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ABSTRACT.  Two blends of tobacco (Virginia and Burley) were studied by thermogravimetry at linear and 

nonlinear heating programs in gas flows containing 2, 4 and 9% oxygen.  A kinetic scheme of successive 

devolatilization and char burn-off reactions was assumed.  A distributed activation energy model was assumed 

for the devolatilization with a Gaussian distribution and a constant pre-exponential factor.  The evaluations 

were also carried out using non-constant pre-exponential factors that depended on the activation energy.  The 

char burn-off was described by first order kinetics and by an empirical model that took into account the change 

of the reactivity with the conversion of the sample.  The dependence of the rate of combustion on the oxygen 

concentration was approximated by a power function.  Series of 15 and 30 experiments were used for the 

determination of the model parameters by simultaneous least squares evaluation of the experiments.  The 

considerations, methods and results can also be used in the field of biomass gasification and combustion.  

Keywords: Tobacco blends; biomass; thermogravimetry; distributed activation energy model; combustion; 

pyrolysis; kinetic regime. 
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1. Introduction 

The primary goal of this work was to develop kinetic submodels describing the pyrolysis and combustion 

processes occurring during the burning of tobacco.  As the reactions studied in our work also occur in the 

combustion of other plant materials and solid biomass fuels the considerations, methods, models, algorithms 

and results of our work are also expected to be applicable to research into biomass gasification and combustion 

in general. 

Thermogravimetric experiments have a high precision as the temperature and the other experimental 

conditions of the sample are usually well known and well controlled.  This makes it a useful tool for studying 

devolatilization and combustion in the kinetic regime.1,2  On the other hand, TGA can be employed only at 

relatively low heating rates; at high heating rates the true temperature of the sample may be unknown.  This is 

particularly true in the presence of oxygen when high heating rates and/or larger sample masses can lead to 

ignition and uncontrolled combustion of the sample.   

TGA measures the overall mass loss caused by devolatilization and burn-off of the formed char.  These 

processes more or less overlap each other; accordingly their evaluation needs a suitable kinetic model that 

considers the simultaneous occurrence of both processes.3  The development of  this type of model was the 

main subject of the present work. 

Most materials and products made from plants contain a wide variety of pyrolyzing species.  Even the same 

chemical species may have differing reactivity if their pyrolysis is influenced by other species in their vicinity.  

The assumption of a distribution in the reactivity of the decomposing species frequently helps in the kinetic 

evaluation of the pyrolysis of complex organic samples.4  The distributed activation energy models (DAEM) 

have been used for biomass pyrolysis kinetics since 1985, when Avni et al. applied a DAEM for the formation 

of volatiles from lignin.5  This type of research was subsequently extended to a wider range of biomasses and 

materials derived from plants including several works on tobacco devolatilization.6-9  Saidi et al. employed a 

DAEM in an actual combustion model.10  Becidian et al.11 described the pyrolysis of wastes from brewery, 

industrial coffee roasting, and fiberboard furniture production by DAEM kinetics.  This work used the method 

of least squares on series of experiments with linear and non-linear temperature programs in a similar way as it 

is employed in the present work.  The model parameters obtained by Becidian at al. allowed reliable prediction 

outside of the domain of the experimental conditions of the given kinetic evaluations.  Recently Várhegyi et al. 

employed a similar kinetic evaluation on large series of experimental data in a TGA-MS study of tobacco 

pyrolysis in inert atmosphere.12   

There are many papers dealing with the gasification and burn-off kinetics of lignocellulosic chars.  This part 

of the literature has recently been extensively reviewed by Di Blasi.13  The paper of Várhegyi et al. on the 

combustion kinetics of corn cob charcoals14 has close relationships to the present paper due to similarities in 

the least squares evaluation strategies and the application of an empirical model. 

A combustion model usually needs the coupling of the devolatilization and the char burn-off reactions.15  

The present work deals with the devolatilization and successive char-burn-off that occur in overlapping 

time/temperature intervals.  Four model variations were tested by determining the model parameters and 
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verifying the models on large series of experiments using the method of least squares.  The present work 

differs from its predecessors11,12,14 in the model variants employed as well as in the coupling of a DAEM 

devolatilization with char burn-off kinetics. 

 

2. Samples and Methods 

2.1. Samples.  Virginia and Burley tobaccos are the two tobacco varieties that are present in the largest 

quantities in most commercial tobacco products.  Different growing and curing conditions have led to 

significant differences in their chemical compositions.  Virginia-style and Burley-style tobacco blends were 

investigated in the present work.  The Virginia sample consisted of eight different tobaccos (laminar grades) 

from eight different countries, each making 12.5 m/m%.  The Burley sample was blended from four different 

tobaccos (laminar grades) grown in four countries. 

Table 1.  Characteristics of the Virginia and Burley tobacco blends 

m/m % on a dry weight basis Virginia Burley 

Ash 11.9 20.3 

Total nitrogen 2.7 4.7 

Total sugars 13.2 0.1 

Pectins 6.9 9.9 

Cellulose 10.2 13.0 

Lignin 3.7 4.2 

Nicotine 2.8 2.6 

Polyphenols (chlorogenic acid + rutin) 2.6 0.1 

 

The main chemical characteristics of the samples are summarized in Table 1. It is interesting to note that 

these tobacco blends contain more minerals then a usual biomass fuel; the ash content of the Virginia and 

Burley blends were 12 and 20 %, respectively.  The composition of the ash is similar in the two tobaccos, as 

shown by an ICP-OES spectrometry analysis in Table 2.  The pyrolysis of these samples was studied in two 

recent works published elsewhere.  Czégény et al. studied the formation of selected toxicants by pyrolysis – 

gas chromatography – mass spectrometry and presented TGA experiments about the effect of sample mass, 

particle size and oxygen concentration.16  Várhegyi et al. examined the pyrolysis kinetics of these samples in 

inert atmosphere by TGA-MS experiments.12  (See Section 3.6 for data from the latter work.) 

The tobacco samples for the experiments were taken from research cigarettes. The tobacco was slightly 

broken in an agate mortar, mixed, and put into a closed jar at room temperature.  For each experiment a small 

amount of tobacco was sourced out from the jar.  The moisture content of the Virginia and Burley tobacco 

samples were found to be 4.8 and 4.9 m/m% before the experiments, respectively.  These values are lower than 
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the moisture content was in the original cigarettes.  However, the moisture content has no effect on the kinetics 

of the TGA studies because the samples in thin layers dry before reaching the temperatures of the pyrolysis and 

combustion reactions. 

Table 2.  Ash analysisa 

m/m %  Virginia Burley 

Al 0.7 0.6 

Ca 21.5 18.7 

Fe 0.3 0.3 

K 30.2 28.2 

Mg  5.2 3.8 

Na 0.4 0.4 

a The ash was prepared by CEN/TS 14775 standard.  The concentrations are expressed on a dry weight basis.  

The analysis was carried out on 19 elements of which the metallic components with concentration above 0.1% 

are shown. 

 

2.2. Thermogravimetric experiments.  The TGA measurements were performed using a computerized 

Perkin-Elmer TGS-2 thermobalance.  Samples of 0.4 - 2 mg were spread on a platinum sample holder of Ø 6 

mm. The experiments were carried out in gas flows of 140 ml/min.  Nitrogen – oxygen mixtures with 2, 4 and 

9 % (v/v, ±5% rel.) oxygen were used.  Prior to the experiments, the apparatus was purged with the carrier gas 

for 45 min.  Linear and stepwise heating programs were employed to increase the amount of information in the 

series of experiments.17  As Figure 1 shows, the heating programs slightly differed for the two samples due to 

differences in the domain of devolatilization and in the reactivity of the chars.  Test experiments were carried 

out to select sample masses at which no ignition or significant self-heating occurred.  Self heating can be a 

serious problem in combustion studies, as illustrated in earlier works.14,17  At a heating rate of 40°C/min the 

safe sample mass proved to be around 0.4 mg in the present work.  However, a sample mass of 0.4 mg 

contained only 2-3 tobacco pieces.  This resulted in some sample-to-sample variation of these experiments that 

can be seen in the corresponding figures of the Supporting Information.  Accordingly, each 40°C/min 

experiment was conducted in duplicate.  In this way 6 experiments of 40°C/min were used for each sample in 

the kinetic evaluation.  1 mg sample mass was employed at the T(t) denoted by bold solid lines in Figure 1 

while 2 mg sample could safely be used at the slower heating programs (circles and dashed lines in Figure 1). 
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Figure 1.  Heating programs for the Virginia (a) and the Burley (b) samples. 

2.3. Numerical methods.  The calculations were carried out on personal computers running Windows.  The 

calculation rates given in this work were determined using an Intel Core 2 Quad Q9550 processor running at 

2.8 GHz.  The parallel processing capabilities of this processor were not used in the programming.  Fortran 95 

and C++ were employed for the numerical calculations and for graphics handling, respectively.  Earlier 

programs developed and employed by one of the authors11,14,17-20 were supplemented in the present work by a 

fast algorithm for the solution of the coupled DAEM devolatilization and char combustion reactions.  The 

algorithms used are briefly summarized below, incorporating some essential details that were omitted in our 

earlier works.   

The derivative of the sample mass curves (DTG) were determined by the analytical differentiation of 

smoothing splines, as described by Várhegyi and Till.19  The rms difference between the spline function and 

the measured TGA data was around 0.16 µg, which is negligible compared to the initial sample masses of this 

work (0.4 – 2 mg). This procedure does not introduce considerable systematic errors into the least squares 

kinetic evaluation of experimental results.20  The differential equations of the model were solved numerically 

along the empirical temperature – time functions resulting in simulated data in the ti points of the observations.  

As outlined in the next section, a DAEM devolatilization and a subsequent char burn-off reaction were 

assumed.  The integration by E in the DAEM kinetics was carried out by a Gauss - Hermite quadrature 

formula, as described by Donskoi and McElwain21 and Várhegyi et al.18  The domain of integration was 

rescaled by a factor of 0.2 to increase the precision of the integration.21  The first order kinetic equations of the 

DAEM were solved numerically using 180 quadrature points.  Obviously the solution of the kinetic equations 

is not needed in the lower part of the activation energy range. This can be easily checked: if the rate constant 

(A0
 e-E/RT) is higher than 103 s-1 in the first evaluated point of the domain of evaluation, then the mean lifetime 

of the corresponding species is less than a millisecond there.  (In a more general sense, the actual activation 

energy limit should obviously be set to the time scale and precision requirements of the given work.)  A limit 

can also be implemented in the solution of the first order kinetic equations: the integration can obviously be 

finished if the normalized amount of the given species reaches a low value, e.g. 10-12.  A similar limit can be 

set at the high end of the E domain, too, by calculating the rate constant at the highest evaluated temperature. If 
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its reciprocal is much higher than the time scale of the problem then only a negligible part of the corresponding 

species will decompose and the kinetic equation need not be solved at this E. 

After separating the variables in the first order kinetic equations, the exponential integral was solved 

numerically in each [ti-1,ti] by a Gauss – Legendre quadrature of 7 points of which the first and last were fixed 

to be at the end points of the given [ti-1,ti] domain.22  This procedure works at any T(t) function that may arise 

in thermal analysis.  A linear T(t) was assumed at the beginning of the integration, from room temperature to 

the first point of the evaluation, accordingly it is possible to use an analytical approximation of the exponential 

integral in these intervals.  Legendre's continued fractions were used in this work, as described earlier.23  The 

solution of the DAEM gave the amount of unreacted sample, mur(t) and its derivative, dmur/dt in the ti points.  

(See the notations in the Nomenclature at the end of the paper.)  The solution of the char burn-off equation 

required the mur(t) and dmur/dt at many other t values.  These data were obtained from the discrete mur(ti) and 

)( i
ur t

dt

dm
 values by Hermitian interpolation.  The differential equation of the char burn-off kinetics was solved 

by an adaptive stepwise Runge–Kutta method24 in each [ti-1,ti]  interval.  To simplify the programming, the 

equations for the overall mass and for the ash production were also solved together with the char burn-off 

equation in the same Runge–Kutta calculations.  The nonlinear least squares minimization was carried out by a 

variant of the Hook–Jeeves method, which is a slow but simple and dependable direct search algorithm.25  In 

our work the original Hook–Jeeves algorithm was supplemented by parabolic interpolation for finding the 

optimal stepsizes.  The starting values for the non-linear optimization were taken either from earlier work11,14 

or from the results of the simpler models of the present work. 

3. Results and discussion 

3.1. Evaluation by the method of least squares.  The unknown model parameters were evaluated from 

series of experiments by minimizing sum SN: 
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Here N is the number of experiments in the series.  In the present work its value is either 15 or 30.  The wk 

weight factors were 0.5 for the 40°C/min experiments (of which we had duplicates in the least squares sum, as 

described in Section 2.2) and 1 for the other experiments.  W is the sum of wk.  (dm/dt)obs and (dm/dt)calc denote 

the observations and their simulated counterparts.  Subscript k indicates the different experiments.  ti denotes 

the time values in which the discrete experimental values were taken, and Nk is the number of the ti points in a 

given experiment.  hk denotes the heights of the evaluated curves that strongly depend on the experimental 

conditions.  The division by hk
2 serves for normalization.  The fit was characterized by the following quantity: 

fitN (%) =  100 5.0

NS   (2) 
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Equations 1 and 2 can be employed to express the fit of any group within the evaluated experiments.  When 

the fit is calculated for one experiment, 5.0

1S equals to the normalized rms deviation of the calculated data from 

the observations. 

3.2. Coupling a DAEM devolatilization and a successive char burn-off reaction.  The following 

successive reactions will be considered: 

Tobacco  char + volatiles (3) 

Char + O2  ash + CO2, CO, H2O and minor gaseous/volatile products (4) 

Let us normalize all masses by the initial sample mass.  The normalized amounts of the unreacted part of the 

sample, char and ash will be denoted by mur and mchar, and mash, respectively.   

As the reactions proceed,  mur decreases from 1 to 0.  mchar is zero at the beginning of an experiment.  It 

reaches a maximum as the char forms and converges to zero again as the char burns off.  The yields of the 

solid products in reactions 3 and 4 will be denoted by ychar and yash, respectively.  As the char burn-off 

proceeds, mash converges from 0 to ychar
 yash. 

mcalc is the sum of the normalized masses of the solid components: 

mcalc = mur + mchar + mash (5) 

dmcalc/dt = mur/dt + mchar/dt + mash/dt (6) 

Note that mcalc(0)=1 and mcalc  ychar
 yash as t  . 

The devolatilization is described by a DAEM.  First order reactions are assumed for the parts of the sample 

that decompose at the various E values: 

-dmur(t,E)/dt = A0 e-E/RT mur(t,E) (7) 

mur(t) is composed from mur(t,E):  

                     

mur(t) =  D(E) mur(t,E) dE (8) 
                   0 

D(E) will be approximated by a Gaussian distribution: 

D(E) = (2)-1/2 -1 exp[-(E-E0)2/22] (9) 

In this section the char burn-off is approximated by a simple kinetic relationship which is first order with 

respect to the amount of char and th order with respect to the oxygen concentration: 

dmchar/dt = dmur/dt ychar – Achar exp(-Echar/RT) mchar 


2OC   (10) 

Here 
2OC  is the dimensionless V/V concentration of the oxygen.  (Note that a dimensionless 

2OC  is 

necessary to provide a constant dimension for Achar, which is s-1 in this way.) 

The ash is formed from the char burn-off with yield yash and does not react any further in this model: 

dmash/dt = Achar exp(-Echar/RT) mchar 


2OC  yash (11) 

The solution of equations 5 – 11 was carried out numerically, as described in Section 2.3.  A high relative 

precision was used (better then 10-6) because it ensured the safety of the iterations and did not cause any 
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difficulty.  The average time of solution of equations 5 – 11 at a given T(t) was 29 ms by the computer 

described in Section 2.3. 

3.3. Simultaneous evaluation of 15 and 30 experiments.  First the 15 experiments of a given tobacco 

blend was evaluated by this model.  The means of the activation energy distribution, E0 and the activation 

energies of the char burn-off, Echar showed only slight variations with the tobacco blends.  The corresponding 

parameters are presented in Table 3, under the headings “DAEM: Constant A” and “char burn-off: 1st order 

with respect to mchar”.  It was found that common  reaction orders can be selected for the two blends without 

a significant worsening of the fit.  Accordingly, the 30 experiments of the two tobacco blends could be 

evaluated together assuming common values for E0, Echar, and .  As the corresponding part of Table 4 shows, 

this procedure resulted in practically the same fit30 values as the separate evaluation of the samples.  In this 

case 13 unknown parameters were determined from 30 experiments, indicating a good mathematical condition 

of the evaluation.  The details of the evaluation are displayed in Figure 2.  Red color indicates the conversion 

of the unreacted sample, blue color shows the formation and burn-off of the char and green color represents the 

ash production.  (Note that the negative parts of the figures indicate the formation of the products in this 

representation.) 
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Table 3.  Parameters obtained from two series of 15 experiments at all model variants employed 

DAEM Constant A A depends on E Constant A A depends on E 

Char burn-off 1st order with respect to mchar Empirical dependence on α and mchar 

Sample Virginia Burley Virginia Burley Virginia Burley Virginia Burley 

fit15 (%) 8.5 6.8 8.2 6.7 8.1 6.0 7.7 5.9 

fit30 (%) 7.7 7.5 7.1 6.9 

β / kJ-1 mol – – 0.113 0.085 – – 0.106 0.065 

E0
 / kJ mol-1 180 185 169 184 184 188 170 186 

σ / kJ mol-1 25.8 17.3 51.1 28.0 26.4 18.0 52.5 25.3 

log10 A0
 / s-1 14.88 15.17 14.22 15.08 15.28 15.39 14.28 15.24 

ychar 0.42 0.54 0.41 0.54 0.42 0.53 0.40 0.53 

Echar
 / kJ mol-1 204 215 201 214 210 216 210 216 

log10 Achar/s-1 13.02 13.74 12.74 13.67 14.20 14.40 14.09 14.00 

 0.54 0.32 0.51 0.32 0.56 0.34 0.53 0.34 

yash 0.31 0.49 0.23 0.48 0.29 0.47 0.18 0.46 

n – – – – 1.76 2.17 1.71 2.13 

a – – – – 2.60 5.42 1.99 5.89 

z – – – – 0.00 0.23 0.00 0.39 
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Table 4.  Parameters obtained from a series of 30 experiments at all model variants employed 

DAEM Constant A A depends on E Constant A A depends on E 

Char burn-off 1st order with respect to mchar Empirical dependence on α and mchar 

Sample Virginia Burley Virginia Burley Virginia Burley Virginia Burley 

fit30 (%) 7.8 7.6 7.2 7.0 

fit30 (%), T≤400°Ca 6.4 5.4 6.4 5.5 

fit30 (%), T>400°Ca 11.0 11.2 9.8 9.9 

β / kJ-1 mol – 0.107 0.089 – 0.106 0.071 

E0
 / kJ mol-1 186 180 186 182 

σ / kJ mol-1 26.7 17.2 51.4 28.3 26.7 17.7 52.8 25.4 

log10 A0
 / s-1 15.43 15.18 15.24 14.76 15.43 15.17 15.37 14.86 

ychar 0.42 0.54 0.41 0.54 0.42 0.53 0.40 0.54 

Echar
 / kJ mol-1 211 209 213 212 

log10 Achar/s-1 13.31 13.57 13.16 13.41 14.38 14.54 14.32 14.45 

 0.42 0.41 0.43 0.42 

yash 0.32 0.49 0.25 0.48 0.29 0.47 0.20 0.46 

n – – 1.96 1.92 

a – – 3.42 3.09 

z – – 0.01 0.01 

a Separate fit30 values were calculated for the experimental points below and above 400°C to show how the 

models fit the data in domains dominated by devolatilization and char burn-off, respectively. 
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Figure 2.  Simultaneous evaluation of 30 experiments as described in Sections 3.2 and 3.3.  Model 

assumptions: constant pre-exponential factor in the DAEM devolatilization and first order char burn-off 

kinetics with respect to mchar.  Eight experiments are shown here, the rest can be found in the Supporting 

Information.  Notation:  experimental DTG curves normalized by the initial sample mass (o o o);  their 

calculated counterpart (black –––); and simulated partial curves -dmur/dt (red —); -dmchar/dt (blue —); and -

dmash/dt (green —).  The stepwise temperature programs (+ + +) are also shown when appropriate. 

3.4. An empirical char burn-off model.  In the case of ideal chars (specially prepared, pure model carbons) 

the reaction rate is proportional to the surface area, and the change of the surface area during the reaction can 

be described by theoretical models.26-29. In the case of a tobacco or a biomass fuel, however, complicating 

factors arise that are connected to the accessibility of the internal pores, the role of the inorganic catalysts, and 

the chemical/physical inhomogeneity of the solid phase.  These factors hinder the deduction of theoretical 

models.  The use of an appropriate empirical formula with adjustable parameters is more viable.   

The following empirical formula has proved useful in describing the burn-off of char samples14,30: 

f() = normfactor (1-)n ( +z)a (12) 

Here α is the reacted fraction of a char sample, n, a and z are formal parameters determining the shape of f(α) 

and normfactor normalizes the maximum of eq 12 to unity.  A wide variety of functions can be described by 

this formula that differ in shape, symmetry, and peak position.31 

Eq 12 was modified for the present case when the tobacco char forms during the devolatilization.  In such 

cases the formation, growing and accessibility of the pores will be affected by the overall conversion of the 

sample.  Let us denote the reacted fraction of the sample by : 

(t) = 
)()0(

)()(




calccalc

calccalc

mm

mtm
 = 

ashchar

ashchar

calc

yy

yytm





1

)(
 (13) 

The equations for char burn-off and ash formation will be written in the form 

dmchar/dt = dmur/dt ychar – Achar exp(-Echar/RT) f(α,mchar) 


2OC  (14) 

dmash/dt = Achar exp(-Echar/RT) f(α,mchar) 


2OC  yash (15) 
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where f(α,mchar) is the function expressing the dependence of the char-burn-off rate on α and mchar.  f(α,mchar) 

will be approximated by 

f(α,mchar) = n

charm  (α+z)a (16) 

where n > 0, a ≥ 0 and z ≥ 0 are empirical parameters.  The first part, n

charm  has a monotonous dependence on 

mchar and ensures the zero burn-off rate at mchar = 0.  The second part, (α+z)a, expresses that the conversion of 

the sample may result in growing pores and may enhance the accessibility of the pores, too.   

The replacement of equations 10 – 11 by 14 – 16 increased the average solution time of the model from 29 

to 32 ms at a given T(t) on the computer described in Section 2.3.  The evaluations carried out with this model 

resulted in an improvement of the fit, as shown in the corresponding fields of Tables 3 and 4.  (See the values 

under headings “DAEM: Constant A” and “char burn-off: Empirical dependence on α and mchar”.)  

Unfortunately no statistical background is available to evaluate the statistical significance of these changes in 

the fit values because the main experimental errors of the thermal analysis are neither random nor 

independent.17  The improvement of the fit occurs obviously in the domain dominated by the char burn-off, as 

the fit30 values at T>400°C indicate in Table 4.  The figures on the evaluation with this model variant can be 

found in the Supporting Information. 

It is interesting to have a closer look on the obtained f(α,mchar) functions since they reveal details on the char 

burn-off.  The ratio of f(α,mchar) and mchar was plotted for this purpose because it shows how the reactivity of a 

unit amount of char is influenced by the conversion of the sample.  In Figure 3 circle and square symbols 

represent these ratios when the DAEM variant of Section 3.1 was used.  The solid and dashed lines belong to a 

DAEM variant treated in the next section.  Panel (a) of Figure 3 shows that similar curves were obtained for 

the two tobacco samples based on a series of 15 experiments.  Panel (b) shows the case when 30 experiments 

were evaluated and common f(α,mchar) parameters were assumed for the samples.  In the latter case the two 

DAEM variants of the work gave nearly identical results.  Note that the curves in Figure 3 were magnified to 

an equal height since the kinetic equations do not define physically the height of the f(α,mchar) functions.  

(Because the model contains the product of Achar and f(α,mchar).)  The curves in Figure 3 express a strong 

dependence of the char reactivity on the conversion of the sample. 
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Figure 3.  The ratio of f(α,mchar) and mchar  obtained from series of 15 experiments (a) and 30 experiments (b).  

The terms “constant A in DAEM” and “A(E) in DAEM” refers to the DAEM variants outlined in Sections 3.2 

and 3.5, respectively. 

3.5.  DAEM devolatilization with non-constant pre-exponential factor.  In 1995 Miura suggested the use 

of distributed activation energy models with pre-exponential factors that depend on the activation energy.32  

The corresponding evaluation was based on the tabular and graphic representations for the activation energy 

distribution and the dependence of the pre-exponential factor.  Miura's approach has been used in many later 

works, including a modified evaluation method33 and a recent work on biomass pyrolysis.34   

In this section a pre-exponential factor depending on E will be introduced into the model of the present 

work.  The reason behind this extension is that the assumption of a constant A in a wide domain of E looks 

unrealistic; one should expect some dependence of A on E.  We could not follow Miura's method for the 

tabular determination of A(E) values because our work is based on models that can produce the simulated 

counterparts of the experimental data via a numerical solution.  Accordingly equations built from analytical 

formulas were considered.  An empirical formula was adapted from the work of Miura32 and Hashimoto et 

al.35 that assumes a linear dependence between E and the logarithm of the activation energy: 

A(E) = const exp( E) = A0 exp[(E-E0)] (17) 

where A0 is the pre-exponential factor value at the mean of the energy distribution, E0. With a variable A, the 

first order kinetic equation of the DAEM has the following form: 

-dmur(t,E)/dt = A(E) e-E/RT mur(t,E) (18) 

The rest of the equations have not changed and the same algorithms could be used with the same calculation 

rates as in the previous sections.  The results are listed in Tables 3 and 4 under the headings “DAEM: A 

depends on E”.  

As the data shows, the overall fit has slightly improved by the introduction of eq 17.  The improvement of 

the fit occurs notably in the domain dominated by the devolatilization, as the fit30 values at T≤400°C indicate 

in Table 4.  The differences in these fit values are not high indicating that the A(E) dependence of eq. 17 can 

be well approximated by a constant activation energy DAEM.  Most of the parameters in Tables 3 and 4 varied 

only slightly by the introduction of the A(E) dependence.  The most noticeable exception is the high increase of 
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the  values.  This can easily be explained by considering how  effects the peak position of the first order 

kinetic equations, as shown in Figure 4.  The basis of the comparison is the solution at A0 and E0 which is 

represented by the bold solid line.  Thin solid lines show the solutions with the same A0 pre-exponential factor 

at lower and higher activation energies.  Dashed lines represent the solution if eq 17 is assumed.  The 

corresponding parameter values are listed in the caption of Figure 4.  One can see that a positive  narrows the 

distribution. This narrowing can be compensated by a higher width of the distribution.  Any monotonous 

increase in A(E) dependence would result in some narrowing of the distribution, similar to the example shown.  

If the effect is nearly symmetric (like in Figure 4) then a higher  can more or less compensate it.  

A closer look on the parameters reveals that the introduction of the A(E) dependence had a greater effect on 

the parameters of the Virginia tobacco blend.  The change of the yash parameter of the Virginia sample is 

particularly excessive.  We did not analyze the causes of this effect.  The changes in the f(,mchar) / mchar ratios 

are not particularly high when the evaluation was based on 15 experiments, as Figure 3 shows.  The evaluation 

of the 30 experiments together resulted in nearly identical f(,mchar) / mchar ratios.   Similarly, the differences 

between the parameters obtained with and without the assumption of the A(E) dependence are smaller in Table 

4 than in Table 3.  (The only exceptions are the  vales and the yash of the Virginia sample.) 
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Figure 4.  Comparison of first order reactions with and without the assumption of a non-constant pre-

exponential factor by eq. 17.  Parameters: E0
 = 180 kJ mol-1, A0

 = 1014 s-1, σ0
 = 24 kJ-1 mol, β=0.1.  Bold solid 

line (black): E=E0 and A=A0.  Thin solid lines (blue): E=E0-σ and E=E0+σ at A=A0.  Dashed lines (red): E=E0-σ  

and E=E0+σ at A=A(E).  The curves were simulated at a linear T(t) with dT/dt=40°C/min.  

3.6.  Notes on the magnitudes of the obtained kinetic parameters.  In this paragraph the results will be 

compared with kinetic parameters from the recent literature.  Only the constant pre-exponential factor results 

of Tables 3 and 4 will be considered due to the compensation effect observed at the non-constant pre-

exponential factor model.  First the parameters of the pyrolysis step will be taken into account.  Wójtowicz et 

al. studied tobaccos by TGA-FTIR and obtained E0 and  values in the range of 152 - 296 and 1 - 40 kJ/mol, 

respectively, on the evolution of volatile products during tobacco pyrolysis.6  De Jong et al. obtained similar 

ranges for biomasses in a TGA-FTIR study.36  Yi et al. published 116 pairs of E0 and   data on the evolution 
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of volatile products during tobacco pyrolysis that fell in the range of 128 - 296 and 1 - 40 kJ/mol, respectively.9  

The values of Table 4 of the present work (E0=186 kJ/mol and 1727 kJ/mol) are within these intervals.  

For a closer look one can consider that the DTG curves represent the sum of the mass loss rates of the formed 

volatiles.  Accordingly an E0 parameter of a DTG curve is expected to be close to the weighted mean of the E0 

values of the formed volatile species.  For these purpose we calculated 0E  averages using the yields of the 

given species as weight factors from the data of the articles cited above.6,9,36  This procedure yielded  0E  

values between 157 and 178 kJ/mol for tobaccos6,9 and 171 – 177 kJ/mol for biomasses.36  

As mentioned in Section 2.1, the tobacco samples of the present work were studied in inert atmosphere by 

TGA-MS.12  The evaluation of the mass spectrometric intensities resulted in similar ranges of E0 and  values 

as the TGA-FTIR studies cited above.  The corresponding DTG curves were modeled by four DAEM reactions 

assuming four pseudocomponents.  (Here a pseudocomponent is the totality of those decomposing species 

which can be described by the same reaction kinetic parameters in the given model.)  The pseudocomponents 

contributed to the overall mass loss by different c quantities.  One can form the weighted mean of E0 using 

these c values as weights.  In this way 0E  values between 207 and 225 kJ/mol are obtained for the various 

parameter sets published in the article.12  These values are higher than the corresponding E0=186 kJ/mol value 

in Table 4 of the present work.  The difference can be due to the effect of the oxygen: the combustion reaction 

starts to dominate around 400°C in the present work while the decomposition reactions lasted to higher 

temperatures in inert atmosphere, accordingly the model described a wider temperature range in inert 

atmosphere. 

The combustion kinetics of biomass chars was excessively reviewed by Di Blasi in 2009.13  Table 3 of that 

work surveys the corresponding kinetic parameters. The activation energy values vary between 71 and 229 

kJ/mol, while the reaction order with respect to the oxygen concentration is between 0.5 and 1.  Table 4 of the 

present article exhibits Echar values between 209 and 213 kJ/mol with 0.4.  Accordingly the present Echar 

value is near to the higher end of the literature range.  , however, is lower than the values compiled by Di 

Blasi.  Note that care was taken to ensure a true kinetic regime in the present work:  low sample masses were 

spread in thin layers, the heating rates were not high and the formed CO and CO2 were quickly swept away 

from the combusting samples.  Accordingly the relatively low  value cannot be due to diffusion control or to 

reversible reactions.  A Langmuir–Hinshelwood kinetics is not probably for biomass chars under the present 

conditions.13The comparison of the results to the literature data is frequently problematic due to the different 

experimental conditions and evaluation methods.  However, Di Blasi’s survey contained, among others, a 

work of Várhegyi et al. on the combustion of corncob charcoals.14  This work was based on the simultaneous 

least squares evaluation of 8 – 12 experiments and the experimental conditions were very similar to those of 

the present article.  Still the activation energies varied between 88 and 152 kJ/mol and all but one  values lied 

in the range of 0.53 – 0.91.  Note that the present work describes the behavior of complex biomass-type 

samples by simplified, two-step models.  A huge number of chemical reactions are described approximately by 
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a DAEM devolatilization followed by the burn-off of the forming char.  The high Echar and low  values 

suggest that the division to two reaction steps is only approximate.  The border between the devolatilization 

and the char burn-off reactions is probably not so sharp in the reality.  The char burn-off reaction of the present 

article probably approximates devolatilization reactions, too, which have a low (theoretically zero) reaction 

order with respect to the oxygen concentration.  Similarly, the devolatilization above 400°C has probably 

higher activation energy than the char burn-off itself; hence the inclusion of some devolatilization increases the 

overall activation energy of the char burn-off reaction of the present work.  Note that the TGA-MS 

experiments on the same samples in inert atmosphere resulted in activation energies above 250 kJ/mol in the 

temperature domain of our combustion step12 while the majority of the char combustion studies reviewed by 

Di Blasi13 resulted in activation energies below the 209 – 213 kJ/mol range of Echar in the present work. 

 

 

3. Conclusions 

The thermal decomposition and combustion of a Virginia and a Burley tobacco blends was studied at slow 

heating programs, under well defined conditions.  Particularly low sample masses were employed to avoid the 

self-heating of the samples due to the huge reaction heat of the combustion.  The chemical composition of the 

samples differed markedly.  

A combustion model was proposed that consisted of a devolatilization reaction and a successive combustion 

of the forming char.  The devolatilization step was described by a distributed activation energy model 

(DAEM).  The combustion of the forming char was described by two models.  The first was first order with 

respect to the amount of char.  The second contained an approximate formula that described the dependence of 

the combustion on the sample conversion empirically.  The dependence of the char combustion on the oxygen 

concentration was described by a power function.  The combustion of the volatiles was not treated in the 

present work.  (It cannot be measured by TGA.)  The modeling was based on the simultaneous evaluation of 

30 TGA experiments on 2 tobacco blends, 3 oxygen concentrations, two linear heating programs, and two 

heating programs with isothermal sections.  The models gave reasonable description for all of these 

experiments. 

All model variants treated in the paper was evaluated in two ways: 

(i) by the separate evaluation of experiments on a given sample (i.e. on series of 15 experiments) 

(ii) by the simultaneous experiments of the 30 experiments. 

In the later case part of the parameters were assumed to have common values for the two samples.  This 

approach emphasized the similarities in the combustion properties of the tobaccos.  Besides, the mathematical 

condition of the evaluation is also better in this way: the mean number of the unknowns determined from an 

experiment was only 0.4 – 0.6 in the model variants tested in the paper while the fit remained practically the 

same as in the separate evaluation of the samples.  Some of the parameters evaluated in this way showed only 

negligible dependence on the model variant or on the sample.  The mean activation energy of the 
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devolatilization was found to be around 184 kJ/mol, the activation energy of the char burn-off was about 211 

kJ/mol, and the reaction order with respect to oxygen concentration was around 0.42. 

The model variants tested in the paper gave similar fit values; the improvement of the overall fit by 

introducing more model parameters does not appear to be important from a practical point of view.  

Nevertheless, they revealed details about the combustion and modeling.  The empirical model of the char burn-

off indicated a marked dependence of the reactivity on the conversion of sample due to the formation and 

growth of the pores and their changing accessibility. 

The assumption of a constant A in a wide domain of E looks somehow unrealistic; one should expect some 

dependence of A on E.  On the other hand a distribution of the activation energy can approximate a wide range 

of differences between the reacting species.  These aspects were analyzed by assuming a linear dependence 

between E and log A.  It was found that this type of dependence can reasonably be approximated by the proper 

adjustment of the parameters of a DAEM with constant pre-exponential factor. 
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NOMENCLATURE 

 reacted fraction of the sample (dimensionless) 

 parameter expressing the dependence of the pre-exponential factor on the activation energy (kJ-1 mol) 

 reaction order with respect of oxygen concentration 

A pre-exponential factor (s-1) 

A0 pre-exponential factor in a DAEM.  If A depends on E then A0=A(E0).   (s-1) 

2OC  V/V concentration of the ambient oxygen (dimensionless) 

E activation energy (kJ/mol) 

E0 mean activation energy in a distributed activation energy model (kJ/mol) 

fitN a measure of the fit calculated for a group of N experiments by equations 1 - 2 (%) 

hk height of an experimental curve (s-1) 

m normalized sample mass (dimensionless) 

N number of experiments in a given calculation 

Nk number of evaluated data on the kth experimental curve 

R gas constant (8.3143×10-3 kJ mol-1 K-1) 

 width parameter (variance) of Gaussian distribution (kJ/mol) 

SN least squares sum for N experiments (dimensionless) 

t time (s) 

http://pubs.acs.org/
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T temperature (°C, K) 

Subscripts: 

i digitized point on an experimental curve 

k experiment 

ur unreacted sample 
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