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Abstract―Dry aerosol mass concentrations (PM10, PM2.5) are determined after 
conditioning of the filter at t =20 ± 1 °C and RH=50 ± 5% for 48 hours according to the 
standard protocol EN 12341. The main result of this work is that applying the standard 
pre-conditioning step, complete removal of adsorbed water cannot be attained. In our 
experiment, aerosol samples collected in Budapest between November 2008 and March 
2010 using a CEN (European Committee for Standardization) gravimetric sampler (Digitel, 
DHA-80) were studied. Following PM10 mass concentration measurements according to the 
EN 12341 protocol, we repeated the gravimetric aerosol mass measurements in the 
laboratory using a glove box after in-situ pre-conditioning for 48 h at t =20 ± 1 °C and 
RH < 30%. We assumed that at this low relative humidity all the adsorbed residual water 
was removed, and the absolute dry mass concentrations of PM10 could be determined 
(referred in the following as dry PM10 concentration). The mass concentration of adsorbed 
residual water, defined as the difference between the results of the standard and dry PM10 
measurements, varied greatly in the range of 0.05–16.9 µg m−3. Expressed relative to the 
absolute dry PM10 mass concentrations, the residual water content in the standard 
measurement procedure amounted to 4.2 ± 1.5% and 7.9 ± 0.8% in summer and winter, 
respectively. In winter, relative contributions of adsorbed water as high as 33.2 m/m% was 
found. The significant seasonal differences as well as the large variations between 
individual samples may depend on various factors such as the chemical composition of the 
samples, particle load, and the RH history of the particles before and after sample 
collection. This last factor is expected to exert rather significant influence on the amount of 
adsorbed residual water, yet it is impossible to reconstruct. These findings have severe 
implications on reported dry PM10 mass concentrations using the EN 12341 protocol, 
especially in the winter period when most limit exceedances occur. 
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1. Introduction 

Liquid water is a highly variable, but very often overlooked constituent of 
atmospheric particulate matter (PM10 or PM2.5). The interaction between 
ambient aerosol particles and water vapor plays a crucial role in many 
fundamental atmospheric processes. Adsorbed water may significantly increase 
the size of the particles, which, in turn, enhances the extinction (mainly 
scattering) of visible light in the atmosphere. This is manifested in strongly 
reduced standard visibility at high relative humidity (RH) (Cheng et al., 2011, 
Deng et al., 2011). Liquid water on aerosol particles can serve as a medium for 
multiphase reactions (e.g., sulfur conversion in sea-salt aerosol particles, 
Sievering et al. (1991)), or secondary organic aerosol formation Strollo and 
Ziemann (2013); Ervens and Volkamer (2010). In supersaturated air, particles 
called cloud condensation nuclei can grow into cloud or fog droplets. The 
interaction between particles and water vapor depends on the relative humidity 
as well as the size, chemical composition, and wettability of the particles. 
Based on differences in their chemical compositions, particles of various 
origins can behave quite differently with changing humidity, from being purely 
hydrophobic to strongly hygroscopic. Hygroscopic particles take up water 
continuously with increasing RH, whereas deliquescent particles do not adsorb 
water up to a certain RH limit called the deliquescence point (DRH). At this 
point, however, a sudden phase change occurs with a steep increase in the mass 
of the particles. Increasing the RH further above the DRH, the liquid particle 
will continue to grow.  However, once such a particle is turned into liquid, 
decreasing the RH will not make the particle recrystallize at the DRH. Below 
the DRH, the liquid particle becomes supersaturated resulting in a metastable 
state until the RH decreases below a critical value at which recrystallization 
occurs (Hansson et al., 1998). This RH is called efflorescence relative 
humidity (ERH). For example, aqueous ammonium sulfate is saturated with 
respect to its crystalline phase at 82.6% RH at 260 K (Clegg et al., 1998; 
Onasch et al., 1999; Cziczo and Abbatt, 1999), whereas laboratory studies 
show that homogeneous crystallization of droplets does not occur before RH 
drops to 32.7% (Onasch et al., 1999). Conversely, solid ammonium sulfate does 
not deliquesce at RH lower than 82.6%. Therefore, in the range 32.7% < RH < 
82.6% the physical state of such a particle in the atmosphere depends on its RH 
history (Colberg et al., 2003), the particles exist as a metastable droplet when 
the particles had not been exposed to relative humidity greater than their 
deliquescence RH.  

There is often a discrepancy in chemical mass closures of atmospheric 
aerosol samples when they are normalized to gravimetrically measured mass of 
particulates. In other words, after all identified components are quantified, a part 
of PM mass remains unidentified. One possible source for the observed 
discrepancy between gravimetric PM mass and the total mass of all identified 
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components is particle-bound water. The amount of water in PM samples varies 
for different samples and measurement sites, depending on the particle 
composition and the ambient relative humidity and temperature (e.g., Warneck, 
2000). According to Kajino et al. (2006), in winter when the relative humidity is 
high and the concentration of hygroscopic compounds is also high, 
approximately 70% of unidentified non-carbonaceous fraction of urban PM2.5 
(or about 10% of PM2.5 mass) was assumed to be water. The authors also found 
that the aerosol water content in winter was 6 –7 times higher in winter than in 
summer. 

In spite the fact that Saxena et al. (1995) pointed out the importance of 
atmospheric water-soluble organic carbon (WSOC) for the observed 
hygroscopic behavior of atmospheric aerosols, the water uptake of aerosol 
particles has been largely associated with their inorganic constituents. 
Depending on the ambient conditions during and prior to sampling, particles 
can either adsorb or lose water under post-equilibration (Tsyro, 2005). The 
relationship among particle mass and composition and particle water content 
is rather complicated due to hysteresis in the behavior of particle-bound 
water. In many cases the atmospheric aerosol particles show strong RH-
hysteresis behavior and retain substantial particle-bound water (Santarpia et 
al., 2004; Randriamiarisoa et al., 2006). This means that potentially a 
significant fraction of strongly hygroscopic particles exist as supersaturated 
droplets even at RH as low as 50%. One possible explanation for the 
significant amount of retained water is the acidity of the particles. This was 
observed in several places, e.g., in Pittsburgh, USA (Khlystov et al., 2005) 
and in Switzerland (Fisseha et al., 2006). According to Tsyro (2005), pure 
ammonium sulfate particles can still retain as much as 30% (m/m) of water at 
50% relative humidity. Ansari and Pandis (1999) investigated the hysteresis of 
equimolar model aerosol mixtures (Na2SO4-NaCl and Na2SO4-NaCl-NaNO3) 
and found that the residual mass of retained water at RH=50% was 83% and 
71%, respectively. On the other hand, beside particle acidity, a number of 
organic components are shown to inhibit the aerosol deliquescence and 
efflorescence behavior (Marcolli and Krieger, 2006). Zardini et al. (2008) 
showed that the retained mass of water in the case of ammonium 
sulfate: adipic acid (2:1.1) model mixture was 30% at RH=50% following 
equilibrium dehumidification.  

In recognition of the water-retaining characteristics of atmospheric 
particulate matter, standard off-line gravimetric measurement protocols all 
require the relative humidity to be set at a relatively low value and the filter 
samples be equilibrated before weighing. In Europe, the reference method 
developed by the European Committee for Standardization (CEN) prescribes 
that the filters should be equilibrated for 48 h prior to weighting at 
RH=50 ± 5% and t=20 ± 2 °C before and after sampling. This standard 
reference method is used to validate the readings of automatic beta-gauge 
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monitors (FH 62-IN, Thermo Andersen) that are in use in hourly PM 
concentration measurements.  

Several studies indicated that there were deviations between automatic 
and standard off-line PM mass concentration measurements (Shin et al., 2011, 
Takahashi et al., 2008, Salminen and Karlsson, 2003), with higher differences 
at high ambient RHs (Chang and Tsai, 2003). These results also imply the 
significance of retained water of particles under the standard reference 
methods.  

The objective of this study is to determine the residual water content of PM 
filter samples collected in winter and summer in the city of Budapest, Hungary, 
which are equilibrated according to the standard analysis protocol. This is done 
to determine the potential bias of standard gravimetric measurements due to the 
incomplete removal of particle-bound water upon equilibration. 

2. Methodology 

2.1. Aerosol sampling 

The aerosol sampling was carried out in Budapest (Marczell György Observatory, 
Hungarian Meteorological Service) at a suburban sampling site. The aerosol 
sampling were carried out in 57 consecutive days in winter of 2008–2009, 22 
days in summer of 2009, and further 75 days in winter of 2009–2010.  

PM10 aerosol samples were collected on glass fiber filters (Munktell MG 
160, d=150 mm) at a flow rate of 30 m3 h−1 by using a Digitel-DH 80 reference 
sampler (CEN, 1998) at a height of 2 m. 

2.2. Gravimetric measurements 

Before and after the sampling, glass fiber filters were placed for 48 hours into an 
isolated chamber at a temperature of 20 ± 1 °C and RH of 50  ±5%, as required by 
the EN 12341 standard protocol (CEN, 1998). Then PM10 mass was determined 
by weighing with an electrical micro-balance (Sartorius, BP 211 D) of 10 μg 
accuracy. 

Filter blanks were treated in the same way. The relative humidity was 
measured by a hygrograph, which was calibrated in the climate chamber of the 
Hungarian Meteorological Service. The detailed measurement conditions can be 
found in Imre and Molnár (2008). In order to determine the residual water 
content of aerosol mass measured according to the EN 12341 protocol, the filter 
sample was equilibrated for another 48 h at t=20 ± 1 °C and RH < 20% prior to 
the following gravimetric measurement. The relative humidity in the 
measurement chamber was set by DRIERIT (calcium sulfate, W.A. Hammond 
Drierite Co. Ltd.) heated at 230 °C for 2 hours. 
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It follows that the mass fraction of residual water quantity reflects the share 
of particle-bound water to the mass of particles measured at 30% RH. The mass 
concentrations of residual water varied between 0.05 and 16.9 µg m−3. The 
histograms of the relative contributions of residual water are depicted in Fig. 3 
both for summer and winter.  

 
 
 

 
 

Fig. 3. Frequency distributions of residual water content of PM10 mass measured 
according to EN 12341 protocol. 
 
 
The frequency of the contribution of residual water can be well described 

by a log-normal distribution in both seasons. In summer the mean water content 
is 4.2 ± 1.5% (p = 95% (Student-probe), while in winter the peaks are 
significantly shifted towards higher values (mean: 7.9 ± 0.8%, p = 95%) 
indicating that in winter the aerosol has lower DRH values and more 
hygroscopic than in summer. 

After determination of the water content of the aerosol particles, the PM10 
mass concentrations were corrected with these water content values. An 
important consequence of replacing the measured PM10 reference with the 
absolute dry mass concentrations is that the number of total exceedances of the 
health, information, and alert limits could be reduced by 9 (26%), 7 (50%), and 
2 (40%) days, respectively (Fig. 4).  
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