+x	38 2	Q		DCO=1.1 1.
779.4 2	5192.8+z	7 1			
781.2 2	3730.4+y	17 1	Q		DCO=1.09 7.
793.5 2	4772.2+x	38 2	Q		DCO=0.91 7.
794.6 2	5115.8 + z	21 1	Q		DCO=1.10 6.
818.0 2	5032.4 + y	10 1			
818.3 2	5522.2+z	202	Q		DCO=1.03 5.
836.2 2	5210.8 + x	33 2	Q		DCO=0.9 1.
845.3 2	4575.7 + y	12 1	Q		DCO=1.05 6.
857.8 2	5973.6+z	15 <i>1</i>	Q		DCO=1.05 6.
872.52	5644.3 + x	24 2	Q		DCO=0.92 3.
886.4 2	6079.2 + z	4 1			

## $^{129}_{60}$ Nd₆₉-19

### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

### $\gamma(^{129}\text{Nd})$ (continued)

$E\gamma^{\dagger}$	E(level)	Ιγ	Mult. [‡]	Comments
803 2 2	6415 4+7	15 1		
902 9 2	5935 3+v	9 1		
911 8 2	5487 5+v	9 1	ρ	DCO-1.06.5
927 6 2	6901 2+7	994	પ	500-1.00 0.
932 1 2	6142 9 + x	22 2		
962 1 2	6606 4 + x	19 2	Q	DCO=0.91.6
980.22	7395.6+z	11 1	4	
984.6 2	6472.1+v	8 1	Q	DCO=0.99 8.
991 9 2	6927 2+y	8 1	4	
999 1	7078 2+z	< 4		
1015 2 2	7916 4+z	879		
1033 1 2	7176 0 + x	18 2		
1051.9 2	7658.3+x	13 1		
1056.0 2	7528.1 + v	6 1	Q	DCO=1.1 1.
1076.1 2	8471.7+z	7 1	-	
1083.7 2	8010.9+v	7 1		
1100 1	8178.2+z	< 4		
1107.62	9024.0+z	7.1.8		
1108 1	8636.1+v	< 4		
1131.3 2	8307.3+x	12 1		
1138.4 2	8796.7+x	12 1		
1159 <i>1</i>	9337.2+z	<4		
1160 1	9796.1+v	<4		
1166.0 2	9176.9+y	5 1		
1171.8 2	9643.5+z	4 1		
1198.2 2	10222.2+z	4.97		
1213 <i>1</i>	11009.1+y	<4		
1222.7 2	10019.4+x	9 1		
1228.3 2	9535.6+x	8 1		
1239.1 2	10416.0+y	4 1		
1256 1	12265.1+y	<4		
1259 1	10902.5+z	<4		
1288.9 2	11511.1+z	4.5 2		
1305 1	11721.0+y	<4		
1307.0 2	11326.4+x	7 1		
1319 <i>1</i>	12221.5+z	<4		
1322.0 2	10857.6+x	6 1		
1354# 1	13575.5+z	<4		
1369 1	13090.1+y	<4		
1381 1	12892.1+z	<4		$E\gamma$ : from figure 1 of 2002Ze01, and also from an e-mail reply on Jan 16, 2002
				from D.J. Hartley. E $\gamma$ =13801 in table I of 2002Ze01 is a misprint.
1394.02	12720 . 4 + x	5 1		
1405.92	12263.5+x	5 1		
1438 1	14528. 1 + y	<4		
1473 1	14365. 1 + z	<4		
1482 1	14202 . $4 + x$	<4		
1483 1	13746. 5 + x	<4		
1563 <i>1</i>	15765.4 + x	<4		

[†] Some of the  $E\gamma$  values given in figure 1 differ by 1 keV or more, but the values given in Table I are correct (as per e-mail reply on Jan 22, 2002 from one of the authors D.J. Hartley). Based on a general comment by 2002Ze01, uncertainty of 0.2 keV is assigned for most  $\gamma$  rays, 0.5 keV for weak transitions, and 1 keV when  $E\gamma$  is quoted to nearest keV.

[±] From  $\gamma\gamma(\theta)(DCO)$  data. The mult=Q indicates  $\Delta J=2$ , quadrupole (most likely E2) and D+Q indicates  $\Delta J=1$ , dipole+quadrupole (most likely M1+E2). Mult=(E2) or (M1+E2) assigned based on RUL for E2 and M2 with the assumption of  $\approx 10$  ns resolving time in  $\gamma\gamma$  coincidence experiments.

 $\delta$   $\delta(E2/M1){=}0.30$  assumed for M1+E2 transitions.

 ${}^{\#}\,$  Placement of transition in the level scheme is uncertain.
### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

(A) $v7/2[523]$ , $\alpha = -1$	(B) $v7/2[523]$ , $\alpha = -1/2$			(C) $v1/2[541]$ , $\alpha=+1/2$		
		(75/2-)		15765.4+x	_	
		(71/2-)	,	14202.4+x		
		<u></u>			-	
(69/2-)	13746.5+x	_				
		(05/0)		10500 4		
		(67/2-)	N	12720.4+X	_	
(65/2-)	/ 12263.5+x	_			(65/2-)	12265.1+y
		(69/9))		11000 4		
		(63/2-)	N	11326.4+x	(61/9)	11000 1
(61/2-)	/ 10857.6+x	_			(01/2-)	v 11009.1+y
		(59/2-)	,	10019.4+x		
		<u></u>			(57/2-)	9796.1+y
(57/2-)	/ 9535.6+x	-				
		(55/2-)		8796.7+x	(53/2-)	8636.1+y
(53/2-)	/ 8307.3+x	_				
		_				
		(51/2-)	v	7658.3+x	- 49/2-	7528 1+1
(49/2_)	7176 0+x				10/2	1020.119
(10/2)	1110.01x	_				
		47/2-	N	6606.4+x	- 15/9_	6479 1+1
(45/2-)	(6142.9 + x)				40/2-	V 0472.1+y
	OTIBIOTA	_				
(B)43/2- v		43/2-	,	y 5644.3+x	41/2-	y 5487.5+y
41/2-	/ 5210.8+x	(A)41/2-	, v		_	
(B)39/2-		39/2-	,	4772.2+x		
37/2_	/ 4374 5+x	$(\Lambda) 37/2_{-}$			37/2-	4575.7+y
(D) 05 (0	4014.0TA	(A)01/2-	<u>v</u>	2050 4	_	
<u>(B)35/2-</u> <u>V</u>		35/2-		3978.6+x	33/2-	3730.4+y
33/2-	3609.8+x	(A)33/2-	¥		_	
<u>(B)31/2−</u> <u>¥</u>		31/2-		y 3232.5+x	- 20/9	2040.21.2
29/2-	2881.7+x	(A)29/2-	<u> </u>			<u> </u>
(B)27/2↓ 25/2-	2187 3+x	27/2- (A)25/2-	<u> </u>	2516.2+x	95/9	00000
(B)23/2-		23/2-	<u>, ∦</u>	1843.9+x	_ 20/2-	¥ 2236.8+y
<u>21/2-</u>	1543.0+x	(A)21/2-			21/2-	v 1603.7+v
<u>(B)19/2-</u> 17/2-	969.7+x	(A)17/2-	\ <u>¥</u>	1235.1+x	17/2-	1064.7+v
(B)15/2-		15/2-	\ <u> </u>	710.7+x	13/2-	630.8+y
13/2-	491.0+x	(A)13/2-	ηLγ		<u>9/2</u> -	<u>308.5+y</u>
9/2-	130.4+x	(A)9/2-	\ <u> </u>		5/2-	99.0+y
(B)7/2-		7/2-	٦ <u>ــــــــــــــــــــــــــــــــــــ</u>	0+x	1/2-	/

 $^{129}_{60}\mathrm{Nd}_{69}$ 

# $^{129}_{60}$ Nd₆₉-21

# ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

(D) v1/2[541],  $\alpha = -1/2$ 

(E) v1/2[411],  $\alpha$ =+1/2

(F) v1/2[411],  $\alpha = -1/2$ 



 $^{129}_{60}\mathrm{Nd}_{69}$ 

 $^{129}_{60}$ Nd₆₉-21

# $^{129}_{60}$ Nd₆₉-22

# $^{129}_{60}$ Nd₆₉-22

#### ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

(G) v5/2[402],  $\alpha=+1/2$ 

(H) v5/2[402],  $\alpha = -1/2$ 



 $^{129}_{60}$ Nd₆₉

# $^{129}_{60}\mathrm{Nd}_{69}\mathrm{-23}$

			⁹² Mo( ⁴⁰ Ca,2pnγ)	2002Ze01	(continued)		
			Band	ds for ¹²⁹ Nd	·		
(A)	<u>(B(75/2-)</u>	(C)	(D)	(E)	(F)	(G)	(H)
	1563						
	v(71/2-)		(71/2-)		(71/2+)		
(69/2-)			1438		1473	(69/2+)	
1483	1482		<u> </u>		(67/2+)	1954	_
(65/2_)	<u> </u>	(65/2-)	1369		<u>(=::=:)</u>	(65(0.))	
(00/11 )	1394.0				1381	(65/2+)	_
1405.9	(63/2_)	(61/2-)	1305		<u>(63/2+)</u> y		
(61/2-) v	1307.0	1912			1288.9	(61/2+)¥	_
1322.0	(59/2-)	(57/2-)	1230 1		(59/2+)y	1259	
(57/2–) v	1222.7	1160	(55/2−)		1198.2	(57/2+)¥	(55/2+)
1228.3	<u>(55/2–)</u>	(53/2–) v			(55/2+) y		1159
(53/2–) y	1138.4	1108	<u></u> (51/2−)		(51/2+)		
1131.3	(51/2-)	<u>49/2-</u>			1015.2	(49/2+)v	
(49/2-) ¥	1051.9	1056.0	(47/2–)		(47/2+) y	980.2	<u>(47/2+)</u>
(45/2-) v	962.1	45/2- v	99 ¹ .9		927.6	(45/2+) y	- $(43/2+)$
932.1 498.8 932.1	5 	<u>41/2-</u>	<u>(43/2-)</u> 902.9		857.8	<u>41/2+</u>	- 886.4
41/2- 438.5 836.2	y 872.5 3 y 39/2−	911.8	(39/2–)		<u>39/2+</u>		<u>(39/2+)</u> 779.4
<u>37/2-</u> 396.0	98.0 793.5	37/2- v 845.3	818.0 (35/2-)		<u>35/2+</u>	743.4	
764.6 33/2-	35/2- 38.6 746.3	<u>33/2-</u>	755.1	(80/8)	726.8 <u>31/2+</u>	<u>33/2+</u> 667.9	$- \frac{700.5}{\sqrt{(31/2+)}}$
728.1 29/2-	31/2 - 51.0	781.2 29/2-	720.0	683.7		29/2+ 626.6	
694.4 365.6 25/2 3	29.0	712.3 25/2-	$\frac{\psi(27/2-)}{671.7}$	(25/2+)	661.3 23/2+ v	$25/2 + \sqrt{417.8}$ 589.2 631.1	286.9 23/2+ 23/2+
<u>343.4</u> 644.2		633.1 21/2-	${464.0} {605.8} $	<u>21/2+</u> 604.7	628.0 19/2+	21/2 + 4 615.1	344.0 304.7 4.7 4.7 4.7 19/2+
$\begin{array}{c} 21/2 - \\ 573.2 \\ 17/2 - \\ \end{array}$	$10^{\circ}$ 608.8 $10^{\circ}$ $19/2-$ 65.6 $524.3$	539.1 17/2-	397.2 518.8 15/2-	$\frac{17/2 + \sqrt{535.4}}{13/2 + \sqrt{535.4}}$	566.6 15/2+ v	$ \begin{array}{c}     17/2 + 482.6 551.3 \\     482.6 551.3 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\      410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     410 \\     $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
478.6 $259.013/2 2$ $259.013/2 198.6$	$19.8 - \frac{15/2}{418.1}$	$\begin{array}{r} 434.0 \\ \underline{13/2} - \underbrace{434.0}_{9/2} \\ \underline{322.4} \end{array}$	$\begin{array}{c} & & & & & \\ 312.0 & 412.6 \\ \hline & & & & & \\ 221.5 & 297.5 \end{array}$	439.1 9/2+ $$	354.3 $472.711/2+ \sqrt{267.5} 351.6$	$\begin{array}{c} & 13/2 + \psi \\ \hline 452.7 \\ \hline 344.8 \\ 9/2 + \psi \end{array}$	$\begin{array}{c} & & 507.4 \\ 239.3 & & & 11/2+ \\ & 213.7 & & 392.3 \\ \hline & & & & 392.3 \end{array}$
$\frac{9/2 - \frac{360.5}{\sqrt{1}}}{130.5}$	$62.5 - \frac{\sqrt{11/2}}{292.5} \frac{\sqrt{11/2}}{7/2}$	$\frac{5/2}{5/2}$ 209.5 $\frac{1}{2}$ -99.0		$\frac{5/2+}{1/2+}$ $178.4$	$-157.0 \frac{7/2+}{3/2+}208.2$	$-138^{1.8-5/2+324.5}$	<u></u> <u>-146.1</u> <u>−</u> <u>7/2+</u>

### $^{129}_{60}$ Nd₆₉-24

#### $^{129}_{60}$ Nd₆₉-24



# $^{12\,9}_{6\,0}\rm Nd_{69}$

# ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

Level Scheme (continued)

Intensities: relative  $\ensuremath{I}\ensuremath{\gamma}$ 

(75/2-)		15765.4+x
(71/2-)		14528.1+y
(71/2-)		14202.4+x
(35/2-)		4214.4+y
35/2-		3978.6+x
33/2+		3960.5+z
33/2-		3730.4+y
(31/2+)		3712.9+z
33/2-		3609.8+x
31/2+		3594.4+z
(31/2-)		3459.3+y
(29/2+)		3418.6+z
29/2+		3292.6+z
31/2-		3232.5+x
(27/2+)		3053.8+z
29/2-		2949.2+y
27/2+		2909.7+z
29/2-		2881.7+x
(27/2-)		2739.3+y
(25/2+)		2734.9+z
25/2+		2666.0+z
27/2-		2516.2+x
23/2+		2379.2+z
23/2+		2248.4+z
25/2-		2236.8+y
25/2-		2187.3+x
21/2+		2076.6+z
(23/2-)		2067.6+y
21/2+		2034.7+z
23/2-		1843.9+x
19/2+		1730.3+z
19/2+		1620.6+z
21/2-		1603.7+y
21/2-		1543.0+x
17/2+		1471.8+z
		1461.8+y
17/2+		1419.4+z
19/2-		1235.1+x
15/2+		1136.9+z
17/2-		1064.7+y
15/2+		1054.2+z
		969.7+x
15/2-		942.8+y
13/2+		936.3+z
13/2+		868.4+z
15/2-	11111111111111111111111111111111111111	710.7+x
13/2-		630.8+y
11/2+	<u> </u>	629.3+z
11/2+		581.7+z
11/2-		530.1+y
9/2+		497.3+z
13/2-		<u>491.0+x</u>
9/2+		415.7+z
7/2 -		0+x

 $^{129}_{60}$ Nd₆₉

# ⁹²Mo(⁴⁰Ca,2pnγ) 2002Ze01 (continued)

Level Scheme (continued)

Intensities: relative  $\ensuremath{I}\ensuremath{\gamma}$ 

(75/2-)	15765.4+x
(71/2-)	14528.1+y
(71/2-)	14202.4+x
(69/2+)	13575.5+z
(67/2–)	13090.1+y
(67/2-)	 12720.4+x
(65/2+)	 12221.5+z
(63/2-)	11721.0+y
(63/2-)	11326.4+x
(61/2-)	10857.6+x
(59/2-)	10416.0+y
(59/2-)	10019.4+x
(57/2+)	 9643.5+z
(55/2+)	9337.2+z
(55/2+)	9024.0+z
(53/2-)	8636.1+y
(53/2-)	8307.3+x
(51/2+)	7916.4+z
49/2-	 7528.1+y
(49/2-)	7176.0+x
(47/2+)	6901.2+z
(45/2+)	 6415.4+z
43/2+	 5973 6+z
15/2-	710.7+x
13/2 -	630.8+y
11/2+	629.3+z
11/2+	581.7+z
0/2	530.1+y
13/2-	497.3+2 491.0+x
9/2+	415 7+z
9/2-	308.5+v
11/2-	292.6+x
7/2+	236.9+z
7/2-	232.6+y
7/2+	229.9+z
5/2 +	178.8+z
9/2-	130.4+x
5/2-	99.0+y
5/2+	 91.0+z
3/2-	53.8+y
3/2+	21.7+z
1/2+	0+2
7/2_	0+x

 $^{129}_{60}$ Nd₆₉

 ${}^{129}_{61}\text{Pm}_{68}$ -1

#### Adopted Levels

 $\label{eq:2.1} Q(\beta^-) = -10740 \ SY; \ S(n) = 13170 \ SY; \ S(p) = -140 \ SY; \ Q(\alpha) = 2730 \ SY \ 2012 Wa38.$ 

Estimated (2012Wa38) uncertainties: 590 for  $Q(\beta^-),\;420$  for S(n) and  $Q(\alpha),\;360$  for S(p).

 $Q(\epsilon p)=6160 \ 300, \ S(2n)=24240 \ 500, \ S(2p)=2920 \ 360 \ (syst,2012Wa38).$ 

2000Soll: identification of ¹²⁹Pm isotope in ⁹⁰Zr(¹⁹⁷Au,X) reaction at 30 MeV/nucleon; MSU A1200 fragment separator used.

2004Xu05: ¹²⁹Pm isotope was obtained by bombarding a ⁹²Mo target with a ⁴⁰Ca¹²⁺ beam at E=232 MeV. The beam energy at target center could vary from 164-190 MeV. Measured E $\gamma$ ,  $\gamma\gamma(t)$ , (charged particle) $\gamma$  coin, x $\gamma$  coin with two coaxial HpGe detectors for  $\gamma$  rays and a HPGe planar detector for x rays.

2008StZX:  58 Ni( 76 Kr,X), E=4.34 MeV/nucleon; measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin using EXOGAM array and SPIRAL facility at GANIL. Four  $\gamma$  rays were assigned to  129 Pm in the energy range of 250-680 keV, but no other details are available.

¹²⁹Pm Levels

E(level)	Jπ	T	Comments
0.0	(5/2-)	2.4 s 9	%ε+%β ⁺ =100; %εp=? ; %p=? No delayed-proton activity has been reported. T _{1/2} : from timing of 99γ assigned to the decay of ¹²⁹ Pm to ¹²⁹ Nd (2004Xu05).

J\pi: possible  $\pi 5/2[532]$  orbital (2004Xu05). 5/2- proposed in theoretical calculations (1997Mo25).

# $^{129}_{62}\mathrm{Sm}_{67}$ -1

#### Adopted Levels

 $S(n)=11480 SY; S(p)=1640 SY; Q(\alpha)=3030 SY 2012Wa38.$ 

 $Estimated~(2012Wa38)~uncertainties:~710~for~S(n),~590~for~S(p),~640~for~Q(\alpha)~(2012Wa38).$ 

S(2p)=1180 590, Q(\varepsilon)=10880 540 (syst,2012Wa38). S(2n)=25290 (1997Mo25,theory).

1999Xu05 (also 2005Xu04): ¹²⁹Sm produced in ⁹⁶Ru(³⁶Ar,3n) reaction at E(³⁶Ar)=165 MeV at NLHIAL, China. Helium-jet transport system. Measured pγ coin, half-life using silicon and HPGe detectors. Statistical model calculations.

#### ¹²⁹Sm Levels

#### Cross Reference (XREF) Flags

A p Decay (0.90 ms)

E(level)	J π	XREF	T_1/2	Comments
0.0	(1/2+,3/2+)	Α	0.55 s <i>10</i>	<ul> <li>%ε+%β⁺=100; %εp&gt;0.</li> <li>E(level): it is assumed that the observed events corresponds to the g.s.</li> <li>Jπ: from fitting of experimental delayed-proton spectrum with statistical-model calculations (1999Xu05). 1/2+ proposed in theoretical calculations (1997Mo25).</li> <li>T_{1/2}: from timing of 134γ in ¹²⁸Nd (1999Xu05,2005Xu04).</li> <li>Average proton energy of a wide peak=3.7 MeV.</li> <li>Measured production cross section = 70 nb.</li> </ul>

#### p Decay (0.90 ms) 2004Da04

 $Parent \ 130 Eu: \ E=0; \ J\pi=(1+); \ T_{1/2}=0.90 \ ms \ +49-29; \ Q(g.s.)=1028 \ 15; \ \%p \ decay\approx 100.$ 

 $130\mathrm{Eu-E}\colon$  It is assumed that the observed activity corresponds to the g.s.

 $130Eu-T_{1/2}$ : From timing of proton spectra (2004Da04).

130Eu-J: Proposed configuration=π3/2[411]⊗v1/2[411], Kπ=1+,2+ with preference for Kπ=1+ from Gallagher-Moszkowski rules.

130Eu-Q(g.s.): From E(p)=1020 15 (2012Wa38).

130Eu-%p decay: %p≈100 from half-life measured by 2004Da04 and calculated β decay half-life of 49 ms (1997Mo25).
2004Da04 (also 2005Se21,2002Ma61): ¹³⁰Eu produced in ⁵⁸Ni(⁷⁸Kr,p5n) reaction at E(⁷⁸Kr)=425 MeV, ATLAS accelerator facility. Recoil fragments were analyzed using Argonne Fragment Mass Analyzer (FMA) and implanted into a

double-sided silicon strip (DSSD) detector. Other detectors used were a large silicon detector to veto positron

and  $\beta$  delayed proton events and an array of four silicon detectors to veto events for particles emerging from the

front surface of the DSSD detector. Measured proton spectra, isotopic half-life and production cross section.

Structure calculations were used to deduce deformation and probable configuration.

1983La27: search for  130 Eu proved negative in  $^{92}Mo(^{58}Ni,X)$  reaction.

#### ¹²⁹Sm Levels

E(level)	1	π	T _{1/2}	Comments		
0.0	(1/2+	, 3 / 2 + )	0.55 ms 10	$J\pi, T_{1/2}$ : from Adopted Levels.		
				Protons		
E(p)	E(to)	I(p) [†]			Comments	
1020 15	0.0	100	E(p): measured	l by 2004Da04.		

[†] Absolute intensity per 100 decays.

#### KEYNUMBERS

1934Jo01	1967Be03	1974Gr 29	1986Ki16	1998Li32	2010Bh03
1934Ko02	1967Bi15	1974Ma24	1986Kr17	$1998\mathrm{Sm}08$	2010Wa01
1935 Am01	1967Gr05	1974Ro32	$1986{ m Ma}05$	$1998\mathrm{SmZX}$	2010Xu12
1939Ab02	1967Ha27	1974Si07	1986 ReZU	1998Zh09	2011Pi05
1939Se05	1967Jo08	1974VaYZ	1986Wa17	1999Am $04$	2011StZZ
1940Se01	1967Mo22	1975Al11	1987Be36	1999Bo31	2012Au07
1948Wa13	1967Va37	1975Bu08	1987Ed01	1999Da22	2012Ha25
1949Li09	1967Wa11	1975Ho18	1987Gr 28	1999Xu05	2012Ka36
1949Pa19	1968Au01	1975Wa07	1987La21	2000Bu15	2012Wa38
1950Fi11	1968Au04	1976Be11	1987Sp09	2000Da33	2013An02
1950Fi16	1968Br12	1976Le23	1987St03	2000 Ha 64	2013De02
1950Ko09	1968Bu21	$1976{ m Ma}35$	1987St23	2000Kr18	2013In03
1950Th02	1968F008	$1976{ m Me}16$	1987StZO	2000Pi03	2013Ka04
1950Th08	1968Go34	1976Sc17	1987WaZK	2000So11	2013Ka08
1951Co34	1968ReZY	1977Bo02	1988Ge05	$2000  \mathrm{St}  07$	2013Ka27
1951Ka16	1969A105	1977 Ch23	1988Go19	2000Wa $28$	$2013 \mathrm{KaZZ}$
1951Wa12	1969 Am04	1977Gi02	$1988 \operatorname{St}{ZQ}$	2001Bi17	2013StZZ
1953Li16	1969ArZZ	1977Gi17	1988 Zh10	2001Br28	2013Yo02
1953Pa25	1969BoZR	$1977{ m He}24$	1989Bo03	2001Ha39	2014AsAA
1954 De 17	1969Di01	1977Ra23	1989P103	$2001{ m Ke}15$	2014StZZ
1954Th18	1969Di08	1977So06	$1989\mathrm{WaZJ}$	2001Li69	
1955Da37	1969Er01	1978Al18	1990JaZU	2001 Sh07	
$1955{ m Ma}54$	1969Le02	1978Da29	$1990{ m Me}08$	2001Xi01	
1955Ni21	1969Ma $04$	1978De29	1990Na18	2002Ge07	
1955St94	1969Ma33	1978Gi04	1990 NeZY	2002Ku15	
1956Gr10	1969Ma47	1978Hu08	1990Sc21	2002Le30	
1956Ni16	1969Sa22	1978Pa09	$1990{ m S}{ m t}25$	2002Ma61	
1957Ru65	1970Bo02	1979Ba74	1990Ta18	2002Pf04	
1958A198	1970Bo22	1979Be25	1991 Hi12	$2002{ m Ze}01$	
1958Ni27	1970Bu01	1979Be54	$1991\mathrm{St}\mathrm{ZX}$	$2003 \mathrm{ArZX}$	
$1959\mathrm{He}45$	1970Ca23	1979Br05	$1991\mathrm{Ze}02$	2003B006	
1960A103	1970Co05	1979Ga01	1992By03	2003Br19	
1960 Jh02	1970Gy01	1979 GaZP	1992He03	2003 DiZY	
$1961 { m Ar05}$	$1970\mathrm{I}\mathrm{\ s}02$	1979Ge04	1993A103	2003DiZZ	
1962De18	$1970\mathrm{I}\mathrm{\ s}04$	1979Hu07	1993Bo21	$2003{ m Ge}04$	
1962 Dr01	19700h05	1979Ir01	1993Ga03	2003Mo09	
1962Ge09	$1970\mathrm{O}\mathrm{s}\mathrm{Z}\mathrm{Z}$	1979Sz05	1993Ru01	2003Sa20	
1962 Ha16	1970 Re01	1980De35	1993Wa26	2003Wi $02$	
1962 Uh01	$1970 \mathrm{SaZI}$	1980Ge02	$1993{ m We}05$	2004 Da04	
1963Br18	1971Ba28	1980Lu04	1994Da35	2004Ga $24$	
1963Fr13	$1971\mathrm{I}\mathrm{s}02$	$1980 {\rm Sh03}$	1994 Di06	2004Le13	
1963Go17	1971Ob03	1981B007	$1994  { m Ge} 03$	$2004\mathrm{S}\mathrm{c}42$	
1963 Ha23	$1971\mathrm{SeZH}$	1981Bu02	$1994  \mathrm{SwZZ}$	2004Xu05	
1963La03	1972Em01	1981 De 35	1995Ku29	$2005{ m Kr}20$	
1963Ma20	$1972{ m Ge}20$	1981 En05	1995St28	$2005{ m Le}34$	
1963Pr02	$1972{ m He}03$	1981Ge06	$1995\mathrm{StZZ}$	$2005{ m Se}21$	
1963Ra11	$1972{ m Ho}55$	$1981 \mathrm{He}04$	1995 Zh37	$2005{ m S}{ m h}38$	
1963Ya05	1972Iz01	$1981 \mathrm{Ho}12$	1996Br22	$2005{ m S}{ m i}34$	
1964 De 10	1972Ka31	1981Sa15	1996Da02	$2005{ m Wo}04$	
1964Jh02	1972Ka61	1981Sh02	1996Di01	2005Xu04	
1964Jo12	1972Pr02	1981 Th 06	1996Ga13	2005Yu07	
1964Ka09	1972Ro41	1982Bi11	1996Gi08	$2006{ m He}29$	
1964Pe06	1972Ta02	1982Ga18	1996Li01	2006MuZX	
1964Ra04	1973Br29	1982Hu09	1996Ma27	2006Si40	
1965 An05	1973Co33	1983Ha46	1996Te01	2006Vo04	
1965Bo12	1973Is04	1983La27	1997Gi07	2007 ChZX	
1965 Br 34	$1973\mathrm{I}\mathrm{\ s}05$	1983Lo08	1997Gi08	2007Cu $03$	
1965Ge04	1973Ku17	1983Mu12	$1997{ m Mo}25$	2007 Ki06	
1965Gu07	1973Le09	1983TaZI	1997St06	2008 Ki07	
1965Hu08	1973Mi08	1984Ab03	1997To10	2008L007	
1965Ki01	1973Re08	$1984 \mathrm{Ar} 13$	1997 X i 01	2008Sa36	
1965Pa04	1973Si04	1984It02	1998Bu05	2008StZX	
1965 Sh08	1973Si06	1985Ba73	1998FoZY	$2009 { m Ar}04$	
1965Wa13	1973Si14	1985 Ha34	1998GeZX	2009Li67	
1966Li05	1973Si26	$1985{\rm Sm}07$	1998Io01	2009Pa40	
$1966 \mathrm{Re}10$	$1974{ m De}15$	1985 Wi07	1998Ja14	$2009{ m Re}03$	
1966Sa06	1974Fo06	1986Go10	$1998 \mathrm{KaZM}$	2009Si08	
1966Ta05	$1974{ m Gr}22$	1986JaZP	1998Ko66	2009Zh20	