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Abstract 

 

Phosphorylation by the cyclin-dependent kinase 1 (Cdk1) adjacent to nuclear localization 

segments (NLSs) is an important mechanism of regulation of nucleocytoplasmic transport. 

However, no systematic survey has yet been performed in human cells to analyze this regulatory 

process, and the corresponding cell-cycle dynamics have not yet been investigated. Here, we 

focused on the human proteome and found that numerous proteins, previously not identified in 

this context, are associated with Cdk1-dependent phosphorylation sites adjacent to their NLSs. 

Interestingly, these proteins are involved in key regulatory events of DNA repair, epigenetics, or 

RNA editing and splicing. This finding indicates that cell-cycle dependent events of genome 

editing and gene expression profiling may be controlled by nucleocytoplasmic trafficking. For in-

depth investigations, we selected a number of these proteins and analyzed how point mutations, 

expected to modify the phosphorylation ability of the NLS segments, perturb nucleocytoplasmic 

localization. In each case, we found that mutations mimicking hyper-phosphorylation abolish 

nuclear import processes. To understand the mechanism underlying these phenomena, we 

performed a video microscopy-based kinetic analysis to obtain information on cell-cycle 

dynamics on a model protein, dUTPase. We show that the NLS-adjacent phosphorylation by 

Cdk1 of human dUTPase, an enzyme essential for genomic integrity, results in dynamic cell 

cycle-dependent distribution of the protein. Non-phosphorylatable mutants have drastically 

altered protein re-import characteristics into the nucleus during the G1 phase. Our results 

suggest a dynamic Cdk1-driven mechanism of regulation of the nuclear proteome composition 

during the cell cycle.  
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 Introduction 

 

Eukaryotic cells distribute proteins into various cellular compartments and these intracellular 

trafficking processes are under multiple levels of control. The transport of large macromolecules 

into and out of the nucleus depends on karyopherins, a group of proteins specifically recognizing 

short peptide segments in cargo proteins 1. Peptide segments involved in these processes are 

termed nuclear localization signals and nuclear export signals (NLSs and NESs, respectively) 2. 

The recognition of NLS and NES sequences by karyopherins can be effectively modulated by 

introducing negatively charged phosphate groups adjacent to the localization signals via protein 

phosphorylation. Such modifications have been shown to have a drastic effect on changing the 

cellular distribution of several proteins3-5. The most extensive studies in this respect have been 

performed in yeast, while the human proteome has not yet been systematically investigated in 

this context 6.  

 

The best-characterized nuclear import pathway employs the transport factors importin-α (Impα; 

also known as karyopherin-α), and importin-β (Impβ). Impα recognizes the cargo in the 

cytoplasm through binding to the classical nuclear localization signals (cNLSs), and the cargo 

enters the nucleus through nuclear pore complexes as a trimeric Impα:Impβ:cargo complex. The 

directionality of transport through the nuclear pore complexes is determined by the small 

GTPase Ran, which has an asymmetric distribution of its nucleotide-bound states between the 

cytoplasm and the nucleus; it binds to Impβ inside the nucleus in its GTP-bound state, 

dissociating the import complex and releasing the cargo. Most cNLSs contain either one 

(monopartite) or two (separated by a linker sequence of usually 10-12 residues; bipartite) 

clusters of positively charged amino acids. Combining structural studies and interaction data for 

various cNLSs and their mutants has enabled the molecular understanding of the cNLS:Impα 

recognition and the definition of cNLS consensus sequences. Impα contains two cNLS-binding 

regions, the major and minor sites. Bipartite cNLSs span both binding sites, while monopartite 

cNLSs usually bind preferentially to the major site. Individual amino acids in the cNLS bind to 

specific pockets in the cNLS-binding sites; in the bipartite cNLS consensus KRX10-12KRRK (X 

corresponds to any amino acid) 7, the N-terminal basic cluster corresponding to positions P1’–

P2’ binds to the minor site, while the C-terminal cluster corresponding to positions P2–P5 binds 

to the major site. 
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Phosphorylation of proteins is mediated by protein kinases. The specificity of phosphorylation by 

a particular kinase depends on the composition of residues flanking the phosphorylation site (so-

called peptide specificity) 8, although it is further influenced by the context that the kinase finds 

itself in, including various forms of substrate recruitment 9. For example, the core consensus 

sequence for cyclin-dependent kinase 1 (Cdk1)-dependent phosphorylation sites has been 

described as [S/T*]-P-X-[K/R], where S/T* is the phosphorylated serine or threonine 10-12. More 

extensive analyses of known substrates and other available experimental data have uncovered 

further more subtle determinants of specificity for Cdk1 and other protein kinases 8, 13, 14 

 

Both NLSs and phosphorylation motifs can be described as linear motifs. Linear motifs are short 

sequences found most frequently in the disordered regions of proteins, and usually function in 

cellular signaling and regulation, by binding to protein interaction domains or by being the target 

of post-translational modifications 15. Although they pose difficulty for computational analysis 

because of their small size, significant progress has been made in the recent years in the 

computational identification of a number of different types of linear motifs and the integration of 

diverse types of experimental data into these computational approaches 15. In particular, we 

have developed some of the most reliable approaches for the identification of NLSs 16 and 

protein phosphorylation sites 13, 17. While computational predictions are often hampered by less 

than desired accuracies, combined prediction of two associated motifs can in fact lead to 

increased accuracy 18. 

 

The composition of the nuclear proteome defines the availability of the different proteins within 

the cell nucleus for dedicated functions. The role of cell-cycle dependent nucleocytoplasmic 

trafficking in regulatory processes of gene expression regulation, DNA damage and repair, and 

other genome editing pathways have been partially investigated in yeast 6 but have not yet been 

assessed systematically in mammalian cells. A fundamental difference between the two systems 

is the closed mitosis of yeast. During closed mitosis the nuclear membrane remains intact and 

the microtubule-based spindle extends within the nucleus 19. In case of open mitosis, cells 

temporally lack their nuclear envelope in M phase. Thus, after mitosis the nuclear proteome has 

to be reconstituted from proteins that had passively diffused into the cytoplasm (expect for the 

ones chromatin associated) and become excluded from the nucleus as the newly forming 

nuclear envelope is initially tightly attached to chromatin 20. The modulation of the nuclear re-
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import of cargoes could give an additional layer of regulation of nuclear proteome composition 

throughout the cell cycle. 

 

In the present study, we first carried out a computational analysis of the human proteome to 

identify putative regulatory Cdk1-dependent phosphorylation sites in the vicinity of NLSs in 

nuclear proteins. We then validated the computational predictions experimentally for a number of 

proteins, comparing the nucleocytoplasmic localization of hyper-phosphorylation mimicking 

(hyper-P; with a glutamic acid substitution) and non-phosphorylatable hypo-phosphorylation 

(hypo-P; with a glutamine substitution) mutants to the phosphorylatable wild-type (WT) protein in 

a new cellular assay. Finally, we selected one particular protein as an in-depth case study to 

analyze the dynamics of phosphorylation-regulated nuclear transport during the cell-cycle. We 

selected human dUTPase, a protein involved in genomic integrity 21, for this case study; where 

we have previously characterized the molecular and structural basis of NLS-adjacent 

phosphorylation on nuclear import 22. Namely, the introduction of negative charge into the P-1 

position rearranges the accommodation pattern of the dUTPase NLS in the importin-α NLS 

binding site. This results in the loss of critical hydrogen bonds between the importin-α surface 

and the NLS peptide, impairing nuclear import 22. Here, we show that Cdk1-dependent 

phosphorylation of dUTPase results in a scheduled dynamic pattern of nuclear availability in the 

newly-formed daughter cells. Jointly, our results uncover a ubiquitous mechanism for the 

regulation of nuclear trafficking of human proteins by Cdk1 during the cell cycle and provide a 

molecular explanation for the negative regulation of nuclear import by NLS-adjacent Cdk1-

dependent phosphorylation. 
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Results/Discussion 

 

The effect of NLS-adjacent phosphorylation on nucleocytoplasmic protein distribution during the 

cell cycle 

 

Earlier publications identified several yeast 6 and human proteins 3, 4, 23, where NLS-adjacent 

phosphorylation was shown to inhibit nuclear import. In these cases, phosphorylation took place 

at either the P0 or the P-1 positions of the NLS, immediately N-terminal to the large basic cluster 

of the NLS 24. Yeast Cdc28 or its human orthologue Cdk1 were proposed to be responsible for 

most of these phosphorylation events, thus giving these proteins a cell cycle-specific localization 

pattern 6. Cdc28 and Cdk1 phosphorylate a number of proteins that control critical cell cycle 

events, including DNA replication and segregation, transcriptional programs and cell 

morphogenesis 25. The available results clearly argue for the importance of Cdk1-kinase-

regulated nuclear transport for several yeast proteins involved in the regulation of cell cycle 

progression, DNA replication, DNA damage recognition and repair. As we presently show, 

similar regulation may occur for human proteins of similar function (Table 1). 

 

We set out to perform a human proteome-wide bioinformatics screen with the aim of identifying 

human proteins possessing a Cdk1-dependent phosphorylation site at either P0 or P-1 positions 

of their NLS. We combined two state-of-the-art bioinformatics tools for prediction of NLSs 

(NucImport 16) and phosphorylation sites (Predikin 13) that we ourselves developed previously. 

NucImport uses a probabilistic (Bayesian network) approach to recognize a variety of NLSs by 

integrating amino acid sequence and interaction data and predicts the sequence position of the 

NLS, out-performing other available methods 16. Predikin uses the concept of specificity-

determining residues to predict peptide specificity of protein kinases and identify substrates for 

protein kinases 14, 17, 26; the tool outperformed other competing tools in the protein kinase section 

of the Peptide Recognition Domain specificity prediction category of the 2009 DREAM4 

challenge (an independent test using unpublished data) 13. We first used Predikin 13 to determine 

how often a Ser or Thr residue was predicted to be phosphorylated, regardless of the import 

status or presence of NLS. This background frequency of phosphorylation was determined to be 

0.136 (c.f. Experimental Procedures). We then used NucImport 16 to predict the location of 

classical NLSs. For each NLS location, we determined the frequency of (predicted) 
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phosphorylation of the P0 position to be 0.393 (p = 2.348e-30) and of the P-1 position to be 

0.234 (p = 9.530e-05). Hence, both positions are significantly enriched for phosphorylation. 

 

Overall, with a conservative setting of both predictors (see Experimental Procedures for details), 

we found 92 proteins with a phosphorylation site in the P0 position and 44 proteins with a 

phosphorylation site in the P-1 position, considering all protein isoforms (if considering only 

parent proteins, this corresponds to 50 and 22, respectively; Table S1). Among these proteins, 

there are numerous examples for which, to our knowledge, no previous experimental data have 

been reported as being relevant to phosphorylation-dependent nuclear translocation. Using 

Gene Ontology (GO) term annotations, we found proteins involved in DNA damage recognition 

and repair, gene expression, epigenetics, RNA-editing and several transcription factors (Table 1 

and S2). For any of these functions, strict and regulated scheduling of nuclear availability has 

clear and imminent significance, arguing for the need for further direct experimental study. We 

therefore selected several identified proteins for experimental validation. 

 

Cellular screen to evaluate NLS function for selected proteins 

 

To efficiently test the effect of phosphorylation on nuclear import for a number of proteins, we 

designed a sensitive model system. We chose DsRed-monomer labeled β-galactosidase, a well-

described bacterial protein, as an inert fluorescent cargo, upon which different NLSs can be 

attached. The construct is strictly cytoplasmic, unless fused to a functional NLS, such as the 

well-established SV40 large T-antigen (TAg) NLS (Figure 1A). In order to evaluate phenotypic 

characteristics of any further NLSs, we set a measure scale for five distinct cellular distribution 

patterns (Figure 1B). We tested this NLS reporter system using the WT and mutant NLSs of the 

Swi6 protein (Figure 2A), which has been previously described to be phosphorylated at the P-1 

position of its NLS by Cdc28, resulting in the inhibition of its nuclear transport 6, 27-29. The 

mutations were introduced in such a way that the negative charge mimicking the phosphorylated 

residue was introduced either at the P-2, P-1 or P0 positions 24, while the structurally important 

proline residue was not perturbed (Figure 2B).  

 

The results argue that the exact position of the phosphorylated residue is a crucial determining 

factor in the localization of NLS-containing cargo. Our results are in good agreement with 

previous work proposing that phosphorylation at P0 or P-1 positions impedes nuclear import, 
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while on the other hand, phosphorylation at upstream positions, for example in the P-2 position, 

have the opposite effect by enhancing nuclear import 30.  

 

Using the validated screening system, we tested a selection of proteins involved in a variety of 

cellular functions (Table 1 and references therein). Our selections included six proteins with 

predicted Cdk1 phosphorylation sites at the P0 position, and seven proteins with predicted Cdk1 

phosphorylation sites at the P-1 position (Table S3). The resulting localization data in Figure 3 

show that in each case, substitution of the appropriate Ser or Thr, predicted to be 

phosphorylated by Cdk1, by Glu (hyper-P mimicking) consistently leads to significantly weaker 

nuclear accumulation or even to complete nuclear exclusion, compared to the WT protein. The 

efficiency of nuclear targeting differed among the different NLSs. Our experimental data further 

argue for the inhibitory effect of the phosphorylation at the P-1 and P0 positions on nuclear 

import, and confirms the validity of the in silico analysis. Among the hits of the in silico screening 

dUTPase was not present due to the strict settings NucImport. However its NLS was tested in 

our reporter system, which showed nuclear exclusion upon Glu substitution in the P-1 position in 

agreement with our previous data on full length protein (Figure S1A) 22. Our analysis thus 

identified numerous human proteins potentially sharing a similar Cdk1-driven regulatory pattern 

(Table 1 and S1). These proteins are involved in crucial cellular functions such as DNA damage 

recognition and repair, transcriptional regulation, cell cycle control, epigenetics and RNA editing. 

 

For several proteins where NLS-adjacent Cdk1-driven phosphorylation has been reported 

previously, its actual effects could not be properly deciphered when using only hypo-P mimicking 

mutants in static or kinetic experiments. Therefore, we checked the effect of hyper-P mimicking 

mutations at the previously established Cdk1 sites of UNG2 (S14 phosphorylation 31, 32), UBA1 

(S4 phosphorylation 33) and p53 (S315 and S312 phosphorylation in human and in mouse, 

respectively 34) (Figure 4). The NLS segments were cloned into our pGal-DsRed NLS reporter 

construct and the full length ORFs were fused with DsRed-monomer for localization studies. 

These phosphorylation sites are predicted to be located in the P-2 position adjacent to their 

NLSs. As expected, a negative charge introduced at this position did not abolish the nuclear 

localization of either of these constructs (both with the NLS reporter and the full length proteins). 

However, if we used mutagenesis to move this negative charge to the P-1 position, the impeding 

effect on nuclear import is clearly observable in case of UBA1 and UNG2 (Figure 4) with the 

NLS reporter constructs. In case of the UNG2 it is clearly visible that the nuclear localization is 



9 

 

enhanced in the S14E mutant (in P-2 position), and the nuclear targeting capability of the WT 

NLS is evident when compared to the NLS impaired mutant, K18N (Figure S1B and C) 35. 

Phosphorylation of the P-2 positions might enhance nuclear accumulation of these proteins after 

mitosis. Possible reason why the full length UNG2 does not show the same localization pattern 

as the NLS reporter construct is that it has a complex NLS which not exclusively relies on the 

S14PARKRHA sequence. Perturbation of this segment does not lead to complete nuclear 

exclusion, other sequences also have a role in proper localization of UNG2 35. p53, which 

harbors a bipartite NLS sequence, might have the flexibility to compensate these negative 

effects by the additional binding to the minor NLS-binding site.  

 

Video microscopy-based kinetic analyses 

 

To have a better understanding of the effect of the described phosphorylation on the dynamic 

distribution of proteins throughout the cell cycle, we used dUTPase as a model. This enzyme 

catalyzes the hydrolysis of dUTP into dUMP and inorganic pyrophosphate 36-38 preventing dUMP 

incorporation into DNA 39, 40. dUTPase is an important contributor to genomic integrity from 

bacteria to human 21, 41-46 and possesses a nuclear isoform in different eukaryotes 41, 47, 48. We 

have previously shown that the cell cycle-dependent phosphorylation of dUTPase by Cdk1 at the 

S11 position (which is located in the P-1 position of its NLS 47, 49) abolishes its nuclear import 

and is linked to M phase 23.  

 

In order to follow the dynamic alterations of dUTPase localization pattern during the cell cycle, 

we followed individual cells after transfection with the appropriate fluorescent constructs by video 

microscopy. The dUTPase pool exhibits marked cell cycle-dependent dynamic behavior (Figure 

5A). When the new nuclear envelope appears, dUTPase is excluded from the nucleus. Following 

cytokinesis, it takes a considerable time before the nuclear space is again re-populated with WT 

dUTPase (Video S1 left panel). Interestingly, for the S11Q mutant, the nuclear repopulation 

dynamics is markedly different (Video S1 right panel). The S11E mutant, by contrast, remains 

cytoplasmic during the entire cell cycle (Video S2). 

 

Using this approach, we could measure apparent rate constants for nuclear re-accumulation of 

the WT and the S11Q mutant dUTPases (Figure 5B). The same approach cannot be applied to 

the S11E mutant, as it never enters the nucleus in our experiments. We found that the major 
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difference between the WT protein and the S11Q mutant is that the WT protein re-enters the 

nucleus with a considerable lag. Following the lag phase, the apparent rate constants of nuclear 

accumulation are identical for the WT protein (kobs = 0.0044 min-1 ± 7%) and for the S11Q mutant 

(kobs = 0.0043 min-1 ± 8%). Importantly, the mean total fluorescence of the cells (Fn+c) did not 

change during our observations (Figure 5B inset), indicating the steady-state of the investigated 

fluorescent protein pool. The apparent single exponential kinetics we observe likely represents 

the result of multiple undistinguishable transport events. The fact that the wild type protein and 

the non-phosphorylatable mutant S11Q show different kinetic behaviour is clearly due to the 

change in their phosphorylatable properties.  

 

In order to directly address the pattern of nucleocytoplasmic trafficking of a given protein pool, 

we repeated the video-microscopy experiments by transfecting the fluorescent proteins 

themselves, instead of plasmids that lead to continuous expression. Cells transfected with 

recombinantly expressed WT and S11Q DsR-DUT proteins show the same dynamic events of 

dUTPase pool distribution as those in the plasmid transfection experiments (Figure S2 and 

Videos S3-S4). 

 

To investigate whether the exogenous DsR-DUT constructs (originating either from transfected 

plasmids or the recombinant protein itself) used in the video-microscopy experiments can be 

phosphorylated similarly to the endogenous protein, we performed western blot experiments 

(Figure 5C and Figure S3B). We used a dUTPase-specific antibody generated against the full-

length protein (anti-hDUT 44), in combination with the dUTPase S11-phosphoserine specific 

antibody (anti-S11P-hDUT 23). Figure 5C shows that 293T cells transfected with the appropriate 

fusion protein-encoding plasmids produce a WT DsR-DUT protein pool that can be 

phosphorylated. The recognition of dUTPase by the anti-S11P-hDUT antibody is observed only 

if Ser11 can be phosphorylated, providing evidence for the specificity of this antibody. The 

endogenous dUTPase pool is also visible at a lower molecular mass position. Neither forms of 

recombinant proteins produced in E. coli are recognized by the anti-S11P-hDUT antibody, 

indicating that they are not phosphorylated at Ser11 (Figure S3B). Within the cells transfected 

with recombinantly produced DsR-DUT protein itself, however, the cognate phosphorylation 

event targeting Ser11 can take place. The anti-hDUT antibody recognizes all dUTPase construct 

forms, as well as the endogenous dUTPase pool, independently of the point mutation or 

phosphorylation state (Figure S3B). 
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The P-mimicking mutation leads to the exclusion from the nucleus, resulting in an interesting 

observation that the nuclei of the daughter cells become populated with dUTPase protein only 

after a significant delay. These results indicate that the potential of the WT protein to be 

phosphorylated within the nucleus may have physiological implications manifested in its retarded 

re-import in the daughter cells. The non-phosphorylatable S11Q construct does not exhibit this 

behavior. We suggest that this mechanism may also operate for the proteins listed in Table S1, 

because they contain similar phosphorylatable NLSs. Assuming similar nuclear re-import 

characteristics as that of dUTPase, Cdk1 kinase-induced phosphorylation at these NLS positions 

would significantly alter the nuclear proteome re-establishment in the daughter cells after the M 

phase (Figure 6). 

 

Biological significance of cell-cycle dependent re-shaping of the nuclear proteome 

 

Our studies suggested that Cdk1 kinase-induced phosphorylation of many human proteins 

potentially alter their localization patterns during the cell cycle. Specifically, the most detailed 

kinetic analysis performed in our case study using dUTPase indicated that the re-import into the 

nucleus is delayed significantly if the relevant site close to the NLS segment is phosphorylated. 

Although the mechanism by which this cell-cycle-dependent localization pattern is governed 

seems to be general (cf Figure 6), the exact physiological consequences of these effects depend 

on the actual protein and its role in cellular pathways. Below, we discuss these protein-specific 

characteristics. 

 

In the case of dUTPase, Cdk1-induced phosphorylation of the protein within the nucleus at the 

G2/M phase will have a prominent effect on the dUTPase pool localization in daughter cells. 

Namely, dUTPase nuclear import is hampered until the phosphate moiety is removed, thus 

nuclear re-population in the daughter cells takes place only after a considerable time delay. 

dUTPase nuclear accumulation reaches its maximal extent around the S phase and the protein 

remains strictly nuclear until the onset of mitosis (Figure 5A). Recently, it has been shown that 

nuclear localization of the de novo thymidylate biosynthesis pathway is required for the 

maintenance of genomic integrity 50. This is achieved by sumoylation-mediated nuclear transport 

of the enzymes of the pathway, composed of thymidylate synthase (TYMS), dihydrofolate 

reductase (DHFR), and serine hydroxymethyltransferase (SHMT1 and SHMT2α) 51, 52. For all 
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these enzymes, this partial nuclear translocation takes place at the onset of S phase, and they 

remain in the nucleus until the G2/M phases, while they are cytoplasmic during G1 phase, 

enabling de novo thymidylate synthesis during DNA replication and repair 53. dUTPase catalyzes 

the hydrolysis of dUTP into pyrophosphate and dUMP; ensuring the substrate for TYMS, and 

also low cellular dUTP/dTTP ratios, thus inhibiting uracil accumulation in the DNA 21. Here we 

show that dUTPase nuclear accumulation also reaches its maximal extent during the S phase, 

similarly to the de novo thymidylate biosynthesis enzymes. Because it was suggested that de 

novo thymidylate biosynthesis does not occur in the cytoplasm at rates sufficient to prevent 

uracil misincorporation into DNA 50, it is reasonable to propose that dUTPase might also be 

necessary to accompany this enzyme complex into the nucleus for proper genomic DNA 

maintenance. Partially due to S phase activation of ribonucleotide reductase subunits, regulated 

by transcriptional and post-transcriptional processes, the dNTP pool in mammalian cells 

increases 20-fold at this cell cycle stage compared to G1 54. Thus scheduled nuclear availability 

of de novo thymidylate biosynthesis enzymes, along with dUTPase and ribonucleotide 

reductase, may ensure strictly regulated dNTP pool composition for DNA polymerases.          

      

Table 1 provides a list for other human proteins where we found potential Cdk1 sites and 

suggest that phosphorylation regulates their nuclear import and thus their availability in the 

nucleus. These proteins are involved in crucial cellular functions such as DNA damage 

recognition and repair, transcriptional regulation, cell cycle control, epigenetics and RNA editing. 

Clearly, for proteins involved in such functions, the fine-tuned regulation of nuclear availability is 

of high significance. For example, cullin-4B plays a role in cell cycle regulation together with 

cyclin-L2, which is also involved in pre-mRNA splicing, alongside with apoptosis induction and 

cell-cycle arrest in cancer cells. The ataxia telangiectasia and Rad3-related protein, BRCA1-A 

complex subunit RAP80 and histone acetyltransferase p300 are key components of DNA 

damage repair. We also found that many of these proteins may act in an interconnected manner; 

for example, during DNA damage, the protein kinase ATR phosphorylates the bromodomain 

adjacent to Zn-finger domain protein 2a, the BRCA1-A complex subunit RAP80, the Ras-

responsive element binding protein 1, and the Ser/Arg repetitive matrix protein 2 55. For proteins 

involved in DNA repair (ATR, cullin 4B, BRCA1-A subunit RAP80, transcription factor AP-4), the 

tight connection between cell-cycle checkpoints and DNA damage recognition and response 

pathways may be the underlying reason for their scheduled absence or presence within the 

nucleus 56. Such regulation of protein subcellular distribution may assist in maintaining the 
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correct logistics of scheduling and executing different tasks during the cell cycle along with the 

regulation of mRNA nucleocytoplasmic trafficking 57. In such a way, the use of crucial 

metabolites involved in energy and signal transduction can also be correctly distributed among 

cell division, replication and repair tasks. Interestingly, examination of SNP databases revealed 

two instances where a given SNP may overwrite the Cdk1 driven regulation, however, no data 

for either frequency or physiological relevance of these SNPs has been reported (Table S1). 

 

Conclusions 

 

Dynamic exchange of macromolecules between the cytoplasm and the nucleus is regulated by 

several mechanisms. Here we suggest that nuclear import is significantly delayed for those 

cellular proteins where a Cdk1 kinase-dependent phosphorylation event occurs during the M 

phase at a relevant site in the vicinity of the NLS (Figure 6).  

 

Two bioinformatics tools, namely NucImport and Predikin, were used to identify the scope of the 

hypothesized mechanism and to isolate candidate targets. We established the statistical basis 

for identifying relevant hits and their functional (gene ontology) associations, in ways not 

supported by the tools individually. Albeit not implemented as a tool in its own right, our 

integrated approach, may help to develop further studies that aim to understand how (other) 

post-translational modifications can dynamically modulate functions of sequence motifs 

(including localization signals). Our analysis showed that (i) positions P-1 and P0 relative to 

predicted human NLSs are both significantly enriched for predicted Cdk1 phosphorylation; and  

(ii) 44 and 92 protein isoforms (with phosphorylation of NLS P-1 and P0 sites, respectively) are 

associated with a range of functions that require strict and regulated scheduling of nuclear 

availability.  

 

Our cellular reporter assay confirmed the computational predictions of proteins regulated by 

NLS-adjacent phosphorylation and showed that Cdk1 phosphorylation at P-1 and P0 positions of 

human NLSs impedes nuclear import. Although the observed effects may be modulated in the 

full-length proteins, our results clearly provide proof-of-concept. Namely, we propose that the cell 

cycle-dependent changes in the nuclear proteome may have an important role in selecting the 

correct set of proteins to be present in the nucleus during the different stages of the cell cycle. 

Cdk1 phosphorylation events at the M phase will result in proteins that cannot be re-imported 
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into the nucleus after cytokinesis, because phosphorylation of the P-1 and P0 positions impedes 

their binding to importin-α. Therefore, several proteins will only appear in the nucleus of the 

daughter cells after a significant delay following dephosphorylation or de novo protein synthesis. 

Dephosphorylation in the cytoplasm may require some time and might be under yet another 

level of regulation, giving cells further plasticity in fine-tuning their nuclear proteome. The 

regulatory pattern we described may prevent accumulation of proteins within the nucleus that 

could perturb cellular functions, for example by initiating expression of genes with an incorrect 

schedule. This regulation might also be further fine-tuned by cytoplasmic anchoring processes, 

facilitated by phosphorylation events 58. However, the exact purpose of this regulation might 

differ for each protein, and should be checked individually in detail. 

 

Cell cycle-dependent changes in the nuclear proteome are of utmost importance in the prompt 

regulation of cellular events, and protein kinases such as Cdk1 cooperate to control the cell 

cycle dynamics. After cell mitosis, daughter cells form their own nuclear envelope and begin with 

a limited set of proteins that remain strictly adherent to the chromosomes during cytokinesis 20. 

Organism, like yeast, with closed mitosis rely on active protein transport in every phase of their 

cell-cycle while cells with open mitosis thus have the unique opportunity of re-setting the protein 

composition within the nucleus of daughter cells after every division. We conclude that Cdk1-

driven phosphorylation at P-1 or P0 positions of the NLSs makes a significant contribution to this 

re-shaping process of the nuclear proteome after the M phase. 
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Materials and methods 

 

Computational analyses of NLSs and phosphorylation motifs 

The computational tools Predikin 13 and NucImport 16 were used to analyze the human 

proteome. Protein sequences were obtained from UniProt 59 as the complete human proteome 

including all known isoforms, as defined by UniProt complete proteome sets (representing a total 

of 71,809 sequences).  

To predict the location of nuclear localization signals, we used NucImport 16. NucImport predicts 

the probability of nuclear import, type of classical NLS (as categorized by 60) and its exact 

location in any query protein sequence. Apart from sequence properties, the prediction is based 

on known (human) protein interactions that are retrieved from BioGRID 61. We refer to the 

predicted proteome set as those proteins that were assigned a type-1 classical NLS with a 

probability of 0.95 or greater.  

Cdk1 phosphorylation sites were predicted for all potential sites, i.e., all Ser and Thr residues, 

using Predikin 13. As we used the Cdk1 matrix to score all potential phosphorylation sites in the 

human proteome, we obtained the complete distribution of scores associated with Cdk1. 

Converting these to a cumulative density allowed us to (empirically) determine p-values 

associated with each Predikin score (the p-value is the probability of achieving a score at least 

as high as the one observed). 

We looked for enrichment of phosphorylation at the P0 and P-1 sites relative to the (predicted) 

NLS in each protein in the nuclear proteome by counting, for each NLS site, all potential 

phosphorylation sites (i.e., all Ser and Thr sites) that do not occur at the NLS site of interest and 

recorded whether they are above or below a threshold (Predikin p-value = 0.1).  From these 

counts, the ratio of phosphorylation sites/potential sites can be calculated for the background, P0 

and P-1 positions.  We assessed whether observations at P0 and P-1 differed from the 

background by performing a χ² analysis. 

Gene Ontology (GO) term enrichment analysis was performed for identified proteins using 

Fisher's exact test. Specifically, we used all proteins predicted to have a type-1 classical NLS 

and a predicted phosphorylation site at either P0 or P-1 as a foreground, and all “reviewed” 

human proteins in UniProtKB as background. We used the Gene Ontology official release of 

human annotations (as of February 2012). For each biological process GO term, we counted the 

number of proteins in the foreground set and the background set with this term. The one-tailed 

Fisher’s exact test establishes the p-value of the term: the probability of finding this protein count 
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or more extreme (greater proportion in the foreground). The p-value was corrected for multiple 

testing (shown as E-value). A term is thus assigned a small E-value only if proteins annotated 

with that term occur in the foreground set with a higher prevalence than can be statistically 

explained by chance (i.e. proteins picked randomly from the background set). 

 

Cell culture and constructs 

293T cells were kindly provided by Prof. Yvonne Jones (Cancer Research UK, Oxford). Cells 

were cultured in DMEM/F12 HAM (Sigma) supplemented with Penicillin–Streptomycin solution 

(50 µg/ml; Gibco) and 10% FBS (Gibco). dUTPase nuclear isoform (DUT) fused to DsRed-

Monomer (DsR-DUT) was described in 23. DsR-DUT was further cloned into the NdeI/XhoI sites 

of the vector pET-20b (Novagen) for recombinant protein expression (with oligonucleotides 

dutpETF and dutpETR). Human tumor protein p53 cDNA was purchased from OriGene 

(NM_000546.2). p53 was fused to DsRed-Monomer, by cloning it into the XhoI/BamHI sites of a 

modified pEGFP-C1 vector (Clontech) (with primers p53_F and p53_R), where EGFP was 

replaced by DsRed-Monomer (within the NheI/XhoI sites of the vector). Ubiquitin-activating 

enzyme E1 (UBA1) cDNA was purchased from OriGene (NM_003334.2) and the fusion 

construct was made cloning it into the KpnI/BamH1 sites of the pDsRed-Monomer-N1 vector 

(Clontech) (with primers UBA1_F and UBA1_R). Human Uracil-DNA glycosylase 2 (UNG2) 

cDNA was a generous gift of Professor Salvatore Caradonna and was cloned into the XhoI/KpnI 

sites of the pDsRed-Monomer-N1 vector (with primers UNG2_F and UNG2_R). Site-directed 

mutagenesis was performed by the QuickChange method (Stratagene). The NLS reporter 

construct was created by fusing β-galactosidase with DsRed-Monomer (termed pGal-DsRed). β-

galactosidase was amplified lacking its start codon from the vector pCAUG (with oligos galN1F 

and galN1R), and was cloned into the KpnI/EcoRI sites of the vector pDsRed-M-N1, thus 

generating the vector termed pGal-DsRed. Single-stranded oligonucleotide pairs, listed in Table 

S4, encoding different NLS peptides were cloned into the NheI/EcoRI sites of the pGal-DsRed 

vector after annealing. In addition, the vector pHM830 (Addgene plasmid 20702) (AflII/XbaI 

sites) was also used to generate constructs for the NLSs that showed a strong tendency for 

aggregation when used in context of the previously described pGal-DsRed construct 62. Primers 

used for cloning and mutagenesis were synthesized by Eurofins MWG GmbH and are 

summarized in TableS4. All constructs were verified by sequencing at Eurofins MWG GmbH. 

 

Fluorescence imaging and analysis of DsRed-tagged constructs 
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For DNA transfections, LipofectamineTM LTX (Invitrogen) was used according to the 

manufacturer’s instruction.  Briefly, subconfluent cultures of 293T cells grown in 35 mm Petri 

dishes were incubated with 1-2 µg DNA along with 10 µl LTX reagent in serum-free medium, for 

16 hours. Protein transfection was performed according to the manufacturer’s protocol using 

Pro-DeliverINTM reagent (OZ Biosciences). In brief, 8-10 µg protein and 15 µl transfection 

reagent was used to deliver DsRed-tagged proteins into the cells for 14-18 hours. Image 

analysis to quantify relative subcellular localization was performed from single-cell 

measurements using ImageJ 1.46j (NIH, Bethesda), where the mean nuclear (Fn) and 

cytoplasmic (Fc) fluorescence ratio (Fn/c) was measured within each cell. Statistical analysis of 

the relative subcellular localization changes was carried out by the InStat 3.05 software 

(GraphPad Software, San Diego California, USA) using the non-parametric Mann-Whitney test. 

Differences were considered statistically significant at p<0.05. Images were either acquired with 

a Leica DM IL LED Fluo microscope equipped with a Leica DFC345 FX monochrome camera. 

 

Live-cell microscopy and evaluation 

Time-lapse recordings were performed on a Zeiss 200M inverted microscope equipped with an 

AxioCam Mnr camera and controlled by the AxioVision 4.8 software. Cells were cultured in Ibidi 

dishes and kept at 37°C in a humidified 5% CO2 atmosphere within custom-made microscope 

stage incubator (CellMovie). Images were acquired every 5 minutes for at least 24 hours using a 

10X magnification objective. After transfection, the cells were washed three times with a serum-

containing medium. Time-lapse imaging started one hour after changing the medium. Addition of 

serum resulted in the flattening of the cells and mitogenic serum factors boosted cell 

proliferation. 

Plasmid transfection experiments. The kinetic treatment of the imaging data addresses the gross 

kinetics of nuclear dUTPase accumulation and does not aim to carry out a detailed analysis of 

the underlying processes. The quantification of fluorescence in single cells from each frame was 

performed using ImageJ 1.46j (NIH, Bethesda), where the mean nuclear (Fn) and cytoplasmic 

(Fc) fluorescence were measured. Data points represent mean values extracted from 16 cells in 

triplicates. The time axis was defined relative to the visual observation of cytokinesis i.e. t = 0 at 

cytokinesis termination. The observed fluorescence intensity increase in the nucleus could be 

analysed, as the total fluorescence of the cytoplasmic and nuclear compartments (Fn+c) was 

constant during the time period of the analysis. Single exponential kinetics fit well to the rising 

phase of the nuclear accumulation curves in both the WT and the S11Q mutant cell lines. The 



18 

 

considerable lag in nuclear fluorescence accumulation in the WT cells was not included in the 

kinetic analysis due to the lack of information on building a comprehensive kinetic model for the 

whole trafficking process. 

Protein transfection experiments. These image sequences were not subjected to densitometric 

analyses due to lower intensity of the intracellular fluorescent signal as well as to the higher 

background (Videos S3 and S4). The time elapsed between the onset of cytokinesis and the 

appearance of fluorescent signal within the nucleus (Figure S2) was determined by careful visual 

observation. Considerable nuclear accumulation of fluorescent proteins was declared when the 

fluorescent intensity within the nucleus exceeded that within the cytoplasm. Parallel phase 

contrast images were used to determine the onset of cell cleavage. 

Both DNA and protein transfection-based experiments yielded the same conclusions regarding 

the dynamic distribution pattern of the WT and S11Q mutant DsR-DUT. This is potentially due to 

the fact that the DsRed-labeled proteins can only be detected after a considerable time delay 

following protein translation, partially because of the time required for maturation of DsRed 

fluorophore and because of the time required for detectable fluorophor accumulation. 

Furthermore, newly maturing DsRed molecules (which also went through phosphorylation in M 

phase) might be in steady state with a degradation process. Because of these effects, the DsR-

DUT pool translated during the recording time of video-microscopy used for analysis (~12 hours) 

does not contribute to the fluorescent signal. The observable fluorescent signal of the mature 

folded protein molecules thus necessarily originates from the protein pool translated during the 

cell cycle(s) completed prior to start of the video recording. 

 

Immunoblot analysis 

Phosphorylation of the constructs after cellular delivery was investigated using immunblot 

analysis. Cells were collected, washed twice with PBS, and resuspended in the lysis buffer (50 

mM TRIS·HCl pH=7.4; 140 mM NaCl; 0,4% NP-40; 2 mM dithiothreitol (DTT); 1 mM EDTA, 1 

mM phenylmethylsulfonyl fluoride; 5 mM benzamidin, CompleteTM EDTA free protease inhibitor 

cocktail tablet (Roche), PhosSTOPTM phophatase inhibitor cocktail tablet (Roche)). Cell lysis was 

achieved by sonication. Insoluble fraction was removed by centrifugation (20,000 x g x 15 min at 

4°C). Protein concentration was measured with Bio-Rad Protein Assay to ensure equivalent total 

protein load per lane. Products were resolved under denaturing and reducing conditions on a 

15% polyacrylamide gel and transferred to PDVF membrane (Immobilon-P, Millipore). 

Membranes were blocked with 5% nonfat dried milk, incubated with primary antibodies for 2 
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hours at room temperature. After washing the membranes secondary antibodies coupled with 

horseradish peroxidase were applied (Amersham Pharmacia Biotech and Sigma). 

Immunoreactive bands were visualized by enhanced chemiluminescence reagent (Amersham) 

and recorded on X-ray film (Kodak). Antibodies to detect the following proteins were used in 

western blotting: anti-hDUT (1:5000) 44, anti-S11P-hDUT (1:200, GenScript). 

 

Recombinant protein production 

DsRed-tagged dUTPase constructs were expressed in Rosetta BL21 (DE3) pLysS bacteria 

strain and purified using Ni-NTA affinity resin (Qiagen). Transformed cells growing in Luria broth 

medium were induced at A600nm=0.6 with 0.6 mM isopropyl-β-D-1-thiogalactopyranoside (IPTG) 

for 16 hours at 20ºC. Cells were harvested and lysed in lysis buffer (50 mM TRIS·HCl, pH=8.0, 

300 mM NaCl, 0.5 mM EDTA, 0.1% Triton X-100, 10 mM 2-mercaptoethanol, 1 mM 

phenylmethylsulfonyl fluoride; 5 mM benzamidin, CompleteTM EDTA free protease inhibitor 

cocktial tablet (Roche)) with sonication and cell debris was pelleted by centrifugation at 20.000 x 

g for 30 minutes. Supernatant was applied onto a Ni-NTA column and washed with lysis buffer 

containing 50 mM imidazole. dUTPase was finally eluted with elution buffer (50 mM HEPES, 

pH=7.5, 30 mM KCl, 500 mM imidazole, 10 mM 2-merchaptoethanol). dUTPase constructs were 

dialyzed against buffer containing: 20 mM HEPES, pH=7.4, 140 mM NaCl, 1 mM MgCl2 and 2 

mM dithiothreitol (DTT). The proteins were >95 % pure as assessed by SDS-PAGE.  
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Figure legends: 

 

Figure 1. Representation of relative NLS activity. 

(A) The β-galactosidase-DsRed (pGal-DsRed) reporter construct is strictly cytoplasmic, unless 

fused to a functional NLS, such as the SV40 large T-antigen (TAg) NLS. Scale bar represents 20 

µm. 

(B) The reporter construct was fused with various NLSs to generate constructs with different 

extents of nuclear localization. Localization was categorized into five types: N (completely 

nuclear), Nc (mainly nuclear), NC (homogenous distribution between the nucleus and 

cytoplasm), nC (mainly cytoplasmic), C (completely cytoplasmic). Scale bar represents 20 µm. 

 

Figure 2. Position-specific effect of phosphorylation on NLSs. 

(A) Performance of the reporter system (pGal-DsRed) after fusing Swi6 WT and mutant NLSs to 

the construct. Fn/c ratios (± standard error of the mean) were determined as described in the 

Experimental Procedures section. Localization pattern was categorized according to Figure 1B. 

Scale bar represents 20 µm. 

(B) Glutamic acid at P-2 or P0 was introduced by insertion of Ala in P0 or deletion of Leu in P1. 

Sequences were aligned as predicted to bind to the NLS-binding pockets of importin-α 24. 

 

Figure 3. Evaluation of the proteins identified by computational analysis: cellular screens 

for NLS activity. 

Localization patterns of proteins selected based on proteome-wide analysis. DNA corresponding 

to NLSs was cloned into the pGal-DsRed reporter system, and localization was tested in 293T 

cells. P-mimicking mutations at the appropriate Ser/Thr position in most cases significantly 

reduced nuclear accumulation. Scale bar represents 20 µm. 

 

Figure 4. Effect of phosphorylation on localization of Cdk1 substrate proteins. 

UNG2 (residue S14), UBA1 (residue S4) and p53 (residue S315) phosphorylation at the P-2 

positions of their NLSs were mimicked by Glu substitution in the pGal-DsRed reporter system or 

were mutated in full length proteins fused to DsRed-monomer. Localization was tested in 293T 

cells.. Scale bar represents 20 µm. 

 

Figure 5. Phosphorylation-dependent cellular localization patterns of dUTPase. 
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(A) Live-cell microscopy of daughter cells. Transfected 293T cells were observed during at least 

one full cell cycle. Still images were taken from Video S1. The once-nuclear pool gets slowly re-

imported into the nucleus.  

(B) Kinetic analysis of protein re-import dynamics of the daughter cells indicate similar import 

kinetics but different lag phases for the WT protein and the S11Q mutant (kobs = 0.0044 min-1 ± 

7% and 0.0043 min-1 ± 8%, respectively).  

(C) Western blot shows cognate phosphorylation of exogenous dUTPases. 

 

Figure 6. Reconstitution of the nuclear proteome after cell division. 

Schematic diagram of the model of nuclear proteome re-setting through regulation of nuclear 

import by Cdk1 phosphorylation during the cell cycle in human cells. 
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Table 1. Proteins covering different functions within the cell selected for further analysis 

from the proteome-wide screen 

Proteins for which the phosphorylation of the particular NLS adjacent residues were experimentally 

confirmed, according to derived from the Phosida database (http://www.phosida.com/) 63, 64 are 

indicated in italics. 
 

Function Protein name 
Abbreviatio

n 
NLS sequence 

Ref. 

DNA damage 
recognition 
and repair 

Ataxia telangiectasia and Rad3-
related protein ATR SPKRRRLS 65 

BRCA1-A complex subunit 
RAP80 

UIMC1 SVKRKRRL 66, 67 

Cullin-4B CUL4B TSAKKRKL 68 

Transcription factor AP-4 TFAP4 SPKRRRAE 69 

Histone acetyltransferase p300 EP300 SAKRPKLS 70 

Ras-responsive element-
binding protein 1 

RREB1 SPLKRRRL 71 

Regulation of 
gene 

expression 

Ras-responsive element-
binding protein 1 

RREB1 SPLKRRRL 72 

Histone acetyltransferase p300 EP300 SAKRPKLS 73 

Transcription factor AP-4 TFAP4 SPKRRRAE 69, 74, 75 

Epigenetics 

Histone acetyltransferase p300 EP300 SAKRPKLS 70 

Bromodomain adjacent to zinc 
finger domain protein 2A 

BAZ2A SPSKRRRL 76, 77 

Cullin-4B CUL4B TSAKKRKL 78 

RNA 
editing/splicing 

Ser-Arg repetitive matrix protein 
2 

SRRM2 TPAKRKRR 79 

Cyclin-L2 CCNL2 SPKRRKSD 80 

Cell cycle 
regulation 

Cullin-4B CUL4B TSAKKRKL 81-83 

Cyclin-L2 CCNL2 SPKRRKSD 80, 84 

Development 
T-cell leukemia homeobox 

protein 3 
TLX3 TPPKRKKP 85 

Transcription factor AP-4 TFAP4 SPKRRRAE 69 

Nuclear 
skeleton 

Lamin A LMNA SVTKKRKL 86, 87 
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Supplemental Data 

 

Figure S1. dUTPase and UNG2 NLSs in the pGal-DsRed reporter assay 

(A) dUTPase NLS was cloned into the pGal-DsRed reporter assay. Localization was tested in 

293T cells. P-mimicking mutations at the appropriate Ser/Thr position in most cases significantly 

reduced nuclear accumulation. Scale bar represents 20 µm. 

(B) UNG2 NLS was cloned into the pGal-DsRed reporter assay. Localization was tested in 293T 

cells. Comparision of the WT NLS peptide with the K18N mutated NLS argues for the NLS 

function of the segment. Scale bar represents 20 µm. 

(C) Positioning of the NLS residues within the major NLS-binding site of importin-α. Localization 

pattern is indicated for each NLS. 

 

 

Figure S2. Live cell microscopy after protein transfection. 

Still images taken from Movies S4 and S5 showing 293T cells expressing WT and S11Q mutant 

dUTPase during cell division and G1 phase, after protein transfection. The differences observed 

between in the dynamics of shuttling between the two forms correlate well with those described 

with the plasmid-transfected cells. 

The inserted table shows the time (minutes) elapsed between the onset of cytokinesis and the 

appearance of considerable fluorescent signal within the nucleus. Data were collected from 

fluorescent time-lapse image sequences taken in 5 min intervals. Parallel phase contrast images 

were used to determine the onset of daughter cell separation (cleavage). 

 

Figure S3. S11 phosphorylation status of recombinant dUTPase constructs 

(A) After protein transfection both recombinant DsR-DUT and DsR-DUT S11Q localize to the 

nucleus, as in the case of plasmid transfection. Scale bar represents 20 µm. 

(B) Neither forms of recombinant proteins produced in E. coli are recognized by the anti-S11P-

hDUT antibody, indicating that they are not phosphorylated at Ser11. DsR-DUT can be 

phosphorylated similarly to the endogenous protein. 
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Video S1 

Localization dynamics of WT DsR-DUT as compared to the non-phosphorylatable mutant S11Q 

DsR-DUT during the cell cycle in 293T-HEK cells 16 hours after plasmid transfection. 

 

Video S2 

Localization dynamics of the hyper-phosphorylation mimick S11E DsR-DUT construct during the 

cell cycle in 293T-HEK cells 16 hours after plasmid transfection. 

 

Video S3 

Localization dynamics of the WT DsR-DUT recombinantly produced construct during the cell 

cycle in 293T-HEK cells 14-18 hours after protein transfection. 

 

Video S4 

Localization dynamics of the S11Q DsR-DUT recombinantly produced construct during the cell 

cycle in 293T-HEK cells 14-18 hours after protein transfection. 
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Table S1. Proteins with a predicted type-1 classical NLS and a predicted Cdk1 

phosphorylation site at the P0 position or P-1 position. 

The table excludes isoforms of the parent protein. Proteins for which the phosphorylation of the 

particular NLS adjacent residues were experimentally confirmed, according to data derived from the 

Phosida database (http://www.phosida.com/) are indicated in italics.  

 

Supplemented as an individual .xls file 
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Table S2. Gene Ontology term enrichment report for proteins with predicted class-1 NLS 

and Cdk1 phosphorylation site at the P0 or P-1 position. 

The table shows the output of a GO enrichment analysis of proteins with predicted NLSs and 

phosphorylation sites (72 proteins (isoforms excluded) from UniProtKB with 1310 unique 

biological process terms) relative to the complete human proteome (20246 proteins retrieved 

from UniProtKB with 10726 unique biological process terms) using Fisher’s exact test. The E-

value is a Bonferroni corrected p-value. We only list GO terms with E-value < 0.01. For each 

significant term, we also specify the number of assigned “hit” proteins vs. the “total” number 

found in the complete background set. 

 

Supplemented as an individual .xls file 
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Table S3. Predicted binding to the major NLS-binding site of importin-α and nuclear 

localization of proteins selected by our proteome-wide analysis and their mutants 

 

 NLS binding to major binding site of importin-α Localization

 P-2 P-1 P0 P1 P2 P3 P4 P5 P6  

ATR wta A I S P K R R R L N 

ATR mutb A I E P K R R R L Nc 

CCNL2 wta A A S P K R R K S nC 

CCNL2 mutb A A E P K R R K S C 

TFAP4 wta A S S P K R R R A NC 

TFAP4 mutb A S E P K R R R A NC 

CUL4B wta A T S A K K R K L N 

CUL4B mutb A T E A K K R K L N 

EP300 wta A P S A K R P K L N 

EP300 mutb A P E A K R P K L Nc 

UIMC1 wta A V S V K R K R R NC 

UIMC1 mutb A V E V K R K R R C 

RREB1 wta A S P L K R R R L N 

RREB1 mutb A E P L K R R R L NC 

LMNA wta L S V T K K R K L Nc 

LMNA mutb L E V T K K R K L NC 

BAZ2A wta L S P S K R R R L N 

BAZ2A mutb L E P S K R R R L NC 

TFAP4 wta A S S P K R R R A NC 

TFAP4 mutb A E S P K R R R A C 

CUL4B wta A T S A K K R K L N 

CUL4B mutb A E S A K K R K L Nc 

TLX3 wta A T P P K R K K P Nc 

TLX3 mutb A E P P K R K K P nC 

SRRM2 wta A T P A K R K R R Nc 

SRRM2 mutb A E P A K R K R R NC 
 
a wild-type 
b hyper-P mimic mutant 
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Table S4. Oligonucleotides and peptides used in the study 

 

Supplemented as an individual .xls file 
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Q9H9L7 22 SPKRRRCA Akirin-1

Q53H80 21 SPKRRRCA Akirin-2

Q15699 129 SSKKRRHR ALX homeobox protein 1

Q13535 428 SPKRRRLS Serine/threonine-protein kinase ATR

Q9NYF8 114 SPKRRSVS Bcl-2-associated transcription factor 1

Q9H0E9 77 TPKRKRGE Bromodomain-containing protein 8

Q96S94 400 SPKRRKSD Cyclin-L2

O14646 1328 SSKRRKAR Chromodomain-helicase-DNA-binding 
protein 1

P49759 27 SHKRRKRS Dual specificity protein kinase CLK1

Q8N684 417 SRKRHRSR Cleavage and polyadenylation 
specificity factor

Q13620 53 SAKKRKLN Cullin-4B

Q09472 12 SAKRPKLS Histone acetyltransferase p300

P17096 53 TPKRPRGR High mobility group protein HMG-
I/HMG-Y

P52926 44 SPKRPRGR High mobility group protein HMGI-C

Q9NV88 564 SGKKRKRV Integrator complex subunit 9

O43679 254 TTKRRKRK LIM domain-binding protein 2

P43364 16 SIKRKKKR Melanoma-associated antigen 11

Q02078 496 SVKRMRMD Myocyte-specific enhancer factor 2A

Q06413 461 SVKRMRLS Myocyte-specific enhancer factor 2C

Q8N5Y2 334 TPKRRKAE Male-specific lethal 3 homolog

Q659A1 757 SKKRKKIR NMDA receptor-regulated protein 2

O00712 268 SSKRPKTI Nuclear factor 1 B-type

O00567 556 SKKKRKFS Nucleolar protein 56

Q14207 1366 TTKKRKIE Protein NPAT

Q7Z417 220 TPKKRKAR Nuclear fragile X mental retardation-
interacting protein 2

Q96QT6 240 SSKRRRKE PHD finger protein 12

Q8TF01 551 SPKRKKRH Arginine/serine-rich protein PNISR

Q8NAV1 245 SPKRRSPS Pre-mRNA-splicing factor 38A

Q13523 349 SPKRRSLS Serine/threonine-protein kinase PRP4 
homolog

Q8NDT2 19 SAKRPRER Putative RNA-binding protein 15B

Q96LT9 115 SEKKKRSD RNA-binding protein 40

P0 position

Uniprot NLS sequence Protein namePhosphorylation 
position



Q13127 541 TKKKKKVE RE1-silencing transcription factor

O15446 459 STKKRKKQ DNA-directed RNA polymerase I 
subunit RPA34

Q14690 41 STKRKKSQ Protein RRP5 homolog

Q9Y6X0 620 TKKRKRRR SET-binding protein

O95104 442 SPKRRRSR  Arginine/serine-rich splicing factor 15

O15042 991 TPKRSRRS U2 snRNP-associated SURP motif- 
containing protein

Q08170 391 SKKKKKED Serine/arginine-rich splicing factor 4

Q16629 217 SPKRSRSP Serine/arginine-rich splicing factor 7

Q8IWZ8 378 TVKRKRKS SURP and G-patch domain-containing 
protein 1

P54274 347 STKKKKES Telomeric repeat-binding factor 1

Q12789 1214 SQKRKRLK General transcription factor 3C 
polypeptide 1

Q01664 124 SPKRRRAE Transcription factor AP-4

Q15583 162 SGKRRRRG Homeobox protein TGIF1

Q13769 5 SSKKRKPK THO complex subunit 5 homolog

O15405 243 TPKKKKKK TOX high mobility group box family 
member 3

Q9NPG3 187 SPKKRKLK Ubinuclein-1

Q5T4S7 3366 STKKSKKE E3 ubiquitin-protein ligase UBR4

Q96RL1 29 SVKRKRRL BRCA1-A complex subunit RAP80

Q96JG9 3786 STKRKKGQ Zinc finger protein 469

Q9UIF9 1783 SPSKRRRL Bromodomain adjacent to zinc finger 
domain protein 2A

Q9NSI6 905 SPPKRRRK Bromodomain and WD repeat-
containing protein

Q8N684 416 SSRKRHRS Cleavage and polyadenylation 
specificity factor

Q13620 52 TSAKKRKL Cullin-4B

O75618 175 SQRKRRKS Death effector domain-containing 
protein

Q9NPF5 459 SSVKKAKK DNA methyltransferase 1-associated 
protein 1

Q03001 1382 SPVKRRRM Dystonin

Q92522 31 SPSKKRKN Histone H1x

P02545 414 SVTKKRKL Prelamin-A/C

Q15788 30 STEKRRRE Nuclear receptor coactivator 1

Q14207 1365 STTKKRKI Protein NPAT

O94913 475 STRKRSRS Pre-mRNA cleavage complex 2 protein 
Pcf11

P-1 positions

Uniprot NLS sequence Protein namePhosphorylation 
position



Q8TF01 550 SSPKRKKR Arginine/serine-rich protein PNISR

Q8NDT2 18 SSAKRPRE Putative RNA-binding protein 15B

Q13127 540 STKKKKKV RE1-silencing transcription factor

Q92766 161 SPLKRRRL Ras-responsive element-binding 
protein 1

Q9UQ35 2599 TPAKRKRR Serine/arginine repetitive matrix protein 
2

Q08170 390 SSKKKKKE Serine/arginine-rich splicing factor 4

Q01664 123 SSPKRRRA Transcription factor AP-4

O43763 153 TPPKRKKP T-cell leukemia homeobox protein 2

O43711 162 TPPKRKKP T-cell leukemia homeobox protein 3

Q5T4S7 3365 SSTKKSKK E3 ubiquitin-protein ligase UBR4



AKIRIN1 C1orf108

AKIRIN2 C6orf166

ALX1 CART1

ATR FRP1

BCLAF1 BTF KIAA0164

BRD8 SMAP SMAP2

CCNL2 SB138

CHD1

CLK1 CLK 

CPSF7

CUL4B KIAA0695

EP300 P300

HMGA1 HMGIY

HMGA2 HMGIC

INTS9 RC74

LDB2 CLIM1

MAGEA11 MAGE11

MEF2A MEF2

MEF2C

MSL3 MSL3L1

NARG2 BRCC1 UNQ3101/PRO10100

NFIB rs146765479

NOP56 NOL5A

NPAT CAND3 E14

NUFIP2 KIAA1321 PIG1

PHF12 KIAA1523

PNISR C6orf111 SFRS18 SRRP130 
HSPC261 HSPC306

PRPF38A

PRPF4B KIAA0536 PRP4 PRP4H 
PRP4K

RBM15B OTT3

RNPC3 KIAA1839 RBM40 RNP

Gene name SNPs at P0 
position



REST NRSF XBR

CD3EAP ASE1 CAST PAF49

PDCD11 KIAA0185

SETBP1 KIAA0437

SCAF4 KIAA1172 SFRS15

U2SURP KIAA0332 SR140

SRSF4 SFRS4 SRP75

SRSF7 SFRS7

SUGP1 SF4

TERF1 PIN2 TRBF1 TRF TRF1

GTF3C1

TFAP4 BHLHC41

TGIF1 TGIF

THOC5 C22orf19 KIAA0983

TOX3 CAGF9 TNRC9

UBN1

UBR4 KIAA0462 KIAA1307 RBAF600 
ZUBR1

UIMC1 RAP80 RXRIP110

ZNF469 KIAA1858

BAZ2A KIAA0314 TIP5

BRWD1 C21orf107 WDR9

CPSF7

CUL4B KIAA0695

DEDD DEDPRO1 DEFT KE05

DMAP1 KIAA1425

DST BP230 BP240 BPAG1 DMH DT 
KIAA0728

H1FX

LMNA LMN1

NCOA1 BHLHE74 SRC1

NPAT CAND3 E14

PCF11 KIAA0824

Gene names SNPs at P-1 
position



PNISR C6orf111 SFRS18 SRRP130 
HSPC261 HSPC306

RBM15B OTT3

REST NRSF XBR

RREB1 FINB

SRRM2 KIAA0324 SRL300 SRM300 
HSPC075

SRSF4 SFRS4 SRP75

TFAP4 BHLHC41

TLX2 HOX11L1 NCX

TLX3 HOX11L2 rs139496015

UBR4 KIAA0462 KIAA1307 RBAF600 
ZUBR1



1.50E-17 1.40E-21 GO:0090304 39/1924 Nucleic acid metabolic process

8.40E-14 7.83E-18 GO:0006139 39/2453 Nucleobase-containing compound metabolic process

1.50E-13 1.40E-17 GO:0016070 30/1298 RNA metabolic process

7.50E-12 6.99E-16 GO:0045934 24/847 Negative regulation of nucleobase-containing compound metabolic process

9.30E-12 8.67E-16 GO:0051172 24/855 Negative regulation of nitrogen compound metabolic process

1.50E-11 1.40E-15 GO:0010467 30/1538 Gene expression

1.90E-11 1.77E-15 GO:0034641 39/2871 Cellular nitrogen compound metabolic process

3.20E-11 2.98E-15 GO:0051252 39/2916 Regulation of RNA metabolic process

6.20E-11 5.78E-15 GO:0051253 22/741 Negative regulation of RNA metabolic process

7.20E-11 6.71E-15 GO:0006807 39/2986 Nitrogen compound metabolic process

2.30E-10 2.14E-14 GO:0044260 44/4028 Cellular macromolecule metabolic process

3.90E-10 3.64E-14 GO:0006396 20/630 RNA processing

4.80E-10 4.48E-14 GO:0019219 40/3341 Regulation of nucleobase-containing compound metabolic process

9.10E-10 8.48E-14 GO:0010468 39/3221 Regulation of gene expression

1.10E-09 1.03E-13 GO:0051171 40/3422 Regulation of nitrogen compound metabolic process

2.30E-09 2.14E-13 GO:0010605 24/1098 Negative regulation of macromolecule metabolic process

3.40E-09 3.17E-13 GO:2000113 21/802 Negative regulation of cellular macromolecule biosynthetic process

3.70E-09 3.45E-13 GO:0031324 24/1123 Negative regulation of cellular metabolic process

3.70E-09 3.45E-13 GO:0006397 16/386 mRNA processing

6.50E-09 6.06E-13 GO:0010558 21/830 Negative regulation of macromolecule biosynthetic process

2.10E-08 1.96E-12 GO:0009892 24/1217 Negative regulation of metabolic process

2.70E-08 2.52E-12 GO:0008380 14/300 RNA splicing

3.60E-08 3.36E-12 GO:0031327 21/908 Negative regulation of cellular biosynthetic process

4.20E-08 3.92E-12 GO:0060255 41/4013 Regulation of macromolecule metabolic process

4.40E-08 4.10E-12 GO:0045892 19/715 Negative regulation of transcription, DNA-dependent

4.90E-08 4.57E-12 GO:0009890 21/923 Negative regulation of biosynthetic process

7.30E-08 6.81E-12 GO:0006351 16/470 Transcription, DNA-dependent

9.80E-08 9.14E-12 GO:0043170 44/4749 Macromolecule metabolic process

2.10E-07 1.96E-11 GO:0080090 41/4214 Regulation of primary metabolic process

2.50E-07 2.33E-11 GO:0010629 19/790 Negative regulation of gene expression

E -value p -value GO term
Hits/Total (with 

GO term)
GO term description



4.30E-07 4.01E-11 GO:0031323 41/4302 Regulation of cellular metabolic process

7.10E-07 6.62E-11 GO:0006355 33/2829 Regulation of transcription, DNA-dependent

8.40E-07 7.83E-11 GO:2001141 33/2846 Regulation of RNA biosynthetic process

9.10E-07 8.48E-11 GO:0052472 6/21 Modulation by host of symbiont transcription

9.10E-07 8.48E-11 GO:0043921 6/21 Modulation by host of viral transcription

9.20E-07 8.58E-11 GO:0032774 16/557 RNA biosynthetic process

1.10E-06 1.03E-10 GO:2000112 34/3051 Regulation of cellular macromolecule biosynthetic process

1.20E-06 1.12E-10 GO:0052312 6/22 Modulation of transcription in other organism involved in symbiotic interaction

1.80E-06 1.68E-10 GO:0010556 34/3111 Regulation of macromolecule biosynthetic process

2.10E-06 1.96E-10 GO:0045893 19/896 Positive regulation of transcription, DNA-dependent

3.20E-06 2.98E-10 GO:0016071 16/606 mRNA metabolic process

3.50E-06 3.26E-10 GO:0048523 30/2478 Negative regulation of cellular process

5.40E-06 5.03E-10 GO:0051254 19/947 Positive regulation of RNA metabolic process

6.20E-06 5.78E-10 GO:0051851 6/28 Modification by host of symbiont morphology or physiology

6.70E-06 6.25E-10 GO:0010628 19/960 Positive regulation of gene expression

7.20E-06 6.71E-10 GO:0045935 20/1083 Positive regulation of nucleobase-containing compound metabolic process

8.60E-06 8.02E-10 GO:0031326 34/3291 Regulation of cellular biosynthetic process

9.50E-06 8.86E-10 GO:0019222 41/4731 Regulation of metabolic process

1.00E-05 9.32E-10 GO:0043922 5/14 Negative regulation by host of viral transcription

1.00E-05 9.32E-10 GO:0051173 20/1106 Positive regulation of nitrogen compound metabolic process

1.10E-05 1.03E-09 GO:0009889 34/3319 Regulation of biosynthetic process

1.20E-05 1.12E-09 GO:0016568 13/392 Chromatin modification

1.20E-05 1.12E-09 GO:0051702 6/31 Interaction with symbiont

1.70E-05 1.58E-09 GO:0006325 14/489 Chromatin organization

1.90E-05 1.77E-09 GO:0010557 19/1023 Positive regulation of macromolecule biosynthetic process

2.00E-05 1.86E-09 GO:0006366 12/330 Transcription from RNA polymerase II promoter

2.20E-05 2.05E-09 GO:0032897 5/16 Negative regulation of viral transcription

2.30E-05 2.14E-09 GO:0006357 19/1034 Regulation of transcription from RNA polymerase II promoter

3.20E-05 2.98E-09 GO:0048519 30/2715 Negative regulation of biological process

4.30E-05 4.01E-09 GO:0044419 13/436 Interspecies interaction between organisms

1.50E-04 1.40E-08 GO:0006369 6/46 Termination of RNA polymerase II transcription

1.50E-04 1.40E-08 GO:0031328 19/1160 Positive regulation of cellular biosynthetic process

1.70E-04 1.58E-08 GO:0044237 44/5889 Cellular metabolic process



1.90E-04 1.77E-08 GO:0051817 6/48 Modification of morphology or physiology of other organism involved in symbiotic interaction

1.90E-04 1.77E-08 GO:0035821 6/48 Modification of morphology or physiology of other organism

2.00E-04 1.86E-08 GO:0009891 19/1179 Positive regulation of biosynthetic process

3.10E-04 2.89E-08 GO:0000377 9/194 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile

3.10E-04 2.89E-08 GO:0000398 9/194 Nuclear mRNA splicing, via spliceosome

3.10E-04 2.89E-08 GO:0044403 7/89 Symbiosis, encompassing mutualism through parasitism

3.80E-04 3.54E-08 GO:0000375 9/199 RNA splicing, via transesterification reactions

4.90E-04 4.57E-08 GO:0043484 6/56 Regulation of RNA splicing

5.10E-04 4.75E-08 GO:0051276 14/640 Chromosome organization

7.00E-04 6.53E-08 GO:0048024 5/30 Regulation of nuclear mRNA splicing, via spliceosome

7.30E-04 6.81E-08 GO:0034645 19/1281 Cellular macromolecule biosynthetic process

8.00E-04 7.46E-08 GO:0044238 44/6177 Primary metabolic process

8.70E-04 8.11E-08 GO:0016570 9/219 Histone modification

9.70E-04 9.04E-08 GO:0016569 9/222 Covalent chromatin modification

9.80E-04 9.14E-08 GO:0009059 19/1305 Macromolecule biosynthetic process

1.00E-03 9.32E-08 GO:0010604 20/1454 Positive regulation of macromolecule metabolic process

1.80E-03 1.68E-07 GO:0046782 6/69 Regulation of viral transcription

2.30E-03 2.14E-07 GO:0031124 6/72 mRNA 3'-end processing

2.60E-03 2.42E-07 GO:0031325 20/1536 Positive regulation of cellular metabolic process

2.80E-03 2.61E-07 GO:0050684 5/39 Regulation of mRNA processing

3.40E-03 3.17E-07 GO:0048524 6/77 Positive regulation of viral reproduction

5.30E-03 4.94E-07 GO:0006353 6/83 Transcription termination, DNA-dependent

5.60E-03 5.22E-07 GO:0009893 20/1613 Positive regulation of metabolic process

6.60E-03 6.15E-07 GO:0031123 6/86 RNA 3'-end processing

8.90E-03 8.30E-07 GO:2000242 5/49 Negative regulation of reproductive process

9.20E-03 8.58E-07 GO:0090343 3/6 Positive regulation of cell aging



Analyzed Ser 

position
Oligo name Oligonucleotides 5’-3’

SV40_WT_F CTAGCATGGGAGCTTCACCCAAGAAGAAGAGAAAGGTGGG

SV40_WT_R AATTCCCACCTTTCTCTTCTTCTTGGGTGAAGCTCCCATG

Swi6_WT_F CTAGCATGGGAGCTTCACCCCTGAAGAAGCTGAAGATCGACGG

Swi6_WT_R AATTCCGTCGATCTTCAGCTTCTTCAGGGGTGAAGCTCCCATG

Swi6_P-1E_F CTAGCATGGGAGCTGAACCCCTGAAGAAGCTGAAGATCGACGG

Swi6_P-1E_R AATTCCGTCGATCTTCAGCTTCTTCAGGGGTTCAGCTCCCATG

Swi6_P-2E_F CTAGCATGGGAGCTGAACCCGCCCTGAAGAAGCTGAAGATCGACGG

Swi6_P-2E_R AATTCCGTCGATCTTCAGCTTCTTCAGGGCGGGTTCAGCTCCCATG

Swi6_P0_F CTAGCATGGGAGCTGAACCCAAGAAGCTGAAGATCGACGG

Swi6_P0_R AATTCCGTCGATCTTCAGCTTCTTGGGTTCAGCTCCCATG

ATR_WT_F CTAGCATGGGAGCTATCAGCCCCAAGAGAAGAAGACTGGG

ATR_WT_R AATTCCCAGTCTTCTTCTCTTGGGGCTGATAGCTCCCATG

ATR_E_F CTAGCATGGGAGCTATCGAACCCAAGAGAAGAAGACTGGG

ATR_E_R AATTCCCAGTCTTCTTCTCTTGGGTTCGATAGCTCCCATG

CCLN2_WT_F CTAGCATGGGAGCTGCCAGCCCCAAGAGAAGAAAGAGCGG

CCLN2_WT_R AATTCCGCTCTTTCTTCTCTTGGGGCTGGCAGCTCCCATG

CCLN2_E_F CTAGCATGGGAGCTGCCGAACCCAAGAGAAGAAAGAGCGG

CCLN2_E_R AATTCCGCTCTTTCTTCTCTTGGGTTCGGCAGCTCCCATG

TFAP4_WT_F CTAGCATGGGAGCTAGCAGCCCCAAGAGAAGAAGAGCCGG

TFAP4_WT_R AATTCCGGCTCTTCTTCTCTTGGGGCTGCTAGCTCCCATG

TFAP4_EP0_F CTAGCATGGGAGCTAGCGAGCCCAAGAGAAGAAGAGCCGG

TFAP4_EP0_R AATTCCGGCTCTTCTTCTCTTGGGCTCGCTAGCTCCCATG

TFAP4_EP-1_F CTAGCATGGGAGCTGAGAGCCCCAAGAGAAGAAGAGCCGG

TFAP4_EP-1_R AATTCCGGCTCTTCTTCTCTTGGGGCTCTCAGCTCCCATG

CUL4B_WT_F CTAGCATGGGAGCTACCAGCGCCAAGAAGAGAAAGCTGGG

CUL4B_WT_R AATTCCCAGCTTTCTCTTCTTGGCGCTGGTAGCTCCCATG

CUL4B_EP0_F CTAGCATGGGAGCTACCGAGGCCAAGAAGAGAAAGCTGGG

CUL4B_EP0_R AATTCCCAGCTTTCTCTTCTTGGCCTCGGTAGCTCCCATG

CUL4B_EP-1_F CTAGCATGGGAGCTGAGAGCGCCAAGAAGAGAAAGCTGGG

CUL4B_EP-1_R AATTCCCAGCTTTCTCTTCTTGGCGCTCTCAGCTCCCATG

EP300_WT_F CTAGCATGGGAGCTCCCAGCGCCAAGAGACCCAAGCTGGG
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EP300_WT_R AATTCCCAGCTTGGGTCTCTTGGCGCTGGGAGCTCCCATG

EP300_E_F CTAGCATGGGAGCTCCCGAAGCCAAGAGACCCAAGCTGGG

EP300_E_R AATTCCCAGCTTGGGTCTCTTGGCTTCGGGAGCTCCCATG

UIMC1_WT_F CTAGCATGGGAGCTGTGAGCGTGAAGAGAAAGAGAAGAGG

UIMC1_WT_R AATTCCTCTTCTCTTTCTCTTCACGCTCACAGCTCCCATG

UIMC1_E_F CTAGCATGGGAGCTGTGGAAGTGAAGAGAAAGAGAAGAGG

UIMC1_E_R AATTCCTCTTCTCTTTCTCTTCACTTCCACAGCTCCCATG

RREB1_WT_F CTAGCATGGGAGCTAGCCCCCTGAAGAGAAGAAGACTGGG

RREB1_WT_R AATTCCCAGTCTTCTTCTCTTCAGGGGGCTAGCTCCCATG

RREB1_E_F CTAGCATGGGAGCTGAACCCCTGAAGAGAAGAAGACTGGG

RREB1_E_R AATTCCCAGTCTTCTTCTCTTCAGGGGTTCAGCTCCCATG

TLX3_WT_F CTAGCATGGGAGCTACCCCCCCCAAGAGAAAGAAGCCCGG

TLX3_WT_R AATTCCGGGCTTCTTTCTCTTGGGGGGGGTAGCTCCCATG

TLX3_E_F CTAGCATGGGAGCTGAGCCCCCCAAGAGAAAGAAGCCCGG

TLX3_E_R AATTCCGGGCTTCTTTCTCTTGGGGGGCTCAGCTCCCATG

SRRM2_WT_F CTAGCATGGGAGCTACCCCCGCCAAGAGAAAGAGAAGAGG

SRRM2_WT_R AATTCCTCTTCTCTTTCTCTTGGCGGGGGTAGCTCCCATG

SRRM2_E_F CTAGCATGGGAGCTGAGCCCGCCAAGAGAAAGAGAAGAGG

SRRM2_E_R AATTCCTCTTCTCTTTCTCTTGGCGGGCTCAGCTCCCATG

UBA E1_WT_F CTAGCATGGGAGCTTCGCCGCTGTCCAAGAAACGTCGCGTGGG

UBA E1_WT_R AATTCCCACGCGACGTTTCTTGGACAGCGGCGAAGCTCCCATG

UBA E1_EP-2_F CTAGCATGGGAGCTGAACCGCTGTCCAAGAAACGTCGCGTGGG

UBA E1_EP-2_R AATTCCCACGCGACGTTTCTTGGACAGCGGTTCAGCTCCCATG

UBA E1_EP-1_F CTAGCATGGGAGCTGAACCGTCCAAGAAACGTCGCGTGGG

UBA E1_EP-1_R AATTCCCACGCGACGTTTCTTGGACGGTTCAGCTCCCATG

UNG_WT_F CTAGCATGGGAGCTTCACCCGCCAGGAAGCGACACGCCCCCGG

UNG_WT_R AATTCCGGGGGCGTGTCGCTTCCTGGCGGGTGAAGCTCCCATG

UNG_EP-2_F CTAGCATGGGAGCTGAACCCGCCAGGAAGCGACACGCCCCCGG

UNG_EP-2_R AATTCCGGGGGCGTGTCGCTTCCTGGCGGGTTCAGCTCCCATG

UNG_EP-1_F CTAGCATGGGAGCTGAACCCAGGAAGCGACACGCCCCCGG

UNG_EP-1_R AATTCCGGGGGCGTGTCGCTTCCTGGGTTCAGCTCCCATG

K18N_F CTAGCATGGGAGCTAGCCCCGCCAGGAACCGACACGCCCCCGG

K18N_R AATTCCGGGGGCGTGTCGGTTCCTGGCGGGGCTAGCTCCCATG
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p53_WT_F CTAGCATGGGAGCTAAGCGAGCACTGCCCAACAACACCAGCTCCTCTCCCCAGCCAAAGAAGAAACCACTGGG

p53_WT_E AATTCCCAGTGGTTTCTTCTTTGGCTGGGGAGAGGAGCTGGTGTTGTTGGGCAGTGCTCGCTTAGCTCCCATG

p53_EP-2_F CTAGCATGGGAGCTAAGCGAGCACTGCCCAACAACACCAGCTCCGAACCCCAGCCAAAGAAGAAACCACTGGG

p53_EP-2_R AATTCCCAGTGGTTTCTTCTTTGGCTGGGGTTCGGAGCTGGTGTTGTTGGGCAGTGCTCGCTTAGCTCCCATG

P53_EP-1_F CTAGCATGGGAGCTAAGCGAGCACTGCCCAACAACACCAGCTCCGAACCCCCAAAGAAGAAACCACTGGG

P53_EP-1_R AATTCCCAGTGGTTTCTTCTTTGGGGGTTCGGAGCTGGTGTTGTTGGGCAGTGCTCGCTTAGCTCCCATG

DUT_WT_F TTAAGGGCCTTGCCTCACCCAGTAAGCGGGCCCGGCCTGCGT

DUT_WT_R CTAGACGCAGGCCGGGCCCGCTTACTGGGTGAGGCAAGGCCC

DUT_E_F TTAAGGGCCTTGCCGAACCCAGTAAGCGGGCCCGGCCTGCGT

DUT_E_F CTAGACGCAGGCCGGGCCCGCTTACTGGGTTCGGCAAGGCCC

LMNA_WT_F TTAAGGGCCTTGCCAGCGTGACCAAGAAGAGAAAGCTGT

LMNA_WT_R CTAGACAGCTTTCTCTTCTTGGTCACGCTGGCAAGGCCC

LMNA_E_F TTAAGGGCCTTGCCGAAGTGACCAAGAAGAGAAAGCTGT

LMNA_E_R CTAGACAGCTTTCTCTTCTTGGTCACTTCGGCAAGGCCC

BAZ2A_WT_F TTAAGGGCCTTGCCAGCCCCAGCAAGAGAAGAAGACTGT

BAZ2A_WT_R CTAGACAGTCTTCTTCTCTTGCTGGGGCTGGCAAGGCCC

BAZ2A_E_F TTAAGGGCCTTGCCGAACCCAGCAAGAGAAGAAGACTGT

BAZ2A_WT_R CTAGACAGTCTTCTTCTCTTGCTGGGTTCGGCAAGGCCC 

galN1F GCAAGAATTCCAGCATCGTTTACTTTGACCAACAAGAACG

galN1R AATTGGTACCGCTTTTTGACACCAGACCAACTGGTAATGG

dutpETF GGAATTCCATATGCCCTGCTCTGAAGAGACAC

dutpETR CCGCTCGAGCTGGGAGCCGGAGTGG

p53_F AGCTCTCGAGATGGAGGAGCCGCAGTCAGATC

p53_R CACTGGATCCTCAGTCTGAGTCAGGCCCTTCTG

UBA1_F CAGCTGGTACCATGTCCAGCTCGCCGCTGTCC

UBA1_R AGATGGATCCGCTCCGCGGATGGTGTATCGGACATAGG

UNG2_F CGATCTCGAGATGATCGGCCAGAAGACGC

UNG2_R ACGGTACCGCGATGTACCTGTAGGTGTCCAGC

S11E_F GAGACACCCGCCATTGAACCCAGTAAGCGGGC

S11E_R GCCCGCTTACTGGGTTCAATGGCGGGTGTCTC

S11Q_F GAGACACCCGCCATTCAACCCAGTAAGCGGGC

S11Q_R GCCCGCTTACTGGGTTGAATGGCGGGTGTCTC

S315E_F (P-2) CCCAACAACACCAGCTCCGAACCCCAGCCAAAGAAGAAACC
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S315E_R (P-2) GGTTTCTTCTTTGGCTGGGGTTCGGAGCTGGTGTTGTTGGG

Q317Δ_F (P-1) ACACCAGCTCCGAACCCCCAAAGAAGAAACCACTGGATG

Q317Δ_F (P-1) CATCCAGTGGTTTCTTCTTTGGGGGTTCGGAGCTGGTGT

S4E_F (P-2) CGACGGTACCATGTCCAGCGAACCGCTGTCCAAGAAACGTC

S4E_R (P-2) GACGTTTCTTGGACAGCGGTTCGCTGGACATGGTACCGTCG

L6Δ_F (P-1) GTACCATGTCCAGCGAACCGTCCAAGAAACGTCGCGTGTC

L6Δ_R (P-1) GACACGCGACGTTTCTTGGACGGTTCGCTGGACATGGTAC

S14E_F (P-2) CTACTCCTTTTTCTCCCCCGAACCCGCCAGGAAGCGAC

S14E_R (P-2) GTCGCTTCCTGGCGGGTTCGGGGGAGAAAAAGGAGTAG

A16Δ_F (P-1) CCTTTTTCTCCCCCGAACCCAGGAAGCGACACGCCCC

A16Δ_R (P-1) GGGGCGTGTCGCTTCCTGGGTTCGGGGGAGAAAAAGG
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