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Abstract

Unstable behaviour is a signi�cant problem in many haptic applications. The sampled-data nature and time delays induce complex dynamic behaviours in such systems. Structural
�exibility may further reduce the stable domain of operation. This is illustrated via the systematic modeling and analysis of an impedance type haptic device with typical design
elements such as closed-loop mechanisms and cable/capstan drives. The role of the operator in the dynamics of these systems is also demonstrated. The present work provide
stability analysis, experimental validation and derive conditions for the range of parameters in which the operator can signi�cantly contribute to the stabilization of the system.

Representative Haptic Models

Impedance type kinesthetic haptic devices are usually
multi-DoF mechanisms, that transfer forces to the hu-
man user to create the sense of physical interaction with
a virtual environment. Usually, the haptic system con-
sists of three main parts: the haptic device, the virtual
environment, and the human operator (see Fig. 1).
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Figure 1: Haptic system sketch

Generally, the linearized dynamical model of a haptic sys-
tem can be written in the form

Mq̈ = fh + fd + fk + fv (1)

where fh represents the force applied by the human oper-
ator, fd and fk comes from the dissipation and the struc-
tural �exibility. The force generated by the virtual envi-
ronment is denoted by fv.

Mass orthogonal decomposition can be used to obtain

fully decoupled and/or representative parametric mod-
els for analyses and design optimization. In the presence
of structural �exibility one has to consider also that the
application of the physical and virtual forces are not co-
located.

As an example, a �ve-bar linkage based system with cap-
stan drive is shown in Fig. 2, where structural �exibility
mainly arises due to the bending of the motors' shafts and
the torsional deformation of the driving arms.

Figure 2: Experimental system with capstan drive

The haptic force generation in the rendered direction can
parametrically be investigated by the structural model
presented in Fig. 3.

Figure 3: 2 DoF structural model in the rendered direction

The analytically derived equation of motion in the single
rendered direction is

me1ẍ1 + ke(x1 − x2) = fh + fd1

me2ẍ2 + ke(x2 − x1) = fv + fd2
(2)

whereme1 =
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are the e�ective masses, ke =
(
JK−1JT

)−1
is the e�ec-

tive sti�ness. Transformations A1 = [J 0] and A2 = [0 J]
consider the di�erent points of application for the physi-
cal and virtual forces, and J (in the present example) is
the second row of the manipulator's Jacobian. In addi-
tion fh is the human operator force, fd1 and fd2 are the
dissipation forces, and fv is the virtual interaction force.
This force is typically expressed in the form

fv = −kpx2(tj)− kdv2(tj) , t ∈ [tj, tj+1) (3)

where kp is the virtual sti�ness and kd is the virtual damp-
ing, ∆t is the sampling time, tj = j∆t, and v2(tj) is the
estimated velocity from encoder position data.
When low virtual impedances are to be rendered, the �ex-
ible mode has usually little e�ect on the dynamics. The
rigid body model in Fig. 4 with m≈me1 approximates
well the dynamic behaviour. In higher frequency ranges,
mostly the �exible mode is excited. This is captured by
the 1 DoF �exible model in Fig. 4.

Figure 4: Simpli�ed 1 DoF rigid (left) and �exible (right) models

Stability Analysis and Dynamics Characterization

The stability of di�erent models were investigated by considering backward di�erence
approximation for the velocity term in Eq. (3). In each cases, discrete maps were derived
to characterize the controlled dynamics of the given sampled data systems. The di�er-
ent stable domains are summarized in Fig. 5. Here the shaded area is a measure of the
impedance range of the analysed haptic device. This measure can be approximated by
the closed form expression (4) obtained with the 1 DoF �exible model without damping.

Figure 5: Stability and vibrations of di�erent haptic models
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Figure 6: Experimental results w/o human operator

The analysis con�rmed that the sta-
ble domain can be divided into two
parts. For low impedances the sys-
tem loses its stability with low fre-
quency vibrations, while for higher
impedance values the loss of stability
occurs at higher frequencies. The cal-
culated stability boundaries were ver-
i�ed by experiments. The observed
sudden change in the vibration fre-
quencies is explained by the frequency plots (e.g., f/fn − d) along the stability limits.

Human E�ect on System's Stability

Without human operator, fh = 0 in Eq. (2), the theoretical and experimental stability
charts show a good agreement at lower virtual damping values (Fig. 6). Here, it was
also observed that the human operator can actively compensate for instabilities. For
larger virtual damping the di�erence is mainly because of the simple representation of
physical dissipations in the model.

To qualitatively explain the operator's active contribution, here, we consider a delayed
oscillator model which captures the dynamics of the haptic system at the loss of stability,
and models the e�ect of the operator with delayed force feedback terms

ẍ(t) +
κ

τ 2
x(t) = −c κ

τ 2
x(t− τ )− b κ

τ
ẋ(t− τ ) (5)

In this equation κ = (2πf )2 τ 2 with f referring to the dominant vibration frequency at
the loss of stability (see Fig. 5 and 6), while c and b are the dimensionless proportional
and di�erential force gains, and τ is the re�ex delay. The resulting stability charts for
di�erent values of the dimensionless sti�ness κ are presented in Fig. 7, where the area
of the stable domain shows the ability of the human operator to compensate for the
instabilities due to sampling e�ects.

Figure 7: Compensation by human operator at the loss of stability
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