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Recent developments of matrix analytic methods make phase type distributions (PHs) and Markov arrival processes (MAPs)

promising stochastic model candidates for capturing traffic trace behaviour and for efficient usage in queueing analysis.

After introducing the basics of these sets of stochastic models the paper discusses the following subjects in details:

1. PHs and MAPs have different representations. For the efficient use of these models sparse (defined by minimal number

of parameters) and unique representations of discrete time PHs and MAPs are needed, which are commonly referred to as

canonical representations. The paper presents new results on the canonical representation of discrete PHs and MAPs.

2. The canonical representation allows a direct mapping between experimental moments and the stochastic models, referred

to as moments matching. Explicit procedures are provided for this mapping.

3. Moments matching is not always the best way to model the behavior of traffic traces. Model fitting based on appropriately

chosen distance measures might result better performing stochastic models. We also demonstrate the efficiency of fitting

procedures with experimental results.
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1. Introduction

Stochastic models with underlying Markov chains are

known for being flexible in modelling general stochas-

tic behaviour and for allowing efficient numerical analy-

sis through matrix analytic methods (Neuts, 1981). These

nice properties make phase type distributions (PHs) and

Markov arrival processes (MAPs) promising candidates

for modelling the traffic load of computer and commu-

nication systems.

For a period of time continuous time stochastic mod-

els were more often applied in performance modelling

of computer and communication systems. Later on,

with the rise of slotted time telecommunication protocols

(e.g. ATM) discrete time models became primary mod-

elling tools (for a recent surveys see (Alfa, 2002; Lakatos

et al., 2013)). In this paper we focus on discrete time

models and present some results whose continuous time

counterparts are already available. It turns out that dis-

crete time models with strictly positive eigenvalues are

practically identical with their the continuous time coun-

terparts, but the discrete time models containing also neg-

ative eigenvalues pose new problems.

One main problem of PHs and MAPs is the non-

uniqueness and over-parametrization of their general ma-

trix form (see e.g. (Telek and Horváth, 2007a) for more

details). Specifically, there are descriptions with minimal

number of parameters for describing these processes, but

those descriptions are hard to use in practice because they

do not indicate the feasibility of the associated stochastic

model (for example the moments of a random variable of

a given class might define the random variable fully, but

it is not easy to check if a set of moments is feasible, i.e.,

if there exists a random variable in the given class with

those moments). On the other hand over-parametrised ma-

trix descriptions give a direct mapping to Markov chains,

which ensures the feasibility of the model, however the
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over-parametrization causes significant problems in fitting

methods. The above obstacle can be eliminated by find-

ing unique matrix representations with minimal number

of parameters. These representations are referred to as

canonical representations. Apart from the benefits in fit-

ting methods canonical representations also enable param-

eter matching, i.e., a direct mapping of important traffic

parameters (moments, autocorrelation) to these models.

In this paper we present new results on the canon-

ical representation of order 2 and order 3 discrete PHs

(DPH(2) and DPH(3)) as well as on order 2 discrete MAPs

(DMAP(2)). We provide explicit formulas for parameter

matching using these canonical forms, give moments and

correlation bounds for these models, and show their effi-

ciency in fitting through numerical examples.

The rest of the paper is organized as follows. In

Section 2 we survey the necessary definitions and essen-

tial properties of existing Markov chain driven stochastic

processes and their non-Markovian generalizations. The

discussion of canonical forms for DPH(2), DPH(3) and

DMAP(2) can be found in Section 3, 4, and 5 respectively.

Section 2 gives formulas for parameter matching. Section

6 presents moments based matching methods for approx-

imating discrete PH and MAP. The numerical examples

for trace fitting are presented in Section 7. Section 8 con-

cludes the paper.

2. Markov chain driven point processes and

their non-Markovian generalizations

The following subsections summarize the main properties

of simple stochastic models with a background discrete

state Markov chain and their non-Markovian generaliza-

tions. If the background chain is a discrete time Markov

chain we obtain discrete (time) stochastic models and if it

is a continuous time Markov chain we obtain continuous

(time) stochastic models. The main focus of the paper is

on discrete models, but some results are related to their

continuous counterparts, thus we introduce both of them.

2.1. Discrete phase type and matrix geometric dis-

tributions. The following stochastic models define dis-

crete distributions on the positive integers.

Definition 1. Let X be a discrete random variable on N
+

with probability mass function (pmf)

PX (i) = Pr(X = i) = αAi−1(1−A1) ∀i ∈ N
+, (1)

where α is a row vector of size n, A is a square matrix of

size n×n, and 1 is the column vector of ones of size n. If

the pmf has this matrix geometric form, then we say that

X is matrix geometrically distributed with representation

(α,A), or shortly, MG(α,A) distributed.

The size of A is also referred to as the order of the

associated distribution. In this and the subsequent models

scalar quantities are obtained as a product of a row vector,

a given number of square matrices and a column vector. In

the sequel we refer to the row vector as initial vector and

to the column vector as closing vector. It is an important

consequence of Definition 1 that α and A have to be such

that (1) is non-negative.

Definition 2. If X is an MG(α,A) distributed random

variable, where α and A have the following properties:

• αi ≥ 0,

• Aij ≥ 0, A1 ≤ 1,

then we say that X is discrete phase type distributed with

representation (α,A), or shortly, DPH(α,A) distributed.

The vector-matrix representations satisfying the con-

ditions of Definition 2 are called Markovian.

In this paper we focus on distributions on the positive

integers, consequently, α1 = 1. The cumulative density

function (cdf), the moment generating function, and the

factorial moments of X are

FX (i) = Pr(X ≤ i) = 1− αAi
1, (2)

fn = E(X (X − 1) . . . (X − n+ 1))

= n!α(I −A)−nAn−1
1. (3)

A DPH has infinitely many different Markovian and

non-Markovian representations (matrix-vector pairs, that

fulfill (1)). One way to get a different representation of

a DPH(α,A) with the same size is the application of the

similarity transformation

B = T
−1

AT , β = αT , (4)

where T is an arbitrary non-singular matrix for which

T1 = 1. If a DPH has an (α,A) Markovian represen-

tation, for which A is upper triangular, we call the distri-

bution acyclic DPH (shortly ADPH) distribution, and the

specific representation an ADPH representation.

2.2. Discrete Markov arrival processes and discrete

rational arrival processes. Let X (t) be a point pro-

cess on N
+ with joint probability mass function of inter-

event times PX (t)(x0, x1, . . . , xk) for k = 1, 2, . . . and

x0, . . . , xk ∈ N
+.

Definition 3. X (t) is called a rational arrival process if

there exists a finite (H0,H1) square matrix pair such that

(H0 +H1)1 = 1,

π(I −H0)
−1

H1 = π, π1 = 1 (5)

has a unique solution, and

PX (t)(x0, x1, . . . , xk) =

= πH0
x0−1

H1H0
x1−1

H1 . . .H0
xk−1

H11, (6)
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In this case we say that X (t) is a discrete rational ar-

rival process with representation (H0,H1), or shortly,

DRAP(H0,H1).
The size of the H0 and H1 matrices is also referred

to as the order of the associated process. For the sake of

conciseness we will denote order n MGs, DPHs, DRAPs

etc. by MG(n), DPH(n), DRAP(n) etc. respectively.

An important consequence of Definition 3 is that H0

and H1 have to be such that (6) is always non-negative.

Definition 4. If X (t) is a DRAP(H0,H1), where H0

and H1 are non-negative, we say that X (t) is a Discrete

Markov arrival process with representation (H0,H1), or

shortly, DMAP(H0,H1).
The matrix pairs satisfying the conditions of Defini-

tion 4 are called Markovian and the matrix pairs violating

Definition 4 are called non-Markovian.

Definition 5. The correlation parameter γ of a

DRAP(H0,H1) is the eigenvalue of (I−H0)
−1H1 with

the second largest absolute value.

One of the eigenvalues of (I − H0)
−1H1 is 1, because

(H0 + H1)1 = 1, and the other eigenvalues are on the

unit disk. If γ is real, it is between −1 and 1. This pa-

rameter is especially important in case of order 2 DRAPs,

as their ρk lag-k autocorrelation coefficient can be given

as ρk = γkc0, where c0 depends only on the stationary

inter-arrival time distribution of the process.

Similar to DPHs a DMAP has infinitely many differ-

ent Markovian and non-Markovian representations (ma-

trix pairs that fulfil (6)). One way to get a different repre-

sentation of a DMAP(D0,D1) with the same size is the

application of the similarity transformation

H0 = T
−1

D0T , H1 = T
−1

D1T , (7)

where T is an arbitrary non-singular matrix for which

T1 = 1.

The (stationary) marginal distribution of the inter-

event time of DRAP(H0,H1) is MG(π,H0), where

π is the unique solution of (5). Similarly the (sta-

tionary) marginal distribution of the inter-event time of

DMAP(H0,H1) is DPH(π,H0), where π is the unique

solution of (5).

2.3. Continuous phase type and matrix exponential

distributions. The continuous counterparts of the above

introduced models are defined as follows.

Definition 6. Let X be a continuous random variable

with support on R
+ and cumulative distribution function

(cdf)

FX(x) = Pr(X < x) = 1− αeAx1, (8)

where α is a row vector of size n, A is a square matrix

of size n × n, and 1 is the column vector of ones of size

n. In this case, we say that X is matrix exponentially dis-

tributed with representation (α,A), or shortly, ME(α,A)

distributed.

Definition 7. If X is an ME(α,A) distributed random

variable, where α and A have the following properties:

• αi ≥ 0, α1 = 1 (there is no probability mass at

x = 0),

• Aii < 0, Aij ≥ 0 for i 6= j, A1 ≤ 0,

we say that X is phase type distributed with representation

(α,A), or shortly, CPH(α,A) distributed.

The vector-matrix representations satisfying the con-

ditions of Definition 7 are called Markovian.

The probability density function (pdf), the Laplace

transform, and the moments of X are

fX (x) = −αeAxA1, (9)

µn = E(Xn) = n!α(−A)−n1. (10)

2.4. Continuous Markov arrival process and contin-

uous rational arrival process. Let X (t) be a point pro-

cess on R
+ with joint probability density function of inter-

event times f(x0, x1, . . . , xk) for k = 1, 2, . . ..

Definition 8. X (t) is called a rational arrival process if

there exists a finite (H0,H1) square matrix pair such that

(H0 +H1)1 = 0,

π(−H0)
−1

H1 = π, π1 = 1 , (11)

has a unique solution, and

f(x0, x1, . . . , xk) =

= πeH0x0H1e
H0x1H1 . . . e

H0xkH11. (12)

In this case we say that X (t) is a rational arrival process

with representation (H0,H1), or shortly, RAP(H0,H1).

Definition 9. If X (t) is a RAP(H0,H1), where H0 and

H1 have the following properties:

• H1ij ≥ 0,

• H0ii < 0, H0ij ≥ 0 for i 6= j, H01 ≤ 0,

we say that X (t) is a Markov arrival process with repre-

sentation (H0,H1), or shortly, MAP(H0,H1).

Similar to the discrete case, the representations satis-

fying the conditions of Definition 9 are called Markovian,

and similarity transformations generate different represen-

tations of the same process.
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3. Canonical form of order 2 DPH distribu-

tions

In this section we provide a canonical form for DPH(2)

distributions. We start with characterizing the properties

of all possible MG(2) distributions, i.e., distributions of

form (1), where A is a 2×2 matrix. Using this characteri-

zation we prove that all MG(2) distributions (thus all order

2 DPH distributions) have a Markovian canonical form.

After that we present the exact transformation method.

3.1. Canonical form of DPH(2).

Theorem 1. An MG(2) distribution has one of the fol-

lowing two forms

• different eigenvalues:

pi = Pr(X = i) = a1s
i−1
1 + a2s

i−1
2 , (13)

where s1, s2 are the eigenvalues of A. These eigen-

values are real with 0 < s1 < 1, s1 > |s2|. More-

over a1, a2 are such that a1 ≤ (1−s1)(1−s2)
s1−s2

and

a2 = (1 − s2)
(

1− a1
1−s1

)

, furthermore a1 > 0 if

s2 ≥ 0 and a1 ≥ s2(1−s1)(1−s2)
s2(1−s2)−s1(1−s1)

if s2 < 0;

• identical eigenvalues:

pi = Pr(X = i) = (a1(i− 1) + a2)s
i−1, (14)

where s is the double eigenvalue of A. This eigen-

value is real with 0 < s < 1. Furthermore a1, a2 are

such that 0 < a1 ≤ (1−s)2

s
and a2 = (1−s)2−a1s

1−s .

A vector matrix representation of the first form is

α=

[
a1

1−s1
,

a2

1−s2

]

,A=




s1 0

0 s2



, (15)

and of the second form is

α=

[
a1

1−s,
a2(1−s)− a1(1−2s)

(1−s)2
]

, A=




s s

0 s



.

(16)

Proof. The first form covers the cases when the s1, s2
eigenvalues of A are different and the second one when

the eigenvalues are identical (s1 = s2 = s). We discuss

these cases separately.

• different eigenvalues:

First we show that the eigenvalues are real. Assume,

that A has a complex eigenvalue. In this case the

other eigenvalue has to be its complex conjugate and

a1 and a2 must be conjugates too to obtain real pi =

a1s
i−1
1 +a2s

i−1
2 values. Let ϕ be the argument of a1

(a1 = |a1|eiϕ), and ψ the argument of s1. Moreover

assume that ψ ∈ (0, π). From i = 1 we get that

ϕ ∈
[
−π

2 ,
π
2

]
. Now consider the case i = ⌈ π

ψ
⌉ +

1. The argument of a1s
i−1
1 is ϕ + (i − 1)ψ, and it

is in
[
π
2 ,

3π
2

]
. This means that pi is negative since

a1s
i−1
1 and a2s

i−1
2 are conjugates. Thus we get that

the eigenvalues are real.

The two real eigenvalues have to be such that the

one with the larger absolute value (s1) is positive, be-

cause it becomes dominant for large i values and pi
would become negative for large i values with nega-

tive dominant eigenvalue. Additionally the dominant

eigenvalue has to be less than one to ensure that the

pi series has finite sum.

The relation of the a1, a2 coefficients is obtained

from
∑

i pi = 1. The a1 > 0 bound of a1 for the

s2 ≥ 0 case comes from the fact that pi ∼ a1s
i−1
1

for large i, where s1 is positive. A negative a1 would

result in negative pi for large i. If s2 < 0 this is

not enough, since pi can still be negative for smaller

i values, if a2 is sufficiently large. In this case the

lower bound for a1 comes from p2 ≥ 0, as

0 ≤ p2 = a1s1 + a2s2

0 ≤ a1s1 + (1− s2)

(

1− a1

1− s1

)

s2

0 ≤ a1
s2(1 − s2)− s1(1− s1)

1− s1
+ s2(1− s2)

a1 ≥ s2(1− s1)(1− s2)

s1(1 − s1)− s2(1− s2)
(17)

The upper bound of a1 can be derived from p1 ≥ 0,

since

0 ≤ p1 = a1 + a2

0 ≤ a1 + (1 − s2)

(

1− a1

1− s1

)

0 ≤ a1
s2 − s1

1− s1
+ (1− s2)

a1 ≤ (1− s1)(1 − s2)

s1 − s2
(18)

• identical eigenvalues:

First we show that the eigenvalue is real and non-

negative. If s is complex or negative in (14) then pi ∼
a1(i − 1)si−1 for large i, which becomes complex

or negative, respectively, for any a1 in case of two

consecutive large i values.

The inequality s < 1 comes from the fact that the pi
series has finite sum.

Similar to the previous case, the relation of the a1, a2
coefficients is obtained from

∑

i pi = 1 and the a1 >
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0 bound comes from the fact that pi ∼ a1(i− 1)si−1

for large i, where s is positive. A negative a1 would

result in negative pi for large i. The upper bound of

a1 comes from p1 ≥ 0, since

0 ≤ p1 = a2 (19)

0 ≤ (1− s)2 − a1s

1− s
(20)

a1 ≤ (1− s)2

s
(21)

�

Theorem 2. If X is MG(2) distributed with two distinct

positive eigenvalues (0 < s2 < s1 < 1) then it can be

represented as ADPH(α,A), where

α=

[
a1(s1−s2)

(1−s1)(1−s2)
,
a1 + a2

1−s2

]

, A=




s1 1−s1
0 s2



 .

Proof. The (α,A) vector-matrix pair is such that pi =
αAi−1(1−A1) = a1s

i−1
1 +a2s

i−1
2 . Matrix A obviously

satisfies the conditions of Definition 2 when 0 < s2 <

s1 < 1. It remains to be shown that α is non-negative

when 0 < s2 < s1 < 1, 0 < a1, and p1 ≥ 0. In the first

element of α we have a1 > 0, s1 − s2 > 0, s1 − 1 <

0, s2 − 1 < 0, from which it is positive. In the second

element we have a1+ a2 = p1 ≥ 0 and 1− s2 > 0. Note

that α1 = 1 when a2 = (1− s2)
(

1− a1
1−s1

)

. �

Theorem 3. If X is MG(2) distributed with a dominant

positive and a negative eigenvalue (s2 < 0 < s1 < 1 and

s1 + s2 > 0), then it can be represented as DPH(α,A),

where

α =

[
a1s1 + a2s2

(1− s1)(1− s2)
,
(a1 + a2)(1 − s1 − s2)

(1 − s1)(1− s2)

]

,

A =




1− β1 β1

β2 0



 ,

β1 = 1− s1 − s2 and β2 = s1s2
s1+s2−1 .

Proof. The eigenvalues ofA are s1, s2 and the (α,A) pair

is such that pi = αAi−1(1−A1) = a1s
i−1
1 + a2s

i−1
2 .

Parameters β1 and β2 are positive and less than 1
from which matrix A satisfies the conditions of Definition

2.

It remains to show that α is non-negative when s2 <

0 < s1 < 1, 1 > s1 > s1 + s2 > 0 and p1, p2 ≥ 0. For

the first element of α we have a1s1 + a2s2 = p2 ≥ 0,

s1 − 1 < 0, s2 − 1 < 0, from which it is positive and for

the numerator of the second element we have a1 + a2 =
p1 ≥ 0 and 1 − s1 − s2 > 0. The denominator of the

second element is the same as that of the first one, thus

the second element of α is also non-negative. �

Theorem 4. If X is MG(2) distributed with two iden-

tical eigenvalues (0 < s = s2 = s1 < 1) then it can be

represented as ADPH(α,A), where

α =

[
a1s

(1− s)2
,

a2

1− s

]

, A =




s 1− s

0 s



 .

Proof. The (α,A) vector-matrix pair is such that pi =
αAi−1(1 −A1) = (a1(i − 1) + a2)s

i−1, and matrix A

satisfies the conditions of Definition 2 when 0 < s < 1.

It remains to show that α is non-negative when 0 <
s < 1, 0 < a1 and p1 ≥ 0. All terms of the elements of α

are non-negative since a2 = p1 ≥ 0. �

Theorem 2 – 4 have the following consequences.

Corollary 1. The vector-matrix representations in The-

orem 2 – 4 can be used as canonical representations of

DPH(2) and MG(2) distributions.

Corollary 2.

order 2 DPH ≡ order 2 MG

order 2 ADPH ≡ order 2 MG with positive eigenvalues

Corollary 3. If the eigenvalues of the order 2

MG(γ,G) are positive and its canonical representation

is ADPH(α,A), then ME(γ,G − I) is a matrix expo-

nential distribution whose canonical ACPH representa-

tion (Cumani’s canonical form) is ACPH(α,A− I).

Proof. The matrix of the canonical representation

ADPH(α,A) has the form




s1 1− s1

0 s2



, where 1 >

s1 ≥ s2 > 0. ConsequentlyA−I is a matrix of an ACPH

distribution in Cumani’s canonical form with eigenvalues

0 > s1 − 1 ≥ s2 − 1 > −1.

Furthermore, due to the fact that ME(γ,G − I)

and ACPH(α,A − I) represent the same distribution

ME(γ,G− I) is a valid ME distribution. �

3.2. Transformation of DPH(2) to canonical form.

The introduced canonical representations can be obtained

from a general vector-matrix representation with the fol-

lowing similarity transformation.

Corollary 4. If the eigenvalues of the order 2 MG(γ,G)

are 0 < s2 < s1 < 1, then its canonical represen-

tation is ADPH(α = γB,A = B
−1

GB), where ma-

trix B is composed by column vectors b1 = 1 − b2 and

b2 = 1
1−s2

(1−G1).

Proof. MatrixB is obtained as the solution of B1 = b1+

b2 = 1 and GB = B




s1 1− s1

0 s2



, whose column
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vector form is Gb1 = s1b1 and Gb2 = (1− s1)b1 + s2b2.

Consequently, A =




s1 1− s1

0 s2



. �

The proofs for the subsequent corollaries in this sec-

tion follow the same pattern and are omitted.

Corollary 5. If the eigenvalues of the order 2 MG(γ,G)

are s2 < 0 < s1 < 1, then its canonical representation

is ADPH(γB,




s1 + s2 1−s1−s2
s1s2

s1+s2−1 0



), where matrix

B is composed of column vectors b1 = 1 − b2 and b2 =
1−s1−s2

(1−s1)(1−s2)
(1−G1).

Corollary 6. If the eigenvalues of the order 2 MG(γ,G)

are s = s1 = s2 < 1 then its canonical representation is

ADPH(γB,




s 1−s
0 s



), where matrix B is composed

of column vectors b1 = 1− b2 and b2 = 1
1−s (1−G1).

The presented similarity transformations can be used

as transformation methods to compute the canonical rep-

resentation from a general (Markovian or non-Markovian)

vector matrix representation. As an example a simple im-

plementation of Corollary 4 is presented in Figure 1.

1: procedure CanonicalDPH-PP(γ,G)

2: [s1, s2] = eig(G);
3: e = [1, 1];
4: b2 = 1

1−s2
∗ (e −G ∗ e);

5: b1 = e− b2;

6: return (γ ∗ [b1, b2],




s1 1− s1

0 s2



)

7: end procedure

Fig. 1. Canonical order 2 DPH representation based on Corol-

lary 4

4. Canonical form of order 3 DPH distribu-

tions

In the previous section we proved that the whole MG(2)

class can be represented with Markovian vector matrix

pairs. That is why we started with the characterization of

the order 2 MG class. For order 3 distributions the same

does not hold, that is DPH(3) 6≡ MG(3). Due to this differ-

ence we follow a different approach here and show only

that transformation with a given similarity matrix results

in a Markovian canonical form for all DPH(3).

Similar to the order 2 case the canonical representa-

tions of DPH(3) distributions are classified according to

the eigenvalue structure of the distribution. We encode

the eigenvalues in decreasing absolute value and denote

the ones with negative real part by N and the ones with

non-negative real part by P. For example PNP means that

1 ≥ |s1| ≥ |s2| ≥ |s3| and Re(s1) ≥ Re(s3) ≥ 0 >

Re(s2), where si, i = 1, 2, 3 denote the eigenvalues. Due

to the fact that the eigenvalue with the largest absolute

value (dominant eigenvalue) has to be real and positive (to

ensure positive probabilities in (1) for large i) we have the

following cases: PPP, PPN, PNP, PNN. Complex (conju-

gate) eigenvalues can occur only in case of PPP and PNN.

4.1. Case PPP. Following the pattern of Corollary 3

we define the canonical form in the PPP case based on the

canonical representation of CPH(3) distributions.

Theorem 5. If the eigenvalues of the order 3 DPH(γ,G)

are all non-negative we define the canonical form as

follows. The vector-matrix pair (γ,G − I) defines a

CPH(3). Let (α,A) be the canonical representation of

CPH(γ,G − I) as defined in (Horváth and Telek, 2009).

The canonical representation of DPH(γ,G) is (α,A+I).

Proof. The complete proof of the theorem requires

the introduction of the procedure defined in (Horváth

and Telek, 2009). Here we only demonstrate the re-

sult for the case when the canonical representation of

CPH(γ,G − I) is acyclic. When the eigenvalues of

G are 1 > s1 ≥ s2 ≥ s3 > 0 the eigenvalues of

G − I are 0 > s1 − 1 ≥ s2 − 1 ≥ s3 − 1 > −1.

In this case the matrix of the acyclic canonical form of

CPH(γ,G − I) is A =








s3 − 1 0 s∗ = 0

1− s2 s2 − 1 0

0 1− s1 s1 − 1








and

the associated vector α is non-negative. Finally, A + I

is non-negative and the associated exit probability vector,

1−A1 = [1− s3, 0, 0]
T , is non-negative as well.

In the general case s∗ might be positive and si − 1,

i = 1, 2, 3 are not the eigenvalues of A, but also in that

case it holds that the elements of A + I and 1 −A1 are

non-negative. �

The rest of the cases require the introduction of new

canonical structures.

4.2. Case PPN.

Theorem 6. If the eigenvalues of the order 3

DPH(γ,G) are 1 > |s1| ≥ |s2| ≥ |s3| and Re(s1) ≥
Re(s2) > 0 > Re(s3), then its canonical representation

is DPH(γB,A), where

A =








x1 1− x1 0

0 x2 1− x2

0 x3 0







,
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x1 = s1, x2 = s2 + s3, x3 = −s2s3
1−s2−s3

, and matrix B

is composed of column vectors b1 = 1 − b2 − b3, b2 =
1

(1−x2)(1−x3)
G(1−G1), b3 = 1

1−x3
(1−G1).

Proof. The eigenvalues of the canonical matrix are

s1, s2, s3. We need to prove that 0 ≤ xi < 1 and γbi ≥ 0
for i = 1, 2, 3. Based on the eigenvalue conditions of the

PPN case the validity of x1 and x2 are immediate. For x3
it is easy to see that x3 > 0. For the other limit we have

−s2s3
1− s2 − s3

< 1 (22)

0 < 1− s2 − s3 + s2s3 (23)

0 < (1− s2)
︸ ︷︷ ︸

>0

(1 − s3)
︸ ︷︷ ︸

>0

. (24)

The elements of b2 and b3 are non-negative, because

(1−G1) and G(1−G1) are the one and two steps exit

probability vectors of DPH(γ,G) and 0 ≤ x2, x3 < 1.

All that is left is to prove that b1 is non-negative. By

substituting into b1 = 1− (b2 + b3) we get

b2 + b3 =

(
1

1− x2
G+ I

)
1

1− x3
(I −G)1 = M1,

(25)

which is the product of a matrix (denoted by M above)

and vector 1. Let us examine the σi, i = 1, 2, 3 eigen-

values of M . Matrix M is a polynomial function of G,

therefore its eigenvalues can be calculated using (25) as

σi =

(
1

1− x2
si + 1

)
1

1− x3
(1− si)1. (26)

First note that σi ≥ 0, i = 1, 2, 3, as x2 and x3 are < 1.

Substituting into x2 and x3 for i = 1 we get

σ1 =

(
1

1− x2
s1 + 1

)
1

1− x3
(1− s1)

=

(
1

1− s2 − s3
s1 + 1

)
1− s2 − s3

(1− s2)(1− s3)
(1− s1)

= (s1 + 1− s2 − s3)
1

(1 − s2)(1− s3)
(1− s1)

=
1− s1

1− s2

(

1 +
s1 − s2

1− s3

)

≤ 1− s1

1− s2
(1 + s1 − s2),

(27)

which is ≤ 1 as

1− s1

1− s2
(1 + s1 − s2) ≤ 1 (28)

(1− s1)(1 + s1 − s2) ≤ (1 − s2) (29)

−s12 + s1s2 ≤ 0, (30)

holds. For i = 2

σi =

(
1

1− x2
si + 1

)
1

1− x3
(1− si)

=

(
1

1− s2 − s3
s2 + 1

)
1− s2 − s3

(1− s2)(1 − s3)
(1 − s2)

= (s2 + 1− s2 − s3)
1

(1− s2)(1 − s3)
(1 − s2) = 1.

(31)

Identically σ3 = 1 can be derived. Thus the eigenvalues

of M are between 0 and 1. This means that the M1 trans-

formation cannot increase the length of 1, i.e., the small-

est element of b2 + b3 = M1 is smaller than 1, in other

words at least one of the elements of b1 = 1 − (b2 + b3)
is positive. However, from the first column of the ma-

trix equation GB = BA we have another expression for

b1, x1b1 = Gb1. That is, x1 = s1 is the largest eigen-

value of G, and b1 is the associated eigenvector, which

is either strictly positive or strictly negative according to

the Perron-Frobenius theorem, consequently b1 is strictly

positive. The elements of γ are non-negative, therefore

γbi, i = 1, 2, 3 is non-negative as well. This completes

the proof. �

4.3. Case PNP. The PNP case exhibits the widest

set of representations. In this case the eigenvalues are

real and such that 0 < s3 < −s2 < s1 < 1. Let

the eigenvalue representation of the distribution be pi =
γGi−1(1 − G1) = σ1s

i−1
1 + σ2s

i−1
2 + σ3s

i−1
3 . Us-

ing these notations we first define the required represen-

tations.

Definition 10. The PNP representation of the distribution

is

α = γB, A =








x1 1− x1 0

x2 0 1− x2

0 x3 0







,

where x1 = −a2, x2 = a0−a1a2
a2(1+a2)

, x3 = a0(1+a2)
a0−a2−a1a2−a

2
2

,

a0, a1, and a2 are the coefficients of the characteristic

polynomial of G, i.e., a0 = −s1s2s3, a1 = s1s2+s1s3+
s2s3, a2 = −s1 − s2 − s3; matrix B is composed of col-

umn vectors b1 = 1− b2 − b3, b2 = 1
(1−x2)(1−x3)

G(1−
G1), b3 = 1

1−x3
(1−G1).

Definition 11. The PNP+ representation of the distribu-

tion is

α =
[

σ3

1−s3
, σ1s1+σ2s2

(1−s1)(1−s2)
,

(σ1+σ2)(1−s1−s2)
(1−s1)(1−s2)

]

,

A =








x1 0 0

0 x2 1− x2

0 x3 0







,
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x1 = s3, x2 = s1 + s2, x3 = −s1s2
1−s1−s2

.

Definition 12. The PNP++ representation of the distribu-

tion is

α =

[

σ1+σ2+σ3

1−s3
,
σ1s1(s1−s3)+σ2s2(s2−s3)

(1−s1)(1−s2)(1−s3)
,

(1−s1−s2)(σ1s1+σ2s2−(σ1+σ2)s3)
(1−s1)(1−s2)(1−s3)

]

A =








x1 0 0

0 x2 1− x2

1− x3 x3 0







,

x1 = s3, x2 = s1 + s2, x3 = −s1s2
1−s1−s2

.

Theorem 7. When the eigenvalues are such that 0 <

s3 < −s2 < s1 < 1 the generator matrices of the PNP,

the PNP+ and the PNP representations are Markovian.

Proof. PNP representation: Let λi = −si for i = 1, 2, 3.

In this case λ2 is strictly positive and so λ1 is strictly

negative, while λ3 is non-positive. Consequently a0 =
λ1λ2λ3 ≥ 0. The positivity of x1 = −a2 follows from

the fact that the sum of the eigenvalues of G is positive.

1 + a2 = 1 + λ1
︸ ︷︷ ︸

>0

+λ2 + λ3
︸ ︷︷ ︸

≥0

> 0 (32)

1 > −a2 (33)

1 > x1. (34)

The first inequality follows from −1 < λ1 and

|λ3| ≤ |λ2|. The next inequality also follows from

−1 < λ1, λ3 and 0 < λ2.

1+ a0+ a1+ a2 = (1+λ1)(1+λ2)(1+λ3) > 0. (35)

In the following we use that −a2 < 1. From that we

get a0 ≥ −a2a0.

The denominator of x3 is

a0 − a2 − a1a2 − a22 ≥
− a2
︸︷︷︸

<0

(1 + a1 + a2 + a0
︸ ︷︷ ︸

>0

) > 0. (36)

In the nominator of x3 a0 is non-negative and 1+ a2
is positive, therefore x3 is non-negative. We need to show

that x3 < 1:

x3 < 1 (37)

a0 + a0a2 < a0 − a2 − a1a2 − a22 (38)

0 < −a2(1 + a0 + a1 + a2), (39)

which was proven in (36). Finally, let us consider x2:

x2 < 1 (40)

a0 − a1a2 > a2(1 + a2) (41)

a0 − a2 − a1a2 − a22 > 0. (42)

We use here that the eigenvalues of λi are decreasing and

only λ2 is positive:

x2 =
−(

≤0
︷ ︸︸ ︷

λ1 + λ2)(

≤0
︷ ︸︸ ︷

λ1 + λ3)(

≥0
︷ ︸︸ ︷

λ2 + λ3)

− x1
︸︷︷︸

>0

(1 − x1
︸ ︷︷ ︸

>0

)
≥ 0 (43)

PNP+ and PNP++ representations: In these cases the

properties of xi are easy to read from the eigenvalue con-

ditions and we have that 0 < x1, x2, x3 < 1. �

Conjecture 1 One of the PNP, the PNP+ and the PNP++

representations of a DPH(3) with PNP eigenvalues is

Markovian.

Proof. We could analytically treat several special cases of

the DPH(3) PNP class, but we do not have formal proof

which covers the whole class. Apart from the analytical

treatment of the special cases we also completed an ex-

haustive numerical investigation and have not found any

counterexample yet. �

According to our numerical investigations the

PNP++ representation covers (transforms to Markovian

representation) the largest set of randomly generated

DPH(3)s. The second one is the PNP representation, and

the PNP+ representation covers the least among our ran-

domly generated DPH(3)s. Among 400000 DPH(3)s with

PNP eigenvalues there are ∼300 ones whose PNP++ and

PNP representations are non-Markovian and PNP+ repre-

sentation is Markovian.

4.4. Case PNN.

Theorem 8. If the eigenvalues of the order 3 DPH(γ,G)

are 1 > |s1| ≥ |s2| ≥ |s3|, Re(s1) > 0 > Re(s3) ≥
Re(s2) and |s2|2 ≤ 2s1(−Re(s2)) then its canonical rep-

resentation is DPH(γB,A), where

A =








x1 1− x1 0

x2 0 1− x2

x3 0 0







,

x1 = −a2, x2 = −a1
1+a2

, x3 = −a0
1+a1+a2

, the ma-

trix elements are defined based on the coefficients of the

characteristic polynomial of G, a0 = −s1s2s3, a1 =
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s1s2 + s1s3 + s2s3, a2 = −s1 − s2 − s3. and matrix

B is composed of column vectors b1 = 1 − b2 − b3,

b2 = 1
(1−x2)(1−x3)

G(1−G1), b3 = 1
1−x3

(1−G1).

Proof. The eigenvalues of the canonical matrix are

s1, s2, s3. We need to prove that 0 ≤ xi < 1 and γbi ≥ 0
for i = 1, 2, 3.

Let λi = −si for i = 1, 2, 3. The statements about

a2 in the PNP case are also valid for this case. The trace of

matrix G (the sum of its diagonal elements) equals to the

sum of its eigenvalues, and so the sum of the eigenvalues

as well as −a2 are non-negative. Consequently, 0 ≤ x1 <

1. Now we consider x2. (1+a2) is positive, thus we need

to show that a1 is non-positive.

If the eigenvalues are all real, then we can write

a1 = s1s2
︸︷︷︸

<0

+ s3
︸︷︷︸

<0

(s1 + s2)
︸ ︷︷ ︸

≥0

, (44)

that is the sum of a negative and a non-positive number, as

a consequence the result will be negative as well.

If s2 and s3 are complex conjugates, we can write

them as s2 = −u + iv and s3 = −u − iv, where u, v are

positive reals. With these notations:

a1 = s1(−u+ iv) + s1(−u− iv) + (u2 + v2)

= u2 + v2 − 2s1u ≤ 0, (45)

where the last inequality comes from |s2|2 ≤
2s1(−Re(s2)).

Now we show that x2 is less than 1:

x2 < 1

−a1 < 1 + a2

0 < 1 + a1 + a2 (46)

The last inequality can be proven by writing 1 + a1 + a2
in the following way:

1 + a1 + a2 = (1 + λ1)(1 + λ2)(1 + λ3)
︸ ︷︷ ︸

>0

−λ1λ2λ3
︸ ︷︷ ︸

<0

> 0

(47)

λ1λ2λ3 is a0, thus we also get that x3 is positive:

x3 =
−

<0
︷︸︸︷
a0

1 + a1 + a2
︸ ︷︷ ︸

>0

> 0

Similarly for the upper bound of x3:

x3 < 1

−a0 < 1 + a1 + a2

0 < 1 + a0 + a1 + a2

0 < (1 + λ1)(1 + λ2)(1 + λ3) (48)

The b2 and b3 vectors are non-negative, because

(1−G1) and G(1−G1) are the one and two steps exit

probability vector of DPH(γ,G), and 0 ≤ x2, x3 < 1.

Finally, from the matrix equation GB = BA

we have an explicit expression for b1, b1 =
1

(1−x1)(1−x2)(1−x3)
G

2(1 − G1). That is, b1 is the three

steps exit probability vector multiplied with a positive

constant. �

Theorem 8 does not cover the case when |s2|2 >

2s1(−Re(s2)). This can occur only when s2 and s3 are

complex conjugate eigenvalues. The following theorem

applies in this case.

Theorem 9. If the eigenvalues of the order 3 DPH(γ,G)

are 1 ≥ |s1| ≥ |s2| ≥ |s3|, Re(s1) > 0 > Re(s3) ≥
Re(s2), and |s2|2 > 2s1(−Re(s2)), then we use the same

canonical form as in case of PPP in Theorem 5.

Proof. Similar to the proof of Theorem 5 we need to

introduce the procedure of (Horváth and Telek, 2009) in

order to prove the theorem, which we omit here. �

5. Canonical representation of order 2

DMAP processes

In this section we give a canonical form for DMAP(2) pro-

cesses.

We use a similar approach to that in Section 3, i.e. we

prove that every DRAP(2) can be transformed to the intro-

duced Markovian canonical form. We do this by choosing

a set of the bounds of DRAP(2) and show that they are the

tight bounds of the introduced DMAP(2) canonical form,

which means that DRAP(2)⊆canonical DMAP(2), but by

definition canonical DMAP(2)⊆DRAP(2), consequently

DRAP(2)≡canonical DMAP(2).

The DRAP(2) processes are defined by 4 parame-

ters (Telek and Horváth, 2007b), e.g. the first 3 factorial

moments of the stationary inter-arrival time distribution

(f1, f2, f3), and the correlation parameter (γ). D0 and

D1 of size 2× 2 have a total of 8 elements (free parame-

ters). The (D0 +D1)1 = 1 constraint reduces the num-

ber of free parameters to 6. If, additionally, two elements

of the representation are set to 0, then the obtained (canon-

ical) representation characterizes the process exactly with

4 parameters.

5.1. Canonical forms of CMAP(2). Theorem 5 uses

the relation of discrete and continuous distributions. We

are going to utilize a similar relation between DMAP(2)

and CMAP(2). To this end we summarize the canonical

representation of CMAP(2) from (Bodrog et al., 2008).

Theorem 10. (Bodrog et al., 2008) If the correlation pa-

rameter of the order 2 CRAP(H0,H1) is
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• non-negative, then it can be represented in the fol-

lowing Markovian canonical form

D0=




−λ1 (1− a)λ1

0 −λ2



, D1=




aλ1 0

(1 − b)λ2 bλ2



.

(49)

where 0 < λ1 ≤ λ2, 0 ≤ a, b ≤ 1, min{a, b} 6=
1, γ = ab, and the associated embedded stationary

vector is π =
[

1−b
1−ab

b−ab
1−ab

]

,

• negative, then it can be represented in the following

Markovian canonical form

D0=




−λ1 (1− a)λ1

0 −λ2



, D1=




0 aλ1

bλ2 (1− b)λ2



,

(50)

where 0 < λ1 ≤ λ2, 0 ≤ a ≤ 1, 0 < b ≤ 1,

γ = −ab, and the associated embedded stationary

vector is π =
[

b
1+ab 1− b

1+ab

]

.

5.2. Canonical forms of DMAP(2) with positive eigen-

values.

Theorem 11. If the eigenvalues of H0 are positive and

the correlation parameter of the order 2 DRAP(H0,H1)

is

• non-negative, then it can be represented in the fol-

lowing Markovian canonical form

D0=




1− λ1 (1− a)λ1

0 1− λ2



, D1=




aλ1 0

(1− b)λ2 bλ2



.

(51)

where 0 < λ1 ≤ λ2, 0 ≤ a, b < 1, γ = ab, and

the associated embedded stationary vector is π =
[

1−b
1−ab

b−ab
1−ab

]

,

• negative, then it can be represented in the following

Markovian canonical form

D0=




1− λ1 (1− a)λ1

0 1− λ2



, D1=




0 aλ1

bλ2 (1− b)λ2



,

(52)

where 0 < λ1 ≤ λ2, s1 = 1 − λ1, s2 = 1 − λ2,

0 ≤ a ≤ 1, 0 < b ≤ 1, γ = −ab, and

the associated embedded stationary vector is π =
[

b
1+ab 1− b

1+ab

]

.

Proof. Practically the same approach is applied here as

in Theorem 5. First note that if (H0,H1) is a DRAP(2),

then (H0 − I,H1) is a CRAP(2). Using this

DRAP(H0,H1)
D→C⇒ CRAP(H0 − I,H1) ≡

≡ CMAP(T−1(H0 − I)T ,T−1(H1)T ) (53)

proves the theorem. The steps are self-explanatory,

except for the equivalence in the above expression, which

is based on Theorem 10 in (Bodrog et al., 2008). �

5.3. Canonical forms of DMAP(2) with a negative

eigenvalue.

Theorem 12. If one eigenvalue of H0 is negative and the

correlation parameter of the order 2 DRAP(H0,H1) is

• non-negative, then it can be represented in the fol-

lowing Markovian canonical form

D0 =




1− β1 aβ1

1
a
β2 0



 ,

D1 =




(1− a)β1 0

(1− 1
a
β2)b (1 − 1

a
β2)(1− b)



 ,

(54)

• negative, then it can be represented in the following

Markovian canonical form

D0 =




1− β1 aβ1

1
a
β2 0



 ,

D1 =




0 (1− a)β1

(1− 1
a
β2)b (1 − 1

a
β2)(1− b)



 ,

(55)

where the eigenvalues are such that s2 < 0 < s1 < 1,

s1 + s2 > 0, the relation of the parameters and the eigen-

values is β1 = 1 − s1 − s2, β2 = s1s2
s1+s2−1 , 0 ≤ b < 1,

and β2 ≤ a ≤ min
(

1, b 1−s21−s1

)

in case of γ ≥ 0 or

β2 ≤ a ≤ 1 in case of γ < 0.

The correlation parameter and the first coordinate of

the embedded stationary probability vectors (the unique

solution of (5))

• of (54) are

γ = (1−a)(1−b)
(

1 +
1−a
a

s1s2

1−s1−s2 + s1s2

)

,

(56)

π1 =
1− 1

1−aγ

1− γ
, (57)
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• of (55) are

γ = −(1− a)b

(

1 +
1− a

a

s1s2

1− s1 − s2 + s1s2

)

,

(58)

π1 = 1−
1 + a

1−aγ

1− γ
. (59)

We prove the theorem by considering the full flexibil-

ity of the DRAP(2) class with a negative eigenvalue and

showing that the canonical forms of Theorem 12 cover this

whole set of processes. To this end we first investigate the

flexibility of the DRAP(2) class.

5.3.1. Constraints of the DRAP(2) class. We inves-

tigate the flexibility of the DRAP(2) class based on the

following representation

H0 =




s1 0

0 s2



 ,

H1 =




a1 + (1−a1−s1)γ (1−a1−s1)(1−γ)

a1(1−s2)(1−γ)
1−s1

(1−s2)(1−a1−s1+a1γ)
1−s1



 ,

(60)

where s1 is the positive, s2 is the negative eigenvalue,

γ is the correlation parameter, and a1 is the parameter

that characterizes the stationary inter-arrival distribution

together with the eigenvalues according to (13). With this

representation the first coordinate of the embedded sta-

tionary vector is π1 = a1
1−s1

.

For a given pair of eigenvalues, s1 > 0 and s2 < 0,

Theorem 1 defines the limits of a1. According to these

limits the first coordinate of any embedded vector of

DRAP(H0,H1) should be bounded by

(1− s2)s2
(1− s2)s2 − (1− s1)s1

≤ x ≤ (1− s2)(1− s2)

s1 − s2
.

(61)

Function Un(x) describes the effect of an n long inter-

arrival period on the first coordinate of the embedded vec-

tor.

Un(x) =
(x, 1− x)H0

n−1
H1

(x, 1− x)H0

n−1
H11

(1, 0)T . (62)

If the embedded vector is (x, 1 − x) at an arrival instance

and the next inter-arrival is n time unit long, the embed-

ded vector is going to be (Un(x), 1 − Un(x)) at the next

arrival instance. In case of DMAPs the embedded vector

represents the probability distribution of the background

Markov chain at arrivals, but in case of DRAPs it does not

have any probabilistic interpretations. H0 and H1 has to

be such that starting from the stationary embedded vector

π for any series of inter-arrival times the first coordinate of

the embedded vector satisfies (61). Based on this property

we define simple constraints.

• long series of 1 time unit long inter-arrivals:

U1(x) = x has to have a real solution between the

bounds in (61), because if the solution was complex

or larger (smaller) than the respective bound, then a

series of one time unit long inter-arrivals would in-

crease (decrease) the first coordinate above the upper

(below the lower) limit (cf. Figure 2). This constraint

results in

γ ≤ (
√
c1 −

√
c2)

2

(c3 − a1s2)2
. (63)

• a long series of 1 time unit long inter-arrivals, then

a 2 time unit long inter-arrival:

If γ > 0, then U1(x) is a shifted negative hyperbolic

function which increases monotonously between the

bounds in (61). If U1(x) = x has two solutions,

w1, w2 (w1 < w2), then w1 is stable and w2 is un-

stable, which means that starting from x < w1 or

w1 < x < w2 and having a long series of 1 time

unit long inter-arrivals the first coordinate converges

to w1, while starting from x > w2 and having a long

series of 1 time unit long inter-arrivals the first coor-

dinate diverges. Consequently a long series of 1 time

unit long inter-arrivals and a 2 time unit long inter-

arrival keep the first coordinate between the bounds

if U2(w1) ≤ w2 holds. This constraint results in

γ ≤s1s2c2 − c1(1− s1 − s2)

c4c5
−

−
√

s1s2c1c2(s1 + s2)2

c4c5
. (64)

• long series of 2 time unit long inter-arrivals:

Similar to the first constraint U2(x) = x has to have

a real solution which results in

γ ≥
√
s1s2c2 +

√
c6)

2

c42
. (65)

• a long series of 1 time unit long inter-arrivals:

If γ < 0, then U1(x) is a shifted hyperbolic function

which decreases monotonously between the bounds

in (61). U1(x) = x has to have a stable real solu-

tion (w1) between the bounds in (61), which holds

if d
dx
U1(x)|x=w1 > −1 (cf. Figure 3) (in case of a

long series of 1 time unit long inter-arrivals the first

coordinate converges to w1). This constraint results

in

γ ≥ s2(1− a1 − s1) + a1s1

(c3 − a1s1)2
. (66)
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In the above expressions the auxiliary variables are

c1 = −a1(s1 − s2)
2(1− a1 − s1),

c2 = (1− s1)
3(1− s2),

c3 = 1− s1(2− a1 − s1), (67)

c4 = s1(1− s1)(1− a1 − s1) + a1s2(1− s2),

c5 = (a1(s1 − s2) + s2(1− s1)
2),

c6 = −a1(1 − a1 − s1)(s1(1− s1)− s2(1 − s2))
2.

We summarize the results of this subsection in the

following theorem.

Theorem 13. For DRAP(H0,H1) defined in (60) with

0 < s1 < 1, −s1 < s2 < 0 and a1 satisfying Theorem 1

the correlation parameter satisfies the inequalities (63) -

(66).

Theorem 13 defines only some bounds of the set of

DRAP(2) processes, but the subsequent analysis of the

canonical DMAP(2) proves that these bounds are tight.

5.3.2. Constraints of the set of canonical DMAP(2)

processes. Having the bounds of the DRAP(2) class

from Theorem 13 we are ready to prove Theorem 12.

Proof. (Theorem 7) First we need to relate the variables

of the canonical representation with the parameters used

for characterizing the DMAP(2) processes. The relation

of β1, β2 with s1, s2 is

s1,2 =
1

2

(

1− β1 ±
√

(1− β1)2 + 4β1β2

)

(68)

The relation of s1, s2, a1, γ with a and b can be obtained

from (56) and (57) for the first canonical form and from

(58) and (59) for the second canonical form.

If γ > 0, then

a =
g1 +

√

g21 − g2

2e1
,

b = 1− aγ(1− s1 − s2 + s1s2)

(1 − a)(a(1− s1 − s2) + s1s2)
, (69)

where

e1 = (1− s1)(1 − s1 − s2)
2,

e2 = (1− s1 − s2)(a1(s1 − s2)(1 − γ)− s1(1− s1)),

e3 = γ(1− s1)
2,

g1 = e1 + e2 − e3(1− s1 − s2),

g2 = 4e1(e2 + e3s1) (70)

and if γ < 0, then

a =
g3 −

√

g23 + g4

g5
,

b = 1− aγ(1− s1 − s2 − s1s2)

(1 − a)(a(1− s1 − s2) + s1s2)
, (71)

where

e6 = a1(s1 − s2)(1− γ),

e7 = (1 − s1)(s2(1− γ)− (1− s1 − s2)γ),

e8 = (1 − s1 − s2)(1 − s1)s2,

g3 = −(1− s1 − s2)e6 + e7s1 − e8,

g4 = 4(e6 + e7)e8s1,

g5 = −2(1− s1 − s2)(e6 + e7). (72)

Based on these relations the constraints of the canonical

DMAP(2) processes can be obtained using the fact that

all the elements of D0 and D1 have to be non-negative

real numbers. That is, a is real, β2 ≤ a ≤ 1 and 0 ≤
b ≤ 1. Parameter a is real when the expression under the

square root sign in (69) for γ > 0 and in (71) for γ < 0
is non-negative. All together these constrains result in 5

inequalities for γ > 0 and 5 for γ < 0. Out of these the

following ones are relevant.

• Case γ > 0:

– a is real when g21 − g2 ≥ 0, which translates to

(63),

– the inequality b ≤ 1 translates to (64),

• Case γ < 0:

– a is real when g23 + g4 ≥ 0, which translates to

(65),

– the inequality b ≥ 0 translates to (66).

Appendix A provides a detailed derivation of (63) based

on g21 −g2 ≥ 0. We neglect the details of the other deriva-

tions. �

6. Explicit moments and correlation match-

ing with the canonical forms

One of the most important applications of the introduced

canonical forms is the factorial moments matching for

DPH(2) and DPH(3) distributions and the factorial mo-

ments and correlation matching of DMAP(2) processes.

In the second part of this section we give explicit fac-

torial moment and correlation matching formulas for or-

der 2 models. While such formulas cannot be provided for

DPH(3), the canonical form still makes moment matching

possible. In the first part of this section we discuss this

matching procedure for DPH distributions in general.

6.1. Moment matching with DPH. To obtain formu-

las for moments matching the inverse of (3) is required,

that is, we need to find a vector-matrix pair based on a

given set of factorial moments. For the full characteriza-

tion of a DPH(n) we need the first 2n − 1 factorial mo-

ments (f1, f2, . . . , f2n−1). We find an appropriate vector-

matrix pair exhibiting a given set of factorial moments
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Fig. 2. The U1(x) function when s1 =
0.8, s2=−0.3, a1=0.19, γ=
0.17.
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Fig. 3. The U1(x) function when s1 =
0.8, s2=−0.3, a1=0.19, γ=
−0.012.

0.16 0.18 0.20 0.22

a1

-0.15

-0.10

-0.05

0.05

0.10

0.15

Γlimits

Fig. 4. The upper and lower γ limits

as a function of a1 when s1 =
0.8, s2=−0.3

using the procedure available for CPH moments match-

ing in (Horváth and Telek, 2007). In spite of the fact that

(10) and (3) look similar, we cannot directly use the CPH

moments matching method for DPH moments matching,

because of the extra term in (3). That is why we first trans-

form the factorial moments such that they exhibit an ex-

pression similar to (10).

Let us define G = −(I − A)−1A, then A
−1 =

I −G
−1. Substituting this into (3) we get

fi

i!
= α

(
(I −A)−1

A
)i
A

−1
1 =

= α(−G)i(I −G
−1)1

= (−1)i α(Gi −G
i−1)1. (73)

Assuming f0 = 1 and α1 = 1, from (73) we have

k∑

i=0

(−1)i
fi

i!
= αGk

1 (74)

Multiplying both sides with k! we obtain

µ̂k , k!

k∑

i=0

(−1)i
fi

i!
= k! αGk

1, (75)

which has the same form as (10). Applying the CPH mo-

ments matching procedure with µ̂k results in α and G

which satisfy (75). Finally, matrix A is obtained from

A = (G − I)−1G. This procedure commonly generates

a non-Markovian matrix A.

6.1.1. Moment matching with canonical DPH(2) and

DPH(3). Applying the general DPH moments matching

procedure of the previous subsection we attain an (α,A)

MG(2) or MG(3) representation based on (f1, f2, f3) or

(f1, f2, . . . , f5). By determining the eigenvalues of A the

appropriate type of canonical form can be decided and its

elements can be calculated according to Section 3 or 4. If

the resulting representation is Markovian, then the given

set of factorial moments can be matched with a DPH(2) or

a DPH(3). Otherwise it is not possible.

6.2. Parameter matching with DMAP(2). For

DMAP(2) processes the previously mentioned inverse

characterization is possible, that is, the first 3 moments

(f1, f2, f3) and the correlation parameter (γ) can be used

to give explicit formulas for β1, β2, a, b of Theorem 11

and 12.

Our matching method is composed of two steps. The

first step is moment matching with a DPH(2). The result

of this phase is an (α,A) canonical DPH(2) representa-

tion. The second step is the matching of γ. This means

the calculation of a and b of Theorem 11 and 12 from α,

A, and γ.

6.2.1. Bounds of DMAP(2) processes. For exact pa-

rameter matching first it has to be decided if a DMAP(2)

exists with a given set of f1, f2, f3, γ moments and cor-

relation parameter set, and if the matching is possible, it

has to be determined if one of the eigenvalues of D0 is

negative, as this affects the formulas for the elements of

the canonical form. To this end moment and correlation

bounds have to be established.

It can be easily proven that the class of DPH(2) dis-

tributions can be defined as the stationary inter-arrival

time distribution of DMAP(2) processes, thus their mo-

ment bounds are identical. These bounds can be derived

from the Markovian constraints on the canonical form of

DPH(2) distributions (i.e. the elements of α andA in The-

orem 2, 3, and 4 have to be between 0 and 1). For A with

two positive eigenvalues the constraints are already given

in (Telek and Heindl, 2002). These results are summarized

in Table 1, where

j1 =
6

(2 f1 +
√
2 j2)3

·
(

f1 (2 f1 +
√

2 j2)(3 f2 + 2 f1)

·(f2 − 2 f1 + 2)− 2 f2
2 (f2 −

√

2 j2)
)

, (76)

and j2 = 2 f1
2 − 2 f1 − f2.

For the negative eigenvalue case we have derived
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similar constraints as shown in Table 2, where

j3 =
3
√

(f2 − 2f1(f1−5)− 8)(f2 − 2f1(f1−1))3

4(f1−1)
+

+
3(−4f1(f1−2)(f1−1)2 + 8f2 + 4f1f2(f1−3)) + f2

2

4(f1−1)
(77)

In the following we present formulas for β1, β2, p. Substi-

tuting them into equations (63) – (66) exact γ bounds can

be easily derived. However, the resulting expressions are

rather long, therefore we do not show them.

6.2.2. Transformation to DMAP(2) canonical form

with positive eigenvalues. If the f1, f2, f3 moments are

in the bounds described by Table 1, they can be matched

with a DPH(2) with positive eigenvalues. In this case the

first step is based on Table 3 in (Telek and Heindl, 2002).

The s1 and s2 elements of matrix A and vector α can be

calculated as

α = [p, 1− p] , p =
−z(h3 − 6f1h1) +

√
h4

zh3 +
√
h4

,

s1 = 1− h3 − z
√
h4

h2
, s2 = 1− h3 + z

√
h4

h2
,

where

h1 = 2f1
2 − 2f1 − f2, h2 = 3f2

2 − 2f1f3,

h3 = 3f1f2 − 6(f1 + f2 − f2
1 )− f3,

h4 = h23 − 6h1h2,

z =
h2

|h2|
. (78)

The second step is the calculation of a, b of Theorem 11.

If γ = 0, then a = 1, b = 0. If γ > 0, then a and b can be

computed using

a =
d1 −

√
d2

2(1− s1)
, b =

d1 +
√
d2

2(1− s2)
,

with

d1 = 1− s2 − p(1− s2)(1− γ) + (1 − s1)γ,

d2 = d21 − 4(1− s1)(1− s2)γ.

If γ ≤ 0, then

a =
−γ(1− s2)

p(1− s2)(1 − γ)− γ(1− s1)
,

b =
p(1− s2)(1 − γ)− γ(1− s1)

1− s2
. (79)

6.2.3. Transformation to canonical form with a neg-

ative eigenvalue. If the f1, f2, f3 moments are in the

bounds described by Table 2, they can be matched with

a DPH(2) with a positive and a negative eigenvalue. In

this case the β1, β2 parameters and the α vector can be

calculated using

β1 =
12f2

1 − 3f2(4 + f2)− 2f3 + 2f1(−6 + 3f2 + f3)

(3f2
2 − 2f1f3)

β2 =
−3f2(2− 2f1 + f2) + 2(−1 + f1)f3

12f2
1 − 3f2(4 + f2)− 2f3 + 2f1(−6 + 3f2 + f3)

p =
β1 − f1β1 + β2 + f1β1β2

−1 + β2
, α = [p, 1− p] .

From β1 and β2 the eigenvalues s1 and s2 are obtained by

(68). In the second step a, b of Theorem 12 are calculated.

If γ = 0, then a = 1, b = 0 stands again. Otherwise if

γ > 0, then

a =
k1 +

√

k21 − k2

2β1
,

b = 1− aγ(1− β2)

(1 − a)(a− β2)
, (80)

if γ < 0, then

a =
k3 +

√

k23 + 4β2k4
2k4

,

b = − aγ(1− β2)

(1− a)(a− β2)
, (81)

where

k1 = (1− γ)(p+ β1 + β2 − pβ2)− 1 + β1,

k2 = 4β1(k1 − β1 + γ − β2γ),

k3 = (1− γ)(−p(1− β2)− 2β2)− γ(1− β1),

k4 = k3 + β2 + γ − β2γ. (82)

If the f1, f2, f3 moments are out of the bounds de-

scribed by both Table 1 and 2, then exact matching is not

possible.

7. Fitting using canonical forms

In some cases fitting based on a well chosen distance mea-

sure might capture the important characteristics of traffic

traces better than moment matching. Employing canoni-

cal forms is beneficial in this case as well.

The main advantage of using canonical forms in

model fitting compared to the corresponding general form

is that, while the canonical forms have the full flexibility

of the given class, the number of parameters that has to be

optimized is lower. When fitting with DPH(2) the canon-

ical form has 3 parameters instead of the 5 of the general

form (a DPH(2) has 6 elements and the α1 = 1 equa-

tion gives one constraint). The canonical form of DPH(3)
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condition bounds DPH(2)

1 ≤ f1 < ∞ -

1 ≤ f1 < 2 2(f1 − 1) ≤ f2 < ∞ -

2 ≤ f1
f1(3f1−4)

2 ≤ f2 < ∞ -

1 ≤ f1 < 2

2(f1 − 1) ≤ f2 j1 ≤ f3 β1 = β2

f2 < 2f1(f1 − 1) f3 ≤
3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 1

2 ≤ f1

f1(3f1−4)

2 ≤ f2 j1 ≤ f3 β1 = β2

f2 < 2(f1 − 1) f3 ≤ 6(f1 − 1)(f2 − f2
1 + f1) p = 1

2(f1 − 1) ≤ f2 j1 ≤ f3 β1 = β2

f2 < 1 − 1
f1

f3 ≤
3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 1

1 ≤ f1

2f1(f1 − 1) ≤ f2
3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
≤ f3 β2 = 1

Table 1. Bounds for the first three moments of DPH(2) distri-

butions with positive eigenvalues

condition bounds DPH(2)

1 ≤ f1 < ∞ -

1 ≤ f1 < 2 2(f1 − 1) ≤ f2 < ∞ -

2 ≤ f1 2(f1 − 1)2 ≤ f2 < ∞ -

1 ≤ f1 < 2

2(f1 − 1) ≤ f2
3(f2−2f1+2)(f1+f2)

(2f1−1)
≤ f3 β2 = 0

f2 < 2f1(f1 − 1) f3 ≤
3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β1 = 1

2 ≤ f1

2(f1 − 1)2 ≤ f2
3 f2(f2−2 f1+2)

2 (f1−1)
≤ f3 β2 = 0

f2 < f1(2f1 − 3) f3 ≤ 6(f1 − 1)(f2 − f2
1 + f1) p = 1

f1(2f1 − 3) ≤ f2
3 f2(f2−2 f1+2)

2 (f1−1)
≤ f3 β2 = 0

f2 < 2f1(f1 − 1) f3 ≤
3(f2 − 2f1 + 2)(f1 + f2)

(2f1 − 1)
β1 = 1

1 ≤ f1

1 − 2f1(f1 − 1) ≤ f2 j3 ≤ f3 p = 0

f3 ≤
3 f2(f2 − 2 f1 + 2)

2 (f1 − 1)
β2 = 0

Table 2. Bounds for the first three moments of DPH(2) distri-

butions with a negative eigenvalue

has 5 parameters instead of the 8 of the general case (a

DPH(3) has 9 elements and α1 = 1 gives a single con-

straint again). Finally, a canonical DMAP(2) has 4 pa-

rameters instead of 6 (a DMAP(2) has 8 elements, but the

(D0 + D1)1 = 1 equation means 2 constraints). Hav-

ing fewer parameters results in a faster and better fitting

in general (for the chosen distance measure).

In this section we provide numerical examples to

demonstrate the advantages of using canonical forms. We

use DPH(3) fitting as an illustration. Our choice is moti-

vated by the fact that DPH(3)s are significantly more com-

plex than DPH(2)s, however we can use a very straight-

forward fitting method for them with relative entropy as a

distance measure, which makes the demonstration simpler

than it would be with DMAP(2) fitting.

As mentioned above, we use relative entropy as dis-

tance function in our examples. Having the X and Y dis-

crete distributions on N
+ with pmfs f(i) and g(i), we can

calculate theirH relative entropy (or Kullback-Leibler di-

vergence) as

H(X ,Y) = −
∞∑

i=1

f(i) ln

(
g(i)

f(i)

)

. (83)

If f(i) is zero for a given i, that part of the ex-

pression is considered zero. The relative entropy of two

distributions is strictly non-negative and is only zero if

f(i) = g(i). Intuitively, higher H means a bigger dif-

ference between the two distributions and a worse fitting

in our case.

In the following we present the results of fitting to

three different distributions. The first one is the discrete

uniform distribution on 1 to 50 (i.e. f(i) = 0.02 if i =
1 . . . 50 and f(i) = 0 otherwise). The second one is the

DPH(4) with

α = [0.5, 0.2, 0.1, 0.2]] ,

A =











0.6 0.1 0.07 0.03

0.3 0.06 0.22 0.36

0.14 0.4 0.1 0.2

0.3 0.1 0.2 0.05











,



16 A. Mészáros, J. Papp, M. Telek

Distribution General form Canonical form

Distance Time Distance Time

Uniform 4.55 473 s 0.355 168 s

DPH(4) 0.00256 511 s 3.29×10−4 319 s

DPH(3) 6.32 4859 s 0.025 1571 s

Table 3. Fitting of distributions with general and canonical

DPH(3) form

which has a monotonically decreasing pmf, and the

third one is the DPH(3) with

α = [0.3, 0.1, 0.6] , A =








0.2 0.75 0.05

0.5 0.1 0.4

0.1 0.7 0.07







,

which has a fluctuating pmf with a slow decay. We

made the fitting using the built-in optimization function of

Wolfram Mathematica (called NMinimize). For the gen-

eral form we had to consider only one type of represen-

tation. In case of the canonical form, we ran the fitting

algorithm for all the different types of representations and

chose the best one. When fitting the uniform distribution

we took the theoretical pmf values. In the other two cases

we simulated 100, 000 inter-arrival times using the respec-

tive (α,A) and fitted using the empirical pmf of the traces.

The results are summarized in Table 3. They clearly show

that canonical forms perform better than the general form

in fitting. The intuitive explanation is that the canonical

forms have less parameters, consequently the optimiza-

tion is a simpler task than in the general case. Further-

more, as different representations describe the same dis-

tribution in the general form, they have the same distance

from the fitted trace. This suggests that the relative en-

tropy is a very bumpy function of the parameters for the

general case, which also makes the optimization harder.

The uniform distribution was hard to fit for both the

canonical and the general form, however the first one still

gave a much better result in terms of both distance and

running time. Similarly, both the canonical and the gen-

eral form was able to fit the trace of the DPH(4), but the

canonical fitting was faster again. Probably the most in-

teresting example is the fitting of the DPH(3) trace. The

pmfs of the fitted DPHs can be seen in Figure 5. While, in

theory, a perfect fit would have been possible, the general

form provided a poor solution. Using the canonical form

resulted in a good fitting, although it took a long time.

This is due to the slow decay of the distribution, because

it makes the goal function much more complex, as it has

more elements than in the previous cases.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  5  10  15  20  25  30  35  40

pm
f

Inter-arrival time

Trace
General form

Canonical form

Fig. 5. Fitting of DPH(3) distribution with general and canoni-

cal form

8. Conclusions

In this paper we presented canonical representations for

order 2 and 3 DPH distributions and order 2 DMAPs. We

provided a detailed proof for the validity of these canoni-

cal representations, gave explicit methods to obtain these

representations, and proved that the order 2 Markovian

models are equivalent to their non-Markovian counter-

parts.

We demonstrated the benefits of these canonical

forms in parameter matching and trace fitting. Using

them, we derived the moment and correlation bounds of

order 2 DMAPs (and DPHs) and presented explicit match-

ing formulas for these parameters. For order 3 DPH distri-

butions we provided a simple procedure that can be used

for moment matching.

We illustrated the advantages of fitting with canon-

ical forms instead of the general form through numeri-

cal examples. The results confirmed that with canonical

forms a substantially better performance can be achieved

in both running time and fitting quality than with using

general Markovian forms.
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Appendix A

The constraint for the correlation coefficient is the solution

of g21(γ) − g2(γ) = 0 for γ. By substituting (70) into

g1 and g2, regrouping the terms according to the different

powers of γ, and simplifying the expression we get

g21 − g2 =

(1−s1−s2)2(1−s1(2−a1−s1)−a1−s2)2γ2−

− 2(1−s1−s2)2
[

1 + s21
(
3−a1(1−a1 + 2s2)−3s2

)
−

− s31(1−a1−s2)−s2
(
1 + (1−a1)a1s2

)
−

− s1

(

3−s2
(
3 + a1(2−2a1 + s2)

))
]

γ+

+ (1−s1−s2)2(1−s1(1 + a1−s2)−s2 + a1s2)
2.

By solving the equation g21(γ)−g2(γ) = 0 and taking the

smaller solution and simplifying the result we get

γ =

a21(s1−s2)2−a1(1−s1)(s1−s2)2 + (1−s1)3(1−s2)
(1−s1(2−a1−s1)−a1s2)2

−

− 2
√

−a1(1−s1)3(1−a1−s1)(s1−s2)2(1−s2)
(1−s1(2−a1−s1)−a1s2)2

.

From this last expression, one can see that the nu-

merator is the square of
√

−a1(s1−s2)2(1−a1−s1) −
√

(1−s1)3(1−s2). The constraint will be this smaller so-

lution. Finally, we get (63) by substituting the ci formulas

from (67).
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