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Abstract 

A hot pressure treatment (HPT) converts celluloses into an advantageous feedstock for activated carbon 

preparation.  Other ways of utilization may also emerge in the future.  In the present paper the pyrolysis 

kinetics of three HPT cellulose samples were studied by thermogravimetric analysis (TGA) at linear and 

stepwise temperature programs.  A distributed activation energy model was used assuming two partial 

reactions.  Nine experiments on three samples were evaluated simultaneously by the method of least 

squares. 20 unknown parameters were determined in this way.  Good fits were obtained at the linear and 

stepwise temperature programs alike.  The evaluations were also carried out by non-constant 

preexponential factors that depended on the activation energy.  The considerations and evaluation 

methods of the paper are hoped to help the investigations of other biomass materials, too.  The results 

showed that part of the cellulose remained unconverted and another part only partially converted at the 

mildest pretreatment conditions of this study.  The cellulose was wholly transformed in the pretreatment 

when either the pressure or the temperature was increased. 
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Nomenclature 

j reacted fraction of a pseudocomponent 

j parameter expressing the dependence of the preexponential factor on the activation energy (kJ-1 mol) 

Aj pre-exponential factor (s-1) 

A0,j value of Aj at E0,j when Aj was assumed to depend on the activation energy (s-1) 

cj   normalized mass of volatiles formed from a pseudocomponent 

E activation energy (kJ/mol) 

E0,j mean activation energy in a distributed activation energy model (kJ/mol) 

FWHM  full width at half maximum (°C) 

fit 100 S0.5 (%) 

fit1, fit3, fit9    fit calculated for 1, 3 and 9 experiments, respectively. 

hk height of an experimental curve 

m   normalized sample mass (dimensionless) 

mcalc(t) normalized sample mass calculated from a model 

mobs(t) mass of the sample divided by the initial sample mass 

Nk number of evaluated data on the kth experimental curve 

R   gas constant (8.3143×10-3 kJ mol-1 K-1) 

E,j width parameter (variance) of Gaussian distribution 

S   least squares sum 

t   time (s) 

T   temperature (°C, K) 

Subscripts: 

i   digitized point on an experimental curve 

j   pseudocomponent 

k  experiment 

 

1. Introduction 

There is a growing interest in biomass fuels and raw materials due to the climatic change problems.  

The most abundant biomass component is cellulose.  There are efforts to find new ways for its utilization 

as a raw material.  One of them is based on a hot pressure treatment (HPT) on cellulose [1].  A heat 

treatment of a few minutes at 300-350°C and 10 - 15 MPa pressure profoundly changes the properties of 

cellulose.  The HPT celluloses obtained in this way strongly differs from the untreated cellulose.  They 

are suitable for the production of special activated carbons [1].  It is possible that other uses will also be 

found in the future for this material. 

The topic of the present paper is the thermal decomposition kinetics of HPT celluloses.  There are a 

large number of publications on the thermal decomposition kinetics of celluloses and its derivatives from 

the classical works of Arsenau and Broido to the present [2-5].  However, there is no published data yet 
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on HPT celluloses. 

In the present work we used a distribution energy model (DAEM).  Biomass samples usually contain 

many different pyrolyizing species.  Even the same chemical species may have differing reactivity if their 

pyrolysis is influenced by other species in their vicinity.  Such heterogeneity occurs in other materials, 

too, e.g. in coals.  The assumption of a distribution on the reactivity of the species frequently helps in the 

description of the pyrolysis of complex organic samples.  Usually the activation energies are assumed to 

have a distribution [6]. The distributed activation energy models (DAEM) have been used for biomass 

kinetics since 1985 [7-19]. 

Despites the complicated mathematics of this type of modeling, the works based on DAEM kinetics 

have usually employed more than one parallel reaction.  The resolution of the overlapping curves by 

parallel DAEM reactions and the finding of a good fit were achieved by a trial-and-error parameter-search 

in several works [20,12,13,15].  Burnham et al. reported a versatile, high-performance computer software 

in 1987 that was capable for the determination of the unknown model parameters by nonlinear regression 

[21].  The same software was also able to determine discrete, empirical distribution functions for the 

activation energy during the evaluation of non-isothermal experiments. 

Reynolds, Burnham and Wallman [8,9] studied the pyrolysis decomposition kinetics of cellulose-based 

materials and determined discrete, empirical distribution functions for the activation energy.  They 

studied the reactivity of paper residues produced by a hydrothermal pretreatment process for municipal 

solid wastes [9].  The model in this work provided a fit both for the pretreatment and the subsequent rapid 

pyrolysis. 

Miura [22] and Miura and Maki [23] developed methods to determine empirical distribution functions 

for E together with a dependence of the preexponential factor on E.  Their model was employed in 

studying coals [22-24], biomass [11,17] and other materials [25]. 

Várhegyi et al. [10] and Becidan et al. [16] based DAEM kinetic studies on the simultaneous evaluation 

of experiments with linear and stepwise temperature programs.  This approach served to increase the 

available experimental information, as outlined elsewhere [26].  The increase of the information content 

of the experiments is particularly important when overlapping processes are described by parallel DAEM 

reactions.  The determination of the unknown model parameters and the verification of the model were 

based on the least-squares evaluation of series of experiments.  We follow this approach in the present 

work.  A particular care is taken for employing only a relatively low number of model parameters.  This 

helps to achieve a well-defined parameter estimation.  We extend the treatment to the case of non-

constant preexponential factors based on earlier works of Miura [22] and Hashimoto et al. [27]. 

 

2. Experimental 

2.1. Samples 

A reactor described earlier by Miura et al. [28] were used for the preparation of the samples.  Cellulose 
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obtained from Nacalai Tesque Company in Japan was loaded into the reactor which was purged with 

flowing nitrogen during the whole HPT (hot pressure treatment). About 2 g of cellulose was placed 

between the molds and gradually heated by an infrared-image furnace at the rate of 10°C/min to the final 

temperature and hold for 15 min. Mechanical pressure was loaded during this whole process.  The 

cellulose undergoes a partial thermal decomposition with a considerable mass loss under such conditions.  

The furnace was turned off at the end of the process and the reactor was rapidly cooled down by electric 

fans.  Three samples were selected for the present study from a larger series of experiments.  The 

experimental conditions and the mass loss during the treatment are shown in Table 1.  

Table 1.  Experimental conditions and overall mass loss during the preparation of the samples 

Sample T / °C P / MPa t / min mass 

loss / % 

1 300 10 15 44 

2 300 15 15 54 

3 350 10 15 48 

 

2.2. TGA experiments 

A Shimadzu TGA-50 apparatus was used.  Three different heating programs were used, as shown in 

Figure 1.  The stepwise T(t) consisted of 30-minute isothermal sections at 350, 450, 550, 650 and 750°C, 

as shown in Fig. 1.  (The short drying section at 110°C in Fig 1 was outside the domain of kinetic 

evaluation and has no relevance to the present work.) 

The sample mass was around 14, 9 and 5 mg in the 5°C/min, stepwise and 20°C/min experiments, 

respectively.  The variation of the sample mass with the heating program served to avoid the heat and 

mass transfer problems at higher heating rates.  Each TGA experiment started with a 45-min purge at 

room temperature to flush out the oxygen traces from the system. 
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Fig. 1.  The temperature programs of the TGA experiments. 
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2.3.  Numerical methods 

The derivative of the sample mass curves (DTG) were determined by the analytical differentiation of 

smoothing splines, as described earlier [29]. The rms difference between the spline function and the 

measured TGA data was between 0.5 and  0.7 µg.  The differential equations of the model were solved 

numerically along the empirical temperature – time functions, while the numerical integration of the 

Gaussian distribution function was approximated by a Gauss-Hermite quadrature formula of 180 points 

[10,30].  The nonlinear least squares minimization was carried out by a variant of the Hook-Jeeves 

method, which is a slow but simple and dependable direct search algorithm [31].  Note that the rate of 

convergence is no longer an issue at this size of numerical problems; none of the calculations of this 

paper needed more than an hour on an ordinary desktop PC.  The starting values for the non-linear 

optimization were taken from earlier work [10,16]. 

 

3. Results and Discussion 

3.1. Choosing the model 

Figure 2 compares the behavior of the samples at 20°C/min heating rate.  The sample with the mildest 

HPT treatment (300°C at 10MPa) exhibit a tall narrow peak and a wide tailing.  The other two samples 

decompose entirely in a wide process from ca. 200 to 800°C. 
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Fig. 2.  Mass loss rate curves at 20°C/min heating rate 

The sharp peak can be identified with that of the untreated cellulose samples [4].  Accordingly we 

expect that it can approximately be described by first order kinetics [4].  The wider DTG signals on the 

figures reflect a large number of partial reactions.  In such cases the assumption of distributions on the 

reactivity of the reacting species frequently gives suitable kinetic approximations, as outlined in the 

Introduction.  We choose the distributed activation energy model with Gaussian distribution.  Test 
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calculations showed that a model with one DAEM reaction cannot describe well our data.  Accordingly 

we assumed a model of two pseudocomponents.  Here a pseudocomponent is the totality of those 

decomposing species which can be described by the same set of reaction kinetic parameters in the given 

model.  Let j (j=1, 2) be the reacted fraction of a pseudocomponent and let j(t,E) denote the solution of 

a first order kinetic equation at a given E value: 

dj(t,E)/dt = Aj e
-E/RT [1-j(t,E)] (1) 

The reactivity differences of the reacting species within a given pseudocomponent are approximately 

described by a Gaussian distribution of the activation energy: 

Dj(E) = (2)-1/2 E,j
-1 exp[-(E-E0,j)

2/2E,j
2] (2) 

where E0,j and E,j are the mean value and the width-parameter (variation) of the distribution. The 

overall reacted fraction of the jth pseudocomponent is obtained by integration: 

                    

j(t) =  Dj(E) j(t,E) dE (3) 

                 0 

The normalized sample mass, m, and its derivative are the linear combinations of j(t) and dj/dt, 

respectively: 

-dm/dt = c1 d1/dt + c2 d2/dt (4) 

m(t) = 1 - c1 1(t ) - c2 2(t) (5) 

where weight factors c1 and c2 are equal to the amount of volatiles formed from pseudocomponent 1 

and 2, respectively. 

Note that Equations 1 - 3 are equivalent to a first order kinetics at E,j=0 since the Gaussian distribution 

is a well known Dirac delta function. 

 

3.2. The method of evaluation 

Several experiments (3 - 9) were evaluated simultaneously by the method of least squares.  Such kinetic 

parameters were searched at which the differences between the normalized mass loss rates, (-dm/dt)obs, 

and their simulated counterparts, (-dm/dt)calc, were small.  The following sum was minimized: 
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Subscript k indicates the different experiments. Nexp is the number of experiments evaluated 

simultaneously, ti denotes the time values in which the digitized (dm/dt)obs values were taken, and Nk is 
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the number of the ti points in a given experiment. hk denotes the heights of the evaluated curves that 

strongly depend on the experimental conditions. The division by hk
2 serves for normalization. The fit was 

characterized by the following quantity. 

fit (%) = 100 S0.5 (7) 

Eq. 7 was also employed to express the fit of a subgroup within the evaluated series of experiments.  In 

such cases, the first summation in Eq. 6 was restricted to the given subgroup.  A subgroup may be a 

single experiment, too.  To avoid ambiguity, we shall indicate the number of the corresponding 

experiments in subscript, as fit1, fit3, and fit9. 

 

3.3. Separate kinetic evaluation of the samples 

The model and method outlined above were employed for the three experiments of each sample.  The 

results are shown in Table 2.  The calculated and partial curves of this evaluation are not shown in figures 

since they did not exhibit visible differences from the ones presented in the next section. 

Table 2. Kinetic parameters from groups of three experiments a 

Pretreatment 
300°C 

10 MPa 

300°C 

15 MPa 

350°C 

10 MPa 

fit3 / % 1.21 1.39 2.22 

E0,1
 / kJ s-1 194.4 250.5 292.5 

E0,2
 / kJ s-1 238.7 237.0 243.3 

E,1
 / kJ s-1 0.36 18.25 18.53 

E,2
 / kJ s-1 34.61 50.85 45.97 

log10 A1 / s-1 14.52 16.62 19.69 

log10 A2 / s-1 16.30 14.34 14.27 

c1 0.39 0.15 0.13 

c2 0.32 0.31 0.29 

a Each sample was evaluated independently from the others.  The overall fit 

of the nine experiments (fit9) was 1.66. 

 

3.4. Joint kinetic evaluation of the nine experiments 

We would like to emphasize that the least squares evaluation does not have maximum likelihood 

properties in the thermal analysis since the most important experimental errors are not statistical [26].  It 

is only a practical method to get models that describe well the experiments.  Accordingly, one can 

consider other parameter sets too, if their have more advantageous properties.  We were particularly 

interested in the similarities of the thermal decomposition of these samples.  Accordingly we looked for 

such parameters that express better the similarities and differences of the samples than the ones shown in 
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Table 2. 

In this part of the work all the nine experiments were evaluated simultaneously and E0,1 and E0,2 were 

forced to have common values for the three samples.  In this way we determined 20 unknown parameters 

(2 E0,j,  6
 E,j,  6

 Aj and 6 cj) from 9 experiments.  In average 2.1 unknowns fell on an experiment while the 

number of unknowns was 2.7 per experiment in the calculations of the previous section. 

The results are presented in Table 3.  As the comparison of Tables 2 and 3 indicate, the fit values 

became only slightly worse than those of the unconstrained minimization.  Figures 3 and 4 show the fit 

between the calculated and experimental data.  The partial curves are also displayed.  One can see the 

very high overlap between the partial curves in Figure 3.  According to earlier experience [26] a high 

number of unknown parameters results in mathematically ill-conditioned least squares evaluations at 

highly overlapping partial peaks.  From this respect, a lower number of unknown parameters is 

advantageous. 

The simultaneous evaluation of the 9 experiments resulted in kinetic parameters that express more 

clearly the similarities and differences of the samples.  Samples 2 and 3 had similar parameter sets in 

Table 3 while that of Sample 1 differs considerably.  When E0,j, is common,  E,j influences mainly the 

width of the curves while Aj are responsible mainly for the peak temperatures:  as Aj increases Tpeak 

decreases.  The peak width and peak height of the calculated curves at 20°C/min heating rate are 

presented in Table 4 for both type of evaluations. 

Table 3. Kinetic parameters from the simultaneous evaluation of all experiments a 

Pretreatment 
300°C 

10 MPa 

300°C 

15 MPa 

350°C 

10 MPa 

fit3 / % 1.37 1.51 2.57 

E0,1
 / kJ s-1 211.3 211.3 211.3 

E0,2
 / kJ s-1 265.9 265.9 265.9 

E,1
 / kJ s-1 1.8 15.0 12.6 

E,2
 / kJ s-1 39.6 56.7 49.7 

log10 A1 / s-1 15.99 13.62 13.52 

log10 A2 / s-1 18.54 16.42 15.85 

c1 0.39 0.15 0.13 

c2 0.32 0.31 0.29 

a E0,1 and E0,2 were forced to have the common values, as described in the text.  The 

overall fit (fit9) was 1.89. 

 



 Wu, Várhegyi, & Zha:  Kinetics of cellulose pyrolysis after a pressurized heat treatment.  Page 9 of 15  

Temperature  [°C]

-d
m

/d
t 

 [
s

-1
] 

 ×
  

1
0

3

200 300 400 500 600 700 800 900

(a)

5°C/min

fit1: 1.5%

HTP:

300°C at 10MPa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  Temperature  [°C]

-d
m

/d
t 

 [
s

-1
] 

 ×
  

1
0

3

200 300 400 500 600 700 800 900

(b)

20°C/min

fit1: 1.5%

HTP:

300°C at 10MPa

0

1

2

3

 

Temperature  [°C]

-d
m

/d
t 

 [
s

-1
] 

 ×
  

1
0

3

200 300 400 500 600 700 800 900

(c)

5°C/min

fit1: 1.6%

HTP:

300°C at 15MPa

0.0

0.1

  Temperature  [°C]

-d
m

/d
t 

 [
s

-1
] 

 ×
  

1
0

3

200 300 400 500 600 700 800 900

(d)

20°C/min

fit1: 1.6%

HTP:

300°C at 15MPa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

Temperature  [°C]

-d
m

/d
t 

 [
s

-1
] 

 ×
  

1
0

3

200 300 400 500 600 700 800 900

(e)

5°C/min

fit1: 3.0%

HTP:

350°C at 10MPa

0.0

0.1

  Temperature  [°C]

-d
m

/d
t 

 [
s

-1
] 

 ×
  

1
0

3

200 300 400 500 600 700 800 900

(f)

20°C/min

fit1: 3.1%

HTP:

350°C at 10MPa

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

Fig. 3.  The constant heating rate experiments in the kinetic evaluation of nine DTG curves by the method of 

least squares.  The experimental curves (o o o), simulated curves (—) and partial curves (—, • • •) are shown.  (See 

Tables 3 and 4 for kinetic parameters, peak temperatures and peak widths.) 
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Fig. 4.  The experiments with stepwise heating programs in the kinetic evaluation of nine DTG curves by the 

method of least squares.  The experimental curves (o o o), simulated curves (—), partial curves (—, • • •) and 

measured temperatures (– – –) are shown.  (See Tables 3 and 4 for kinetic parameters, peak temperatures and peak 

widths.) 

 

Table 4. Peak temperatures and peak width of the partial curves simulated for the 20°C/min experiments 

 

Separate evaluation of the 

samples 

Simultaneous evaluation of the 

samples 

Preatreatment 
300°C 

10 MPa 

300°C 

15 MPa 

350°C 

10 MPa 

300°C 

10 MPa 

300°C 

15 MPa 

350°C 

10 MPa 

Tpeak,1 / °C 353 432 438 352 432 441 

Tpeak,2 / °C 409 490 513 408 491 513 

FWHM1 / °C 40 127 111 38 127 111 

FWHM2 / °C 232 376 344 236 373 338 

 

The large, sharp peak of Sample 1 at linear T(t) (panels a and b in Fig. 3) is very similar to that of the 

untreated cellulose.  The low E,1 value indicate a nearly first order kinetics.  It is well known that the 

cellulose pyrolys kinetics can be well approximated by first order reactions with activation energies 
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around the present E0,1 value [4].  This behavior shows that a large part of the cellulose has not been 

transformed during the mildest HPT pretreatment of this study.  The second partial peak of this sample 

can be due to the transformed pat of Sample 1.  However, the corresponding peak temperature, 408°C at 

20°C/min is much lower than the peak temperatures of the other two samples at the same heating rate.  

(Cf.  Table 4.)  On the other hand, Samples 2 and 3 revealed remarkable similarities in Figures 3 and 4 as 

well as in Tables 3 and 4.  Keeping in mind the wide temperature interval of their nearly identical thermal 

behavior, and the striking similarities during the isothermal sections of 350, 450, 550, 650 and 750°C (Cf. 

Fig. 4), too, these treatments result probably the same chemical structures.  

 

3.5 Calculations with non- constant preexponential factors 

In 1995 Miura [22] suggested the use of distributed activation energy models with preexponential 

factors that depend on the activation energy.  He used one DAEM reaction and determined tabular and 

graphic representations for the activation energy distribution and the dependence of the preexponential 

factor.  His approach has been used in several later works including four references of the Introduction 

[11,17],22,25]. 

In this section we shall deal with the application of preexponential factors depending on E.  There are 

essential differences, however, between the evaluation and modeling viewpoints of our approach and that 

of Miura [22].  The models of the present work are mathematical equations built from analytical 

expressions.  As outlined earlier [26], care is taken for balancing the number of unknown parameters and 

the available experimental information.  In this type of modeling we need a mathematical expression for 

A(E).  Accordingly we tried here an empirical equation from the work of Miura [22] and Hashimoto et al. 

[27]: 

A(E) = const exp( E) (8) 

We shall apply Eq. 8 to both partial reactions in the following form: 

Aj(E) = A0,j exp[j
 (E-E0,j)]        (j=1, 2) (9) 

In this notation A0,j is the preexponential factor at the mean of the E distribution, E0,j.  Eq. 1 is written 

now as 

dj(t,E)/dt = Aj(E) e-E/RT [1-j(t,E)] (10) 

The evaluation was carried out in the same way as in the previous section.  The nine experiments were 

evaluated together with identical E0,j values.  For the values of j we tried two assumptions: 

(i) j was allowed to depend on the HPT pretreatment of the samples 

(ii) common j values were assumed for the samples. 

Table 5 summarizes the results.   
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Table 5. Kinetic parameters from the simultaneous evaluation of the nine experiments with preexponential factors 

depending on E 

Pretreatment 
300°C 

10 MPa 

300°C 

15 MPa 

350°C 

10 MPa 

300°C 

10 MPa 

300°C 

15 MPa 

350°C 

10 MPa 

Evaluation a common E0,1 and E0,2 common E0,1, E0,2, β1 and β2  

fit3 / % 1.23 1.45 2.34 1.33 1.49 2.41 

E0,1
 / kJ mol-1 214.5 214.5 214.5 211.8 211.8 211.8 

E0,2
 / kJ mol-1 266.1 266.1 266.1 275.1 275.1 275.1 

E,1
 / kJ mol-1 0.7 11.2 3.6 0.8 6.1 5.2 

E,2
 / kJ mol-1 6.1 45.0 49.7 34.3 47.6 42.2 

β1
 / kJ-1 mol -0.30 -0.06 -0.47 -0.25 -0.25 -0.25 

β2
 / kJ-1 mol -1.04 -0.04 -0.01 -0.04 -0.04 -0.04 

log10 A0,1 / s-1 16.25 13.83 13.70 16.02 13.60 13.52 

log10 A0,2 / s-1 18.45 16.46 15.86 19.23 17.15 16.51 

c1 0.37 0.13 0.14 0.39 0.14 0.13 

c2 0.35 0.32 0.29 0.33 0.32 0.30 

a 9 experiments were evaluated together.  The parameters indicated in this line were assumed to have 

common values for all experiments. Their values are set in italics in the Table.  The overall fit (fit9) was 

1.74 and 1.80, respectively. 

 

The comparison of Tables 3 and 5 shows that the fit only slightly improved by the introduction of the 

Aj(Ej) dependences.  The number of parameters was 20 in Table 3.  When the βj parameters were allowed 

to depend on the sample properties, the number of parameters went up from 20 to 26, while the overall fit 

(fit9) changed from 1.89 to 1.74.  The assumption of βj parameters independent from the sample 

properties led to 22 parameters and a fit9 of 1.80.  Unfortunately we do not have a statistical background 

to check the statistical significance of these changes in the fit values since the main experimental errors of 

the thermal analysis are neither random nor independent [26].  From a practical point of view, however, 

such a low changes in the fit have no importance; they are hardly visible in the figure size of this paper. 

Figure 5 illustrates the small changes in the calculated curves. 

It is interesting to note that the E,1
  and E,2 parameters highly differ in Tables 3 and 5 while the rest of 

the parameters have similar values.  This observation indicates a strong correlation (in other words: a 

compensation effect) between the E,j and βj parameters.  We checked this correlation in test evaluations 

with fixed βj = +0.1, -0,1, -0.2 and -0.3 values.  It was found that lower βj values are accompanied by 

lower σE,j values, while the calculated -dm/dt curves do not change considerably, as shown in Figure 5.  A 

closer look on the second partial curve in Figure 5 reveals that the introduction of Eq. 9 into the model 

slightly alters the shape of the partial curves.  It is interesting to note that σE,2 changed from 40 to 6 

kJ/mol in that case, 
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Fig. 5.  Comparison of the calculated -dm/dt curves (a) and the partial curves (b) at constant and non-constant 

preexponential factors.  The parameter values showing compensation effect are indicated in panel (b). (See the text.  

Note that the vertical scaling slightly differs in the two plots for a better view.) 

 

5. Conclusions 

The pyrolysis kinetic of three preprocessed cellulose samples was studied by TGA.  Two linear heating 

rate temperature programs and a stepwise T(t) function containing 5 isothermal steps were employed.  

The employed pressurized heat treatment resulted in a material decomposing in a wide temperature range.  

The distributed activation energy model was used with Gaussian distribution for the pyrolysis kinetics.  

Two partial reactions were assumed.  This model described all of the experiments.  The DTG curves were 

evaluated by the method of least squares.  The mean activation energies, E0,1 and E0,2 were forced to have 

common values for the three samples.  This approach had two benefits: (a) Only 2.1 unknown parameters 

fell on each experimental DTG curve, meaning that the evaluation became mathematically better 

conditioned;  (b) the obtained parameters reflected better the similarities and the differences of the 

samples. 

The evaluation was also carried out by non-constant preexponential factors that depended on the 

activation energy.  This approach has led only to slight improvement of the fit and revealed a 

compensation effect between the width of the activation energy distribution and the parameter of the 

employed Aj(E) function. 

The results showed that part of the cellulose remained unconverted and another part only partially 

converted in mildest pretreatment conditions of this study, 300°C at 10MPa.  The elevation of the 

temperature to 350°C or the pressure to 15 MPa resulted in a high level of conversion.  The thermal 

behavior of the HPT cellulose obtained in this way differed very much from that of the untreated 

cellulose.  The observations of our study indicate that this relatively simple pretreatment results in a new 

sort of material.  One particular use of this material, its suitability for making activated carbons was 

shown in an earlier work.  We believe that further studies may be beneficial to explore the chemical 

structure and further application possibilities of the HPT cellulose. 
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