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Abstract: The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of 

nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal 

residues (446-449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A 

mutation was reported to decrease the nuclease activity, but a detailed analysis of the role of 

the highly positive and flexible N-terminus is still missing. Here we present the study of four 

mutants, with a decreased activity in the following order: NColE7 >> KGNK > KGNG ~ 

GGNK > GGNG. At the same time the folding, the metal-ion, and the DNA-binding affinity 

were unaffected by the mutations as revealed by linear and circular dichroism spectroscopy, 

isothermal calorimetric titrations and gel mobility shift experiments. Semiempirical quantum 

chemical calculations and molecular dynamics simulations revealed that K446, K449 and/or 

the N-terminal amino group are able to approach the active centre in the absence of the other 

positively charged residues. The results suggested a complex role of the N-terminus in the 

catalytic process that could be exploited in the design of a controlled nuclease. 

 

Keywords: DNA cleavage; flow linear dichroism; ITC; positively charged N-terminal 

residues; Zn2+ binding 

50-75-word statement, written for a broader audience: 

NColE7, a nonspecific metallonuclease binds a Zn2+-ion in its C-terminal catalytic centre. The 

quality, number and position of positively charged residues at the flexible N-terminus (446-

KRNK-449) influence the catalytic activity. This feature could be exploited for allosteric 

control and modulation of the activity in an artificial nuclease. We provide a systematic study 

on the effect of N-terminal mutations on protein function along with the folding, metal ion 

and DNA binding. 
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Introduction 

Colicin E7 (ColE7) is a nuclease toxin produced by Escherichia coli for protection 

from related bacteria.1, 2 It has three functional domains: the receptor binding, the membrane 

translocation and the nuclease domain.3, 4 The nuclease domain (NColE7) enters the 

cytoplasm of the target cell after the cleavage of ColE7 by a specific periplasmic protease 

recognizing the R447 residue.5 NColE7 kills the attacked cell through the nonspecific 

digestion of the chromosomal DNA.2 The host cell is protected against nuclease activity by 

coexpressing an immunity protein (Im7) that inhibits the substrate binding of NColE7.6, 7  

The mechanism of DNA hydrolysis catalyzed by nuclease colicins was discussed 

extensively. The proposals largely depend on the quality of the metal ion.6, 8-14 The catalytic 

centre is a ββα-metal binding HNH motif15-17 at the C-terminus of these enzymes (Fig. 1). 

The metal cofactor in the active site of NColE7 is a Zn2+-ion.9 In contrast, Zn2+ was inhibitory 

for NColE9 - a related nuclease with high sequence identity.11, 12 The presence of the metal 

ion is not necessary for substrate binding, but is essential for the hydrolytic reaction.18 It binds 

and electrostatically activates the scissile phosphodiester bond. In NColE7 the Zn2+-ion is 

coordinated by the side-chains of three histidine residues (H544, H569 and H573). A well 

conserved histidine (H545 in NColE7) is responsible for generating the nucleophilic 

hydroxide by deprotonating a water molecule (Fig. S1.). 9, 19, 20 The general acid residue that 

protonates the leaving group was not yet identified. In most nucleases it is a water molecule 

coordinated to the metal ion, which is usually Mg2+.21 However, such a coordinated water 

molecule wasn’t detected in the distorted tetrahedral arrangement around the Zn2+-ion in 

NColE7/DNA complex. R538, Q542 and H569 were speculated to provide the proton for the 

leaving group in NColE722 in analogy to NColE9.23 Recently a shuttle mechanism was 

suggested in which the leaving group is protonated by the hydrogen ion originating from the 

same water molecule that initiated the nucleophilic attack.24 
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Fig. 1 near here 

The N-terminal R447 and the C-terminal HNH motif are close in space in NColE7 

[Fig. 1(A)]. This arginine was proposed to increase the DNA binding affinity.5 It is intriguing 

why this single residue – lying outside the DNA-binding helices – influences the catalytic 

reaction. In NColE9 the arginine corresponding to R447 in NColE7 was supposed to bind the 

substrate and stabilize the pentavalent transition state.25, 26 Based on the crystal structures of 

Vvn – an another HNH nuclease – it was also hypothesized that the arginine side-chain binds 

and stabilizes the cleaved DNA to decelerate the reverse reaction.8, 27 R447A mutation in 

NColE7 significantly reduced its in vitro DNase activity,5 while previously we showed that 

the cytotoxicity of NColE7 is completely lost upon deletion of the KRNK sequence (residues 

446-449) at the N-terminus.28 This suggests that the presence of a positively charged residue 

at the N-terminus is essential for the catalytic activity and the K446 and/or K449 residues may 

partly take over the role of the missing arginine. Positively charged residues are often found 

in a similar orientation close to the active site in the published crystal structures of HNH-

nucleases.28 This property could be generally exploited in the design and fine tuning of the 

catalytic activity of an artificial nuclease with intramolecular allosteric control.29 Therefore, 

the purpose of this study was to investigate the effect of the mutations of the N-terminal 

positive residues on the catalytic activity. NColE7 and its four mutants (with KGNK, KGNG, 

GGNK and GGNG amino acids within the 446-449 segment of the sequence - see [Fig. 1(B)]) 

were expressed, purified and studied by experimental (mass spectrometry, isothermal 

calorimetric titration, agarose gel mobility shift assays, circular and linear dichroism 

spectroscopy) and computational (semiempirical quantum chemical calculations and 

molecular dynamics) techniques. 
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Results 

Preparation and DNA cleavage of NColE7 and its mutants 

The GST fusion forms of NColE7 and its mutants were co-expressed with the Im7 

immunity protein to avoid cytotoxicity. The complexes were purified with GST affinity 

chromatography and the GST-tag was cleaved on column (Fig. S2.) The nucleases were 

separated from the immunity protein by adjusting the pH to 3.0.7 At this pH the His side-

chains are protonated and consequently, the purified proteins did not contain metal ion, as 

confirmed by their mass spectra. Upon addition of one equivalent zinc(II)-acetate, however, 

all nucleases were detected in their holo forms (Table I). The GPLGSPEF sequence encoded 

by pGEX-6P-1 vector remained at the N-terminus of the NColE7 variants after the Human 

rhinovirus C3 protease cleavage. This sequence was considered not to interfere with the 

properties investigated below.28 

Table I. near here 

The cleavage of the pUC19 plasmid by the NColE7 variant proteins in their Zn2+-

loaded form was monitored by agarose gel electrophoresis. The supercoiled form of the 

plasmid already disappeared at the first measurement point (approximately 2 minutes after 

mixing the solutions) in the presence of NColE7, while it was still detectable after 140 

minutes in the DNA solutions containing the NColE7 mutants (Fig. 2.)  

Fig. 2 near here 

Flow linear dichroism (FLD) as a non-invasive technique was simultaneously applied 

for monitoring the digestion of long linear calf thymus DNA chains. The signal intensity of 

the FLD spectra depends on the ability of the long filiform DNA molecules to align, i.e. on 

the length, conformation and rigidity of the double helix.30-32 Due to the cleavage by 

nucleases the DNA chains shortened and aquired a lower degree of orientation in the Couette 

flow cell. Thus, the absolute value of FLD intensity decreased during the measurement (Fig. 
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S3), while the absorbance was also constant during the reaction, indicating that no DNA was 

lost by precipitation (Fig. S4). The absolute value of FLD intensities at 260 nm plotted as a 

function of time in Fig. 3 allows for the comparison of the nuclease activity of the mutants 

under the same conditions provided. 

Fig. 3 near here 

 

Folding and Zn
2+

 binding of the proteins 

The synchrotron radiation circular dichroism (SRCD) spectra of the various mutants 

are shown in Fig. 4(A). The shape of the spectra for all studied proteins carrying mutations in 

the region of KRNK amino acids is similar to the spectrum of NColE7. The interaction with 

metal ion [Fig. 4(B)] does not yield significant protein refolding. It is likely that the structure 

of the NColE7 variants is preformed for the metal ion binding, i.e. the purified proteins were 

properly folded and capable of strong Zn2+ binding. The change upon Zn2+ binding was 

similar for all mutants and to that of NColE9 published earlier.33 Addition of excess Zn2+ did 

not affect the structure. 

Fig. 4 near here 

Quantitative data on the Zn2+ binding of mutants were obtained by isothermal 

microcalorimetric titrations (ITC). An exotherm heat effect was observed at the beginning of 

the titrations. This effect could not be avoided and no suitable model for analysis was found 

that could well describe the whole curve. Therefore, in each case the first part of the curve 

was ignored during the analysis (Fig. 5). Similar curves with even more intense changes at the 

beginning of the titration of the zinc transporter YiiP protein with ZnCl2 
34 were observed, 

presumably due to the formation of oligomeric complexes. Although dimerization of the 

NColE7 variants may also occur,7 further investigations are needed to understand this 

phenomenon. 
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Fig. 5 near here 

 

DNA binding 

Based on the earlier results, we expected that the N-terminal mutations will also significantly 

influence the DNA binding of the proteins. The presence of the metal ion in the active site of 

NColE7 is necessary for the catalytic activity, but it is not required for the DNA binding.18 

Accordingly, EDTA was applied to prevent the cleavage of the DNA in the experiments 

below. CT-DNA solution was titrated with the proteins (Fig. 6). Interaction with proteins lead 

to a decreased flow linear dichroism signal of DNA due to the change in the overall shape and 

thus, to the decrease of the orientation ability of the molecules. The cleavage of DNA was 

excluded based on the comparison with gel electrophoresis experiments. The UV absorption 

spectra confirmed that precipitation of the DNA-protein complexes did not significantly affect 

the data (Fig. S5). The order of the DNA binding based on the protein concentration required 

to decrease the FLD signal of DNA to its half intensity is as follows: NColE7 (1.0 µM) > 

KGNG (1.8 µM) ~ KGNK (2.0 µM) ~ GGNK (2.4 µM) > GGNG (3.7 µM). The FLD data, 

however, reflect the combined effect of the formation of the protein/DNA complexes and the 

subsequent conformation change of the DNA. Therefore, the apparent Kd values related to 

DNA binding were calculated from the agarose gel electrophoresis experiments carried out 

with a 13bp DNA fragment (Fig. S6). Kd values between 0.15 and 0.32 µM were obtained for 

the DNA binding affinities of NColE7 and its mutants against a 13 bp fragment.  

Fig. 6 near here 

 

Molecular dynamics 

Molecular dynamics (MD) simulations were performed with the NColE7, KGNK, 

KGNG, GGNK and GGNG protein sequences starting from the residue 446, ignoring the 8 
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amino acids part from the GST cleavage in the experiments [Fig. 1(B)]. The models contained 

Zn2+-bound proteins, with the metal ion in the HNH motif also coordinated by a phosphate 

ion. The root mean square deviation (RMSD) from the reference structure at 0 ps is higher for 

the mutants than for NColE7 (Fig. S7). The lysine containing mutants are similar to each 

other, but the increased RMSD for the GGNG mutant indicated that this structure changed to 

the largest extent. It was shown that in the KGNK and KGNG mutants the side-chain of 

K446, while in GGNK and GGNG the N-terminal amino group approached the phosphate ion 

(Figs. 7 (A) and S7). This supports the experimental observation that these positively charged 

groups might be able to partially take over the role of the arginine and can promote the 

catalytic activity. However, for GGNG only a few structures with such conformation were 

found, and due to the high flexibility of this chain, the N-terminus often turned out from the 

active site. 

Fig. 7 near here 

 

Semi-empirical calculations 

In order to get more information about the fine structure of the active site, we 

optimized the geometry of the proteins by semiempirical quantum chemical calculations, 

handling the whole molecule on the PM6 level in MOPAC2009 (MOZYME method) with 

implicit water surroundings. The alignment to the optimized structure of NColE7 yielded an 

RMSD of 0.086 nm for KGNG, 0.087 nm for GGNK and 0.113 nm for GGNG. Small 

deviations from NColE7 occurred mainly at the mutated N-termini, but could also be detected 

in the loop between the two β-strands of the HNH motif. The phosphate ion mimicking the 

scissile phosphodiester bond was also displaced [Fig. 7 (B)]. This effect can be related to the 

decreased activity and supports the experimental data. 
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Discussion 

The nuclease domain of ColE7 (NColE7) and its four N-terminal mutants [Fig. 1 (B)] 

were expressed and purified. Gel electrophoresis and FLD spectroscopic experiments 

demonstrated that the catalytic activity of the mutants significantly decreased compared to 

NColE7. The results revealed a substantial decrease of the enzymatic activity (Figs. 2 and 3) 

due to the R447G mutation, in agreement with the previous observations with R447E and 

R447A mutants.5 According to LD results, the observed order of nuclease activity was 

NColE7 >> KGNK > GGNK ~ KGNG > GGNG (Fig. 3). This order implies that K446 and 

K449 can promote the reaction in the absence of R447 to a low extent. The catalytic activity 

was not completely abolished in any mutant. The activity of the GGNG mutant in contrast to 

the ΔN4-NColE7 protein28 can be explained either by the positive N-terminal amino group at 

position G438 and/or the interactions of the backbone. The N-terminal part interacts directly 

with the DNA-binding helix, as well as with the loop of HNH motif [Fig. 1(A)]. The structure 

of this loop is essential for cleavage 35-37. 

The reason for the dramatic change in enzymatic activity was systematically studied. 

As shown by CD-spectroscopy (Fig. 4), the mutations did not significantly affect the 

distribution of the secondary elements in the structure of the protein, suggesting that all four 

mutants maintained the native NColE7 folding. Similar result was obtained by the comparison 

of CD spectra of the WT ColE7 with those of the K446E, R447E and K446E/R447E mutants 

in the presence of Im7.5 

According to the ITC results (Fig. 5) the Kd values are in nM range, similarly as it was 

estimated for the Zn2+ binding of NColE9.38 The data collected in Table II demonstrate that 

all the mutants bound Zn2+-ion as strongly as NColE7 with 1:1 stoichiometry. The binding 

was enthalpy-favored resulting in large ∆H values ranging from –40 to –30 kcal/mol. The 
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mutations had no obvious effect on Zn2+-binding: Kd ~ 13 nM was obtained for all of the 

proteins within the experimental error suggesting that the difference in metal binding can not 

be the reason for the decreased activity of the mutants compared to NColE7. 

Table II. near here 

In an earlier publication the significantly increased KM value of the R447A mutant 

compared to NColE7 was related to its decreased DNA binding affinity.5 The Kd values range 

between ~ 0.15 µM and 0.32 µM for NColE7 and its variants (Table II), revealing that the 

changes at the N-terminus did not significantly affect the DNA binding affinity. This is in 

accordance with the fact that the strong DNA binding part of NColE7 is the central helical 

section.9, 35, 36, 39 Only small differences were detected by FLD spectroscopy and agarose gel 

mobility shift assays in the DNA binding of the mutants and NColE7 (Fig. 6). These results 

imply the functional role of the N-terminal positively charged groups either by taking part in 

the molecular mechanism of the reaction, or influencing the conformation and electronic 

properties of the bound DNA molecule.  

The computational results showed that there is a cooperation between the N- and C-

termini of the protein. MD simulations pointed out that the N-terminal amino group and the 

lysine side-chains are capable to bind the scissile phosphate in the absence of R447 [Figs. 

7(A) and S7]. According to semiempirical quantum chemical calculations the active site of 

the mutants is slightly distorted, and thus the scissile phosphate is displaced [Fig. 7(B)].  

Both experimental and computational data revealed that R447 is the most efficient, but 

the K446 and K449 side-chains and/or the N-terminal amino group can also promote the 

catalytic reaction. The phenomenon resembles to an intramolecular allosteric process in that 

the N-terminal flexible chain has to approach the C-terminal active site during reaction. This 

knowledge may be applied to modulate the catalytic activity of an NColE7 based artificial 

nuclease. 
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Materials and methods 

Cloning, protein expression and purification  

The pQE70 plasmid containing the NColE7 and Im7 immunity protein genes was a 

generous gift from prof. K.-F. Chak, Institute of Biochemistry and Molecular Biology, 

National Yang Ming University, Taipei, Taiwan.1, 2 From this template the primers applied in 

PCR (collected in Table S1.) amplified DNA segments including the genes of the native or 

mutated NColE7 as well as the Im7 protein. The obtained fragments were cloned into a 

pGEX-6P-1 vector (GE Healthcare BioSci.) providing an N-terminal glutathione-S-

transferase (GST) affinity fusion tag. The plasmids were transformed into E. coli DH10B cells 

for DNA cloning and into E. coli BL21 (DE3) cells for protein production in 3×650 ml 

LB/Amp culture. At OD600 0.6-0.7 the protein expression was induced with isopropyl β-D-1-

thiogalactoside (IPTG, final concentration 0.1 mM), and the incubation was continued for 

further two hours at 25 °C. Cells were then sedimented by centrifugation and the pellets were 

resuspended in 50 ml PBS buffer (0.14 M NaCl, 2.7 mM KCl, 10.0 mM Na2HPO4, 1.8 mM 

KH2PO4, pH 7.3) by sonication. The soluble fractions were loaded on a GST affinity 

chromatography column (GSTPrepFF16/10, GE Healthcare BioSci.). The fusion proteins 

were cleaved on column with Human rhinovirus C3 protease40 - sold as PreScission protease 

by GE Healthcare - to remove the GST tag. 20 ml of 10 µM protease in PBS was loaded on 

the column and the reaction was continued overnight at 4 °C or 2 hours at room temperature 

followed by the elution with PBS. The fractions containing the nuclease mutants in complex 

with the immunity protein as well as the protease were collected. To disrupt the interaction 

between the NColE7 mutants and the Im7 protein the pH was adjusted to 3.0 after a 3× 

dilution with a 20 mM Gly/HCl buffer. The components were then separated on a Sepharose 
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SP FF 16/10 cation exchange column with a binding buffer 20 mM Gly/HCl pH = 3.0 and a 

gradient of 0-2 M NaCl in 30×column volume (CV). The immunity protein was eluted at pH 

= 8.0 with PBS conatining 2M NaCl. The fractions of the nucleases or Im7 were concentrated 

by Amicon ultrafilter with 5 kDa cutoff, and the buffer was exchanged to 20 mM HEPES, pH 

= 7.7. The sequences of the purified mutant proteins in comparison with NColE7 are shown in 

Fig. 1(B). 

 

Nano-electrospray ionization mass spectrometry (nano-ESI-MS) 

Mass spectra were obtained on a LCT Premier (Waters) instrument equipped with a 

Nanoflow Electrospray Ionization (nano-ESI) source and a time-of-flight (TOF) analyzer. The 

instrument was operated in positive ion mode and it was calibrated using 100 mg/ml CsI in 50 

% 2-propanol in the m/z range from 600 to 12000. Samples were sprayed from middle size 

Au/Pd-coated borosilicate glass capillary needles (Proxeon) loaded with 3 µl protein solution. 

The protein concentration was between 10 – 20 µM in 500 mM ammonium acetate (Sigma) 

buffer. For the study of metal binding, 1 equivalent Zn2+-acetate was added to the protein 

samples before measurement. The de-salting of the protein solution and buffer exchange to 

the volatile buffer was done using Micro BioSpin chromatography column (BioRad). The 

needle voltage was typically around 1200 V and 50 V cone voltage was applied, with a cone 

gas maintained at 20 L/h and the source temperature was maintained at 50 °C. The recorded 

m/z data were deconvoluted using the MassLynxTM v4.1 (Waters) software equipped with the 

MaxEnt1 algorithm. The high charge states of the multiply charged spectrum, ranging from 

+10 to +17, were used to calculate the apparent mass.  

 

Isothermal calorimetry (ITC) 
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Isothermal calorimetric titrations were performed on a MicroCal Auto ITC-200 (GE) 

instrument. The protein samples (~ 50 µM) were prepared by 12 hour dialysis in 7000 

MWCO Thermo Scientific Slide-A-Lyzer casettes, against 20 mM cacodylate buffer, pH = 

7.0. ZnCl2 was dissolved in the same buffer. The ionization enthalpy of cacodylate – applied 

as buffer – is close to zero (–0.47 kcal/mol41), so the contribution of 

protonation/deprotonation processes, if there were any present, was negligible in the observed 

∆H. The dilution heat of ZnCl2 with the buffer was determined for each experiment and the 

integrated data of dilution heats were subtracted from the corresponding data of protein 

titrations. A control titration of the KGNK mutant with plain buffer was done showing no 

significant effects (data not shown). The enthalpy change during the titrations of 200 µl 

protein solutions with 2 µl aliquots of 400 µM ZnCl2 up to 40 µl (spacing of 240 s) can be 

consequently attributed to the metal binding or competition processes. Instead of degassing 

the samples before titration the plates were shortly centrifuged.  

 

Gel mobility shift assays 

In the protein-DNA binding studies the concentration of the 13 base pair 

oligonucleotide was 0.2 µM, and the protein final concentration ranged between 0 and 7 µM. 

The 31P-radiolabelled DNA was hybridized from one single oligonucleotide with 

complementary sequence at each end forming a loop. The samples were run on 6% native 

PAGE at 4 °C . The reaction mixture contained 4 mM NaCl, 4 mM HEPES buffer (pH=7.9) 

and 100 µM EDTA to inhibit DNA digestion. For DNA cleavage studies 450 ng/well 2686 

base pairs pUC19 plasmid DNA was applied, and the protein concentration was 2.8 µM. 

Zn2+-ions were added to proteins prior the reaction in 1:1 molar ratio. 10 µl of the reaction 

was loaded onto an ethidium bromide containing 1% agarose gel. The electrophoresis was 

performed in a Bio-Rad Wide Mini Sub Cell® GT system at 6.7 V/cm in TAE buffer (40 mM 
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Tris, 20 mM acetic acid, and 1 mM EDTA, pH = 8.0). For comparison 6 µl of the Bio-Rad 1 

kbp marker DNA was also loaded to the gel. 

 

Circular dichroism spectroscopy 

The Synchrotron Radiation Circular Dichroism (SRCD) spectra were recorded at the 

SRCD facility at the CD1 beamline at the Institute for Storage Ring Facilities (ISA), 

University of Aarhus, Denmark.42, 43 All spectra were recorded with 1 nm steps and a dwell 

time of 2 s per step, in 100.4 µm quartz cells (SUPRASIL, Hellma GmbH, Germany). The 

concentration of the protein solutions was 3.2 × 10–5 M in 10 mM HEPES, pH = 7.7.  

 

Linear dichroism spectroscopy 

Flow linear dichroism spectra were measured on a Jasco-815 CD spectrophotometer 

equipped for linear dichroism spectroscopy (LD), using a microvolume Couette flow device 

as described in.44 An additional quartz lens was mounted to allow for focusing onto the 

sample in the Couette cell, which was positioned as close to the photomultiplier as possible in 

the J-815 sample compartment. In the Couette cell, an outer quartz cylinder rotates, and an 

inner quartz rod is static, the annular gap is 0.25 mm giving a combined light path of 0.5 mm. 

Water circulation through the metal block of the flow device thermostated the cell to 298.0 K. 

The sample volume was 70 µl and 3000 rpm rotation was applied. The optical bandwidth was 

1 nm and the spectra were recorded in continuous mode between 190 and 400 nm with 50 

nm/min scanning speed, 1 s integration time, 0.5 nm data pitch, and with 15 L/min nitrogen 

flow. LD of double stranded DNA samples yields a characteristic negative signal at the 

absorbance maximum of the DNA bases (ca. 260 nm) since the transition moments of the 

base π- π* transitions are located in the plane of the bases, and as these are oriented 

orthogonally with respect to the axis of DNA helix.45 
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Protein-DNA binding was studied with a 130 µM (final concentration calculated for 

base pairs) calf thymus CT-DNA sample. The mixture contained 60 µM EDTA, 17 mM 

KH2PO4, 2.4 mM HEPES (the pH of both buffers was adjusted to 7.7) and 0-5 µM protein. 

The solutions were incubated for 10 min before recording the spectra. The incubation time did 

not influence the results. 

The cleavage of 130 µM (bp) CT-DNA by different mutants was followed for 8 hours 

(1 spectrum/h). The proteins (40 µM) were incubated with one equivalent of Zn(Ac)2 (40 µM) 

for 30 min at room temperature before the reaction started. The final concentration of both the 

protein and Zn2+-ions was 0.5 µM. 720 µl of reaction mixture was incubated at 37 °C and in 

each hour 70 µl aliquot was taken for LD test. All solutions were in mixed buffers of 17 mM 

KH2PO4 and 2.4 mM HEPES, the pH of both buffers was adjusted to 7.7. The spectra were 

smoothed with the means-movement method, convolution width of 11.  

 

Computational methods  

Initial conformation of NColE7 and the shortened mutants was obtained from a crystal 

structure 1M08.7 The original N-terminus of NColE7 was restored by an M446K mutation. In 

all models the proteins had uncapped termini (i.e. NH3
+ and COO– groups).  

Molecular dynamics (MD) calculations were performed with GROMACS 4.05,46 with 

the force field Gromos 53a6.47 The ionizable residues were charged according to the default 

pKa values at pH = 7.2 detected by PropKa 3.0.48 Each protein was placed in a cubic box with 

edge size of ca. 8 nm, and solvated by explicit SPC/E water model containing about 16000 

equilibrated water molecules. The system was neutralized with Cl– ions replacing water 

molecules according to the electrostatic potential of the system points. Energy minimization 

was carried out with the steepest descent method. 200 ps position restrained dynamics was 

performed in NVT ensemble to equilibrate the system (solvate and generate initial velocities 
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with Maxwell distribution) including explicit water molecules. 25 ns MD simulations were 

performed in the NPT ensemble with periodic box conditions. The integration step was 2 fs. 

The temperature was set to 300 K and isotropic Berendsen p-coupling and T-coupling was 

applied. For Coulomb interactions PME was applied with 0.9 nm cut-off for electrostatic and 

1.6 nm for van der Waals interactions. The dielectric constant was set to 1.0. The LINCS 

constraint algorithm was used. Trajectories were analyzed starting at 500 ps. 

Semi-empirical quantum chemical computations were performed on the proteins 

including a Zn2+ and a phosphate ion with the PM6 method implemented in MOPAC2009.49-

52 Localized molecular orbitals were applied by the MOZYME52 model. The solvation was 

considered by COSMO method53 with the dielectric constant of 78.4. The geometry 

optimization was carried out by the L-BFGS method after the initial minimization of the 

hydrogen positions. The gradient norm was set to 1.0 kcal/mol/Å. The thermodynamic 

parameters were computed with the PM6 method, then recalculated in one SCF cycle with the 

PM6-DH2 correction. 

Electronic Supplementary Information is available for this manuscript: Table S1. 

Sequences of the primers applied for the amplification of the genes of NColE7 variants. 

Figure S1. Proposed mechanism of DNA-cleavage by NColE7. Figure S2. SDS-PAGE 

monitoring of protein purification. CT-DNA cleavage monitored by FLD Figure S3. and UV-

Vis spectroscopy Figure S4. The cleavage of 130 µM (base pairs) CT-DNA by different 

nucleases (0.5 µM) as followed by flow linear dichroism spectroscopy. Figure S5. A) Flow 

linear dichroism calibration curve of CT-DNA in the 55-130 µM concentration range. B) 

Absorption changes during the titration of CT-DNA with NColE7 and its mutants. Figure S6. 

Titration of a radiolabelled 13 bp DNA with NColE7 and GGNG. Figure S7. Results of MD 

simulations: A) RMSD (root mean square deviation) of the studied proteins, as compared to 

the starting structure of the simulation. B) Distance of the positively charged residues from 
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the metal ion in the active centre in the MD simulation of the zinc-bound proteins containing 

a phosphate ion in the active center.  
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Figure legends 

 

Figure 1. (A) Crystal structure of NColE7 (PDB: 1MZ86) in complex with a Zn2+ and a 

phosphate ion. The HNH motif is in orange and the N-terminal loop is in blue. Among the N-

terminal amino acids, R447 is the closest residue to the phosphate ion that forms a bridge 

between the Zn2+-ion and R447. Hydrogen bonds of the backbone of the N-terminus are also 

shown. (B) Sequences of the purified NColE7 variants. The proteins containing the black part 

of the sequence denoted by NColE7 will be referred to as wild type (WT) NColE7 in the 

following text. The four mutants are named KGNK, KGNG, GGNK and GGNG based on the 

446-449 segments of the sequence, respectively. The changes compared to the NColE7 

sequence are highlighted in red. The remaining sequence after the Human rhinovirus C3 

protease cleavage encoded by pGEX-6P-1 plasmid is written in blue.  

 

Figure 2. Digestion of 28 nM pUC19 (that is 74 µM calculated for base pairs) by 2.8 µM 

NColE7 mutants, incubated with one equivalent zinc(II)-acetate before mixing with DNA. 

The samples were kept at 37 °C and run subsequently on 1% agarose gel. In control 

experiments (data not shown) cleavage of the plasmid DNA incubated with only zinc(II)-

acetate was not observed. 1 kb Molecular Ruler (BioRad) served as the reference. 

 

Figure 3. Cleavage of 130 µM (base pairs) CT-DNA by different nucleases (0.5 µM) 

followed by flow linear dichroism spectroscopy. The proteins were pre-incubated for 30 min 

in the presence of one equivalent ZnCl2. The LD signal intensity at 260 nm is taken from 

baseline corrected spectra of aliquots of the stock solutions, incubated at 37 °C. Control 
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experiments included CT-DNA incubated at 37 °C without or in the presence of 0.5 µM 

ZnCl2, 0.5 µM NColE7 and 60 µM EDTA or 0.5 µM NColE7 and 1 µM Im7. 

 

Figure 4. (A) SRCD spectra of the NColE7 variant proteins. (B) SRCD spectra of WT 

NColE7 in the absence (two independent measurements) and upon the addition of Zn2+-ions. 

All spectra were normalized to the same 31.6 µM protein concentration. 

 

Figure 5. Microcalorimetric titration of 50 µM KGNG in 20 mM cacodylate buffer, pH = 7.0. 

The red points at the beginning were ignored during the curve evaluation. 

 

Figure 6. The effect of the CT-DNA binding of NColE7 and the four mutants on the flow 

linear dichroism signal intensity at 260 nm. 130 µM CT-DNA (calculated for base pairs) was 

incubated with 0-5 µM protein and 60 µM EDTA in each case.  

 

Figure 7. (A) Snapshots at 20 ns of the simulations of the mutant proteins: KGNK in red, 

KGNG in blue, GGNK in cyan and GGNG in green. The Zn2+-ions are shown by spheres and 

the phosphate ion by sticks. (B) Optimized structure of the mutants and the WT NColE7. 

NColE7 is in grey, KGNG in blue, GGNK in cyan, and GGNG in green. Molecules were 

aligned by PyMOL. 
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Table I. Comparison of the expected and measured molecular masses of the purified proteins. 

The numbers refer to the holo form of the WT NColE7 and its mutants containing one Zn2+-

ion. The spectra were recorded after short incubation of the proteins with one equivalent of 

zinc(II)-acetate.  

 

Protein Expected mass Da Measured mass Da 

NColE7 15875.2 15874.9 

KGNK 15776.1 15776.2 

KGNG 15705.0 15704.5 

GGNK 15705.0 15704.8 

GGNG 15633.9 15632.8 

Im7 10961.1 10961.5 / 10412.8a 

 

a The immunity protein was found in two forms corresponding to the full length sequence and 

with four histidines missing from the His-tag at the C-terminus of the protein. 
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Table II. Zn2+ and DNA binding affinities of NColE7 variants. Micro ITC titrations of 50 µM 

proteins with ZnCl2 stock solution were performed in 20 mM cacodylate buffer at pH = 7.0. 

DNA binding of the 13 bp DNA was monitored by agarose gel electrophoresis. For the 

analysis a model with one Zn2+ and one DNA binding site was applied. Kd is the apparent 

dissociation constant under the given condition. The fitting errors are also provided. 

 

Zn2+ binding DNA binding Protein 

Stoichiometry Kd nM Kd µM 

NColE7 1.2 16.6 ± 3.5 0.16 ± 0.05 

KGNK 0.9 13.2 ± 1.5 0.15 ± 0.05 

KGNG 1.0 13.4 ± 1.4 0.32 ± 0.07 

GGNK 1.2 11.9 ± 2.6 0.30 ± 0.06 

GGNG 0.9 12.8 ± 1.9  0.30 ± 0.06  
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