This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING

On the Scalability of Routing With Policies

Andras Gulyas, Gabor Rétvari, Member, IEEE, Zalan Heszberger, Member, IEEE, and Rachit Agarwal

Abstract—Today’s ever-growing networks call for routing
schemes with sound theoretical scalability guarantees. In this
context, a routing scheme is scalable if the amount of memory
needed to implement it grows significantly slower than the network
size. Unfortunately, theoretical scalability characterizations only
exist for shortest path routing, but for general policy routing that
current and future networks increasingly rely on, very little under-
standing is available. In this paper, we attempt to fill this gap. We
define a general framework for policy routing, and we study the
theoretical scaling properties of three fundamental policy models
within this framework. Our most important contributions are the
finding that, contrary to shortest path routing, there exist policies
that inherently scale well, and a separation between the class of
policies that admit compact routing tables and those that do not.
Finally, we ask to what extent memory size can be decreased by
allowing paths to contain a certain bounded number of policy
violations and, surprisingly, we conclude that most unscalable
policies remain unscalable under the relaxed model as well.

Index Terms—Compact routing, policy routing, routing alge-
bras, routing scalability.

I. INTRODUCTION

OUTING scalability is one of the most fundamental
goals of any network architecture. As the networks grow
in size, it is highly desirable to use routing schemes that do
not impose stringent storage requirements at nodes constituting
the routing infrastructure. The area of compact routing inves-
tigates the theoretical scalability properties of routing within
a formal framework. Within this framework, the fundamental
memory—stretch! tradeoff is by now well understood—if small
routing tables are desired then one must give up on the path
length.
With the research efforts in compact routing moving from
theoretical front to practical implications [1], [2], we ask our-

Manuscript received January 15, 2013; revised February 05, 2014; accepted
June 30, 2014; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor J. Wang. This work was partially supported by the European Union
and the European Social Fund through project Futur[CT.hu (grant no.:
TAMOP-4.2.2.C-11/1/KONV-2012-0013).Also the research was partially sup-
ported by the Hungarian Scientific Research Fund (grant No. OTKA 108947).

A. Gulyas and Z. Heszberger are with the MTA-BME Future Internet
Research Group, Budapest University of Technology and Economics, Bu-
dapest 1117, Hungary, and also with the Information System Research Group,
Hungarian Academy of Sciences (MTA), Budapest 1245, Hungary (e-mail:
gulyas@tmit.bme.hu; heszberger@tmit.bme.hu).

G. Rétvari, is with the MTA-BME Future Internet Research Group, Bu-
dapest University of Technology and Economics, Budapest 1117, Hungary
(retvari@tmit.bme.hu).

R. Agarwal is with the University of California, Berkeley, Berkeley, CA
94720 USA (e-mail: ragarwal@berkeley.edu).

Digital Object Identifier 10.1109/TNET.2014.2345839

IStretch is defined as the maximum ratio of the length of the path used by a
routing scheme to the actual shortest path.

selves if theoretical results are ready yet for applications in prac-
tice. We notice a fundamental obstruction—al/ compact routing
studies thus far make a fundamental assumption of each node
desiring the shortest path to the destination. While in reality,
with perhaps the exception of sensor networks [3], networks that
make the scalability problem nontrivial are precisely the ones
where the desired paths are not necessarily the shortest ones.

Indeed, the example to start with is the Internet. Each router
in the Internet stores, for each destination prefix, a next-hop
entry that is a result of a complicated decision process in-
tegrated within the internal and external Border Gateway
Protocol. While this decision process encompasses path length
at a low level, what predominantly governs path selection
are the individual business interests of service providers, the
router’s distance to the border routers, and other local pref-
erences that may have little to do with path length. Another
intriguing case for compact routing with policies is that of
content-centric routing—an extensive research effort in which
users route to contents, rather than the hosts serving the con-
tent [4], [5]. In this context, the scalability problem is indeed
at the forefront—the number of destinations toward which
routing information must be stored at a node is not just in the
order of the hundreds of millions of other nodes, but rather
the trillions of contents that constitute the World Wide Web.
Routing scalability while incorporating policies is a nontrivial
challenge within the framework.

This paper is the result of our quest for a technique to integrate
policies within the framework of compact routing. However, we
are not solely motivated by filling the gaps; the real driving force
is our desire to understand if the tradeoff between memory and
path cost is indeed a fundamental one. That is, we ask ourselves
the following: 1) Can we achieve policy-compliant routing in
large networks with compact routing tables? 2) If not, can we
relax the policy constraints at nodes, just as traditional compact
routing relaxes the shortest path requirement, to achieve com-
pact routing tables?

We do acknowledge that it would be too optimistic to expect
a positive answer to both of the above questions in the most gen-
eral framework. Policy-induced routing schemes are fundamen-
tally hard to model [6], [7], have a complicated combinatorial
structure [8] and, unlike shortest path routing, may not even re-
sult in each node having a path to the destination [9]. We also
realize that with network architectures like content-centric, it is
even hard to predict what style of policies will be implemented
at the time these architectures are realized in practice. All we
know is that the policies that are predominantly used in today’s
networks are induced by economic relationships, and there are
no reasons to believe that this is going to change arbitrarily in
the near future. Keeping this in mind, we lay down some mini-
malistic assumptions on the routing policies we consider; these

1063-6692 © 2014 EU

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

assumptions are widely believed to hold in today’s network and
do provide us with an opportunity to attack the problem within
a formal framework.

Our main contribution is a separation between the class of
policies that can be implemented with compact routing tables
and those that are not. More specifically, we show that when the
set of available paths is filtered using the class of policies that
are used in today’s networks, there exists an incompressibility
point—a policy before which compactness in routing tables is
admissible and beyond which it is not. This is rather surprising,
as traditional compact routing establishes that it is essential to
relax the shortest path routing requirement to achieve compact
routing tables; our results, on the other hand, suggest that there
exists a class of routing policies that admit compact routing ta-
bles without relaxing the path selection criterion in any ways.
This partially answers the first question posed above.

For the class of policies that do not admit compact routing
tables, we present another surprising result. We show that there
exist policies that do not admit compact routing tables, even if
one is willing to violate policies at a constant number of nodes
along the path in the hope of reducing memory requirements.
This is in sharp contrast to traditional compact routing results,
where one can trade off the path length to achieve compact
routing tables.

In summary, this paper marks a step in the direction of
moving beyond the memory—stretch tradeoff in networks
where paths are selected based on routing policies, rather than
simply the path length. On the positive front, we gain hope of
designing policies where each node in the network may achieve
its most desired path without storing a large number of routing
entries; on the other hand, it highlights some of the policies
that should be avoided within future network architectures, if
compact routing tables were a goal.

The rest of this paper is organized as follows. After reviewing
related work (Section II), we characterize the policy classes
that fundamentally arise in today’s networks (Section III). We
formalize these policies rigorously (Section IV), and then we
state our main result: a separation between scalable and unscal-
able routing policies (Section V). Finally, we study to what ex-
tent memory size can be reduced by relaxing policy compliance
(Section VI), we draw the conclusions, and we sketch some fu-
ture research directions (Section VII).

II. RELATED WORK

Our work uses and provides contribution to two key areas of
related work.

Traditional Compact Routing: Scalability of shortest path
routing gained much attention after Gavoille et al. gave strong
lower bounds on the memory requirements needed to imple-
ment it [10], [11]. In particular, they proved that it is impossible
to achieve routing tables that are sublinear in the size of the
network, if one insists on routing along shortest paths. Even if
the shortest path requirement is relaxed, allowing for paths with
(integer) stretch 2% — 1, the memory requirements cannot scale
better than Q(kn'+1/#) [12]. Subject to a conjecture of Erdds,
this lower bound is also tight—there exist routing schemes that
admit this point within the tradeoff space for any integer % [12].
For the particular case of stretch 3, [12] and [13] give compact

IEEE/ACM TRANSACTIONS ON NETWORKING

routing schemes where local storage increases only with the
square root of the network size.

There is very little hope of these techniques being helpful
in our case; indeed, nodes selecting paths based on policies
changes the three underlying assumptions made explicitly in
previous works. First, it is hard to model a policy-induced
graph by either directed or undirected graphs. Second, if paths
are selected based on policies, connectivity provided by the
underlying physical network topology does not imply reacha-
bility—two nodes that are physically connected may not be able
to reach each other due to the absence of a policy-compliant
path. Finally, the cost of a path is not necessarily the sum of
the weights of the links on the path, and hence, defining a cost
function on available paths in order to meet the fundamental
requirement of costs constituting a metric space becomes a
nontrivial task.

Scalability of Routing With Policies: One fundamental ob-
struction in formalizing the scalability problem with routing
policies is the lack of a formal model that captures a large
class of routing policies [6]-[8]. Independent administrative
domains implement routing policies at both the border routers
(mostly based on economic relationships with neighboring
domains [14]-[16]) and at internal routers (based on internal
routing protocol, traffic engineering, distance to border routers,
etc. [15]). Having hundreds of millions of routers imple-
menting routing policies naturally raises scalability concerns;
the proposals on content-centric networking with routers im-
plementing policies per content [17] will only aggravate the
problem.

Indeed, incorporating policies within the compact routing
framework has been known for a while to be an open
problem [18], [19]. However, the lack of a formal scala-
bility study is perhaps not too surprising precisely due to our
inability to model policies within a formal framework. Very
recently, an algebraic framework was proposed as a possible
tool to attack the problem [20]; it is essentially this framework
that we exploit to derive our results.

III. ROUTING POLICIES

The lack of a unified model has led to study routing policies
within a coarse grained classification; it is often feasible to un-
derstand the behavior of each class while ignoring interaction of
policies from separate classes [15], [16]. In this section, we out-
line three such classes that fundamentally arise in today’s net-
works. While possibilities exist to extend our model to a more
general class of policies, these three classes are sufficient to de-
rive the separation result we set our focus on—identifying the
policy before which compactness in routing tables is admissible
and beyond which it is not.

To make discussion in this section succinct, we use the no-
tion of actors to identify different levels of granularity at which
routing policies may be implemented. For instance, actors may
refer to autonomous domains when we discuss policy issues
at border routers or may refer to routers themselves when we
discuss policy issues at internal routers. In essence, the term
actor refers to a basic element in the network that can have
routing policies independent of the policies of other actors in
the network.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

GULYAS et al.: SCALABILITY OF ROUTING WITH POLICIES

It is widely believed that at the granularity of independently
administered domains, routing policies are a result of bilateral
economic relationships between neighboring actors, taking
the form of either a provider—customer or a peering relation-
ship [14]-[16], [21], [22]. In the former, traffic between the two
domains is paid for by the customer, while in the latter, traffic
exchange is cost-free subject to traffic flow constraints. Within
a single domain, routing policies at actors take multiple factors
into account including distance to border routers, external and
internal routing advertisements, traffic engineering, etc. In
this paper, we concentrate on a well-defined subset of these
policies. Our aim is to come up with models general enough to
be practically relevant while, at the same time, also sufficiently
simple to admit a comprehensive mathematical analysis.

Valley-Free Routing: The first routing policy that we consider
is valley-free routing [16], [21]. This policy encompasses the
basic economic fact that the flow of traffic must obey the flow
of cash. The policy dictates that an actor A can use a link to
a neighboring actor B to route traffic if and only if either the
incoming traffic is from a customer or B is a customer of 4. All
paths that induce valley-free routing have the same preference;
the only concern this policy addresses is not violating elemental
business rules.

Local Preferences: The second routing policy we consider is
the most general one within our framework—actors decide on
the next-hop based on their own preferences, which we assume
to be motivated by individual economic interests [14]-[16]. For
instance, an actor might prefer to route traffic via a customer as
this comes without expenditures and, in absence of such a path,
it is indifferent to whether the next hop is a provider or a peer.

Path Length: Finally, we consider routing policies where ac-
tors select paths based on their lengths. While this policy has
been thoroughly examined in traditional compact routing litera-
ture, we choose this for two reasons: First, when combined with
the earlier two policies (that is, let paths be filtered through mul-
tiple policy criteria as in today’s networks), it helps us establish
some surprising results; second, path length still forms a part of
the path selection process in today’s networks [15].

Potpourri: We consider three combinations of the above poli-
cies as the ones relevant in practice. In particular, we analyze the
scalability of pure valley-free routing, valley-free routing with
local preferences, plus the previous two with minimizing path
length. Indeed, this latter policy most resembles the actual de-
cision process used in today’s networks.

IV. NOTATIONS AND FORMAL MODEL

We model the network as a connected, simple graph G(V, A),
with each node in the graph denoting an actor and an arc de-
noting a physical connection between the two actors. We follow
the standard notation to assign directions to the arcs [23]: The
arrowheads mark the direction of the cash flow (see Fig. 1). At
connections with no cash flow (peering links, or internal routers
for instance), we either use a bidirectional arc, or ignore the di-
rection for ease of discussion. For instance, in Fig. 1, ¢; is a
customer of p1, pz and p3 are peers, and ¢; is a provider of both
p1 and p3.

Throughout the paper, we denote a path from node s to node
t using the notation p,;. A routing policy is represented as a

Fig. 1. Visual representation of a network with policies.

function Pol(-) : Ps; — P, which operates over a set of
available paths from node s to node ¢ and selects a preferred
path P}, based on predefined rules or policies at node s. To
describe these rules concisely, we adopt the notion of routing
algebras from the literature [22], [24], [25]. Routing algebras
provide us with a unified tool to capture the inherently bilat-
eral business agreements between actors using abstract weights
(described above), and define policy-compliant paths in terms
of these weights. The rest of this section briefly introduces the
routing algebra and defines the algebra for the routing policies
discussed in last section.

A routing algebra A is defined as a totally ordered semi-
group of abstract link weights, with a compatible infinity ele-
ment [20]. Formally, a routing algebra A is defined by the tuple
(W, ¢, @, =), where W is the set of abstract weights that can be
assigned to arcs, ¢ ¢ W is a special infinity weight meaning that
an arc/path is not traversable (that is, not policy-compliant), & is
a right-associative?:3 composition operator for weights, and <
is weight comparison expressing a preference on the paths/arcs.

We now discuss how routing algebras allow us to succinctly
capture the routing policies. Given a path P = (v1,v2,...,v)
in the network, the weight w(P) of P is obtained by combining
the weight of arcs on the path

~

-1

w(v;, Vig1).
1

w(p) =

i

Using such a notion of path weight simplifies defining policies;
for instance, a path that is preferred based on the policies can
be captured within the algebra .4 as the path with the smallest
weight according to <

Pol(Ps:) = P* 1 w(P*) < w(P),VP € Py.

Within the algebraic framework, one can capture a fairly gen-
eral class of policies. To start with an example, the algebra for
min-hop routing is defined as

S =({1},00,+,). 1
For shortest path routing over general positive weights, we
have the following algebra: (R, co, +, <). For more details on
routing algebras, refer to [22], [24], and [25]. In what follows,
we define the algebras for the routing policies described in
Section III.

2Right-associativity means that weights compose from the right, i.e., w; &
wa P owy = wy S (wr £ ows).

3This is not crucial for the model, but it will bring our generic framework
closer to existing practice [22].

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

TABLE I
WEIGHT COMPOSITION IN VALLEY-FREE ROUTING

T S-S
SIS SNk

TN oo

c
r
p

A. Valley-Free Routing

The formal algebraic description of valley-free routing is as
follows [22]. We assign abstract weights to links in the net-
work from the set {c, r, p}. An arc directed from a customer to
a provider is assigned weight p, and one from a provider to the
customer is assigned weight ¢. In case of peering relationships,
we assign weight 7 in both directions. Then, a valley-free path
is one that traverses at most one link of weight ., does not cross
any p links after an r or a ¢ link, and does not use an r link after
a c link. For instance, in Fig. 1, pathc; — p1 — 1 — 12 — p3
is valley-free, but po» — p3 — 5 and ps — co — p3 are not.
Consider the following definition.

Definition 1: Valley-free routing is defined as the algebra
A = (W, ¢, @, <), where W = {c,p,r}; b is as in Table I;
andc=7=p < ¢.

In the above algebra, the abstract weight of a path consisting of
two provider links, for instance, is p & p = p, while r &7 = ¢
states that the succession of two peer links in a path is prohib-
ited. The term ¢ = » = p means that the relation < orders the
same preference to whether the next hop on the path is a cus-
tomer, provider, or peer as long as the path is a valley-free path.

B. Valley-Free Routing With Local Preference

Next, we describe the routing algebra for policies that induce
local preferences over the set of available valley-free paths.
Local preferences are the set of rules that allow actors to ex-
ercise their own business interests, operational concerns, and
other individual criteria in selecting paths. Among an extremely
large number of possible local preference rules, perhaps the one
that is widely believed to be most applicable is actors preferring
customer paths over provider and peer paths. Consequently, we
restrict ourselves to this elementary local preference rule in the
sequel.

This policy can be captured within the algebraic framework
by a simple modification to the preference operator in the al-
gebra for valley-free routing [22], [25].

Definition 2: Valley-free routing with local preference
is defined as the algebra Ay = (W.¢,®,=<), where
W ={¢,p,r};®isasinTable ,andec < r = p < ¢.

Note that the weight composition for this policy is unchanged
when compared to the valley-free routing policy; only the pref-
erence operator has changed. In terms of our sample network in
Fig. 1, the rule ¢ < p simply states that the path p; — c¢2 path
of weight ¢ is preferred over the path p; — 1 — pa — c2 path
of weight p.

C. Valley-Free Routing With Local Preference and Shortest
Path

Finally, we consider the routing policy that selects, among
all paths that are local preference-compliant, the one with min-

IEEE/ACM TRANSACTIONS ON NETWORKING

imum number of actors along the path. To formally define the
routing algebra for this policy, we introduce a useful algebraic
construct called lexicographic product [26].

Definition 3: Given two routing algebras,
A = (Wi, da.®a,=%4) and B = (Wg,¢5, D5, 25),
the lexicographic product of A and B is a routing algebra
Ax B = (W,¢,®, <), where we have the following.

s W =WaxWg,d=(da,¢5).

. (wl,vl) © (’wg,’UQ) = (w1 DA wa,v1 On ’UQ) for all

wy, Wy € W4 and V1,V € Ws.
vy X ve, ifw; =4 w
wy <4 we, otherwise.
A lexicographic product essentially states that when two poli-
cies are combined into one, the first takes precedence and the
second only acts as tie-breaker. Then, the routing policy that
favors the path through the fewest hops among all valley-free
paths with the same local preference is the lexicographic
product of A, and the min-hop routing algebra S (1).

Definition 4: Valley-free Routing with Local Preference and
Shortest Path First is defined by the algebra A3 = A, x S.

For instance, in Fig. 1, paths p» — #2 — ps and py — &1 —
to — ps3 are both valley-free and local preference-compliant,
but the former is preferred due to it being shorter.

In line with the rest of the policy routing literature, we make
two fundamental model assumptions [9], [14]-[16].

Assumption 1: There are no provider loops in the network.

Assumption 2: Global reachability: Each actor has a policy-
compliant route to every other actor.

These assumptions will play a crucial role in our theoretical
scalability analysis, as revealed in Section V.

o (wr,v1) = (we,ve) =

V. SCALING PROPERTIES OF THE POLICY ROUTING MODELS

Next, we turn to the analysis of the theoretical scaling prop-
erties of policy routing models. To do that, first we have to put
it more clearly what scalability actually means.

We adopt a generic model from [10] and [11]. We are given
a network of n nodes, represented by the graph G(V, A), and
a routing policy, represented by the algebra A, and the task is
to find a worst-case upper bound on the memory requirements
needed to implement the policy. We generally suppose that node
degrees can be in the order of O(n).

Suppose that there is a hypothetical routing function I2,, im-
plemented at each node u € V, responsible for forwarding in-
coming packets to the right next-hop through the appropriate
outgoing interface. In shortest path routing, for instance, the
routing function must choose the next-hop along the shortest
path. In general policy routing, however, it is the policy, and
implicitly the underlying algebra .A through the relation =, that
determines the right way to forward a packet. The model is quite
liberal with what the routing function %, is allowed to do with
the packet: It can perform arbitrary calculations on it; it can
swap the header or the contents in any way; it has access to the
entire graph topology, etc.; the only requirements are that: 1) the
emergent paths must be policy-compliant; and 2) the number of
bits M (R,) needed to encode the routing function on node «
is minimal. Additionally, we are free to assign addresses in the
network, under the restriction that address size cannot exceed
clog n bits for ¢ constant.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

GULYAS et al.: SCALABILITY OF ROUTING WITH POLICIES

Routing scalability is then defined in terms of the maximum
storage space attainable by the best routing function M(R,,)
existing in the set of all routing functions R implementing the
algebra A, experienced over all nodes « and over all graphs G,,
of size n [10], [11]

M4 = max min max M4 (R, u).
GG, RER ueV

We say that a policy A is incompressible if there exists a
graph construction in which some routers need €2(n) bits of
storage to implement the policy. This usually signifies that the
routing policy does not scale well because even within our lib-
eral model, there is a network in which at least one node needs
memory whose size increases linearly with the size of the net-
work. Otherwise, the policy is compressible.

For shortest path routing, the following negative result
exists [10], [11].

Proposition 1: Min-hop routing is incompressible.

Similar compressibility analysis for a broad range of routing
policies was given in [20]. For general policy routing, however,
no such characterizations exist apart from some preliminary re-
sults appearing in [20]. We generalize the treatment from [20]
to the three policy routing models introduced in Section IV.

A. Valley-Free Routing

In valley-free routing, the only requirement for a path to
be policy-compliant is to contain no valleys. In terms of our
algebraic description Ay, we require that the weight w(p) of a
policy-compliant path p is such that w(p) < ¢. We ask whether
there is a routing algorithm that can implement valley-free
routing with sublinear storage space. We answer this question
in the affirmative, under the principles of the generic routing
framework introduced in Section III.

Theorem 1: Under the assumptions: 1) that no provider loops
exist (Assumption 1); and 2) global reachability (Assumption
2), there exist a route distribution and addressing scheme that
implements valley-free routing with O(logn) storage at each
router.

Proof: First, we extract a special subgraph, called the
valley-free frame, in which all paths are valley-free. Under our
assumptions, the valley-free frame always exists. Then, we
prove that routing along the valley-free frame is possible with
O(logn) bits memory per router.

First, collect the nodes corresponding to actors that do not
have a provider into a set 7. Each remaining node has at
least one provider link emanating from it: Choose an arbitrary
provider, and let this be the preferred provider of the node.
Do this recursively until a node in 7 is hit, and finish when a
preferred provider is assigned to every node not contained in
7. One easily checks the following.

1) In the absence of provider loops, the above process termi-

nates and organizes the nodes into a forest.

2) There is exactly one node from 7 in each tree of the forest.

3) Each v ¢ 7 is associated with strictly one tree; let the

unique node in the tree belonging to 7 be the root node of

v, denoted by t(v).

4) Each v ¢ 7T has exactly one link toward a provider.

~ K/ ‘ -
O3, : /
o) ~ 4)
A 0
@) A

Fig. 2. Valley-free frame: a peering full-mesh of nodes in 7 plus a set of trees
hanging on the root nodes in 7.

5) For any v ¢ 7, the unique v to #(v) path consists of

provider links exclusively.

6) By global reachability, nodes in 7 are connected into a

full-mesh of peer links.
We observe that all paths in the valley-free frame are indeed
valley-free. An example is given in Fig. 2.

We assign addresses as follows. First, we label the nodes in
7 using at most logn bits. Next, for each ¢ € 7 to the nodes
inside the tree hanging on #, we assign a ¢log n-bit-size label
using the tree-routing scheme in [27]. Then, for a node v, the
address is constructed as a concatenation of the label of the root
node of v plus the in-tree address (the root of a node v € 7 is
v itself)

label assigned to t(v) in-tree label of v.
—_————

v

. .
log n bits clogn bits

Upon forwarding a packet, a node first examines the initial log
bits of the destination address. If it matches the label of #(v), v
uses tree routing [27] to forward the packet inside its own tree.
Otherwise, v forwards the packet toward #(v). What remains to
be done is to ensure that nodes inside 7 can forward packets
to any other node in 7. This is done by labeling the outgoing
links of v € 7 with the label of the in-7 node to which they are
attached and forward a packet on the link whose label equals
the first log n bits of the destination address. Pure tree routing
requires O(logn) bits of storage on each node [27], to which
our scheme adds only log n bits. Therefore, valley-free routing
is compressible.]

B. Valley-Free Routing With Local Preference

Next, we extend valley-free routing with the local preference
rule that customer paths are preferred over any other types of
paths. In terms of the algebraic representation .A,, we now have
the preference rule ¢ < r < p. We show that even this minimal
local preference configuration, if set at each node, makes policy
routing incompressible. To prove this result, we trace back this
policy to shortest path routing. Then, the Proposition 1 on the
incompressibility of shortest path routing will establish the re-
quired result.

Definition 5: Let GG be a graph, and let C' and T be two dis-
tinct sets of nodes of G. C' is called the set of constrained nodes,
and T is the set of target nodes. A shortest path preserving la-
beling is a labeling of the links of G, so that for any v € ¢ and
v € T, au — v path is preferred according to the actual routing
policy if and only if it is a min-hop path in G.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Fig. 3. Sample graph for p = 2,6 = 2 if the words for the target nodes are
[1, 11,11, 2], [2, 1], and [2, 2].

According to Definition 5, in a shortest path preserving
labeling, shortest paths are exactly the preferred paths of the
policy between the C' and 7" nodes. This has the useful conse-
quence that finding a graph where shortest path routing requires
£2(n) bits and showing a shortest path preserving labeling on
it immediately yields proof on the incompressibility of the
routing policy under consideration. Note that the definition
permits that there can be other nodes I € V(G) \ (CUT)
between which this property does not hold (e.g., the z, ,, nodes
in Fig. 3, for which the shortest path preserving property clearly
does not hold).

Theorem 2: Valley-free routing with local preference is
incompressible.

Proof: We prove this result, borrowing the idea in [10].
First, we show a family of graphs in which shortest path routing
requires £2(n) bits at some nodes. Then, we give a shortest path
preserving labeling so that shortest paths from the constrained
nodes to the target nodes precisely correspond to valley-free
customer paths.4

We construct our graphs as follows. Start with p > 2 nodes,
let these nodes make up the constrained node set C', and connect
all these nodes into a full-mesh of peer links. To each v; € C,
add & > 2 neighbors z;;,¢ € {1,...,p}.j € {1,...,6}, and
let the (z;;, v;) links be provider links. Finally, add 67 target
nodes, and connect these to the z;; nodes according to the fol-
lowing rule: For each target node ¢, take the alphabet consisting
of the symbols (1, . . ., 4), construct a word of length p from this
alphabet, and add a provider link from ¢ to z;; if the ith symbol
in the word is exactly j. Fig. 3 gives an example.

Now, it is shown in [10] that min-hop routing in the above
family of graphs requires £2(n log é) bits of storage space at the
constrained nodes. Intuitively speaking, the idea is that there is
an astronomical number of different graphs in this graph family,
and to encode the shortest paths, the routing algorithm needs
to differentiate among them, which requires many bits. What
remains to be shown is that our link labeling is actually shortest
path preserving.

Clearly, each node reaches any other node via a valley-free
path. Furthermore, the shortest path from each constrained node
v; € Cto any target node ¢ € T is the unique two-hop customer
path. At the same time, this path is the preferred one in our
policy as well, as any other valley-free v; — ¢ path first crosses
a peer link to some other v; € (' and so is less preferred by
assumption. []

4Strictly speaking, our proof is only valid if we limit the address size to no
more than log n bits, but this restriction is easy to relax [11].

IEEE/ACM TRANSACTIONS ON NETWORKING

C. Valley-Free Routing With Local Preference and Shortest
Path First

This model integrates the previous two models into a
full-fledged policy routing architecture. In algebraic terms, this
model arises as the lexicographic product of valley-free routing
with local preference and min-hop routing: A; = Ay x S.
Since A3 contains As as a special case, the following result is
immediate.

Theorem 3: Valley-free routing with local preference and
shortest path routing is incompressible.

A straightforward proof would show that the incompress-
ibility proof for As is also an incompressibility proof for Aj;.

D. Discussion

We have seen that, in terms of scalability, there is a huge
gap between valley-free routing with and without local prefer-
ences. When actors are allowed to exercise their autonomy, im-
posing local preference rules on path selection, policy routing
becomes incompressible. This is even without the incompress-
ibility arising from shortest path routing, and even under the
most simplistic and ubiquitous model for local preferences we
could come up with.

An important final note is in order here. Certain model as-
sumptions, like address size, are important for the validity of our
proofs. If, for instance, we require that node degrees be bounded
by a constant, then our proof stops working. These assumptions,
however, do not really matter in the long run: The universal
approach in [11], stating incompressibility of min-hop routing
even for bounded degree and ¢ log n-bit address size, can be ex-
tended to our case easily.

More interesting is the case of global reachability and
provider loops in valley-free routing. We have seen that if these
principles hold, valley-free routing is compressible. However,
when global reachability does not hold, then, as one easily sees,
the labeling in Fig. 4(a) is shortest path preserving for the family
of graphs given in the proof of Theorem 2. Here, there are some
nodes (e.g., z12 and co) between which no valid path exists.
This establishes the incompressibility of valley-free routing
when the principle of global reachability is relaxed. Similarly,
Fig. 4(b) shows a shortest path preserving labeling (with some
extra nodes added) if provider loops are allowed, again im-
plying incompressibility. It seems that positive compressibility
results are pretty sensitive to the model perturbations, while
negative incompressibility results are really robust.

VI. RELAXING POLICY REQUIREMENTS

Compact routing research is revolved around the desire to
shrink the memory footprint of shortest path routing as much
as possible. The general incompressibility of shortest path
routing (Proposition 1) motivated the idea to reduce memory
requirements at the price of introducing a moderate stretch on
the paths. In this context, stretch can be seen as a relaxation of
the shortest path criterion, by letting paths be slightly longer
than the shortest ones, but keeping a strict upper bound on
length increase by a stretch factor.

In the sequel, we ask to what extent the same trick can be
played out for policy routing. In particular, we define several
abstract notions of stretch for each of the incompressible policy

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

GULYAS et al.: SCALABILITY OF ROUTING WITH POLICIES

Fig. 4. Shortest path preserving labeling when (a) global reachability does not apply and (b) provider loops are allowed.

TABLE I1
WEIGHT COMPOSITION IN BACKUP ROUTING (2 STANDS FOR THE NUMBER
OF STEPS)
® | (xe) (xr) (x.p)
0,¢) | (x,c) (x+1,c) ¢
o,r) | (x,r) (x+1,r) (x+1,r)
©,p) | &p) (xp) (x,p)

routing models identified in Section V, in the hope that this will
yield a substantial reduction in storage requirements. First, we
discuss valley-free routing with local preference, and then we
also add the requirement of minimizing the path length.

A. Valley-Free With Local Preference and Step Counting

In Section V-B, we showed that combining valley-free
routing with the simplest local preference rule renders the
policy incompressible. Now, we ask whether relaxing either of
the two components yields a compressible routing policy.

First, we relax the valley-free property. In particular, we
allow the selected paths to contain a certain number of “steps,”
defined as ¢ —r, r — p, or r — r subpaths. This is a clear violation
of the valley-free property, but our aim will be to put a strong
constant upper bound on the number of such policy violations
along any path. Steps were originally introduced in Backup
Routing [28] to increase path diversity. We ask to what extent
memory requirements can be decreased if we allow paths to
contain at most a fixed number of steps while still maintaining
local preference. The algebra is roughly modeled after [22].

Definition 6: Valley-free routing with local preference and
step counting is defined as the algebra Ay = (W, ¢, &, <X),
where we have the following.

« W =Nx{e, p,r}, where the first component denotes the

number of steps.

* & is as in Table II.

o (v1,w1) = (va,w9) ifv; < vg,0rvy = vy butwy <4, w2

where = 4, is the precedence relation in As.

Next, we give an exact definition for what we call stretch in
this model.

Definition 7: A routing scheme is of stretch-£ in A, if for
the weight w(p) = (z,y) of path p it selects, z < x* + k and
y = y*, where w(p*) = (x*,y*) is the weight of the preferred
path.

Note that by global reachability there is a valley-free path
between any two nodes, from which * = 0. For instance, path
p2—ts in Fig. 1 is of stretch zero, but po —p3 —1t2 and 1 —pa—p3
are of stretch 1.

Fig. 5. Incompressibility proof for valley-free routing with local preference
and step counting.

The following claim establishes that memory requirements
cannot be reduced in valley-free routing with local preference,
even if we allow arbitrary number of steps as policy violations.

Theorem 4: There is no stretch-% routing scheme over Ay
for any constant &, which can be implemented with sublinear
memory requirement at all nodes.

Proof: Consider the following modification of the graph
construction in the proof of Theorem 2: Let the constrained
nodes be connected to a common node 7’1 via a provider edge
instead of a full peer-mesh (see Fig. 5). It is easy to see that the
modified labeling is also shortest path preserving with respect to
the ¢; and ¢; nodes since the ¢; nodes cannot use the path through
T} to reach the ¢; nodes due to the local preference policy. As
the graph does not contain peer links anymore, it cannot contain
any steps, therefore any stretch-% routing scheme must encode
exactly the preferred paths in .As. This establishes incompress-
ibility by Theorem 2. [|

B. Valley-Free With Counting Local Preference Violations

So far, we have seen that there is no point in relaxing
the valley-free property, as this does not yield reduction in
memory requirements. Now, we relax the other component in
Ay, namely, local preference. In particular, we now strictly
enforce the valley-free property, but we permit at most &
local preference violations along the path. Unfortunately, this
policy does not have a formal algebraic description because the
composition operator cannot be defined properly. Therefore,
we only give an informal description.

Definition 8: Valley-free routing with counting local prefer-
ence violations is defined by the tuple B = (W, ¢, <), where
we have the following.

o W ={e,p,r} x N, where the second component denotes

the number of local preference violations.

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

Fig. 6. Incompressibility proof for valley free routing with counting of local
preference violations.

¢ The weight of a path (w,v) is defined as follows: w is

composed of the first component of the link weights as

of @ 4, in Table I, and » is the number of times the path

leaves a node on a p or r link even though the node has a

valley-free path of weight ¢ to the destination.

o (wr,11) = (wa,va) if wy <4, we, or wy =4, ws but

v < g

Definition 9: A routing scheme is of stretch-k in B if for the
weight w(p) = (x,y) of the paths p it selects, z < z* and
y < y* + k, where w(p*) = (x*,y*) is the weight of the
preferred path.

For instance, path ¢; — p; — t1 — pa — co is of stretch 1 in
Fig. 1, as local preference is violated at p; .

Theorem 5: There is no stretch-% routing scheme over B
for any constant &k, which can be implemented with sublinear
memory requirement at all nodes.

Proof: Modify the graph construction in Theorem 4 by
squeezing k nodes s; ;,7 € [1,k] between T'1 and the con-
strained node c¢;. In addition, connect ¢; to s; 1, S;,; to Si(j—1) ¢
J € [2,k], and s; 1 to T'1 via a provider edge (see Fig. 6). Be-
tween any ¢; and {;, there are two valley-free routes—one is
through a z-node, and the other is through 7°1. Again, the la-
beling is shortest path preserving with regard to the ¢; and ;
nodes, and any suboptimal path goes through 77 and, as such,
of stretch larger than & for any % constant. |

C. Valley-Free Routing With Shortest Path

We now take the next step and investigate to what extent the
full-fledged model .45 admits a compact implementation when
relaxing certain policy criteria. Clearly, relaxing the shortest
path requirement would not change scalability since valley-free
with local preference is incompressible in itself. Instead, we
prove a stronger result here: Memory requirements cannot be
reduced even if we completely let local preferences loose.

Definition 10: Valley-free routing with shortest path is de-
fined by the algebra A5 = A; x S.

Definition 11: A routing scheme is of stretch-£ in Aj if for
the weight w(p) = (z,y) of the paths p it selects, z < 2™ and
y < ky*, where w(p*) = (x*, y*) is the weight of the preferred
path.

One easily checks, for instance, that the path ¢y — py — 5 —
p3 — c3 in the sample network of Fig. 1 is of stretch 2 in .Aj.

Theorem 6: There is no stretch-% routing scheme over Aj
for any constant k, which can be implemented with sublinear
memory requirement at all nodes.

IEEE/ACM TRANSACTIONS ON NETWORKING

Proof: We observe that the graph construction of Theorem
5 gives an incompressibility proof for A5 as well since the path
between the constraint and the target nodes through 7’1 has
stretch greater than k. [|

VII. CONCLUSION

For the last couple of decades, compact routing research has
focused on identifying the fundamental scaling limits of shortest
path routing and constructing algorithms that meet these limits.
Motivated by the realization that in most large networks where
scalability indeed matters, it is not shortest paths along which
traffic really flows, in this paper we asked to what extent com-
pact routing theory can be generalized to policy routing.

In the first part of the paper, we defined three policy routing
models of increasing complexity and gave a thorough theoret-
ical scalability analysis. Then, we also asked to what extent the
traditional memory—stretch tradeoff can be played out for policy
routing. Our contributions in this regard are fourfold.

First, we gave a first report on routing policies that inherently
scale well, like valley-free routing, and we also presented an in-
compressibility point marking the frontier between policies that
can be implemented with compact routing tables and policies
that do not. It is important to point out that our scalability anal-
ysis is valid in a broader sense. Our analysis is stated in terms of
the local memory requirements of nodes needed to implement a
policy, while a growing trend in compact routing is to study the
aggregate memory requirement summed up along all nodes in
the network. Here, the requirement for compressibility is o(n?)
aggregate memory. Our results are valid under this model as
well. In particular, valley-free routing remains compressible,
while the other two models are incompressible.

Second, our models were deliberately chosen so that they are
generic enough to warrant wide applicability while, at the same
time, remain realistic enough to represent real-world policy
routing architectures. Indeed, the three models introduced in
Section III capture the first three consecutive stages in the
decision process of the Border Gateway Protocol (BGP) rather
closely. Consequently, our analysis reveals that full-fledged
BGP policy routing is incompressible. Interestingly, it is not the
valley-free property that renders BGP policy routing unscal-
able. In fact, global reachability, the absence of provider loops,
plus the rather strict valley-free requirement impose a special
hierarchy on the network, made up of the full-mesh of nodes
(roughly corresponding to the Tier-1 service providers in the
Internet) to which the rest of the nodes are connected through
distinct customer cluster trees. The valley-free frame, repre-
senting this hierarchy, then lends itself readily to a compact
addressing and routing scheme. Unscalability ensues when this
delicate hierarchy is destroyed, either by a relaxation of the
above assumptions or, more realistically, when we let nodes
differentiate between the available valley-free paths through
applying their own local preference settings. In this respect, we
could say that incompressibility of BGP policy routing is the
“price of anarchy” in the Internet.

Third, our analysis showed that the incompressibility
proofs for policy routing are rather strict, in the sense that
the memory—stretch tradeoff, which proved quite fruitful for
shortest path routing, cannot be invoked to alleviate local

This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

GULYAS et al.: SCALABILITY OF ROUTING WITH POLICIES

storage requirements. We examined three different abstract
notions of stretch, one where we allowed the valley-free crite-
rion to be violated, one where we allowed for a certain number
of local preference violations, and one where we used the
traditional notion of shortest path stretch. It turns out that none
of these stretch definitions yield compact routing tables. In this
context, future work involves extending this analysis to other
abstract notions of stretch.

Fourth, our scalability analysis might give clues to designing
future routing policies that do scale well [29]. Not just that such
a policy must admit scalable implementation, but it must be in-
centive-compatible at the same time. This seems an intriguing
future research question.

REFERENCES

[1] A. Singla, P. B. Godftrey, K. Fall, G. Iannaccone, and S. Ratnasamy,
“Scalable routing on flat names,” in Proc. CoNEXT, 2010, Art. no. 20.

[2] R. Agarwal, P. B. Godfrey, and S. Har-Peled, “Approximate distance
queries and compact routing in sparse graphs,” in Proc. IEEE IN-
FOCOM, 2011, pp. 1754-1762.

[3] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith, “S4: Small state
and small stretch routing protocol for large wireless sensor networks,”
in Proc. 4th NSDI, Apr. 2007, p. 8.

[4] V. Jacobson et al., “Networking named content,” in CoNEXT, 2009,
pp. 1-12.

[5] T. Koponen et al., “A data-oriented (and beyond) network architec-
ture,” in Proc. SIGCOMM, Aug. 2007, pp. 181-192.

[6] A. Fabrikant, A. Luthra, E. N. Maneva, C. H. Papadimitriou, and S.
Shenker, “On a network creation game,” in Proc. ACM PODC, 2003,
pp. 347-351.

[7] H. Levin, M. Schapira, and A. Zohar, “Interdomain routing and
games,” in Proc. ACM STOC, 2008, pp. 57-66.

[8] A. Fabrikant and C. H. Papadimitriou, “The complexity of game dy-
namics: BGP oscillations, sink equilibria, and beyond,” in Proc. ACM-
SIAM SODA, 2008, pp. 844-853.

[9] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths
problem and interdomain routing,” IEEE/ACM Trans. Netw., vol. 10,
no. 2, pp. 232-243, Apr. 2002.

[10] P. Fraigniaud and C. Gavoille, “Memory requirement for universal
routing schemes,” in Proc. ACM PODC, 1995, pp. 223-230.

[11] C. Gavoille and S. Perennes, “Memory requirement for routing in dis-
tributed networks,” in Proc. ACM PODC, 1996, pp. 125-133.

[12] M. Thorup and U. Zwick, “Compact routing schemes,” in Proc. ACM
SPAA, 2001, pp. 1-10.

[13] L. Cowen, “Compact routing with minimum stretch,” in Proc. ACM-
SIAM SODA, 1999, pp. 255-260.

[14] G. Huston, “Interconnection, peering, and settlements,” in Proc. INET,
1999.

[15] M. Caesar and J. Rexford, “BGP routing policies in ISP networks,”
EECS Department, University of California, Berkeley, CA, USA, Tech.
Rep. UCB/CSD-05-1377, 2005 [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2005/6507.html

[16] L. Gao and J. Rexford, “Stable internet routing without global coor-
dination,” IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 681-692, Dec.
2001.

[17] S. Dibenedetto, C. Papadopoulos, and D. Massey, “Routing policies
in named data networking,” in Proc. ACM SIGCOMM Workshop Inf.
Centric Netw., 2011, pp. 38-43.

[18] C. Gavoille, “Routing in distributed networks: Overview and open
problems,” ACM SIGACT News, vol. 32, no. 1, p. 52, 2001.

[19] D. Papadimitriou, “Compact routing: Challenges, perspectives,
and beyond,” TRILOGY Future Internet Summer School, Lou-
vain-la-Neuve, Belgium, Tech. Rep., 2009 [Online]. Avail-
able: http://typo3.trilogy-project.eu/fileadmin/publications/Other/
Papadimitriou-CompactRouting.pdf

[20] G.Rétvari, A. Gulyas, Z. Heszberger, M. Csernai, and J. J. Bir6, “Com-
pact policy routing,” Distrib. Comput., vol. 26, no. 5-6, pp. 309-320,
Sep. 2012.

[21] X. Yang, D. Clark, and A. Berger, “NIRA: A new inter-domain routing
architecture,” IEEE/ACM Trans. Netw., vol. 15, no. 4, pp. 775-788,
Aug. 2007.

[22] J. Sobrinho, “Network routing with path vector protocols: Theory and
applications,” in Proc. SIGCOMM, 2003, pp. 49-60.

[23] CAIDA, La Jolla, CA, USA, “CAIDA project,” [Online]. Available:
http://www.caida.org/

[24] J. Sobrinho, “Algebra and algorithms for QoS path computation and
hop-by-hop routing in the internet,” /JEEE/ACM Trans. Netw., vol. 10,
no. 4, pp. 541-550, Aug. 2002.

[25] T. Griffin and J. Sobrinho, “Metarouting,” in Proc. SIGCOMM, 2005,
pp. 1-12.

[26] A. Gurney and T. Griffin, “Lexicographic products in metarouting,” in
Proc. IEEE ICNP, 2007, pp. 113-122.

[27] P. Fraigniaud and C. Gavoille, “Routing in trees,” in Proc. ICALP,
2001, pp. 757-772.

[28] L. Gao, T. G. Griffin, and J. Rexford, “Inherently safe backup routing
with BGP,” in Proc. IEEE INFOCOM, 2001, vol. 1, pp. 547-556.

[29] A. Sechra et al., “A policy framework for the future internet,” in Proc.
HotNets-VIII, 2009.

Andras Gulyas received the M.Sc. and Ph.D. de-
grees in informatics from the Budapest University of
Technology and Economics (BME), Budapest, Hun-
gary, in 2002 and 2008, respectively.

Currently, he is a Research Fellow with the De-
partment of Telecommunications and Media Infor-
matics, BME. His research interests are complex and
self-organizing networks, network calculus and soft-
ware defined networking.

Gabor Rétvari (S’03-M’05) received the M.Sc.
and Ph.D. degrees in electrical engineering from the
Budapest University of Technology and Economics
(BME), Budapest, Hungary, in 1999 and 2007,
respectively.

He is now a Senior Research Fellow with the
High Speed Networks Laboratory, Department
of Telecommunications and Media Informatics,
BME. His research interests include QoS routing,
traffic engineering, and the networking applications
of computational geometry and the mathematical

theory of network flows. He is a Perl expert, maintaining numerous open source
scientific tools written in Perl, C, and Haskell.

Zalan Heszberger (S°99-A’01-M’14) received the
M.Sc. and Ph.D. degrees in electrical engineering
from the Budapest University of Technology and
Economics (BME), Budapest, Hungary, in 1997 and
2007, respectively.

Currently, he is an Associate Professor with the
Department of Telecommunications and Media
Informatics, BME. His main research interests
are future Internet technologies and complex net-
working. Currently, he is working on clean-slate
design Internet routing and network management

algorithms.

Rachit Agarwal received the Ph.D. degree in elec-
trical and computer engineering from the University
of Illinois at Urbana-Champaign, Urbana, IL, USA,
in 2013.

He is now a Postdoctoral Fellow with the Univer-
sity of California, Berkeley, CA, USA. His research
spans networked systems and theory.

