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Abstract
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is given. The structure as a module over the special orthogonal group of
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1 Introduction

Let n be a positive integer and k ∈ {0, 1, . . . , n − 1}. The k-subdiscriminant
of a degree n monic polynomial p =

∏n
i=1(x − λi) ∈ C[x] with complex roots

λ1, . . . , λn is

sDisck(p) :=
∑

1≤i1<···<in−k≤n

δ(λi1 , . . . , λin−k
)2

where
δ(x1, . . . , xn−k) :=

∏

1≤i<j≤n−k

(xi − xj).

(For k = n − 1 we have sDiscn−1 = n.) It can be written as a polynomial
function (with integer coefficients) of the coefficients of p. Moreover, p has
exactly n−k distinct roots in C if and only if sDisc0(p) = · · · = sDisck−1(p) = 0
and sDisck(p) 6= 0. The relevance of subdiscriminants for counting real roots of
polynomials p ∈ R[x] is explained in Chapter 4 of [1].

∗Partially supported by OTKA NK81203 and K101515.
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Given an n × n matrix A (say with complex entries) its k-subdiscriminant
(k ∈ {0, 1, . . . , n − 1}) is defined as sDisck(A) := sDisck(pA), where pA is
the characteristic polynomial of A. Obviously sDisck(A) is a homogeneous
polynomial function (with integer coefficients) in the entries of A of degree
(n−k)(n−k− 1). The matrix A has exactly n−k distinct complex eigenvalues
if and only if sDisc0(A) = · · · = sDisck−1(A) = 0 and sDisck(A) 6= 0. In the
special case k = 0 we recover the discriminant Disc(A) := sDisc0(A).

Up to non-zero scalar multiples the discriminant is the only degree n(n− 1)
homogeneous polynomial function on the space of matrices having both of the
following two properties: (i) it vanishes on all degenerate matrices (i.e. matrices
with a multiple eigenvalue); (ii) it is invariant under the action of the general
linear group by conjugation. This statement is well known (a version for real
symmetric matrices is the starting point of [9]). In the first half of the present
note we generalize it and show that a similar invariant theoretic characterization
of the k-subdiscriminant of matrices is valid for all k. Our Theorem 3.1 asserts
that up to non-zero scalar multiples sDisck is the only homogeneous polynomial
GLn-invariant function of degree (n−k)(n−k−1) on the space of n×n matrices
that vanishes on all matrices with at most n− k − 1 different eigenvalues, and
there is no such GLn-invariant polynomial of smaller degree. The proof of this
result depends on the Kleitman-Lovász Theorem (cf. [10]) giving generators of
the vanishing ideal in C

n of the subspace arrangement consisting of the points
with at most n− k − 1 distinct coordinates.

Subdiscriminants of real symmetric matrices are particularly interesting: all
eigenvalues of a real symmetric matrix are real, therefore sDisck(A) = 0 for a
real symmetric n× n matrix A if and only if A has at most n− k − 1 different
eigenvalues. Theorem 3.1 has a variant Theorem 4.1 for real symmetric matrices:
up to non-zero scalar multiples sDisck is the only SOn-invariant homogeneous
polynomial function of degree (n− k)(n− k − 1) on the space M of n× n real
symmetric matrices that vanishes on the set Ek of real symmetric matrices with
at most n − k − 1 distinct eigenvalues, and there is no such SOn-invariant of
smaller degree. We also show that the minimal degree of a non-zero polynomial
function on the space of real symmetric matrices that vanishes on Ek is (n −
k)(n− k − 1)/2, see Corollary 5.3.

Note that the subdiscriminants are non-negative forms on the space M of
real symmetric matrices. We apply Theorem 4.1 to the study of sum of squares
presentations of the subdiscriminants. View sDisck as an element of the coordi-
nate ring R[M] of M. In the special case k = 0 the fact that the discriminant
Disc can be written as a sum of squares in the n(n+ 1)/2-variable polynomial
ring R[M] goes back to Kummer and Borchardt, and was rediscovered and re-
fined by several authors, see [5] for references (see also [8] for a generalization
and [13] for a recent application of sum of squares presentations of the discrim-
inant of symmetric matrices). It was shown by Roy (see Theorem 4.48 in [1])
that the k-subdiscriminant is a sum of squares for all k = 0, 1, . . . , n− 2 as well,
in fact she presented sDisck explicitly as a sum of squares (a generalization of
this in the context of semisimple symmetric spaces was communicated to me by
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Räıs [12]). This motivates the following definition:

µk(n) := min{r ∈ N | ∃f1, . . . , fr ∈ R[M] : sDisck =

r
∑

i=1

f2
i }

In the special case k = 0 the number µ(n) := µ0(n) is investigated in [5] (building
on the ideas of [9]), where it is shown that for n ≥ 3, the number µ(n) is bounded
by the dimension of the space of n-variable spherical harmonics of degree n (an
irreducible representation of SOn). It turns out that the approach of [9], [5] can
be extended for the k-subdiscriminant as well. We shall locate an irreducible
SOn-module direct summand in the degree (n− k)(n− k − 1)/2 homogeneous
component of the vanishing ideal of the subvariety Ek ofM, see Theorem 6.2. As
a corollary of the characterization of sDisck given in Theorem 4.1 we conclude
that µk(n) is bounded from above by the dimension of the above mentioned
irreducible SOn-module (Corollary 6.3). This yields a significant improvement
of the bound on µk(n) provided by the explicit sum of squares presentation of
sDisck given in [1].

Acknowledgement.

The author is grateful to Marie-Francoise Roy for her suggestion to study the
subdiscriminants along the lines of [9], [5], and for inspiring discussions during
a visit of the author to Rennes.

2 Some results on symmetric polynomials

Let F be a field of characteristic zero, and denote by Dk the subset of D := Fn

consisting of points with at most n−k−1 different coordinates. It is an (n−k−1)-
dimensional subspace arrangement. Write I(Dk) for the vanishing ideal of Dk in
the coordinate ring F[D] = F[x1, . . . , xn] (an n-variable polynomial ring). The
symmetric group Sn acts on D by permuting coordinates. This induces a left
action of Sn on the coordinate ring F[D] of Fn given by π · f(x1, . . . , xn) :=
f(xπ(1), . . . , xπ(n)) for π ∈ Sn and f ∈ F[D]. The corresponding subalgebra of
invariants is

F[D]Sn := {f ∈ F[x1, . . . , xn] | π · f = f ∀π ∈ Sn}

(the algebra of n-variable symmetric polynomials). The subset Dk is Sn-stable,
hence I(Dk) is an Sn-submodule in F[D]. Set

I(Dk)
Sn := I(Dk) ∩ F[x1, . . . , xn]

Sn

and denote by I(Dk)
Sn

d the degree d homogeneous component of I(Dk). We put

∆n,k :=
∑

1≤i1<···<in−k≤n

δ(xi1 , . . . , xin−k
)2
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Lemma 2.1. The space I(Dk)
Sn

(n−k)(n−k−1) is spanned by ∆n,k, and there are

no Sn-invariants in I(Dk) of degree less than (n− k)(n− k − 1).

Proof. By the Kleitman-Lovász Theorem [10] the ideal I(Dk) of F[x1, . . . , xn] is
generated by the polynomials δ(xi1 , . . . , xin−k

), where 1 ≤ i1 < · · · < in−k ≤ n.
The Reynolds operator τ : F[x1, . . . , xn] → F[x1, . . . , xn]

Sn is given by τ(f) :=
1
n!

∑

g∈Sn
g · f . It is a projection onto the subspace of symmetric polynomials,

preserving the degree and mapping I(Dk)d onto I(Dk)
Sn

d . The Sn-orbits of
the polynomials δ(x1, . . . , xn−k)m where m is a monomial in x1, . . . , xn span
I(Dk), therefore I(Dk)

Sn is spanned by τ(δ(x1, . . . , xn−k)m), where m ranges
over the set of monomials. Identify Sn−k with the subgroup of Sn consisting
of permutations fixing n − k + 1, . . . , n, and write Sn/Sn−k for a system of
left Sn−k-coset representatives in Sn. Observe that for g ∈ Sn−k we have
g · δ(x1, . . . , xn−k) = sign(g)δ(x1, . . . , xn−k). Therefore

τ(xα1
1 . . . xαn

n δ(x1, . . . , xn−k)) =
1
n!

∑

h∈Sn/Sn−k
h ·

(

∑

g∈Sn−k
g · (xαδ)

)

= 1
n!

∑

h∈Sn/Sn−k
h ·

(

∑

g∈Sn−k
xα1

g(1) . . . x
αn

g(n)sign(g)δ
)

Observe that
∑

g∈Sn−k
sign(g)xα1

g(1) . . . x
αn

g(n) = 0 unless α1, . . . , αn−k are all dis-

tinct. It follows that if α1+· · ·+αn−k < 0+1+· · ·+(n−k−1), then τ(xαδ) = 0,
whereas if {α1, . . . , αn−k} = {0, 1, . . . , n − k − 1} and αn−k+1 = · · · = αn = 0,
then

∑

g∈Sn−k
sign(g)xα1

g(1) . . . x
αn

g(n) = ±δ(x1, . . . , xn−k), implying

τ(xαδ) = ± 1
n!

∑

h∈Sn/Sn−k
h ·

(

δ(x1, . . . , xn−k)
2
)

= ± 1
n!∆n,k

Remark 2.2. (i) The assumption that the characteristic of F is zero was nec-
essary for the use of the Reynolds operator in the above proof.

(ii) Vanishing ideals of subspace arrangements are intensively studied and
there are several open questions about them, see for example [2]. For the partic-
ular case of Dk, in addition to the Kleitman-Lovász Theorem [10] cited above, it
was also shown in [3] that the above generators constitute a universal Gröbner
basis; see also [4] and [14].

3 Conjugation invariants

Assume in this section that our base field F is algebraically closed and has
characteristic zero. The space L := Fn×n of n× n matrices over F contains the
subset Lk consisting of matrices with at most n− k− 1 distinct eigenvalues for
k = 0, 1, 2, . . . , n − 2. It is well known that Lk is Zariski closed in L; we shall
denote by I(Lk) the vanishing ideal of Lk in the coordinate ring F[L] of L, an
n2-variable polynomial ring over F. The general linear group GLn := GLn(F)
acts by conjugation on L, and we shall write F[L]GLn for the corresponding
subalgebra of invariants. Clearly Lk is aGLn-stable subset of L, hence I(Lk) is a
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GLn-submodule in F[L] (endowed with the action induced by the action of GLn

on L in the standard way). We shall denote by I(Lk)
GLn the subspace of GLn-

invariants in I(Lk). Obviously I(Lk) is a homogeneous ideal in the polynomial
ring F[L] (with the standard grading), and the action of GLn preserves the
grading, so I(Lk)

GLn is a graded subspace; we denote by I(Lk)
GLn

d the degree
d homogeneous component.

Theorem 3.1. The space I(Lk)
GLn

(n−k)(n−k−1) is spanned by sDisck, and there

are no GLn-invariants of degree less than (n− k)(n− k − 1) vanishing on Lk.

Proof. Identify D from Section 2 with the subspace of diagonal matrices in L.
Restriction of polynomial functions from L to D gives an isomorphism of the
graded algebras F[L]GLn → F[D]Sn by (a very special case of) the Chevalley
restriction theorem. Moreover, since Lk contains Dk, the ideal I(Lk) is mapped
into I(Dk). So we have an injection I(Lk)

GLn → I(Dk)
Sn of graded vector

spaces (in fact it is an isomorphism), and the statement immediately follows
from Lemma 2.1.

4 Real symmetric matrices

In this section we turn to the space M of n×n real symmetric matrices (n ≥ 2).
It is a vector space of dimension n(n+1)/2 over R. It contains the subset Ek of
real symmetric matrices with at most n− k − 1 distinct eigenvalues. Note that
Ek is a real algebraic subvariety of M, as it is the zero locus of the polynomial
function sDisck ∈ R[M] mapping A ∈ M to sDisck(A). The real orthogonal
group On acts on M by conjugation, and we consider the induced action of
On on R[M]. The group On preserves the subset Ek, hence preserves also the
vanishing ideal I(Ek) of Ek in R[M]. Moreover, we shall write I(Ek)

SOn

d for the
degree d homogeneous component of the space of SOn-invariant polynomials in
I(Ek), where SOn denotes the special orthogonal group over R.

Theorem 4.1. The space I(Ek)
SOn

(n−k)(n−k−1) is spanned by sDisck, and there

are no SOn-invariants of degree less than (n− k)(n− k − 1) vanishing on Ek.

Proof. Note first that sDisc is indeed an SOn-invariant polynomial function on
M vanishing on Ek, and having degree (n − k)(n − k − 1). Each SOn-orbit in
M intersects the subspace D of diagonal matrices in M. Moreover, identifying
D and Rn in the obvious way, we have Ek ∩D = Dk, and two diagonal matrices
belong to the same SOn-orbit in M if and only if they belong to the same Sn-
orbit in D. It follows that restriction of functions from M to D gives a degree
preserving injection I(Ek)

SOn

d → I(Dk)
Sn

d (it is in fact an isomorphism). Thus
our statements follow from Lemma 2.1.

5 On the minimal degree component of I(Ek)

Take the On-module direct sum decomposition M = N ⊕RI, where N denotes
the subspace of trace zero symmetric matrices, and I is the n×n identity matrix.
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Projection from M to N gives an embedding of R[N ] as a subalgebra of R[M],
and sDisck belongs to R[N ]. We extend a construction from [5] from the special
case k = 0 to any k ∈ {0, 1, . . . , n− 2}. Define a map

Tk : M →
n−k−1
∧

N

(to the degree n− k − 1 exterior power of N ) by

Tk(A) :=
n−k−1
∧

i=1

(Ai −
1

n
Tr(Ai)I) (1)

Clearly Tk is an On-equivariant map, and using that each On-orbit in M in-
tersects the subspace of diagonal matrices in M, a straightforward extension of
the proof of Proposition 4.1 in [5] yields the following:

Proposition 5.1. The matrix A ∈ M belongs to Ek if and only if Tk(A) = 0.

Obviously Tk is a polynomial map of degree (n − k)(n − k − 1)/2, hence
it makes sense to speak about its comorphism (in the sense of affine algebraic

geometry) T ⋆
k : R[

∧n−k−1 N ] → R[M]. We shall restrict the R-algebra homo-

morphism T ⋆
k to the linear component (

∧n−k−1 N )⋆ of the coordinate ring of
∧n−k−1 N , and by Proposition 5.1 we conclude the following:

Proposition 5.2. T ⋆
k is a non-zero On-module map of the dual of

∧n−1−k N
into I(Ek)(n−k)(n−k−1)/2, such that Ek is the common zero locus in M of the

image under T ⋆
k of (

∧n−k−1 N )⋆.

Corollary 5.3. The minimal degree of a non-zero homogeneous polynomial

function on M that vanishes on Ek is (n−k)(n−k−1)
2 .

Proof. I(Ek)(n−k)(n−k−1)/2 is non-zero by Proposition 5.2. For the reverse in-
equality note that since any SOn-orbit in M intersects the subspace of diago-
nal matrices, a non-zero SOn-invariant subspace in I(Mk) restricts to a non-
zero Sn-submodule in I(Dk), so the desired inequality follows directly from the
Kleitman-Lovász theorem [10]. (Alternatively, a non-zero SOn-invariant sub-
space of I(Ek)l yields a non-zero SOn-invariant in I(Ek)

SOn

2l by Lemma 2.1 in
[5], hence the second inequality follows from Theorem 4.1.)

Remark 5.4. The analogues of Corollary 5.3 does not hold in the setup of
Section 3: for example, for k = 0 we have that L0 is a GLn-stable hypersurface
in L, so its vanishing ideal is generated by an SLn-invariant on L. Since scalar
matrices act trivially on L, we have F[L]SLn = F[L]GLn , so by Theorem 3.1
I(L0) is generated by Disc, and consequently I(L0)d = {0} for d < n(n− 1).
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6 A general upper bound for µk(n)

The construction of Section 5 can be used to get a bound on µk(n) by the
following lemma:

Lemma 6.1. Any non-zero SOn-invariant submodule W in I(Ek)(n−k)(n−k−1)/2

(which is non-zero by Corollary 5.2) has a basis f1, f2, . . . such that sDisck =
∑

f2
i . In particular, µk(n) is bounded from above by the minimal dimension

of a non-zero SOn-invariant subspace in the image of (
∧n−k−1 N )⋆ under the

map T ⋆
k .

Proof. Any finite dimensional SOn-submodule of R[M] has a basis h1, h2, . . .
such that

∑

h2
i is SOn-invariant, see Lemma 2.1 in [5]. Apply this to W ; by

Theorem 4.1,
∑

h2
i = C · sDisck for some scalar C. By positivity of the form

we have C > 0, and fi :=
1√
C
hi is the desired basis of W .

Let n ≥ 2 be a positive integer. We have n = 2l or n = 2l+ 1 for a positive
integer l. Take a non-negative integer k ≤ n − 2. Next we generalize Theorem
6.2 from [5], which is the special case k = 0 of the statement below. A sum-
mary of the necessary background on representations of the orthogonal group is
given in Section 5 of [5] (standard references for this material are [15], [7], [6],
[11]). Recall that the finite dimensional irreducible complex representations of
a connected compact Lie group are labeled by their highest weight. In case of
SOn the highest weights (i.e. dominant integral weights) are usually identified
with the l-tuples λ = (λ1, . . . , λl) of integers where

{

λ1 ≥ · · · ≥ λl ≥ 0, when n = 2l + 1

λ1 ≥ · · · ≥ λl−1 ≥ |λl|, when n = 2l.

Denote by WC

λ the irreducible complex SOn-module with highest weight λ.
Except when n ≡ 2 modulo 4 and λl 6= 0, there is an irreducible real SOn-module
Wλ whose complexification C ⊗R Wλ is WC

λ . If n ≡ 2 modulo 4 and λl > 0,
there is an irreducible real On-module Vλ which remains irreducible as an SOn-
module, but its complexification splits as C⊗R Vλ

∼= WC

λ +WC

(λ1,...,λl−1,−λl)
(see

page 164 in [15]). We shall use the notation (a, 1r) for the sequence (a, 1, . . . , 1)
with r copies of 1.

Theorem 6.2. The degree (n − k)(n − k − 1)/2 homogeneous component of
I(Ek) contains an irreducible SOn-submodule isomorphic to

V(n−l+1,1l−1) when 4 divides n− 2 and k = l − 1.

Otherwise I(Ek)(n−k)(n−k−1)/2 contains an irreducible SOn-submodule isomor-
phic to

{

W(n−k,1k) when k + 1 < n− l;

W(n−k,1n−k−2) when k + 1 ≥ n− l.
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Proof. First we complexify and after a complex linear change of variables we
pass to the group SOn(C, J) preserving the quadratic form on Cn with matrix

J :=

(

0 I
I 0

)

for n = 2l and J :=





0 I 0
I 0 0
0 0 1



 for n = 2l + 1, where

I is the l × l identity matrix. The space of symmetric matrices is replaced
by the space MC,J of selfadjoint linear transformations of (Cn, J), on which
SOn(C, J) acts by conjugation, and NC,J is the zero locus of the trace function

on MC,J . The map Tk : MC,J →
∧n−k−1 NC,J is defined by the same formula

as in (1). Let T be the maximal torus of SOn(C, J) consisting of the diagonal
matrices {t = diag(t1, . . . , tl, t

−1
1 , . . . , t−1

l ) | t1, . . . , tl ∈ C×} when n = 2l and
{t = diag(t1, . . . , tl, t

−1
1 , . . . , t−1

l , 1) | t1, . . . , tl ∈ C×} when n = 2l + 1. Weight
vectors in an SOn(C, J)-module are understood with respect to T. Denote xij

the function on NC,J mapping an n × n matrix to its (i, j)-entry. They are
weight vectors, in particular, we have

t · xi1 =











t1t
−1
i for i = 1, . . . , l;

t1ti−l for i = l + 1, . . . , 2l;

t1 for i = n = 2l+ 1.

Order the functions xi1 with i > 1 into a sequence

(x1, . . . , xn−1) := (xl+1,1, xl+2,1, . . . , xn1, xl1, xl−1,1, . . . , x21)

Note that the non-zero weights in M⋆
C,J are multiplicity free, the weights of

the members of the above sequence strictly decrease with respect to the lexico-
graphic ordering and they are all greater than the zero weight, and any weight
of M⋆

C,J not represented by the above sequence is strictly smaller with respect
to the lexicographic ordering. It follows that for any 1 ≤ s ≤ n− 1, the weight
vector x1 ∧ · · · ∧ xs has maximal weight in

∧s N ⋆
C,J with respect to the lexico-

graphic ordering (and the corresponding weight space is 1-dimensional). Hence
the weight of x1 ∧ · · · ∧ xs is maximal with respect to the natural partial order-
ing of weights explained in the last paragraph of Section 5 in [5]. Consequently,
x1 ∧ · · · ∧ xs is a highest weight vector in

∧s N ⋆
C,J , and one computes that its

weight is
{

(s+ 1, 1s−1) for s ≤ l;

(s+ 1, 1n−s−1) for n− 1 ≥ s > l.

Let A denote the matrix of the linear transformation permuting the standard
basis vectors e1, . . . , en ∈ Cn cyclically as follows:

e1 7→ el+1 7→ el+2 7→ · · · 7→ en 7→ el 7→ el−1 7→ . . . 7→ e2 7→ e1.

It is easy to see that A belongs to NC,J . The first columns of the first n powers
of A exhaust the set of standard basis vectors in Cn in the order

el+1, el+2, . . . , en, el, el−1, . . . , e2, e1.
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Thus as explained in the proof of Proposition 6.1 in [5], the standard identi-
fication

∧s N ⋆ ∼= (
∧s N )⋆ yields that T ⋆

n−s−1(x1 ∧ · · · ∧ xs)(A) equals (up to
sign) the determinant of the s× s identity matrix, hence is non-zero. We con-
clude that T ⋆

k (x1 ∧· · ·∧xn−k−1) is a non-zero highest weight vector in C[MC,J ]
with the weight given above, and by Corollary 5.2 it belongs to the C-span of
I(Ek)(n−k)(n−k−1)/2. It follows that the complexification of I(Ek)(n−k)(n−k−1)/2

contains as a summand the irreducible complex SOn-module WC

λ where

λ =

{

(n− k, 1k) when k + 1 < n− l;

(n− k, 1n−k−2) when k + 1 ≥ n− l.

Hence our statement follows by the preceding discussion about irreducible real
SOn-modules and their complexifications.

Theorem 6.2 has the following immediate consequence by Lemma 6.1:

Corollary 6.3. If 4 divides n− 2 and k = l − 1, then we have

µk(n) ≤ dimR(V(n−l+1,1l−1)).

Otherwise we have

µk(n) ≤

{

dimR(W(n−k,1k)) when k + 1 < n− l;

dimR(W(n−k,1n−k−2)) when k + 1 ≥ n− l.

Of course dimR(Wλ) = dimC(W
C

λ ) for all irreducible SOn-modules Wλ.
When n ≡ 2 modulo 4 and λl 6= 0, the complexification of the irreducible
SOn-module Vλ splits as the sum of the equidimensional irreducible complex
SOn-modules WC

λ and WC

(λ1,...,λl−1,−λl)
, hence dimR(Vλ) = 2 dimC(W

C

λ ) in this

case. For convenience of the reader we recall the formula for the dimension of
the irreducible complex SOn-modules WC

λ with highest weight λ. For n = 2l
even (l ≥ 2) we have

dimC(W
C

λ ) =
∏

1≤i<j≤l

λi − λj + j − i

j − i
·
λi + λj + n− i− j

n− i− j

and for n = 2l+ 1 odd we have

dimC(W
C

λ ) =
∏

1≤i<j≤l

λi − λj + j − i

j − i
·

∏

1≤i≤j≤l

λi + λj + n− i− j

n− i− j

(see for example page 410 of [6] or page 304 in [7]).

Remark 6.4. (i) Theorem 4.48 in [1] provides an explicit presentation of sDisck
as a sum of squares where the number of summands is the binomial coefficient
(n(n+1)

2
n−k

)

. This is the dimension of the space
∧n−k M, containing properly a

summand isomorphic to
∧n−k−1 N , and the latter in general is far from being
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irreducible as an On-module. This shows that the bound for µk(n) given in
Theorem 6.2 is significantly better.

(ii) In fact the On-module map T ⋆
k : (

∧n−k+1 N )⋆ → I(Ek)(n−k)(n−k−1)/2 is
not injective. Generalizing Proposition 2 in [8], denote by

γ :
n−k−1
∧

N → son ⊗
n−k−3
∧

N

the On-module map

a1∧· · ·∧an−k−1 7→
∑

1≤i<j≤n−k−1

(−1)i+j [ai, aj]⊗a1∧· · ·∧âi∧· · ·∧âj∧· · ·∧an−k−1

(here son is the Lie algebra of On endowed with the adjoint action). By defini-
tion of Tk and γ we have γ ◦Tk = 0 (essentially because powers of a matrix com-

mute), hence the image of the dual map γ⋆ : (son⊗
∧n−k−3 N )⋆ → (

∧n−k−1 N )⋆

is contained in the kernel of T ⋆
k .

7 The 1-subdiscriminant of 4× 4 matrices

As an example we treat the 1-subdiscriminant of 4×4 real symmmetric matrices
in more detail. An easy standard calculation yields the SO4-module decompo-
sition

2
∧

N ∼= W(3,1) +W(3,−1) +W(1,1) +W(1,−1). (2)

The dimensions of the summands are 15, 15, 3, 3. Projection onto the sum of
the last two summands can be identified with the surjection γ :

∧2 N → so4
given by γ(A ∧ B) = [A,B] = AB − BA. Since powers of a matrix commute,
by definition of γ and T1 we have γ ◦ T1 = 0 (compare with Remark 6.4 (ii)).
On the other hand the sum of the first two summands in (2) is an irreducible
O4-submodule. We conclude by Proposition 5.2 that

T ⋆
1 ((

2
∧

N )⋆) ∼= W(3,1) +W(3,−1)

as SO4-modules and hence by Lemma 6.1 we have

µ1(4) ≤ dimR(W(3,1)) = 15.

(Note that the formula of Theorem 4.48 in [1] yields an expression for the 1-
subdiscriminant of 4× 4 symmetric matrices as a sum of

(

10
3

)

= 120 squares.)
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