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Operator splitting methods for a special class of nonlinear partial differential equations with delay are investigated.
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1 Introduction

Partial differential equations with delay play an important role in modeling physical, chemical, economical, etc. phenomena,
since it is quite natural to assume that past occurrences effect the model. For further motivation, notations and definitions, see
the monograph by Bátkai and Piazzera [3].

Consider the following abstract delay differential equation on the Hilbert space H

du(t)

dt
= Bu(t) + Φut, t ≥ 0,

where u : [−1,∞)→ H is unknown and the history function ut is defined by ut(σ) := u(t+ σ) for σ ∈ [−1, 0]. We impose
the initial conditions u(0) = x and u0 = f . In many cases, as explained below, it is easier to solve the equation without delay
and the “pure” delay equation separately. In this case, it is natural to apply some operator splitting procedure described below.

Let us fix a time step h > 0 and solve first the equation for t ∈ [0, h]
dv(1)(t)

dt
= Φv

(1)
t ,

v(1)(0) = x =: x1,

v
(1)
0 = f =: f1,

and then solve


dw(1)(t)

dt
= Bw(1)(t),

w(1)(0) = y1 := v(1)(h).

To initialize the next step we set

x2 := w(1)(h) f2 := v
(1)
h .

We iterate this procedure and, taking k ∈ N, solve for t ∈ [(k − 1)h, kh]
dv(k)(t)

dt
= Φv

(k)
t ,

v(k)((k − 1)h) = xk,

v
(k)
(k−1)h = fk,

and then we solve


dw(k)(t)

dt
= Bw(k)(t),

w(k)((k − 1)h) = yk := v(k)(kh).

Finally, we set

xk+1 := w(k)(kh) fk+1 := v
(k)
kh .

The sequentially split solution at time level t = kh is then usq(kh) := xk+1.
We shall show that for fixed t ∈ [0,∞) and for h→ 0 (t = kh, so k →∞) this split solution usq(kh) converges to u(t).
This procedure is especially useful, if we can drastically reduce the computational complexity of the problem by the

splitting. This is the case for example if Φ = δ(−1) is a point delay, when we can integrate the first split equation explicitly,
reducing the problem to solving the second equation, a classical partial differential equation. For a different splitting procedure,
designed specifically for distributed delays, we refer to Csomós and Nickel [4] and Bátkai, Csomós and Farkas [1].
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2 Convergence results

The convergence of splitting procedures usually requires some further assumptions on the operators involved. These are
necessary to ensure consistency and stability of the splitting procedure. In this note, we make the following assumptions.

Assumption 2.1 1. Suppose that B generates a linear contraction semigroup V on H .

2. Suppose that the linear operator

Ψ : W1,p([−1, 0];Y )→ X

is given by the Stieltjes integral

Ψf =

∫ 0

−1
dη(σ)f(σ),

with η : [1, 0]→ L(X) of bounded variation, such that for some −1 < σ0 < 0 the function

η : [σ0, 0]→ L(X) is Lipschitz continuous.

3. Suppose that for x ∈ D(B) we have η(s)x ∈ D(B) for all s ∈ [−1, 0]. Moreover, suppose that η : [−1, 0]→ L(D(B))
is of bounded variation such that for the same −1 < σ0 < 0 the function

η : [σ0, 0]→ L(D(B)) is Lipschitz continuous.

4. Suppose further that η(−1) = 0 and that lim
σ→−1

η(σ) 6= 0.

5. Suppose that the function g : H → H leaves D(B) invariant and is globally Lipschitz both on X and D(B), with
Lipschitz constant β. We set Φ = g ◦Ψ.

With these assumptions, following a long and tedious path, the first order convergence of the splitting procedure can be
shown.

Theorem 2.2 Suppose that the conditions in Assumption 2.1 hold. Then the sequential splitting is of first order. More
precisely, let x ∈ D(B2) and f ∈ W1,p0([−1, 0];D(B)) ∩ Lip([−1, 0];H) for some p0 > 1 with f(0) = x. Then for every
Tm > 0 there is a constant C > 0 such that

max
j=1,...,n

‖usq(jh)− u(jh)‖ ≤ Ch
(
1 + ‖x‖B + ‖Bx‖B + ‖f‖W1,1(D(B)) + ‖f‖Lip(H)

)
for Tm = nh, and n ∈ N sufficiently large.

The result is illustrated on a reaction-diffusion problem with delay, where we also included a comparison with the implicit
Euler scheme. Figure 1 shows the relative global error for various values of the time step h. The slope p of the fitted line
in logarithmic scale approximates the order of the corresponding numerical method. One can see that the sequential splitting
performs even better than the implicit Euler scheme.
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Fig. 1: Order p determined numerically.

The proof uses functional analytic methods and relies heavily on the delay semigroup, see [2].
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