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Abstract 

How do skilled synthetic chemists develop such a good intuitive expertise? Why can we 

only access such a small amount of the available chemical space — both in terms of the 

reactions used and the chemical scaffolds we make? We argue here that these seemingly 

unrelated questions have a common root and are strongly interdependent. We performed a 

comprehensive analysis of organic reaction parameters dating back to 1771 and discovered 

that there are several anthropogenic factors that limit the reaction parameters and thus the 

scope of synthetic chemistry. Nevertheless, many of the anthropogenic limitations such as the 

narrow parameter space and the opportunity of the rapid and clear feedback on the progress of 

reactions appear to be crucial for the acquisition of valid and reliable chemical intuition. In 

parallel, however, all of these same factors represent limitations for the exploration of 

available chemistry space and we argue that these are thus at least partly responsible for 

limited access to new chemistries. We advocate, therefore, that the present anthropogenic 

boundaries can be expanded by a more conscious exploration of “off-road” chemistry that 

would also extend the intuitive knowledge of trained chemists. 

 

 

 

Introduction 

Considering the 69 million substances, 36 million scientific and patent records and more than 

45 million reactions and synthetic preparations collected in Chemical Abstracts (CAS)
1
, 

chemistry is by far the most productive scientific discipline. The known chemical space - 

represented by the number of substances in CAS - is growing faster than the world 

population.
2
 The roughly 3 million chemists published more than 800,000 papers in 2007

1
, 

which is considerably more than in other natural and social sciences.
3
 The number of 

chemistry related patent applications reached 340,000 in 2009
4
 which classifies chemistry as 

the second most inventive field after electrical engineering. Yet despite of these fascinating 

numbers, there are serious limitations of the collective knowledge domain of synthetic 

chemistry, the size of the synthetically explored chemical space
5
 and the extent of scaffold 

diversity within its already explored region.  

From a medicinal chemistry perspective, the estimated number of compounds to be 

considered when searching for new drugs (often called as the druglike space) is more than 

10
60

 molecules.
6
 This data indicates that the number of synthetically accessible compounds is 
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much larger than mankind could ever synthesize. Computational tools, however, help 

enumerating of the accessible chemistry space and allow us to navigate towards regions with 

promising properties. Computer-aided structure elucidation techniques provide large virtual 

libraries such as GDB-13
7
 and GDB-17

8
 containing 977 million and 166.4 billion molecules 

of up to 13 and 17 atoms of C, N, O, S, and halogens, respectively.  Enumeration methods 

include combinatorial linking of fragments, genetic algorithms based on cycles of 

enumeration or exhaustive enumeration from first principles. These enumerations show that 

>99.9% have never been synthesized and therefore they are not physically available.
9
 

Computational tools such as similarity searches,
10

 property filtering
11

 and virtual screening
12

 

however, are able to score and prioritize them for preparation and testing.  

The other limitation of the already explored region of the chemical space is the scaffold 

diversity. Half of the compounds in the CAS Registry can be described by only 143 

framework shapes and half of the 836708 known frameworks are only present in one single 

compound.
13

 The limited diversity of structural frameworks is also reflected in the output of 

medicinal chemistry efforts. Half of the drugs in 1996 can be described by the 32 most 

frequently occurring frameworks
14

 and the top 20 side chains represent 73 % of the total used 

in marketed drugs.
15

 Virtually no improvement was observed during the last 10 years: the top 

50 frameworks cover 48-52% of approved and experimental drugs.
16

 These observations 

indicate that despite of the often-cited chemical intuition
17

 of skilful chemists, scaffold 

diversity is limited in both organic and medicinal chemistry. 

 

Chemical intuition is often evoked as a key element to account for important chemical 

discoveries and synthetic developments. It also allows experts to rapidly find a proper 

solution for a difficult chemical problem which otherwise would require a long time for a 

novice. We are always astonished how efficient an “educated guess” truly is, and how fast an 

expert organic chemist can suggest feasible alternatives to solve a synthetic chemical 

problem, e.g. selecting the appropriate reagents, solvents and reaction parameters. It is also 

very common that the initially selected parameters, reagents and catalysts are almost perfect, 

and it is often hard to find better conditions to improve the overall process. The value of 

chemical intuition is thus well recognised, but it has long been considered to be a mysterious 

mental process, whose role in the natural sciences is to suggest new research directions. 

 

According to Herbert Simon — a Nobel Laureate in economics and pioneer of the decision-

making theory and artificial intelligence
18

 — however, intuition is better described as a 

phenomenon that is ‘nothing more and nothing less than recognition’. According to Simon’s 

cognitive approach,
19

 intuition is a label for a process, a subconscious pattern recognition 

process based on experiences stored in long-term memory and retrieved when needed. 

Nevertheless, as Kahneman and Tversky
20,21

 pointed out later, the accuracy and reliability of 

intuitive judgements
22

 can vary significantly. In several cases the validity is questionable, 

often being bogus, because the intuitive thought is an affect heuristic, where decisions and 

judgements are subconsciously guided by feelings of liking and disliking, with marginal 

reasoning. To distinguish intuitions that are likely to be valid and useful, Klein and Kahneman 

propose
23

 that not the expert’s confidence, but the expert’s background should be evaluated. If 

the experimentalist’s environment is sufficiently regular and the person is able to learn its 

regularities, then there is a chance that the associative machinery will recognise patterns and 

generate quick and accurate predictions and decisions. 

 

On this basis, it seems reasonable to investigate the background of organic chemists to 

address the question of whether a valid and reliable expert intuition could have been 

developed, or is an overvalued affect heuristic. However, instead of focusing on individuals,
24

 

it seems more valuable to analyse organic chemistry itself and use the chemical literature as a 

direct source and reflection of individuals’ background.
25

 Thus, we used an available 



 3 

scientific database which is not only an excellent track record of discoveries, but also of 

methodologies and parameters.  

 
 

The parameter space of chemical reactions 

The chemistry knowledge accumulated between 1771 and 2011 was analyzed by collecting 

reaction parameters such as reaction time, temperature, pressure, solvent and yield from 

Reaxys (Figure 1).
26

 Reaction time data for more than 6.3 million reactions suggest that about 

one third of the reactions take place within an hour, and half of the reactions are completed 

within less than 3 hours (Figure 1a). Less than 10% of the reactions need reaction times 

longer than 24 hours and only 3.7% run longer than 2 days. Considering the reactions 

performed within a day, we found that more than two third of the reactions are completed 

within 6 hours. Reaction times follow an almost exponential distribution with local maxima at 

12 and 24 hours that most likely correspond to overnight reactions. Despite of these reactions 

the median reaction time for 4.5 million chemical reactions was found to be 3.3 hours. The 

average duration of reaction set-ups and work-ups extends the total time spent to almost 5 

hours, which impacts the daily number of reactions performed within the anthropogenic
27

 

limits of a working shift. 
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Figure 1. Relative distributions of reaction parameters in Reaxys. a) Reaction time; b) 

reaction temperature; c) reaction pressure; d) reaction yield. Anthropogenic ranges (duration 

of the working shift, ambient temperature, atmospheric pressure and high yield area, 

respectively) are shadowed. Cumulative distributions are available as supplementary material. 

 

 

The number of available temperature data is somewhat higher (9.1 million) than that of the 

reaction times indicating that some of the reactions are performed at more than one 

temperature. Most of the reactions are realized between -80 °C and +200 °C (Figure 1b). In 

general, low temperatures are used less frequently than high temperatures, which can be 

readily rationalized by the reaction energetics and kinetics. Regarding the extremes less than 

0.3% of the reactions use temperatures lower than -80 °C but 2% of the reactions need more 

than 200 °C indicating the higher incidence of technical difficulties at low temperatures. 
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Temperature distribution of chemical reactions is best described by a normal distribution, 

however, there are several local maxima that deviate significantly from that. The most 

frequent temperature is room temperature, which is the most convenient and therefore the 

most anthropogenic value within the range routinely used for chemical reactions. The second 

largest maximum is located around 0 °C which corresponds to ice bath cooling. There is 

another local maximum around -70 °C representing the utility of dry ice cooling in low 

temperature chemistry. Considering reactions between room temperature and 200 °C the 

median reaction temperature is 79.5 °C which is likely to be influenced by the most popular 

solvents. Clarifying this relationship we extracted the usage statistics of solvents referred 

more than thousand times from the total of 43 million citations. We found that out of these 84 

solvents only 17 were used for 93% of reactions (Table 1). Interestingly, more than half of the 

reactions were performed in as few as five solvents. The usage corrected average boiling point 

of the 17 most popular solvents (78 °C) is pretty close to that of the median reaction 

temperature. This finding and other parameters of reaction energetics underline the impact of 

solvent selection on the reaction temperatures. Analyzing the polarity of the most popular 

solvents except for water we found that the usage corrected average polarity is 0.329. 

Consequently, most of the organic reactions are performed in apolar environment. 

Homogenous reactions therefore require apolar reactants that with the usual work-up 

protocols give strong preference to apolar products. One of the most important consequences 

of this finding is that it is challenging to prepare compounds with acceptable water solubility, 

a property of crucial importance in most drug discovery programs. Since human safety, health 

and environmental factors are often considered when selecting solvents for a chemical 

transformation, these anthropogenic decisions might have significant influence on the 

outcome of chemical reactions. 

 

Table 1. Relative frequency and cumulative distribution of most referred solvents in Reaxys. 

 

Solvent Bp. (°C) Rel. polarity
a
 Relative % Cumulative % 

Dichloromethane 39.8 0.309 15.17 15.17 

Tetrahydofuran 66 0.207 14.84 30.00 

Methanol 64.7 0.762 9.95 39.95 

Water 100 1.000 7.77 47.72 

Dimethyl formamide 153 0.386 7.56 55.28 

Ethanol 78.3 0.654 7.11 62.39 

Toluene 110.6 0.099 5.09 67.48 

Diethylether 34.6 0.117 4.58 72.06 

Acetonitrile 81.6 0.460 4.30 76.36 

Benzene 80.1 0.111 3.61 79.97 

Acetone 56.3 0.355 2.88 82.86 

1,4-dioxane 101 0.164 2.36 85.22 

Chloroform 61.2 0.259 1.83 87.04 

Ethyl acetate 77.1 0.228 1.80 88.84 

Dimethyl sulfoxide 189 0.444 1.47 90.31 

Acetic acid 118 0.648 1.43 91.75 

Pyridine 115.3 0.302 1.19 92.93 

Other 67 solvents - - 7.07 100.00 
a
The values for relative polarity are normalized from measurements of solvent shifts of absorption spectra.

28
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As most of the reactions are performed at atmospheric pressure representing the most trivial 

choice it is not surprising that only 5% of the reaction entries have pressure data in Reaxys 

(Figure 1c). The strong preference for the atmospheric pressure is the consequence of its 

easiest realization that results another anthropogenic limitation of the present synthetic 

practice. Focusing on reactions performed under non-atmospheric pressure conditions, the 

distribution of pressures is asymmetric with a shift towards higher pressures. In fact, reactions 

realized above atmospheric pressure (82%) are at least four times more frequent than those 

performed below atmospheric pressure (18%). This corresponds to the fact that reactions with 

gases, i.e. most hydrogenation experiments, are performed under pressure and in general 

reactions below atmospheric pressure are technically much more challenging. 

Finally we analyzed the reported yields on a dataset containing almost 6.5 million reactions 

(Figure 1d). Yields are complex measures reflecting not only the reactivity of the reaction 

components, the efficiency of the work up but also the optimization level of reaction 

parameters including those discussed previously. The level of optimization and the 

appropriate yield value that makes a reaction synthetically useful and worth to publish 

depends on many anthropogenic factors, including ethical and cultural aspects of scientific 

publication. Not surprisingly, the distribution of published yields is shifted towards high 

values with a maximum around 90%. Almost 75% of the published reactions have a yield 

exceeding 50% and half of the reactions produced yields higher than 80%. These data indicate 

that efficacy is one of the primary drivers and also an important criterion of synthetic research 

and publication strategies. Unfortunately, careful optimization of reaction parameters is 

avoided too often, which – in combination with efficacy criteria – might lead to interesting 

synthetic transformations with previously unknown products remaining unexplored and 

unpublished. 

 

The trends observed in our analysis of 240 years of synthetic chemistry are not always 

surprising — because the analysis simply reflects the fact that reaction parameters in organic 

chemistry are highly anthropogenic and our environment functions as a mould. Chemists have 

been using the most obvious, often very convenient but somehow limited parameters for their 

experiments. A deeper scrutiny of this survey suggests, however, that while the overall trends 

may not be surprising, the limitations of key parameters are. The role of this serious 

parameter limitation appears both advantageous and critical; it provides sufficient regularities 

for experimentalists which are one of the prerequisites for developing valid and reliable expert 

intuition. The valid intuition’s second condition is also fulfilled by the relatively short 

reaction time that automatically serves as a fast feedback mechanism and helps chemists to 

learn the regularities. Additionally, it seems plausible that these limited key parameters 

(which can be translated into a narrow range of activation energy) are critical to develop a 

certain “sense of energetics” in synthetic organic chemists. This knowledge has been 

automatically associated with structural formulae to evolve a hierarchical way of thinking; as 

exemplified in the functional group concept. Thus the graphical representation of atoms’ and 

bonds’ arrangement within molecules, which is a unique and discipline specific symbol 

system, is not purely qualitative in its nature and this “semi-quantitative” feature explains its 

enormous efficacy in synthesis design and development.  

 

 

Can we reach the maximum synthetic output? 

 

Despite the many major advances of the organic chemistry, and also the good and valid 

intuitive expertise of organic chemists, natural products show much larger scaffold diversity 

indicating that there are many more stable and feasible scaffolds outside the present domain 

of synthetic chemistry knowledge.
29

 Although the limitation of the reaction parameters 
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undoubtedly leads structural limitation, we have to address additional questions: do we reach 

the maximum diversity that chemists could have achieved within the present limitations in the 

reaction parameters? If we consider the effect of these limitations as a kind of “structural 

parochialism”, what is the impact of chemical intuition on that? 

In pursuing these questions, we again turn to cognitive science and attempt to extend this 

knowledge towards organic chemistry. As a process of demystification Herbert Simon 

concluded that not only intuition, but also the scientific thinking is a kind of “nothing-special” 

phenomenon.
30,31

 Simon argued that scientific discovery is a type of problem solving, so it’s 

main characteristic is rather similar to everyday problem-solving methods. As defined, “the 

problem” is consisting of an initial state, a goal state and a set of permissible transformations 

between states, and constrains. The features of these main components can vary significantly 

and span a wide range of being well- to ill-defined. To illustrate this point, making a chemical 

discovery – in terms of cognitive science – is often a problem-solving process with an ill-

defined goal state. Hence, for most of the scientific breakthroughs, there was no previous or 

direct intention to look for a new reaction or catalyst. Alternatively, upon pursuing a well-

defined goal, useful but unexpected results may have been found — an outcome which is also 

welcomed. In contrast, developing a new drug or a new chiral catalyst is an example of a 

well-defined goal-state with an ill-defined initial state. The biggest task in these cases is to 

find appropriate constraints to complete the whole process within the allotted time. 

 

In general, problem solving typically begins with constructing a representation for the 

problem, often described as a problem space in which the search for a solution should occur. 

For most synthetic chemistry problems, beside a thorough literature search, organic chemists 

also retrieve a representation stored in their memory and then this representation is fitted to 

the new situation using an analogical transfer. According to the Piaget’s theory of schema this 

representation – often identified as expertise - can be defined as a set of sophisticated 

strategy.
32

 The schemes can be extracted from the knowledge acquired by the exploration of 

the chemical space. Herbert Simon suggested
33

 that intuition - the ability to know valid 

solutions to problems and decision making - is realized in a recognition process when 

scanning the actual problem to be solved against the accumulated scheme set. During this 

process one can create an intuitive solution by the unique combination of similar schemes 

(assimilation) or extending the present set a schemes (accommodation). Since the schema set 

of experts typically contains a large set of schemes they could use their base of experience to 

identify similar situations and intuitively choose feasible solutions.
34

 Consequently, the 

anthropogenic factors that limit the explored chemical space help intuitive solutions in that 

they limit the scheme set to be screened.  

This is in line with the finding of cognitive science that the current paradigms and legislations 

narrow the problem space, limiting the number of possible solutions. For example, using 

greener methodologies, applying cost-effective chemical production, avoiding the use of toxic 

and hazardous chemicals are recent challenges that create a narrower representation and limit 

the chemical space. Although many of these challenges can be solved by routine operations, 

organic chemists are more and more frequently unable to expand the problem space to fit the 

new problem, and are faced with the task of discovering an entirely different solution. 

Chemists then have to move into larger problem space, but an exhaustive search of all 

possible pathways is beyond human capacity. Hence, for an effective problem solving, a 

judiciously chosen set of constraints is applied to reduce the maze of possibilities to 

manageable proportions. The methods applied can be classified as either strong or weak 

methods depending on the specialist knowledge required to apply them. 

 

Strong methods are typically employed by skilled experts because their accumulated 

knowledge allows the recognition of important clues in challenging problem situations. This 

intuition driven process facilitates the problem solving and the solution is generally found 
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with a minimum of effort. Like chess masters, who recognize a good move within a wink of 

an eye, experts in synthetic organic chemistry are able to heuristically
35

 recognize the relevant 

components of a chemical problem, followed by a fast analysis of possible prospects and 

rapidly provide a solution including which synthetic strategy, reaction conditions, catalysts or 

reagents should be used. In both academic and industrial settings, high-level chemistry 

performance is directly related to the experts’ deep knowledge acquired through prolonged 

studies and deliberate practice. Such strong methods, however, by their very nature, might 

result in a slow but thorough process to expand chemical space and structural diversity. On 

the other hand, strong methods often generate prejudices that prevent new directions being 

taken. New discoveries or the appearance of subfields within organic chemistry affect the 

quality and content of expertise, but their impact is delayed rather than immediate. 

Unfortunately, there is also precedent to suggest that some knowledge is not implemented and 

then forgotten. 

 

Challenges that could not have been solved without fresh insight are typically treated by weak 

problem-solving methods. Such an approach usually requires less knowledge about the field 

and it has different variants, as among which the trial-and-error approach is the most common 

in chemistry. Recognizing, then analysing the result of unexpected chemical reactions has 

been the prerequisite of several important chemical discoveries such as Friedel-Crafts and 

Wittig reactions and hydroboration. While less efficient than so-called strong methods, the 

weak methods are of special interest and utility, because at the boundaries of knowledge the 

problems become less structured, and therefore intuitive recognition becomes less powerful. 

The clear advantage of this approach is that it secures a big expansion potential in organic 

synthesis and also in structural diversity. There have been several discoveries resulting from 

weak methods that opened new vistas in organic chemistry, such as Diels–Alder reaction, 

cross-couplings and olefin metathesis. The role of serendipity has not changed with the time, 

it has still an enormous value and impact on the evolution of pharmaceutical and organic 

chemistry.
36,37,38

 

 

While strong and weak methods result, respectively, in slow and rapid expansion of chemical 

space, the balance of their practice is governed by the fact that chemists are satisficing — a 

word first coined by Simon that combines satisfy with suffice.
39

 In their professional activity, 

the general task of organic chemists is to generate properties, such as an efficient chiral 

catalyst or drug. This often represents a formidable challenge and there is not enough time to 

generate all admissible alternatives and compare their respective merits. Therefore, the 

chemist does not have a choice between a satisfactory and optimal solution in their synthetic 

practice. That is to say, chemists often develop not an optimal but a satisfactory synthetic 

procedure, catalyst or drug molecule. We believe that an earmark of all these situations is the 

recognition of so-called privileged structures in drug
40

 and catalysis
41

 developments. The 

privileged structures are not necessarily the optimal structures, but the satisfactory structures 

that are synthetically easily available. This anchoring effect evidently slows down the search 

for new structures in both drug development and also in catalysis research. It is also not 

surprising that increasing time pressure stimulates risk-averse behaviour in both academia and 

industry which manifests itself in adhering more to privileged structures and current synthetic 

trends. A further roadblock to chemical discoveries can be demand from management for 

“chemical legal precedent”, which often becomes decisive in continued funding.  

 

The same satisficing attitude can also be seen when investigating reaction parameter space. 

Reaction temperatures, such as 25 °C (room temperature), 0 °C (ice bath), or the reflux 

temperature of a particular solvent (Figure 1b, Table 1) are typical examples of these 

preferences. These chosen temperature parameters may not always be optimal for a particular 

transformation. The same can be said for reaction pressure. Clearly, reactions under extreme 
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pressures (>10 kbar), the use of supercritical reaction environments, or methods like flash-

vacuum pyrolysis are all known to synthetic chemists, and can sometimes offer unique 

synthetic possibilities not easily attained by other means.
42

 The above-mentioned techniques 

are, however, generally perceived as being too impractical and thus are not used as often as 

they perhaps should be. In terms of reaction times, as we have already seen, organic chemists 

like to work with transformations that take several minutes to several hours, because using 

these time intervals allows us to monitor and control the reactions in a suitable, satisfying 

manner. If reactions are too fast (milliseconds or seconds) we have difficulties in following 

the progress of the reaction (“flash chemistry”).
43

 A related issue is reactor size. Synthetic 

chemists usually run reactions in centimetre size flasks, probably because the flask size is 

similar to the size of our hands. This reactor size is, however, very often not appropriate for 

controlling chemical transformations on a molecular level, particularly from the viewpoint of 

heat and mass transfer. Working in microstructured devices (microreactors) has many 

advantages and allows chemists to execute extremely fast chemical processes in a reliable 

manner as will be discussed below.
43,44

 Limited availability of starting materials and reagents 

is another factor. Due to constraints on academic (training, promotion and grant timelines) 

and industrial (project timelines) research, synthetic chemists often limit their chemistry to 

readily available (= commercial) starting materials, building blocks, reagents, etc. Not 

surprisingly, therefore, we all use the same reagents and building blocks, and thus obtain 

similar scaffolds with limited diversity. 

 

Interestingly, “structural parochialism” is not limited to chemistry. In their pivotal kinome 

studies Harlow and Knapp showed that most of the interest is focused to a relatively small set 

of protein kinases in both the scientific
45

 and the patent literature,
46

 respectively. As an 

extension of this work Edwards et al.
47

 recently found that most protein research focuses on 

proteins known prior to the sequencing of the human genome. Investigating three classes of 

proteins with pharmaceutical relevance they found that research groups favoured the most 

well-known fraction of kinases, ion channels and nuclear receptors. Edwards et al. concluded 

that, in addition to anthropogenic factors — such as the desire of scientists to dig deeper and 

deeper into their particular research and the risk-averse nature of funding agencies and peer 

review systems — it is the availability of high quality tools that determines the research 

activity. Since studies on protein function and druggability typically require chemical biology 

tools, more specifically chemical probes, the limited diversity of available scaffolds has an 

obvious impact on the set of proteins investigated. Structural limitations therefore have 

knock-on effects in multiple disciplines within the life sciences. 

 

 

How can we extend the available chemical space? 

 

Having learned of the different strategies for tackling the maze of chemical discovery and 

practice, the most obvious question is: which method is the most efficient at expanding 

synthetic chemistry? General advice to ‘think outside the box’ to speed up discoveries is 

rather poorly defined and something of a rhetoric trope, but it does imply thinking unimpeded 

by constraints, and it is thus similar to weak methods. No constraints, however, mean also no 

hierarchy in problem space, so we should expect the success rate to be low. Nevertheless, this 

approach can lead to important advances, resulting in a “revolutionary” science. The opposite 

approach — perhaps an ‘inside the box’ approach — that relies on the hierarchy of chemical 

concepts and the particular chemist’s experience does seem to be more productive in problem 

solving, but it affords slower development in synthetic chemistry. Thus, for the expansion of 

structural diversity, we conclude that strong methods are weak and the weak methods are 

strong. Nevertheless, a combination of the two can be a fruitful approach: after imposing 
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certain constraints to locate the experimental boundaries and hypothesis space it is then 

possible to begin application of a weak method. 

 

Basically we see at least two overlapping options to expand the available chemistry space, 

and more importantly the present domain of synthetic chemistry knowledge. We can expand 

the anthropogenic boundaries in reaction parameters using enabling technologies and in 

parallel we should invest to discover new chemistries. 

 

In the past few years organic chemists have increasingly looked at a number of so-called 

“enabling technologies” to escape some of the anthropogenic limitations described above 

(Figure 2).
48,49
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Figure 2 Enabling technologies expand the traditional temperature/pressure parameter space 

of chemical reactions. Typical reaction times are indicated in parentheses. 

 

 

A plethora of promising new (and sometimes not so new) technologies are available to 

synthetic chemists today. In the context of extending available chemistry, the two most 

promising techniques are arguably microwave chemistry
50

 and microreactor/flow 

technology.
43,44 

In modern microwave instruments, synthetic transformations are typically 

carried out under sealed vessel (autoclave) conditions at temperatures up to 300 °C and a 

maximum operating pressure of 30 bar. This provides the chemist with the possibility to 

superheat reaction mixtures far above the boiling point of the solvent, and thus to move away 

from standard  “reflux conditions” that have been the mainstay of synthetic chemistry for 

several centuries, resulting in the observed mean reaction temperatures discussed above 

(Figure 1b). Applying the Arrhenius equation, [k = A exp(-Ea/RT)], it becomes apparent that 

the sometimes extreme temperatures observable in microwave chemistry allow reactions that 

require several hours at reflux can be completed in just a few minutes or even seconds using 

superheated solvents in an autoclave-type, microwave reactor. There are thousands of 

examples in the literature describe rate-enhancements in chemical transformations performed 
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using sealed vessel microwave technology demonstrating its role on the extension of the 

synthetically available chemical space
50

 This is illustrated by a simple model transformation 

in Figure 3a. While the preparation of benzimidazole at room temperature requires 9 weeks to 

go to completion, at reflux conditions at 100 
o
C this transformation still involves 5 hours of 

heating in an oil bath. Switching to sealed vessel microwave technology the time can be 

shortened to 3 min at 200 
o
C or 1 second(!) at 270 

o
C.

51
  

The ability to perform reactions within minutes rather than hours or days has had a major 

impact on the field of organic and medicinal chemistry in the past decade, and has 

revolutionized — particularly when coupled with suitable automation platforms — the way 

many pharmaceutical companies approach drug discovery today.
52

 In the context of 

expanding chemical space, other features of microwave chemistry are, however, more 

important. Since microwave reactions are typically performed at a carefully optimized 

reaction temperature for the desired reaction pathway (no longer influenced by the boiling 

point of the solvent) these are in many instances cleaner transformations — leading to fewer 

byproducts. The sometimes significantly higher yields avoid time-consuming and costly 

isolation and purification issues, which is precisely why this technology is so popular in the 

drug discovery industry, where often dozens or even hundreds of derivatives of a particular 

scaffold need to be synthesized, and purification is a major cost factor.
52 

 

Most importantly, there are some transformations that simply do not work (or provide very 

low conversions) in a moderate temperature regime and can benefit significantly from the 

high temperatures attainable using microwave conditions. One of the many published 

examples is the palladium-catalyzed direct arylation of benzothiophene by an aryl bromide, 

(Figure 3b). At 110 °C reaction temperature this transformation provides <5% conversion 

after 24 h and is therefore of no practical synthetic value. At 180 °C under otherwise more or 

less identical reaction conditions the conversion is increased to 83% and the desired product 

can in fact be isolated in 75% yield, opening up a novel synthetic pathway to bi(hetero)aryl 

derivatives.
53

 

In some instances, entirely novel chemical scaffolds have been obtained using microwave 

technology.  In the multicomponent condensation shown in Figure 3c, a change in the reaction 

pathway was observed between the experiment carried out in refluxing ethanol (~80 °C) at 

atmospheric pressure, and the sealed-vessel microwave experiment at 150 °C. While the 

condensation reaction at reflux temperature provided the known tricyclic dihydropyridine 

derivative 1, sealed vessel microwave heating of the same reaction mixture to 150 °C (14 bar) 

favored an alternative reaction pathway that led to the hitherto unknown pyrazolo[4,3-

c]quinolizinone scaffold 2.
54

 While this surprising switch in selectivity is due to a simple 

thermal effect,
55

 this example illustrates nicely that the parameter space accessible by 

microwave processing can sometimes lead to unexpected products, favoring reaction 

pathways not seen under conventional processing at lower (often reflux) temperatures. 
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Figure 3 | The impact of enabling technologies on the anthropogenic boundaries. a) 

Enhanced reaction speed using sealed vessel microwave conditions; b) Improved yields using  

microwave conditions; c) Altered reaction pathways applying microwave conditions; d) 

Improved selectivity using “flash chemistry”; e) Hazardous reaction conditions possible using 

flow chemistry. 

 

S

H

Br

NO2

+

Pd catalyst, ligand
additive, base

solvent (DMF or DMA) S

NO2

110 °C, 24 h: <5% conversion
180 °C, 10 min: 83% conversion

b)

c)

N
N
H

Ph

NH2

Ph

O
O

O
Me

Me

N

N
N
H

PhPh

OH

Me

Me

O

H

N
H

N

N
H

PhPh O

Me

Me

150 °C
20 min

+

80 °C
2 h 1

2

NaOEt

EtOH

NH2

NH2

O

OH N
H

N

+

neat (1 M)

rt-270 °C

(solvent)

a) Temp (°C) reaction time

25 °C 9 weeks
60 °C 5 days
100 °C 5 hours
160 °C (4 bar) 10 min
200 °C (9 bar) 3 min
270 °C (27 bar) ~1 s

 
d)

CO2Me

N
Bu

+

OMe

MeO OMe

+
-78 °C

OMe

MeO OMe

N
Bu

CO2Me

OMe

MeO OMe

N
Bu

CO2Me
N

MeO2C

Bu+

batch: 37% 32%
microreactor: 92% 4%

3 4 5 6

e)

R CN, H+

solvent

NaN3, H2O

HN3

220 °C

N

N
H

N

N

R

 
 



 13 

 

 

Another technique that is gaining popularity in the synthetic chemistry community is 

microreactor technology.
43,44

 Microreaction technology is generally defined as the continuous 

flow processing of reactions within structured channels of less than 300 m diameter. 

Because of the high surface-to-volume ratio in microchannels of this type, heat transfer is 

very efficient and reaction temperatures in microreactors can be changed efficiently by 

application or removal of heat. Importantly, due to the microstructured environment, mixing 

is very efficient and therefore even very rapid chemical reactions  where the reaction time is 

faster than the mixing time  can be reliably performed using microreaction technology. A 

key factor is the accurate control of the residence time in the continuous flow environment 

that can influence the observed selectivity.
43,44

 Numerous applications of microreaction 

technology (e.g. Figure 3d) where rapid heat and mass transfer are essential to the success of 

extremely rapid chemical transformations (sometimes referred to as “flash chemistry”) have 

been reported in the literature.
43

 

Another area where microreaction technology (or flow chemistry in general) has been applied 

to extend the normal reaction parameter space of organic chemists is the concept of “Novel 

Process Windows”. Here, the general notion is to operate at conditions which considerably 

speed up conversion rates, while maintaining selectivity. This is achieved by, for example, 

step-change increases in temperature and pressure or by a simplification of process 

protocols.
56,57 

Although this is in some ways similar in concept to microwave heating, a clear 

advantage of performing high-temperature/high-pressure (high-T/p) chemistry under 

continuous flow conditions is that significantly higher pressures can be attained in a flow 

environment, and the ability to scale the desired chemistry to production volumes.
44

 Another 

key advantage in the use of microreactors is that synthetic intermediates can be generated and 

consumed in situ — eliminating the need to store toxic reactive of explosive intermediates 

and thus making the protocol safer. Figure 3e illustrates the safe use of hydrazoic acid, an 

extremely explosive and toxic material, generated in situ in a microreactor for the synthesis of 

tetrazoles in a continuous flow regime is highlighted.
58

. The chemical intuition of most 

traditional chemists would strictly avoid reactions of this type, particularly at the high 

temperatures applied. In this context microreactor technologies provide viable alternatives 

expanding the available chemical space. Until now, microreactor technology has mainly been 

applied by the chemical manufacturing and engineering communities to improve the 

efficiency of (often known) chemical processes. This is now changing and it can be expected 

that this enabling technology will be very useful to generate new chemical scaffolds and to 

thus to expand chemical space. Pharmaceutical R&D is clearly one of the first sectors 

introducing continuous flow syntheses in discovery and process chemistry settings.
59

 

In the context of the cognitive approach enabling technologies are strong methods that mainly 

allow thinking inside the box. These techniques extend the previously available range of 

reaction parameters including reaction temperature, pressure and reaction time. The 

increasing use of microwave technology,
50,52

 microreactor chemistry,
43,44

 flow procedures and 

flash chemistry,
43

 however can not replace intuitive discoveries that can result in new 

reactions and completely new chemistries. The farseeing exploration of new opportunities 

within the present knowledge space could only be realized by weak methods that have 

verified their utility several times in the history of organic chemistry. 

 

We now attempt to locate what we regard as some of the present “boundaries” —fields of 

research within organic chemistry that we think have a potential to expand the knowledge 

space of synthetic organic chemistry in the near future. Inventions related to new types of 

reactivity are the typical examples of such out of the box research. Our selection of examples 

involves homogenous gold catalysis, C-H activation and frustrated Lewis pair chemistry and 
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necessarily far from complete but demonstrates the power of weak methods in the expansion 

of the available chemical space. 

Gold and its complexes have been long considered to be rather poor catalysts with limited 

utility, however, recent advances in homogeneous gold catalysis have sharply contradicted 

this presumption. The strong and selective  acidity of the gold complexes, coupled with their 

potential to stabilize cationic intermediates, enabled unique catalytic reactivity that would be 

difficult to achieve by other metal or activation mode.
60

. It has been demonstrated that gold 

complexes are able promote a cycloisomerisation, cycloaddition and sigmatropic 

rearrangement, oxidative couplings and enantioselective catalysis, thus gold catalysis has 

become the “the gold standard” in versatility and performance for carbo- and heterocycles and 

natural products synthesis.
61,62 

 

The challenge to develop a selective catalytic transformation of an arbitrary C-H bond into a 

more reactive functionality under mild condition is the Holy Grail of catalysis.
63,64

 The 

enormity of the task here is reflected in our standard notation system — simple C–H bonds 

are usually considered so unreactive that the hydrogens are usually omitted in Lewis 

structures.  Although C-H activation has historically rest upon radical chemistry, there is a 

fundamental shift in research focus nowadays due to selective C-H activation capacity of 

transition metals in arenes and alkanes. Several coordination-directed C-H activation 

methodologies have been reported which could discern different type of C-H bonds indicating 

the future potential of this chemistry. The further expansion of the selective C-H activation 

would not only be a new possibility in total synthesis in general, but also could increase the 

speed of synthetic capacity exponentially, in a non-conventional manner. 

 

The field of frustrated Lewis pair chemistry (FLP),
65,66

 an immensely important area of 

chemistry, originates from the fact that sterically congested Lewis acid-base pairs are not able 

to form a classical donor-acceptor complex, thus the unquenched nature of these systems can 

be exploited for several unique and unprecedented transformations. In this manner, enormous 

strain can be released upon activation which unique activation mode has so far been the 

exclusive feature of enzymatic catalysis. The most outstanding FLP reactivity discovered is 

the metal-free activation of hydrogen at ambient conditions —  boron–phosphorus or boron–

nitrogen FLPs have been used to achieve a metal-free catalytic hydrogenation. The field of 

frustrated Lewis pairs perhaps the least developed of the three areas we have chosen to 

highlight and a large body of fundamental chemistry remains to be investigated but the 

achievements so far suggest to us that it may lead to a significant shift in catalyst design and 

development. In fact, FLPs often behave like transition metals and are able to react with a 

variety of functionalities. Further steric tuning could open the way for unusual reaction 

selectivities. For example, hydrogenation of C=C double bonds can be achieved selectively in 

the presence of more reactive functionality.
67,68

 Since FLP is a general concept for dual 

activation utilizing extremely strong acid and base together, we expect that a lot of new 

reactivity will emerge which is expected to foster new chemistry and the synthesis of new 

scaffolds. 

 

Another option of expanding the present boundaries is to create new synthetic platforms to 

join molecular pieces efficiently and rapidly to each other. These synthetic strategies would 

maximize the capacity of already known chemistries and help the effective sampling of the 

chemistry space provided by newly discovered reactivities. Within the vast available tools of 

molecular connectivity, we think that the following approaches have and will have a 

foreseeable potential: the domino or cascade reactions, click chemistry and combinatorial 

approaches. 

Domino or cascade reactions enable synthetic chemists to build complex structures in one-pot 

reactions in a highly orchestrated multistep sequence.
69

 Among many possibilities, the 
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development of multicomponent organocatalytic reactions has a particular importance since 

this approach closely resembles endogenous biosynthetic pathways producing the high 

structural variety of natural products.
70

 From simple building blocks, several assembly lines 

can be conceived which provide densely functionalized chiral molecules with 3-6 contiguous 

chiral centres.
71

 Organocascade and organoiterative approaches obviously allow the 

expansion of structural diversity in organic chemistry and are expected to have an impact on 

total synthesis strategies.
72

 Additionally, we believe that this powerful tool should be 

considered as a strategic methodology for future medicinal chemistry developments. Not only 

patentable structures, but also a multitude of natural-product-like structures with 

advantageous physico-chemical properties can be assembled in a fast and robust manner. This 

would represent a notable departure from today’s pharmaceutical practice, from the 

(hetero)aryl flatland chemistry.
73

 

The click reactions are a set of powerful, reliable, but highly selective reactions that can be 

utilized for the rapid construction of new compounds and combinatorial libraries. The concept 

was introduced by Sharpless, Kolb and Finn
74

 and have gained widespread applications 

ranging from drug discovery, material science, nanotechnology, and bioconjugation.
75,76,77

 

Further expansion of the click reaction diversity and the field of applicability of this 

straightforward synthetic strategy is expected in future which can fundamentally contribute to 

creation of molecules with novel and desired function. 

Combinatorial chemistry aims to prepare a large number of compounds in a single process. 

This approach is a tour de force undertaking to generate a desired molecular property. The 

original methodology has been advanced to build in some evolutionary element into the 

synthesis using a dynamic approach.
78

 Additionally, a fundamental but still unexplored 

alternative has been developed: the DNA-programmed combinatorial chemistry.
79,80,81

 In this 

case the DNA functions as a gene and orchestrates the assembly of small molecular 

components. Combined with the techniques of molecular biology, a molecule with a desired 

property can be evolved. Compared to the classical chemical synthesis, this technique would 

allow the mapping of a markedly larger chemical space in a rapid manner, thus it can have an 

enormous potential in future chemistry. 

 

Although the few examples discussed here cannot demonstrate the scope and importance of 

new chemistries in expanding the anthropogenic limits, however, they exemplify how weak 

problem-solving could contribute to the extension of the synthetic chemistry knowledge space 

and the intuitive chemistry domain. 

 

 

Conclusion 

Based on the analysis of a large set of chemical reactions, we found that anthropogenic factors 

limit the reaction parameters and thus the scope of synthetic chemistry. The limitation of 

reaction parameters appears to be of critical importance but interestingly it is also 

advantageous. On the one hand, these factors contribute significantly to the markedly narrow 

parameter space applied in organic syntheses and consequently - with other components - 

they are responsible for the limited chemistry space explored to date. On the other hand, 

however, they provide sufficient regularities for experimentalists that facilitate developing 

valid and reliable expert intuition. Anthropogenic factors therefore represent a link between 

chemical intuition and the available chemistry space. 

  

Applying the results of cognitive science we argue that the methods typically applied in 

problem solving and decision making have an additional impact on the present limits of 

organic chemistry knowledge and chemical space. Classifying applied methods as either 

strong or weak methods it is possible to observe that strong methods are typically used by 

skilled experts and could result in a slow but thorough process to expand chemical space and 
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structural diversity. In contrast, there are fundamental challenges requiring weak approaches 

of problem solving. Although these methods are often less efficient they present considerable 

advantages at the boundaries, where expert intuition becomes less powerful. Our 

understanding is therefore that the strong methods are weak and the weak methods are strong 

in the expansion of chemical space and structural diversity. It seems that organic chemistry 

would benefit most from their special combination as strong methods help locating the 

present boundaries, while weak methods would suggest escape routes towards new findings. 

 

We strongly believe that being aware of anthropogenic limits and its consequences would 

facilitate the conscious extension of the organic chemistry knowledge space (Figure 4). 

 

 
 

Figure 4 The impact of weak and strong methods on the parameter and knowledge space of 

synthetic organic chemistry. Weak methods, represented by red arrows, extend the knowledge 

space at least by two means. Discovering new reactivities (dark red dots), exemplified by 

organocatalysis (OC), frustrated Lewis pairs (FLP) and C-H activation (CH) opens new roads 

to the previously unexplored chemistry space. New synthetic platforms (orange dots) such as 

cascade reactons (CR), dynamic chemistry (DC), click chemistry (CLK), and multicomponent 

reactions (MCR) improve the sampling of the knowledge space. Enabling technologies (green 

dots) such as high pressure chemistry (HighP), microwave technology (MW), flash pyrolysis 

(Pyro) and microreactor flow chemistry (Flow) expand the parameter space of chemical 

reactions. 

 

 

 Technological improvements such as microwave, “flash” and flow chemistry expand the 

parameter space toward the “off-road” chemistry space. These technologies might contribute 

significantly to reach previously unexplored chemistry space by making new reactions 

available, extending the scope of known reactions and improving their overall performance. 

Moving deliberately toward extremities in parameter space, intuitive approaches such as 

reaction and reagent design and catalytic initiatives enhance the chance to find Terra 

Incognita in chemistry with potential impact on the expansion of the chemical space and also 

the knowledge domain of organic chemistry. 
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