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Innovation in Central and Eastern European Regions: Does EU Framework 

Program participation lead to better innovative performance? 

 

Abstract: In this paper we raise the question whether knowledge transferred from long distances via research 

networks can somehow compensate lagging regions in Central and Eastern Europe for their low levels of locally 

agglomerated knowledge. To empirically investigate this problem we choose research networks subsidized by 

the European Framework Programs. Within the frame of the Romerian knowledge production function we test 

if the quality of regions’ individual FP networks has any relationship with regional patenting. We carried out the 

analysis with two sub-samples covering the years 1998-2009: CEE-Objective 1 regions (51 regions) and non-CEE 

regions (211 regions). The selected research area of study was the broad area of quality of life (QOL). We 

measure extra-regional knowledge accessible via FP research networks by the index of Ego Network Quality. 

We also control for localized knowledge flows via a systematic panel spatial econometric methodology. We 

found that important differences exist between CEE-Objective 1 and non-CEE regions with respect to FP 

network learning in patenting. While knowledge transferred from FP networks positively influences the impact 

of FP research subsidies on regional innovation in CEE-Objective 1 regions, network knowledge does not turn 

out to be a significant input in patenting in regions of the old member states. 

 

1. Introduction 

Central and Eastern European countries, accessed to the European Union in 2004 and 2007, have 
gone through a development path which is markedly different from that of the old member states of 
the EU. These countries also share some characteristics due to their common starting point of a 
relatively fast transition to a market economy in parallel with the political independency from the 
former Soviet Union. A vast literature is devoted to the questions of transition and catching up with 
Western countries (see e.g. Mervelede (2000) for a review of the literature or Grinberg et al. (2008) 
or Havlik et al. (2012) for an overview on structural change and productivity growth). 

In addition to the relatively broad attention to transition economies at the national level, there is less 
research done on the regional aspects of these processes. Petrakos (2001) analyses regional 
disparities during the transition, emphasizing the fact that in CEE countries metropolitan and border 
regions are favored under the transition process. Tondl and Vuksic (2003) and Varga and Schalk 
(2004) show that foreign direct investment plays a crucial role in regional growth and reinforce that 
capital and border regions outperform others. Gorzelak (1998) emphasizes the role of accessibility to 
markets in Western Europe, while Kallioras and Petrakos (2010) draw attention to the role of initial 
structural and geographical conditions in the catching up process.  

Innovation follows different patterns in CEE countries compared to the rest of Europe. Von 
Tunzelmann and Nassehi (2004) argue that EU innovation policies are suitable for the core countries 
but are ineffective in CEE countries. Although it is clear that economic growth in these countries has 
not been based on innovation during the past decades (Varblane et al., 2007), there still remains the 
issue of the huge difference between Western and CEE countries in terms of innovative output (EC, 
2009). According to Radosevic and Yoruk (2013) CEE countries show an increasing trend in 
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publication and citations compared to other regions, but there is still a gap from North America, the 
rest of EU and Pacific Asia. This raises the question of the existence and functioning of regional 
innovation systems in CEE regions, a field where even less research has been done so far.  

Gorzelak (1996) calls attention to the fact that the socialist regime created significant dependence of 
regions on the capitals. As a result, economic development in the post-socialist period was 
concentrated mainly in capital regions. This tendency then leads to innovation systems, which are 
also concentrated into capital regions (Radosevic 2002). Inzelt (2004) emphasizes that R&D capacities 
(including available private and public resources) have been strongly destructed during the first years 
of transition from the soviet era to the market economy. As a result, innovation systems in CEE 
countries are largely dependent on the presence of foreign capital and R&D activities located there 
by multinational corporations. Systems of innovation in CEE countries thus typically emerge in close 
proximity to foreign firms and domestic business groups (Radosevic 1999). Though interfirm 
cooperation is still low (Inzelt and Szerb 2006) and the links between industry and universities are 
still week in general (Inzelt 2004) there is also some evidence that universities and state-controlled 
services were able to maintain their role in the innovation systems in lagging regions (Lengyel and 
Leydesdorff 2011).  

Capello and Perucca (2013) add to the picture the role of extra-regional linkages in innovation 
concluding that in general ‘global regions’ which have decent connections with the rest of the world 
(even outside Europe) and are specialized in growing sectors have led the growth process in their 
countries. With respect to linkages connecting actors of innovation in CEE countries with the extra-
regional world our knowledge is still in infancy. Radosevic (2011) stresses that interactions between 
foreign owned and domestic companies located in CEE regions are still week to which Lengyel et al. 
(2006) add that individual cooperation of university professors in international projects has 
insignificant local effects. On the other hand Lengyel et al. (2013) emphasizes that US patenting in 
CEE countries is inherently linked to international collaborations however granted US patents are 
rarely found with inventors exclusively from these countries.  

In this paper we investigate the role of extra-regional knowledge transfers in regional innovation in 
Central and Eastern European countries from a specific angle, namely that of their participation in 
European Framework Programs (FP) funded research partnerships and its effect on regional 
patenting activity. To the best of our knowledge this is the first such attempt in the literature. The 
role of knowledge transfers mediated by FP participations in regional innovation has been studied 
quite intensively in previous papers (i.e., Maggioni, Nosvelli and Uberti 2007, Hazir and Autant-
Bernard 2013, Varga, Pontikakis and Chorafakis 2013, Sebestyén and Varga 2013a) but without the 
focus on Central and Eastern European regions.  

Extra-regional knowledge linkages could potentially help lagging regions in their development 
(Johansson, Quigley 2004). As it was highlighted previously in this introduction capital regions in 
Central and Eastern European countries generally follow distinctive patterns, as these regions show 
higher levels of advancement comparable to decently developed regions in the rest of the EU. 
However, capital regions are exceptional and as such do not represent general trends in Central and 
Eastern Europe. For this purpose our study focuses on lagging (Objective 1) regions in CEE countries. 
This paper also follows a marked comparative perspective in order to highlight specific characteristics 
of innovation in CEE countries. Patterns of regional innovation in CEE Objective 1 regions are thus 
systematically compared to those of regions in the rest of Europe.  

Interregional knowledge flows mediated by FP network participation is measured in this paper by the 
index of Ego Network Quality (ENQ - Sebestyén and Varga 2013a, 2013b). With this measure the aim 
is to overcome a frequent shortcoming of previous studies in the geography of innovation field that 
focus exclusively on the effect of partners’ knowledge while important structural features of 
knowledge networks are not taken into account. Additionally, with the application of the ENQ index 
it is possible to explicitly account for dynamic changes in extra-regional knowledge networks contrary 
to the usual approach, which operates with temporarily fixed collaboration matrices (Hazir and 
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Autant-Bernard 2013). To control for extra-regional knowledge flows mediated by geographical 
proximity a systematic panel spatial econometric methodology is applied. Our data cover three 
subsequent Framework Programs: FP 5, FP 6 and FP 7 spanning over the time period of 1998-2009. 
We carry out the analysis with two European sub-samples: Central-Eastern European (CEE) Objective 
1 regions (51 regions) and non-CEE regions (211 regions) in the old member states of the European 
Union. The selected research area of study is Quality of Life (QOL) corresponding to the broad 
thematic areas of the FP programs.  

The subsequent section presents the empirical model and the methodologies applied in measuring 
localized and network mediated knowledge flows. Section 3 introduces the data followed by an 
exploratory analysis of the main variables in this study. In Section 4 we present our empirical results. 
Summary concludes the paper.  

 

2. Empirical research methodology 

 

2.1 The empirical model 

We apply an empirical framework built on the knowledge production function (KPF) introduced by 
Romer (1990) and then further developed by Jones (1995): 

               (1) 

where        is the change in technological knowledge,     refers to human capital in research,    
is the total stock of already existing scientific and technological knowledge (knowledge codified in 
publications, patents etc.) and   stands for the spatial unit. Therefore technological change is 
associated with contemporary R&D efforts and previously accumulated knowledge. The same 
number of researchers can have a varying impact on technological change depending on the stock of 
already existing knowledge.  

We apply the following econometric specification to empirically test our hypotheses on the role of 
external knowledge mediated by FP research networks in patenting. Using subscripts i to denote 
individual regions, the empirical counterpart of the Romerian KPF (1) is specified as: 

                                              (2) 

where      stands for new technological knowledge measured by patent applications,     is 
expenditure on research and development and            proxies technological knowledge 
accumulated over time in region  . In accordance with usual interpretations,    reflects the influence 
of localized knowledge flows from R&D carried out by firms and public research institutions on 
regional patenting while    proxies the relation of patenting with accumulated knowledge. Besides 
regional controls,    stands for variables measuring the two extra-regional knowledge sources: 
knowledge accessed via the participation of FP networks on the one hand and geographically 
proximate knowledge sources on the other. The following two sub-sections explain our measures of 
the two extra-regional knowledge sources one after another.  

 

2.2 Measuring extra-regional knowledge accessed via research networks: The Ego Network 
Quality (ENQ) index 

In the following empirical analyses we employ the Ego network Quality index developed and 
introduced by Sebestyén and Varga (2013a, 2013b), in order to capture the amount of knowledge 
available by a region through its interregional knowledge connections. The concept of ENQ builds on 
three intuitions directly influenced by the theory of innovation. First, that the level of knowledge in 
an agent’s network is in a positive relationship with the agents’ productivity in generating new 
knowledge. Second, that the structure of connections in the agents’ network can serve as an 



4 
 

additional source of value (see e.g. Coleman 1986; Burt 1992). Third, that partners in the ego 
network contribute to diversity through building connections to different further groups not linked 
directly to the agent. 

The ENQ index is structured around two dimensions, which are then augmented with a related third 
aspect. The two dimensions are: (i) Knowledge Potential, which measures knowledge accumulated in 
the direct neighbourhood and it is related to the number of partners and the knowledge of individual 
partners, and (ii) Local Structure, what is associated with the structure of links among partners. The 
third aspect is Global Embeddedness (GE) and captures the quality of distant parts of the network 
(beyond immediate partners). However, this aspect is implemented by applying the concepts of KP 
and LC for consecutive neighbourhoods of indirect partners in the network.1 Here we give a brief 
summary of the ENQ index with the most important aspects. The reader is directed to Sebestyén and 
Varga (2013a, 2013b) for more detailed discussion. 

The network under consideration is represented by the adjacency matrix        , where the 

general element     describes the connection between nodes   and  . The adjacency matrix defines 

the matrix of geodesic distances (lengths of shortest paths) between all pairs of nodes, which we 
denote by        . In order to account for knowledge levels, we use        as the vector of 

knowledge at each specific node of the network. 

We formalize the conceptual model of ENQ presented above in the following way: 

            
    

      
     

    
      (3) 

where superscript   refers to the node for which ENQ is calculated and subscript   stands for 
distances measured in the network (geodesic distance).   is the size of the network,    is a 

weighting factor used for discounting values at different   distances from node  ,2 whereas    
  and 

   
  are the respective Knowledge Potential and Local Structure values evaluated for the 

neighbourhood at distance   from node  . The proposed formula can be interpreted as calculating 
the Knowledge Potentials for neighbourhoods at different distances from node  , weighted by the 
Local Structure value of the same neighbourhood. Then, these results for the different 
neighbourhoods are weighted by a distance-decay factor and summed over distances. The second 
equation in the above formula shows (using      by definition) how the ENQ index can be divided 
into the three dimensions mentioned above: the Knowledge Potential and the Local Structure of the 
direct neighbourhood and Global Embeddedness which sums these aspects beyond the direct 
neighbourhood. In what follows, the two basic concepts, Knowledge Potential and Local Structure 
are introduced in more detail. 

Knowledge Potential 

Using the notation presented before, the concept of KP can be formulated in the following way:  

    
             (4) 

The Knowledge Potential, as perceived by node  , can thus be calculated for the neighbourhoods at 
different   distances from node  , and for all these distances it is the sum of knowledge possessed by 
nodes at these distances.  

Local Structure 

The concept of Local Structure refers to the structure of connections in different neighbourhoods of 
a node. What one means by structure, though, is a matter of question here. In this paper we 
introduce two specific ways to fill LS with content, namely Local Connectivity and Connected 
Components. The two alternative specifications are linked to the concepts of cohesion and structural 

                                                             
1 By ‘neighbourhood at distance  ’ we mean the nodes exactly at distance   from a specific node. 
2 In this paper we apply exponential weighting, where          . Some analysis with respect to different 
formulations can be found in Sebestyén and Varga (2013b). 
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holes familiar from the theory of social capital. Cohesion, as defined by Coleman (1986) emphasizes 
the role of cohesion, while the notion of structural holes (Burt 1992) puts weight on gatekeepers or 
information brokers connecting different groups in the network. 

Local Connectivity 

Local Connectivity (LC), referring to the cohesion concept, is associated with the strength of ties and 
the intensity of interactions among partners. It is the sum of the tie weights present in a given 
neighbourhood, normalized by the size of this neighbourhood: 

    
  

 

  
                        

                   

 
  (5) 

where   
  is the number of nodes laying exactly at distance   from node  . The first term in the 

parenthesis counts the (possibly weighted) ties between nodes at distance     and  .3 This reflects 
the intensity at which two adjacent neighbourhoods are linked together. The second term counts the 
(possibly weighted) number of ties among nodes at distance  .4 As a result, Local Connectivity can be 
defined as intensity with which the (possibly indirect) neighbours at distance   are linked together 
and linked to other neighbourhoods. Using the LC approach, the ENQ index is formulated as follows: 

           
 

        
    

 
  (6) 

Connected Components 

Connected Components (CC) integrates the concept of structural holes into the ENQ index through 
LS. Here we propose a simple approach to capture the basic intuition behind the concept: we 

introduce    
  which counts the number of connected components (unconnected groups of nodes) in 

different neighbourhoods.5 Using the CC approach, the ENQ index is formulated as follows: 

           
 

        
    

 
  (7) 

A mixed version 

Although both intuitive, Local Connectivity and Connected Components take a very strict view and 
measurement of the phenomena they intend to capture. However, by combining the two 
approaches, ENQ can reflect a more refined picture about the structure of local neighbourhoods. 
Let’s redefine ENQ with the product of Local Connectivity and Connected Components as the 
weighting factor of Knowledge Potentials (the Local Structure component, defined before): 

           
 

        
    

    
 

  (8) 

This formulation refines the two extreme cases by providing a natural way to combine the two 
effects as the multiplication of Connected Components and Local Connectivity attach higher weights 
to structures which lay in between neighborhoods with extreme structural holes and extreme 
connectivity.  

 

2.3 Modeling extra-regional localized knowledge flows: panel spatial econometric 
methodology 

As the availability of spatial data collected over longer periods of time increased, the demand for 
accounting for spatial dependence in panel data econometric models has also been raised. Two of 
the most significant recent changes in spatial analysis are the methodological developments of 

                                                             
3 Distances are always measured from node  . 
4 Division by two is required because matrix   is symmetric, and thus we can avoid duplications in the counting.  
5 The number of connected components in a neighbourhood is given by the multiplicity of the zero eigenvalues of the 

Laplacian matrix of the subgraph spanned by the nodes at a specific distance from the node in question (see e.g. Godsil and 
Royle 2001). 
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models (Elhorst 2003, Anselin, Le Gallo, Jayet 2008, LeSage and Pace 2009) and the growing number 
of applications in empirical research (Autant-Bernard 2012) in this domain.  

 

We are going to consider the following specification issues in the subsequent econometric analyses: 
identification of network effects, identification of the impact of localized knowledge transfer and 
identification of panel effects. Equations (9) to (11) provide those settings where the ENQ index 
enters the regression equation as a stand-alone variable. In these interregional knowledge flows 
mediated by FP networks is assumed to directly affect patenting in the region. On the other hand, 
equations (12) to (14) represent an alternative specification when ENQ interacts with R&D. In this 
type of models the influence of knowledge from FP networks on patenting is assumed to work 
through the improved productivity of research. With regards the estimation of the impact of 
localized knowledge flows on regional patenting, three types of spatial models will be tested against 
each other: the spatial lag, the spatial error and the spatial Durbin models. In spatial lag models 
(equations 9 and 12) spatial dependence is modeled through the spatially lagged dependent variable. 
In spatial error models (equations 10 and 13) dependence is modeled in the error term. Alternatively, 
with the spatial Durbin model (equations 11 and 14) spatial dependence is modeled through both the 
dependent as well as the independent variables.  

 

                           
 
                                           

                                                                                                   (9) 

 

                                                                  

                                                                                   
 
       (10) 

 

                           
 
                                           

                                                                               
 
    

                                                  
 
                      

 
    

                                               
 
                   (11)      (11) 

 

            

                   
 
                                   

                                                                                     (12) 

 

            
                                                    

                                                                                    
 
      (13) 

 

            

                   
 
                                   

                                                                      

                                                             
 
    

                                                      
 
                          

 
    

                                              (14) 
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There are some variables in equations (9) to (14) not yet introduced before.       is employment 
in high technology industries. Its estimated parameter is considered as a proxy for the impact of the 
localized flows of non-research related industrial knowledge on patenting.            represent 
spatial and time-period (fixed or random) effects.  

 

Selection among the spatial error, lag and Durbin models is guided by testing the so-called Common 
factor hypothesis (Anselin 1988):  

 

H0:     and H0:          

 

where θ, just as , is a Kx1 vector of parameters. The first hypothesis examines whether the spatial 
Durbin model can be simplified to the spatial lag model, and the second hypothesis test whether it 
can be simplified to the spatial error model (Burridge 1981). We applied the Wald test (Elhorst 2012) 
in empirically testing the Common factor hypothesis.  

Regarding panel effect identification, which is the third specification issue, we run LR tests on the 
joint significance of spatial fixed effects and time-period fixed effect, subsequently (Elhorst 2012). 
Hausman's specification test is used to test the random effects model against the fixed effects model 
(Lee and Yu 2010). Paul Elhorst’s MATLAB routines are run for the spatial panel estimations (Elhorst 
2012). 

 

3. Data description and an exploratory analysis 

 

3.1. The database 

The empirical analysis in this paper is based on a sample of 262 European NUTS2 regions, covering 
the period between 1998 and 2009. As made possible by the thematic diversification of our FP 
database, the sample is restricted to those projects and the respective participants, which fall under 
the broad thematic area called ‘Quality of Life’. (the specific thematic areas are: Quality of Life in FP5, 
Life Sciences, Genomics and Biotechnology for Health in FP6 and Health in FP7 – the same grouping is 
used by e.g. Hoekman et al. 2012). The dependent variable is patenting activity under the QOL area 
(see the specification of patents corresponding to this area later) at the regional level as proxied by 
patent applications to the EPO (PATi,t). Although using patents as a proxy for technological innovation 
is far from a perfect solution, there are several reasons why it still remains one of the most widely 
used and accepted measures (see e.g. Griliches 1990, for a comprehensive study on the issue, or Acs, 
Anselin and Varga 2002, for an analysis on the links between patent and innovation counts at the 
level of regions). 

Romer (1990) emphasizes the importance of knowledge stocks (or a 'standing on the shoulders of 
giants' effect) for knowledge production, which concept has been verified empirically (Furman, 
Porter and Stern 2002; Zucker et al. 2007). In order to capture this effect, we apply patent stocks as 
proxies of regional knowledge stocks in the empirical analysis.  These patent stocks (PATSTOCKi,t) are 
calculated according to the perpetual inventory method for the 1995–2009 period (for details see 
Varga, Pontikakis and Chorafakis 2013). 

We capture knowledge flows between regions by FP cooperation networks in the quality of life 
thematic areas (as discussed previously) over the period of 1998-2009. There are good reasons to 
expect that participation in the FP can be an appropriate proxy of the relational structure of 
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interregional knowledge diffusion across Europe. The FPs were designed to support ‘pre-
competitive’, collaborative research with no national bias as to the types of technologies promoted 
and the distribution of funds. The precompetitive character of supported research ensured that 
Community funding did not clash with the competition principles of the Common Market and did not 
function as a form of industrial subsidy; the collaborative character of research and the cost-sharing 
provisions were seen to guarantee the diffusion of technologies and the involvement of various types 
of actors from the whole technological knowledge creation spectrum, such as large and small firms, 
universities and public research institutes. One potential drawback of the FP as a data source is the 
fact that it is artificial; i.e. collaborating teams will not always coincide with naturally emerging 
networks of researchers. (Varga, Pontikakis and Chorafakis 2013) 

 

Table 1. Variable description 

Variable Name Description Source 

PATi,t Number of patent applications under the category ‘QOL – 
Quality of Life’ corresponding to the broad thematic areas of 
the FP programmes (see the description for the details). 

Eurostat database 

RDi,t Gross regional expenditures on R&D, in millions of Purchasing 
Power Standard (PPS) Euros, 1995 prices 

Eurostat database 

REG_FUNDi,t Regional FP funding under the ‘quality of life’ thematic areas 
(Quality of Life in FP5, Life Sciences, Genomics and 
Biotechnology for Health in FP6 and Health in FP7), in millions 
of Purchasing Power Standard (PPS) Euros, 1995 prices 

Authors’ elaboration on 
FP5-6-7 administrative 
database, DG RTD, Dir A 

PATSTOCKi,t Regional patent stock under the category ‘QOL – Quality of 
Life’ corresponding to the broad thematic areas of the FP 
programs (see the description for the details). 

Authors’ elaboration on 
Eurostat database 

ENQ_DENSi,t,  
ENQ_STRHi,t 
ENQ_MIXDi,t, 
KPi,t, 
LS_DENSi,t, 
LS_STRHi,t, 

Ego Network Quality – a comprehensive measure of the 
knowledge accessible from a network position. ENQ values 
are calculated for the interregional FP collaboration network 
in the quality of life thematic areas (Quality of Life in FP5, Life 
Sciences, Genomics and Biotechnology for Health in FP6 and 
Health in FP7) DENS refers to the cohesion, STRH to the 
structural holes and MIXD to the mixed approach of 
calculating the Local Structure component of ENQ. KP is the 
Knowledge Potential component, LS is the Local Structure 
component 

Authors’ elaboration on 
FP5-6-7 administrative 
database, DG RTD, Dir A 

HTEMPi,t Regional employment in the high tech sectors according to 
the Eurostat classification (high-tech manufacturing and high-
tech knowledge-intensive services) 

Eurostat database 

 

The regional information (address) of participants in FP projects together with the information of the 
date of cooperation (duration of FP programs) allows us to construct a simple network where to each 
FP project we assign the regions where the partners are resident. Then, this two-mode network is 
converted into a one-mode network where the nodes are regions and the links between the regions 
refer to the cooperation between the regions. This conversion is done on the basis of the assumption 
that all partners listed for a given FP project are linked to each other. For example, if three actors, A, 
B and C cooperated in one project, and actors A and B belong to region 1 while actor C belongs to 
region 2, then we conclude that there is a link between regions 1 and 2. Furthermore, the links in this 
interregional network is weighted, the link weights corresponding to the number of actor-actor 
contacts between the regions. In the previous example, we count two links between regions 1 and 2, 
one for the link between actors A and C and one for the link between actors B and C. This method is 
then iterated for each FP project and each year in the sample to obtain the adjacency matrices 
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describing the network structure of knowledge flows. These matrices are then used to calculate the 
ENQ measures in this study. 

The aggregation method we use also has its shortcomings. We assume that there is an ‘individual’ 
link between all project members and then interregional links are established according to the 
number of projects in which two participants from two regions cooperate. This method hides the 
possibly more refined structure of interrelations among partners and hence regions. Unfortunately, 
though, there is no information on the specific collaboration structure (e.g. internal groups and 
hierarchies) of the projects. With less project members the complete connectedness can be a 
reasonable proxy but at larger projects with many participants this method may overestimate the 
true intensity of collaboration among regions. 

Table 1 contains the description of the empirical variables employed in our analysis.   

 

3.2. Concordance between the FP thematic area ‘QOL’ and patent counts 

In this analysis we focus on a specific thematic area of FP projects, called ‘quality of life’ (QOL). The 

choice of this area is based on the fact that using aggregate data on FP collaborations would lead to 

an overcrowded landscape of connections due to the many projects. Focusing on one area, in 

contrast, allows for a more refined picture of cooperation networks and a more clear interpretation 

of the results. On the other hand, due to the changing nature of thematic areas over the different 

FPs, there are few areas which can be consistently analyzed through FP5, FP6 and FP7. On possible 

choice, according to Hoekman et al. (2012) is the QOL, which is also used here. 

 

Table 2. Correspondence between FP scientific fields and patent sub-categories 

FP scientific fields 
Hoekman et al. (2012) 

Patent sub-categories* 
Glänzel and Meyer (2003) 

USPC patent classes 
Hall et al. (2001) 

Biomedical sciences 

Drugs (31) 

Surgery & Medical Instruments (32) 

Miscellaneous-Drugs & Medical 
(39) 

424, 514 

128, 600, 601, 602, 604, 606, 607 

351, 433, 623 

Basic life sciences 
Biotechnology (33) 

Drugs (31) 

435, 800 

424, 514 

Biological sciences Biotechnology (33) 435, 800 

Clinical medicine 

Drugs (31) 

Surgery & Medical Instruments (32) 

Biotechnology (33) 

Miscellaneous-Drugs & Medical 
(39) 

424, 514 

128, 600, 601, 602, 604, 606, 607 

435, 800 

351, 433, 623 

* Codes of the category in Hall et al. (2001) are in parenthesis 
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Once the thematic areas of FP projects are narrowed down, we have to assign patents to this area to 

consistently fit into the regression equations6. As a result of the broad categorization of FP projects, 

this is not straightforward though. We take the approach of Hoekman et al. (2012) as a starting point 

who present a correspondence between the broad thematic areas of FPs and scientific fields. They 

report weights for different scientific fields showing how relevant they are for the different thematic 

FP areas (for this they use information retrieved from the acknowledgements of scientific 

publications in journals belonging to these scientific fields. The weights show the relevance of a field 

to the thematic areas. If the weight is greater than one, the given scientific field contributes more to 

the thematic area than expected (according to a uniform distribution). For the QOL area their 

identification shows 5 scientific fields which have a weight close to or greater than one, which are: 

‘biomedical sciences’, ‘basic life sciences’, ‘biological sciences’, ‘chemistry and chemical engineering’ 

and finally ‘clinical medicine’. These scientific fields are then assigned to patent sub-categories 

according to Hall et al. (2001).  

Glänzel and Meyer (2003) report a weighted correspondence between scientific fields and these 
patent sub-categories. First, however, a matching is required between the scientific fields used by 
Hoekman et al. (2012) and those used by Glänzel and Meyer (2003). While ‘biomedical sciences’, 
‘biological sciences’ and ‘clinical medicine’ can be identified by the name of the categories, the 
identification of the field under the name of ‘basic life sciences’ is not obvious. Hoekman et al. (2012) 
cites NOTW (Nederlands Observatorium van Wetenschap en Technologie) which reports Science and 
Technology Indicators. The reports refer to CTWS (Centre for Science and Technology Studies, Leiden 
University, the Netherlands) as a basis of scientific category breakdown. Rinia et al. (2002), one of the 
most cited (based on Google Scholar) article of the research faculty of this institution clarifies the 
contents of the category of ‘basic life sciences’ which is comparable with ‘biosciences’ and 
‘neurosciences & behavior’ subcategories detailed in Glänzel and Schubert (2003). This 
correspondence coincides with the definition of the basic life sciences domain on the website of the 
University College London (UCL 2013). Table 2 contains the  correspondence from the scientific 
fields used by Hoekman et al. (2012) to patent sub-categories as in Glänzel and Meyer (2003) and 
their USPC codes. 

As a consequence of the above-described correspondences on the basis of Glänzel and Meyer (2003) 

empirical study, we can assign patent categories to the QOL thematic area. Since Glänzel and Meyer 

(2003) applied the patent sub-categories from Hall et al. (2001) which specifies the exact United 

States Patent Classification (USPC) codes, that codes can be linked directly with the QOL area. The 

USPC patent sub-classes can then be converted into IPC categories (USPTO 2013), and consequently 

the QOL thematic area of the FP projects can be linked with IPC codes. This assignment, though, is 

not perfect because the USPTO concordance tables specify 7 or 8-digit precision USPC subclasses 

assigned to 8-digit IPC codes, but the Eurostat publishes patent counts only on 3-digit IPC categories. 

Thus we assign a 3-digit IPC subclass to a 3-digit USPC class if any of the subclasses of this USPC class 

corresponds to a 8-digit group of the IPC subclass. Table 3 contains the concordance between USPC 

and IPC codes. 

As a result, we have a list of IPC classes, which corresponds to the QOL thematic field of the FP 

projects. This list, consisting of the IPC codes presented in the right-hand-side column of Table 3, was 

finally used to extract patent counts specific to the QOL area from the Eurostat database. 

 

 

                                                             
6 The concordance tables were developed by Márton Horváth. For more details on the procedure see Horváth (2013).  



11 
 

Table 3. Concordance between 3-digit USPC and IPC codes in “Quality of life” sciences 

3-digit USPC Classes 3-digit IPC Subclasses 

424 A61, A01, C11, B01, D21, A23 

514 A01, A61, C07, C12 

128 
A61, B05, A62, F24, B63, G08, B65, 
H05, F16, G05, F23, F15 

600 A61, B64, H04, B65 

601 A61 

602 A61 

604 A61 

606 A61 

607 A61, A63 

435 
A01, C12, G01, A23, C07, C02, A62, 
B09, D06, C14, A61, C11, C08, C13, 
D21, D01, C10 

800 G01, C12, A01 

351 G02, A61 

433 A61 

623 A61 

 

 

3.3. Exploratory analysis 

In this section we provide a brief exploratory analysis of our dataset. Table 4 contains some 

descriptive statistics, from which it is apparent that CEE regions show a significantly worse 

performance in all aspects exhibited here (number of patents, patent stock, regional FP funding, 

R&D, ENQ and high tech employment). 
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Table 4. Variable descriptive statistics 

  Total sample 

  PAT RD REG_FUND PATSTOCK ENQ HTEMP 

N 2620 2620 2620 2620 2620 2620 

Mean 106,64 674,99 1,69 347,17 73261,51 35,01 

Std.dev. 198,19 1166,34 2,99 858,97 40080,02 41,52 

Min 0 1,06 0,0008 0 0 0,86 

Max 1746,97 13269,56 30,46 7582,23 151744,7 474,77 

  CEE regions 

  PAT RD REG_FUND PATSTOCK ENQ HTEMP 

N 510 510 510 510 510 510 

Mean 5,21 123,91 0,47 15,99 55415,89 23,12 

Std.dev. 7,29 169,22 0,57 78,18 39268,99 17,23 

Min 0,04 4,16 0,0008 0,70 0,00 5,47 

Max 59,40 1245,06 3,19 1565,20 141346,20 145,00 

  Non CEE regions 

  PAT RD REG_FUND PATSTOCK ENQ HTEMP 

N 2110 2110 2110 2110 2110 2110 

Mean 131,15 808,19 1,90 427,21 76357,84 37,88 

Std.dev. 213,71 1261,39 3,19 939,02 39404,70 45,02 

Min 0,00 1,06 0,0007 0,00 0,00 0,86 

Max 1746,97 13269,56 30,46 7582,23 151744,70 474,77 

 

In what follows, some dynamic analysis is provided with respect to our basic variables. Figure 1 
shows the evolution of patenting activity in CEE regions and the rest of the regions in the sample. 
What is evident form the figure is that there is a magnitude difference between the two categories of 
regions in favor of non CEE regions. 

 

Figure 1. Average patenting activity in CEE and non CEE regions 
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Figure 2 shows the average regional funding for CEE and non CEE regions in the sample. It is also 

apparent that CEE regions acquire far less funding through FP projects than non CEE ones. Moreover, 

while there is a slightly increasing trend in average funding for non CEE regions, CEE regions tend to 

lag behind in the second half of the sample period. 

 

Figure 2. Average FP funding in CEE and non CEE regions 

 

 

If we look at the relative funding (Figure 3), the relative fallback of CEE regions is apparent, 

throughout the whole period. The average FP funding of CEE regions (in the quality of life area) falls 

from 30% of the funding intensity of non CEE regions in 2000 to slightly above 20% at the end of the 

decade. 

 

Figure 3. Relative FP funding of CEE and non CEE regions 
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Turning to the ENQ index, Figure 4 shows how the average ENQ indices7 evolved over our sample 
period. Figures 5 and 6 show the evolution of two subindices, namely the Knowledge Potential and 
the Local Connectivity indices, which capture the properties of the direct neighborhood of the 
regions in the sample (average values are indicated on the figure). Figures 7-9 show the respective 
relative figures. 

 

Figure 4. Average ENQ of CEE and non CEE regions 

 

 

Figure 4 shows that non CEE regions step ahead of their CEE partners with respect to their ENQ index 

over the whole period, while the difference in absolute terms seem to remain the same. In contrast, 

the relative differences (Figure 5) increase from slightly below 70% to 80%, and there is a sharp 

decrease in the last two years. This shows that the position of CEE regions in interregional knowledge 

networks improved a bit over the first half of the decade but this improvement was lost during the 

last two years of the sample. 

 

Figure 5. Relative ENQ indices of CEE and non CEE regions 

 

                                                             
7 ENQ indices shown on the figures are calculated with Local Connectivity used as the underlying concept of Local Structure 
subindex in ENQ. 
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If we look at the two subindices, it is apparent that CEE regions slightly increase their position with 

respect to Local Connectivity, from 80% to over 90% but the sharp decrease at the end is also present 

in this respect. In other words, CEE regions tended to reach better positions in interregional 

knowledge networks with respect to the connectedness of their neighborhood: they became better 

connected in the sense that more intensive collaboration structures surrounded them, getting almost 

similar in this respect to non CEE regions. However, this catch-up process was reversed during the 

last two years of our sample. 

 

Figure 6. Average Local Connectivity values of CEE and non CEE regions 

 

 

Figure 7. Relative Local Connectivity values of CEE and non CEE regions 
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typical network formation principle that nodes with some characteristics (in our case less knowledge) 
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Figure 8. Average Knowledge Potential values of CEE and non CEE regions 

 

 

Figure 9. Relative Knowledge Potential values of CEE and non CEE regions 
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measured at the middle of the sample relative to their initial positions stems from both more 
knowledge in their direct partners (which can be a result of either higher knowledge at already 
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collaboration structure among the partners. However, this relative gain was lost during the last two 
years where again, both Knowledge Potential and Local Connectivity fell back to a considerable 
extent. 
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Figure 10. Spatial distribution of ENQ values in CEE regions 

 

 

Figure 10 shows the spatial distribution of regional ENQ values calculated for 2008. There are marked 
differences between the countries and also the regions. Poland, the southern part of Hungary and 
the Baltic countries show above average regional ENQ values.  

 

4. Empirical analysis 

Tables 5 and 6 present the results of the regression analysis for regions in the two sub-samples of the 
EU for the Quality of Life sector. We first study the regression outputs for Non-CEE regions then the 
results for CEE Objective 1 regions. The usual two-year time lag between inputs to regional 
knowledge production and patenting is applied. In Model (1) of Table 5 the two main variables of 
Equation (2) (R&D expenditures and stock of patents) appear with the expected positive signs and 
also with high significances. The fit of the regression (adjusted R-square equals 0.93) is considerably 
high especially taking into account the panel nature of the data. Models (2) to (4) document the 
results of our exploration for the role of extra-regional knowledge flows mediated by FP networks. In 
Model (2) the parameter of the ENQ variable is insignificant and negative indicating that knowledge 
flows from FP networks is not related to patenting in a direct manner. An alternative specification is 
Model (3) where log(RD) interacts with log(ENQ_DENS). The coefficient is negative and significant. 
The specification in Model (4) is a variant of the one in Model (3): the interaction of log(RD) with 
log(REG_FUND), which is the funding received through FP projects in the region under the QOL area. 
The parameter is again negative and significant. Since the fit of the regression (LIK) is somewhat 
better in Model (4) this will be the structure to be followed during the analysis. So far the results thus 
suggest that knowledge flows from FP networks negatively influence the productivity of FP research 
subsidies in regional patenting. However it should be kept in mind that up to this point neither panel 
effects nor spatial dependence has been taken into consideration.  
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Table 5. Regression Results for Log (PAT) for 211 Non-CEE EU NUTS2 Regions and for the QOL sector, 
2000-2009 (N=2110) 

Model (1) 
 

Pooled 

(2) 
 

Pooled 

(3) 
 

Pooled 

(4) 
 

Pooled 

(5) 
 

Pooled 

(6) 
 

Pooled 

(7) 
 

Pooled 

(8) 
 

Pooled 
 
 

(9) 
 

Spatial and 
time-period 
fixed effects 

 

Estimation OLS OLS OLS OLS OLS OLS OLS OLS ML 
Spatial 
Durbin 
(Neigh) 

Constant 
 
W_Log(PAT) 
 
Log(RD(-2)) 
 
Log(RD(-2)-REG_FUND(-2)) 
 
Log(ENQ_DENS(-2)) 
 
Log(RD(-2))* 
Log(ENQ_DENS?(-2)) 
 
Log(REG_FUND(-2))* 
Log(ENQ_DENS(-2)) 
 
Log(REG_FUND(-2))* 
Log(ENQ_MIXD(-2)) 
 
Log(REG_FUND(-2))* 
Log(KP(-2)) 
 
Log(REG_FUND(-2))* 
Log(LS_DENS(-2)) 
 
Log(REG_FUND(-
2))*Log(LS_STRH(-2)) 
 
Log(PATSTOCK(-2) 
 
Log(HTEMP(-2)) 
 
W_Log(RD(-2)-REG_FUND(-
2)) 
 
W_Log(REG_FUND(2)* 
Log(ENQ_DENS(-2)) 
 
W_Log(PATSTOCK(-2) 
 
W_Log(HTEMP(-2)) 

-1.827*** 
(-42.21) 

 
 

0.238*** 
(17.71) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

0.776*** 
(68.83) 

-1.826*** 
(-42.78) 

 
 

0.239*** 
(16.40) 

 
 
 

-0.001 
(-0.22) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.776*** 
(68.12) 

-1.862*** 
(-40.90) 

 
 

0.259*** 
(15.43) 

 
 
 
 
 
 

-0.001** 
(-2.04) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.775*** 
(68.69) 

 
 
 
 
 

-1.892*** 
(-41.03) 

 
 
 
 
 

0.246*** 
(18.10) 

 
 
 
 
 
 

-0.002*** 
(-3.48) 

 
 
 
 
 
 
 
 
 
 
 
 

0.778*** 
(69.04) 

-1.842*** 
(-38.75) 

 
 
 
 
 

0.200*** 
(11.35) 

 
 
 
 
 
 
 
 
 

-0.002*** 
(-4.04) 

 
 
 
 
 
 
 
 
 

0.761*** 
(63.63) 

0.098*** 
(4.05) 

 
 
 
 
 
 
 
 
 

-1.842*** 
(-38.74) 

 
 
 
 
 

0.200*** 
(11.35) 

 
 
 
 
 
 
 
 
 
 
 
 

-0.002*** 
(-4.04) 

 
 
 
 
 
 

0.761*** 
(63.63) 

0.098*** 
(4.05) 

 
 
 

-1.730*** 
(-37.24) 

 
 
 
 
 

0.183*** 
(10.07) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.002*** 
(-3.46) 

 
 
 

0.766*** 
(63.64) 

0.091*** 
(3.78) 

-1.804*** 
(-40.07) 

 
 
 
 
 

0.193*** 
(10.91) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.004*** 
(-4.26) 

0.763*** 
(63.82) 

0.098*** 
(4.05) 

 
 

0.080** 
(2.24) 

 
 
 

-0.068 
(-1.43) 

 
 
 
 
 
 

-0.001 
(-1.59) 

 
 
 
 
 
 
 
 
 
 
 
 

0.088* 
(1.72) 
0.024 
(0.40) 

 
0.385*** 

(3.50) 
 

-0.001 
(-1.07) 

0.523*** 
(4.74) 

0.348*** 
(2.79) 

R
2
-adj 

LIK 
0.93 

-1457.32 
0.93 

-1457.30 
0.93 

-1455.23 
0.93 

-1451.11 
0.93 

-1442.94 
0.93 

-1442.92 
0.93 

-1445.10 
0.93 

-1442.03 
0.97 

-621.10 

LM-Err  
Neigh 
INV2 
4-nearest neighors 
 
LM-Lag 
Neigh 
INV2 
4-nearest neighors 
 
Wald-Lag (Neigh) 
Wald-Err  (Neigh) 
 
LR-test joint significance 
spatial fixed effects 
 
LR-test joint significance 
time-period fixed effects 
 
Hausman random effects test 

     
11.58*** 
11.29*** 
12.43*** 

 
 

23.97*** 
26.02*** 
23.53*** 

 
 
 
 
 

1339*** 
 
 

135*** 
 

    
 
 
 
 
 
 
 
 
 

86.47*** 
92.13*** 

 
 
 
 
 
 
 
 

172.59*** 

Notes: Estimated t-values are in parentheses; spatial weights matrices are row-standardized: Neigh is neighborhood 
contiguity matrix; INV2 is inverse distance squared matrix, 4-nearest neighbors is a weights matrix where those regions are 
considered as neighbors that are among the four most closely located ones; W_ denotes spatially lagged (dependent and 
independent) variables calculated with the weights matrix Neigh. *** indicates significance at p < 0.01; ** indicates 
significance at p < 0.05; * indicates p < 0.1.  

In Model (5) employment in high technology (HTEMP) enters the equation as an additional variable 
with a highly significant and positive coefficient. This model column shows spatial statistics as well. It 
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is clear that both spatial lag and spatial error dependence are present no matter which spatial 
weights matrix is used in the tests. Since the other two matrices changes their position from the top 
(providing the highest level of significance) to the bottom (resulting in the lowest level of 
significance) while the results with the contiguity matrix (Neigh) keep the same position the weights 
matrix Neigh will be used in spatial econometric estimations.  

Models (6) to (9) provide details on the network effect. Gatekeeper position (Model 9), when the 
Local Structure is measured by the presence of structural holes in the neighborhoods, seems to exert 
the strongest negative impact. However, the interesting result is that the ENQ impact does not 
change whether this gatekeeper position is taken into account (Model 6) or not (Model 5).  

The significant LR tests (bottom part of the column of Model 5) support the extension of Model (5) 
with spatial and time period (two-way) fixed effects. On the other hand the significant Wald Lag and 
Wald Error test statistics at the bottom of Model (10) indicate that both the spatial lag and the 
spatial error model should be rejected in favor of the Spatial Durbin model. Thus after controlling for 
unmeasured regional and temporal characteristics as well as spatial dependence Model (10) provides 
the final regression results.  

One important change in Model (10) compared to Model (5) is the now insignificant parameter of the 
variable Log(REG_FUND)*Log(ENQ _DENS). This result is a strong indication that in Non-CEE regions 
in Europe knowledge flows from FP networks do not play a meaningful role in regional patenting. The 
other essential result is that while the regional R&D variable lost its significance and the size and 
significance of the regional patent stock variable decreased markedly the spatially lagged knowledge 
variables (W_Log(RD-REG_FUND), W_Log(PATSTOCK) and W_Log(HTEMP)) enter the equation with 
highly significant and positive coefficients. These results together with the insignificant FP network 
effect indicate that regions in old EU member states tend to rely on localized knowledge inputs in 
patenting instead of extra-regional knowledge communicated via FP research networks. Furthermore 
the geographical scale of localized interactions is larger than the average area of an individual NUTS 2 
region covering larger agglomerations, which include neighboring regions as well.  

Table 6 reports the regression results for CEE-Objective 1 regions. In Model 1 parameters of the two 
major variables are positive and significant, similar to what is observed for Non-CEE regions in 
Europe. However there is an important difference in the results of Model (1) in the periphery 
compared to the rest of the EU. This is the apparently lower regression fit (adjusted R-square is 0.57 
in Table 6 compared to 0.93 in Table 5). The other important difference is the significant and positive 
parameter of the interaction variable Log(REG_FUND)*Log(ENQ_DENS) for CEE-Objective 1 regions in 
Model (4). Though the parameter becomes less significant, the size of the indirect FP network impact 
remains unchanged after the introduction of the high technology employment variable in Model (5). 
It is also a meaningful difference between Model (5) in Table 5 and Model (5) in Table 6 that for CEE 
Objective 1 regions the estimated parameter of the high technology employment variable becomes 
negative. The spatial statistics in Model (5) indicates the presence of both spatial lag and spatial error 
dependence while LR panel tests guide us to extend this model with spatial and time-period fixed 
effects.  

Models (7) to (10) in Table 6 provide additional details as to the individual impact of the ENQ 
components on regional patenting. Similar to what is found for Non-CEE regions incorporating the 
gatekeeper position to ENQ (ENQ_MIXD) does not change the size and significance of the respective 
estimated parameter in Table 6 either. Interestingly though, parameters of the variables including 
ENQ components as interaction variables are no longer significant in Models (8) to (10). The positive 
and highly significant parameter of the west border dummy in Model (6) clearly suggests that there 
are important unmeasured differences among regions in Central and Eastern Europe. Regions 
neighboring old member states (ceteris paribus) appear to use local resources more efficiently than 
the rest of the CEE regions. Model (10) takes individual regional and time-period effects explicitly 
into account. The significant Wald-Lag and Wald-Error tests point towards the spatial and time-
period fixed effects Spatial Durbin model. 
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Table 6. Regression Results for Log (PAT) for 51 CEE OBJ1 EU NUTS2 Regions and for the QOL sector, 
2000-2009 (N=510) 

Model (1) 
 

Pooled 

(2) 
 

Pooled 

(3) 
 

Pooled 

(4) 
 

Pooled 

(5) 
 

Pooled 

(6) 
 

Pooled 

(7) 
 

Pooled 

(8) 
 

Pooled 
 
 

(9) 
 

Pooled 
 
 

(10) 
 

Pooled 

(11) 
 

Spatial 
and time-

period 
fixed 

effects 

Estimation OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS ML-Spatial 
Durbin 
(INV2) 

Constant 
 
W_Log(PAT) 
 
Log(RD(-2)) 
 
Log(RD(-2)- 
REG_FUND(-2)) 
 
Log(ENQ_DENS(-2)) 
 
Log(RD(2))* 
Log(ENQ_DENS?(-2)) 
 
Log(REG_FUND 
(-2))*LOG(ENQ_DENS(-
2)) 
 
Log(REG_FUND 
(-2))*Log(ENQ_MIXD(-
2)) 
 
Log(REG_FUND 
(-2))*Log(KP(-2)) 
 
Log(REG_FUND 
(-2))*Log(LS_DENS(-2)) 
 
Log(REG_FUND 
(-2))*Log(LS_STRH(-2)) 
 
Log(PATSTOCK(-2)) 
 
Log(HTEMP(-2)) 
 
W_Log(RD(-2)-
REG_FUND(-2)) 
 
W_Log(REG_FUND(2))* 
Log(ENQ_DENS(-2)) 
 
W_Log(PATSTOCK(-2) 
 
W_Log(HTEMP(-2)) 
 
WEST_BORDER 
 

-2.534*** 
(-17.98) 

 
 

0.559*** 
(14.76) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.492*** 
(11.42) 

-2.522*** 
(-17.19) 

 
 

0.554*** 
(13.27) 

 
 
 

0.002 
(0.31) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.490*** 
(11.28) 

-2.447*** 
(-15.12) 

 
 

0.528*** 
(11.13) 

 
 
 
 
 
 

0.002 
(1.09) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.484*** 
(11.12) 

 
 
 
 
 
 
 
 
 
 

-2.553*** 
(-18.13) 

 
 
 
 
 

0.571*** 
(14.93) 

 
 
 
 
 
 

0.004** 
(1.99) 

 
 
 
 
 
 
 
 
 
 
 
 

0.488*** 
(11.35) 

 

-1.960*** 
(-10.20) 

 
 
 
 
 

0.768*** 
(13.22) 

 
 
 
 
 
 

0.003* 
(1.71) 

 
 
 
 
 
 
 
 
 
 
 
 

0.477*** 
(11.29) 

-0.467*** 
(-4.45) 

 
 

-1.960*** 
(-10.27) 

 
 
 
 
 

0.770*** 
(13.34) 

 
 
 
 
 
 

0.003* 
(1.85) 

 
 
 
 
 
 
 
 
 
 
 
 

0.444*** 
(10.19) 

-0.465*** 
(-4.46) 

 
 
 
 
 
 
 
 
 
 

0.256*** 
(2.86) 

-1.960*** 
(-10.20) 

 
 
 
 
 

0.769*** 
(13.22) 

 
 
 
 
 
 
 
 
 

0.003* 
(1.72) 

 
 
 
 
 
 
 
 
 

0.477*** 
(11.28) 

-0.467*** 
(-4.45) 

 
 
 
 
 

-1.936*** 
(-8.83) 

 
 
 
 
 

0.764*** 
(12.94) 

 
 
 
 
 
 
 
 
 
 
 
 

9.51E-05 
(0.089) 

 
 
 
 
 
 

0.481*** 
(11.35) 

-0.478*** 
(-4.52) 

-2.004*** 
(-10.02) 

 
 
 
 
 

0.772*** 
(13.20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.004 
(1.33) 

 
 
 

0.480*** 
(11.34) 

-0.466*** 
(-4.42) 

-1.862*** 
(-8.13) 

 
 
 
 
 

0.757*** 
(12.76) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.003 
(-0.52) 

0.480*** 
(11.30) 

-0.486*** 
(-4.59) 

 
 

-0.046 
(-0.48) 

 
 
 

0.370** 
(2.54) 

 
 
 
 
 
 

0.004** 
(2.03) 

 
 
 
 
 
 
 
 
 
 
 
 

0.195* 
(1.90) 

-0.549** 
(-2.47) 

 
0.124 
(0.27) 

 
0.005 
(0.78) 

0.621** 
(2.22) 
0.748 
(0.99) 

R
2
-adj 

LIK 
0.57 

-648.62 
0.57 

-648.58 
0.57 

-648.03 
0.58 

-646.68 
0.59 

-636.89 
0.60 

-632.79 
0.59 

-636.87 
0.59 

-638.35 
0.59 

-637.47 
0.59 

-638.22 
0.78 

-478.73 

LM-Err  (robust) 
Neigh 
INV2 
4-nearest neighors 
 
LM-Lag (robust) 
Neigh 
INV2 
4-nearest neighors 
 
Wald-Lag (INV2) 
Wald-Err  (INV2) 
 
LR-test joint significance 
spatial fixed effects 
 
LR-test joint significance 
time-period fixed effects 
 
Hausman random 
effects test 

     
0.552 

5.699*** 
5.000*** 

 
 

0.488 
5.641*** 
5.116*** 

 
 

 
 

276.7*** 
47.5*** 

      
 
 
 
 
 
 
 
 
 

13.72*** 
13.58*** 

 
 
 
 
 
 
 

19.65*** 

Notes: Estimated t-values are in parentheses; spatial weights matrices are row-standardized: Neigh is neighborhood 
contiguity matrix; INV2 is inverse distance squared matrix, 4-nearest neighbors is a weights matrix where those regions are 
considered as neighbors that are among the four most closely located ones; W_ denotes spatially lagged (dependent and 
independent) variables calculated with the weights matrix INV2. *** indicates significance at p < 0.01; ** indicates 
significance at p < 0.05; * indicates p < 0.1.  
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Model (10) depicts regression outputs when unmeasured regional and time-period effects as well as 
spatial dependence are controlled for. The results document markedly different patterns in the 
absorption of local and network knowledge in the two large areas of the European Union. Contrary 
to the missing FP network effect in regions of the old EU member states the significant and positive 
parameter for the Log(REG_FUND)*Log(ENQ_DENS) variable in the final model of Table 6 indicates 
that knowledge transferred from FP networks increase the impact of FP funds on the level of regional 
patenting. On the other hand the size and the significance of the local R&D and patent stock 
variables decreased in the final model.  

An additional apparent difference between the results of the final models in Tables 6 and 5 is related 
to the role of extra-regional localized knowledge transfers in regional patenting. With the exception 
of the significant spatially lagged patent stock variable the estimated coefficients of the other lagged 
variables are insignificant for CEE Objective 1 regions.  

 

5. Summary and conclusions 

We investigated the role of EU Framework Programs-mediated extra-regional knowledge transfers in 
regional patenting in Central and Eastern European countries. Within the frame of the Romerian 
knowledge production function we tested if the quality of regions’ individual FP networks has any 
relationship with regional patenting. We carried out the analysis with two sub-samples covering the 
years 1998-2009: CEE-Objective 1 regions (51 regions) and non-CEE regions (211 regions). The 
research field of study was the broad area of quality of life (QOL) covering research in biomedical, 
biological and life sciences. While analyzing the FP network impact we measured extra-regional 
knowledge in FP networks by the Ego Network Quality (ENQ) index. We also controlled for localized 
knowledge flows via a systematic panel spatial econometric methodology.  

We found that important differences exist between CEE-Objective 1 and non-CEE regions with 
respect to the role of localized knowledge flows and FP network learning in patenting. While 
knowledge transferred from FP networks positively influences the impact of FP research subsidies on 
regional innovation in CEE-Objective 1 regions, network knowledge does not turn out to be 
significant input in patenting in regions of the old member states. With respect to the relevance of 
extra-regional localized knowledge flows in innovation also different patterns are evidenced. While 
localized learning is strongly important for the Non-CEE regions we found only a weak evidence for 
such impact for the Objective 1 regions located in Central and Eastern Europe. As a consequence, we 
can state that interregional knowledge networks can substitute for the critical mass of localized 
resources for innovation in lagging regions. 

Our findings have an important message for regional policy. They suggest that strengthening 
research excellence and international scientific networking in lagging regions in CEE countries could 
be a viable option to increase their regional innovativeness. Thus furthering interregional knowledge 
network linkages in combination with other policies could form a base for a systematic support of 
regional development as it is suggested by the principles of the European Union’s reformed Cohesion 
Policy (McCann, Ortega-Argiléz 2014).  
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