
ar
X

iv
:1

10
9.

61
64

v2
  [

m
at

h.
C

A
] 

 4
 F

eb
 2

01
3

Haar null sets and the consistent reflection of

non-meagreness

Márton Elekes∗ and Juris Steprāns†
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Abstract

A subset X of a Polish group G is called Haar null if there exists
a Borel set B ⊃ X and Borel probability measure µ on G such that
µ(gBh) = 0 for every g, h ∈ G. We prove that there exist a set
X ⊂ R that is not Lebesgue null and a Borel probability measure µ

such that µ(X + t) = 0 for every t ∈ R. This answers a question from
David Fremlin’s problem list by showing that one cannot simplify the
definition of a Haar null set by leaving out the Borel set B. (The
answer was already known assuming the Continuum Hypothesis.)

This result motivates the following Baire category analogue. It is
consistent with ZFC that there exist an abelian Polish group G and
a Cantor set C ⊂ G such that for every non-meagre set X ⊂ G there
exists a t ∈ G such that C ∩ (X + t) is relatively non-meagre in C.
This essentially generalises results of Bartoszyński and Burke-Miller.

1 Introduction

1.1 Haar null sets

Let us first give some motivation for studying Haar null sets in non-locally
compact groups. The following definition is due to Christensen [4] (and later
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independently to Hunt, Sauer and Yorke [12]).

Definition 1.1 A subset X of a Polish group G is called Haar null if there
exists a Borel set B ⊃ X and Borel probability measure µ on G such that
µ(gBh) = 0 for every g, h ∈ G.

(All measures in the paper are assumed to be countably additive.)
The above definition is justified by the following theorem.

Theorem 1.2 (Christensen [4]) A subset of a locally compact Polish
group is Haar null in the above sense iff it is of Haar measure zero.

There is a huge literature devoted to Haar null sets, e.g. they form a
σ-ideal, but Fubini’s theorem fails, etc. See for example the work of My-
cielski, Dougherty, Solecki, Matoušková, Zajíček, Duda, Dodos, Shi, Banakh,
Holický, etc. (Note that some authors use the term shy for Haar null, and
prevalent for co-Haar null.)

Haar null sets turned out to be very useful in numerous areas of mathe-
matics.

First, they can serve as a measure counterpart of some Baire category
arguments, even when no actual measure is present. Often the typical be-
haviour with respect to this notion of Haar null dramatically differs from the
one with respect to Baire category. For instance,

Theorem 1.3 (Hunt [11]) {f ∈ C[0, 1] : ∃x ∃f ′(x) ∈ R} is meagre and
Haar null.

But:

Theorem 1.4 (Zajíček [18]) {f ∈ C[0, 1] : ∃x ∃f ′(x) ∈ [−∞,∞]} is mea-
gre but not Haar null.

The next two theorems concerning the cycle structure of permutations of
the integers also illustrate the striking difference between meagre and Haar
null.

Theorem 1.5 (Folklore) Comeagre many elements of S∞ have infinitely
many cycles of length n for every n ∈ ω and no infinite cycles.

But:
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Theorem 1.6 (Dougherty-Mycielski [8]) Haar-a.e. element of S∞ has
infinitely many infinite cycles and finitely many finite cycles.

Secondly, Haar null sets show up naturally as exceptional small sets. For
example,

Theorem 1.7 (Christensen [5]) Let X be a separable Banach space and
f : X → R a Lipschitz function. Then f is Gâteaux differentiable outside of
a Haar null set.

1.2 Problem FC on Fremlin’s list

After motivating this notion, let us now describe the starting point of the
present paper, which is Problem FC on Fremlin’s list1. The question essen-
tially asks: "But do we need this Borel set B in the definition of Haar null?"
The question makes sense for locally compact groups as well, so it was for-
mulated originally for R for simplicity. From now on we will slightly abuse
notation and identify the Borel measure µ with the outer measure generated
by it.

Problem 1.8 Let X ⊂ R, and let λ denote Lebesgue (outer) measure.

λ(X) = 0 ⇐⇒ ∃ a Borel probability measure µ s.t. ∀t ∈ R µ(X + t) = 0?

Note that the left-to-right implication is obvious. Problem FC also asks
if we can find a counterexample X to the right-to-left implication when µ =
µCantor is the usual Cantor measure ("coin tossing measure") on the Cantor
set.

Problem 1.9 Let X ⊂ R.

∀t ∈ R µCantor(X + t) = 0 =⇒ λ(X) = 0?

In fact, Fremlin remarks that the answer to both questions is negative if
we assume the Continuum Hypothesis. Let us now prove this for the sake of
completeness.

1Originally, Problem FC consisted of Problem 1.8 and Problem 1.9, but after we had

solved Problem 1.8 and communicated our results to Prof. Fremlin, he has modified the

problem by mentioning our theorem and erasing the corresponding half of the problem.
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Claim 1.10 Assume the Continuum Hypothesis. Then the answers to Prob-
lem 1.8 and Problem 1.9 are in the negative, that is, ∃X ⊂ R with λ(X) > 0
such that µCantor(X + t) = 0 for every t ∈ R.

Proof. Let C denote the Cantor set. It suffices to construct an X ⊂ R with
λ(X) > 0 such that C ∩ (X + t) is countable for every t ∈ R.

Let us enumerate the reals as

{tα : α < c}

and the Borel sets of Lebesgue measure zero as

{Zα : α < c}.

At stage α let us pick an

xα ∈ R \ (∪β<α(C − tβ) ∪ Zα) .

Set
X = {xα : α < c}.

Then xα /∈ Zα shows that λ(X) > 0. Moreover, for α > β, xα + tβ /∈ C
implies C ∩ (X + tβ) ⊂ {xα : α ≤ β}, hence C ∩ (X + tβ) is countable. �

Remark 1.11 In fact we only used cov(N ) = cof(N ) (see [2] for the defini-
tions). A more involved argument using ideas similar to the ones in Section
2 shows that non(N ) = c also suffices.

Therefore the real questions are whether we can find counterexamples
in ZFC, that is, without resorting to extra set-theoretic assumptions. Our
first main goal will be to show in Section 2 (Corollary 2.4) that Problem 1.8
actually has a negative answer in ZFC.

Theorem 1.12 (First Main Theorem) Problem 1.8 has a negative an-
swer, that is, there exist X ⊂ R with λ(X) > 0 and a Borel probability
measure µ such that µ(X + t) = 0 for every t ∈ R.

Before formulating our second main result, which involves more set theory,
let us introduce some terminology.
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Definition 1.13 Let X ⊂ R with λ(X) > 0 and µ be a Borel probability
measure. We say that µ reflects the positive measure of X if there exists
t ∈ R such that µ(X + t) > 0.

Hence, taking Claim 1.10 into account, we can reformulate Fremlin’s sec-
ond problem as

Problem 1.14 Is it consistent that µCantor reflects the positive measure of
every X?

This problem is still open, but our second main goal will be to give an
affirmative answer to a category analogue in Section 3.

Now we describe this category analogue in a bit more detail. Theorem
1.12 states that there exists a µ that does not reflect. Problem 1.14, which
is still open, asks if a fixed measure (µCantor) consistently reflects. So it is
natural to ask the same question about other (fixed) measures.

Problem 1.15 Is it consistent that there exist an atomless singular Borel
probability measure µ such that for every X ⊂ R with λ(X) > 0 there exists
t ∈ R such that µ(X + t) > 0?

Unfortunately, this is also open. In order to get a better understanding
of the problem, let us consider the following category analogue. Recall that a
set is a Cantor set if it is homeomorphic to the classical middle-thirds Cantor
set.

Problem 1.16 Is it consistent that there exist a Cantor set K such that for
every non-meagre set X ⊂ R there exists a t ∈ R such that K ∩ (X + t) is
relatively non-meagre in K?

There are numerous Polish groups that are called "the reals" in set theory.
For example, certain results are simpler to prove in Zω

2 (the Cantor group)
than in R, but usually it is only a technical issue to convert the proofs to
R (note that the dyadic expansion shows that [0, 1) with addition modulo 1
and Zω

2 are very similar, the only difference is the presence of carried digits).
For technical reasons we will replace R with

R′ =
∏

m∈ω

Zm+3,
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where Zm+3 = {0, 1, . . . , m+2} with addition modulom+3. Again this group
can also be considered as "the reals", since this is essentially an expansion
with an "increasing base", as shown by the following map.

(nm)m∈ω ∈ R′ 7→
∑

m∈ω

nm

(m+ 3)!
∈ R, (1.1)

which is the analogue of the map (nm)m∈ω ∈ Zω
2 7→

∑

m∈ω
nm

2m
∈ R that

connects the dyadic form of the reals with the usual one.
The second main goal will be to give an affirmative answer to Problem

1.16 in Section 3 (Theorem 3.35) for this slightly modified underlying group.

Theorem 1.17 (Second Main Theorem) It is consistent that there exist
a Cantor set CEK ⊂ R′ such that for every non-meagre set X ⊂ R′ there
exists a t ∈ R′ such that CEK ∩ (X + t) is relatively non-meagre in CEK.

Here
CEK =

∏

m∈ω

(Zm+3 \ {m+ 2}) .

This set was first considered by Erdős and Kakutani in [9], hence the notation.

The rest of the introduction is devoted to some closely related known re-
sults and historical remarks. If we forget about translates of a fixed Cantor
set then the affirmative answer to Problem 1.16 is already known. Interest-
ingly, the following theorem was proved independently in two papers.

Theorem 1.18 (Bartoszyński [1], Burke-Miller [3]) It is consistent
that for every non-meagre set X ⊂ R there exists a Cantor set K ⊂ R
such that K ∩X is non-meagre in K.

The next theorem still does not use translates, but already finds Cantor
sets of some special structure.

Theorem 1.19 (Ciesielski-Shelah [6]) For every non-meagre X ⊂ 2N ×
2N there exists a homeomorphism ϕ : 2N → 2N such that X ∩ graph(ϕ) is
non-meagre in graph(ϕ).

Remark 1.20 The Burke-Miller paper also has a certain measure version
of their result, and the Ciesielski-Shelah theorem also has some measure
analogue (Rosłanowski-Shelah [17]), but these do not seem to say much about
Problem 1.16.
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2 The negative result: Solution to Problem 1.8

The heart of the proof of this result is the following theorem, which is based on
ideas from [7]. For the definition and basic properties of packing dimension,
denoted by dimpH , see [10] or [15].

Theorem 2.1 Let K ′ ⊂ R be a Cantor set with dimpK
′ < 1 and let T ⊂ R

be such that |T | < c. Then K ′ + T contains no measurable set of positive
measure.

Proof. Suppose on the contrary that K ′ + T contains a measurable set P
of positive measure. We may assume that P is compact. By throwing away
all portions (i.e. relatively open nonempty subsets) of measure zero, we may
also assume that every portion of P is of positive measure. In particular, P
has no isolated points. The idea of the proof will be to construct a Cantor
set P ′ ⊂ P such that P ′ ∩ (K ′ + r) is finite for every r ∈ R. This clearly
suffices, since a Cantor set is of cardinality continuum and hence less than
continuum many translates of K ′ cannot cover P ′, let alone P .

Let N be a positive integer and let us define FN to be the set of N -tuples
that can be covered by a translate of K ′, that is,

FN = {(x0, . . . , xN−1) ∈ RN : ∃t ∈ R such that {x0, . . . , xN−1} ⊂ K ′ + t}.

An easy compactness argument shows that FN is closed. Reformulating the
definition one can easily check that

FN = (K ′)N + R(1, . . . , 1),

where (1, . . . , 1) is a vector of N coordinates, and the operations are
Minkowski sum and Minkowski product. It is easy to see that FN is a Lip-
schitz image of (K ′)N × R, and using that Lipschitz images do not increase
packing dimension as well as dimp(A×B) ≤ dimpA+dimpB and dimp R = 1
we obtain

dimp FN ≤ N dimpK
′ + 1.

If we choose N large enough, actually if N > 1
1−dimp K ′ , then N dimpK

′+1 <

N , hence
dimp FN < N.

Let us fix such an N .
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Lemma 2.2 Let Ji ⊂ R (i < N) be closed intervals such that int Ji ∩ P 6= ∅
(i < N). Then there are disjoint closed intervals Ii ⊂ Ji (i < N) such that
int Ii ∩ P 6= ∅ (i < N) and

∏

i<N

(Ii ∩ P ) ∩ FN = ∅.

Proof. Since every portion of P is of positive measure, we obtain
λN

(
∏

i<N(int Ji ∩ P )
)

> 0, hence dimp

(
∏

i<N(intJi ∩ P )
)

= N > dimp FN .
Therefore

(
∏

i<N (intJi ∩ P )
)

\FN 6= ∅, and, since FN is closed,
∏

i<N(intJi∩
P ) contains a non-empty relatively open set avoiding FN . This open set
contains a basic open set, so there are open intervals J ′

i ⊂ int Ji (i < N)
intersecting P such that

∏

i<N (J
′
i ∩ P ) ∩ FN = ∅.

Finally, since P has no isolated points, it is easy to shrink every J ′
i to a

closed interval Ii such that they become disjoint but their interiors still meet
P . This finishes the proof of the lemma. �

Now we return to the proof of the theorem. All that remains is to con-
struct P ′. We will actually prove

|P ′ ∩ (K ′ + r)| < N for every r ∈ R. (2.1)

We construct a usual Cantor scheme, where the kth level Lk will have the
following properties for all k ∈ ω.

(1) Lk consist of Nk many disjoint closed intervals,

(2) ∀I ∈ Lk+1∃I
′ ∈ Lk : I ⊂ I ′,

(3) ∀I ∈ Lk there are N many I ′ ∈ Lk+1 with I ′ ⊂ I,

(4) ∀I ∈ Lk : int I ∩ P 6= ∅,

(5) ∀I ∈ Lk : diam I ≤ 1
k+1

,

(6) If I0, . . . , IN−1 ∈ Lk are distinct then
∏

i<N(Ii ∩ P ) ∩ FN = ∅.

(Note that the intervals in (6) are not necessarily subsets of the same I ′ ∈
Lk−1.) Assume first that such a Cantor scheme exists, and define

P ′ =
⋂

k∈ω

⋃

Lk.
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It is easy to see that P ′ is a Cantor set ([13]), while the closedness of P , (4)
and (5) imply P ′ ⊂ P . Let x0, . . . , xN−1 be N distinct points in P ′. Clearly,
there is a k and distinct intervals I0, . . . , IN−1 ∈ Lk such that xi ∈ Ii (i < N).
Then (6) shows that {x0, . . . , xN−1} cannot be covered by a translate of K ′,
which proves (2.1).

Finally, let us prove by induction that such a Cantor scheme exists. Let
L0 = {I}, where I is an arbitrary closed interval of length at most 1 whose
interior meets P . Assume that Lk have already been constructed with the
required properties. Let L′

k+1 be a family of disjoint closed intervals of length
at most 1

k+2
whose interiors meet P such that each I ∈ Lk contains N

members of L′
k+1. Then recursively shrinking these intervals by applying

Lemma 2.2
(

Nk+1

N

)

times to all the possible N -tuples of distinct intervals
we obtain Lk+1 satisfying all assumptions. This concludes the proof of the
theorem. �

Theorem 2.3 Let K ⊂ R be a Cantor set with dimpK < 1/2. Then there
exists X ⊂ R with λ(X) > 0 such that |K ∩ (X + t)| ≤ 1 for every t ∈ R.

Proof. As above, let us enumerate the Borel sets of Lebesgue measure zero
as {Zα : α < c}. Since K − K is a Lipschitz image of K × K, we obtain
dimp(K −K) < 1. At stage α let us pick an

xα ∈ R \ (((K −K) + {xβ : β < α}) ∪ Zα) .

This is indeed possible by the above theorem applied to K ′ = K −K. Set

X = {xα : α < c}.

Then xα /∈ Zα shows that λ(X) > 0. We still have to check that |K ∩ (X +
t)| ≤ 1 for every t ∈ R. Let xα, xβ ∈ X with α > β, and let us assume
xα + t, xβ + t ∈ K. Then t ∈ K − xβ , xα ∈ K − (K − xβ) = (K −K) + xβ ,
contradicting the choice of xα. �

From this we easily obtain our first main theorem (Theorem 1.12) as a
corollary.

Corollary 2.4 (First Main Theorem) Problem 1.8 has a negative an-
swer, that is, there exist X ⊂ R with λ(X) > 0 and a Borel probability
measure µ such that µ(X + t) = 0 for every t ∈ R.

9



Proof. Indeed, let K be any Cantor set with dimpK < 1/2 (e.g. the
"middle-α Cantor set" is such a set for α > 1/2). Let µ be any atomless
Borel probability measure on K. Then by the above theorem µ does not
reflect the positive measure of X. �

3 The positive result

3.1 The forcing poset

The skeleton of the proof of the second main result will be borrowed from
Bartoszyński’s paper [1].

Notation 3.1 Set Σ =
⋃

l∈ω

∏

m<l Zm+3, that is, for s ∈ Σ the sets [s] =
{x ∈

∏

m∈ω Zm+3 : s ⊂ x} form the usual clopen base of
∏

m∈ω Zm+3. The
symbol |s| will denote the length of the sequence s ∈ Σ, that is, the cardinality
of dom(s).

Recall that ∀∞ means ‘for all but finitely many’, and [ω]<ω denotes the
set of finite subsets of ω.

Definition 3.2 Let s ∈ Σ and k ∈ ω. Then S : ω \ dom(s) → [ω]<ω is a
finite k-slalom above s, if

(1) ∀i ∈ ω \ dom(s) |S(i)| ≤ k,

(2) ∀∞i ∈ ω \ dom(s) S(i) = ∅.

Definition 3.3 ht(S) = min{i ∈ ω \ dom(s) : ∀j ≥ i S(j) = ∅}.

Definition 3.4 Let S be a finite k-slalom above s and t ∈ Σ. Then t escapes
S if t ⊃ s, |t| ≥ ht(S) and ∀i ∈ [dom(s), dom(t)) t(i) /∈ S(i).

Definition 3.5 Let s ∈ Σ and F ⊂ {t ∈ Σ : t ⊃ s}. Then F is k-fat above
s, if for every finite k-slalom S above s there exists t ∈ F escaping S.

Remark 3.6 It is easy to see that if k ≥ 1 and F is k-fat above s then for
every finite k-slalom S above s there exist arbitrarily long t’s in F escaping
S. (Otherwise, just extend S so that ht(S) is bigger than the length of all
t’s escaping S.)
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This immediately yields the following.

Fact 3.7 If F is k-fat above s and V is a finite set then F \ V is also k-fat
above s.

Recall that (Σ,⊂) is tree, that is, for the purposes of the present paper,
a partially ordered set such that for each σ ∈ Σ the set {σ′ ∈ Σ : σ′ ⊂ σ} is
finite. The nth level of a tree is the set of those points that have exactly n
smaller elements. If ∅ 6= T ⊂ Σ then (T,⊂) is a tree itself.

Notation 3.8 If t ∈ T then succT (t) will denote the set of immediate suc-
cessors of t in T . We simply write succ(t) when there is no danger of con-
fusion. We say that T has a unique root if it has a unique ⊂-minimal el-
ement. In such cases this root will be denoted by root(T ). For t ∈ T let
T [t] = {s ∈ T : s ⊃ t}.

Now we define our notion of forcing.

Definition 3.9 Let p ∈ P iff

(1) p ⊂ Σ,

(2) p has a unique root (in particular, p 6= ∅),

(3) ∀t ∈ p succp(t) is 1-fat above t.

(4) ∀k ∈ ω ∀∞t ∈ p succp(t) is k-fat above t.

If p, p′ ∈ P then define

p ≤P p
′ ⇐⇒ p ⊂ p′.

We will usually simply write ≤ for ≤P.

We will often use the following easy consequence of (4).

Fact 3.10 If t ∈ p ∈ P and k ∈ ω then there exists s ∈ p such that succp(s)
is k-fat above s.

First we prove that P is nontrivial.
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Lemma 3.11 Let k ≥ 1. If H is k-fat above t then H contains a subset
consisting of pairwise incompatible sequences that is (k − 1)-fat above t.

Proof. Let {Sn}n∈ω be an enumeration of the (k − 1)-slaloms above t. It
clearly suffices to recursively pick pairwise incomparable tn’s in H such that
|tn| > 0 is strictly increasing and tn escapes Sn. Suppose {tm}m<n has already
been constructed in such a manner. Then we can form a k-slalom by adding
the "last elements of the tm’s" to Sn, that is, let

S ′
n(i) =

{

Sn(i) ∪ {tm(|tm| − 1)} if i = |tm| − 1,

Sn(i) otherwise.

Then S ′
n is indeed a k-slalom, hence we can choose a tn escaping it. By

Remark 3.6 we may assume |tn| > |tn−1|. Then the definition of S ′
n shows

that tn is incomparable to tm for every m < n, and we are done. �

Lemma 3.12 P 6= ∅.

Proof. We inductively construct the levels ln of a tree p ⊂ Σ such that

(1) |l0| = 1,

(2) every ln consists of pairwise incomparable sequences,

(3) ∀n ∀s ∈ ln+1∃t ∈ ln t $ s,

(4) ∀n ∀t ∈ ln ln+1 ∩ Σ[t] is |t|+ 1-fat above t.

By (3) we clearly have |t| ≥ n for every t ∈ ln. Moreover, since Σ is a
finitely branching tree, (2) implies that ∀k ∀∞t ∈ ln |t| ≥ k. Using these
two facts and (4) it is easy to see that if such a sequence {ln}n exists then
p =

⋃

n ln ∈ P.
Let us now check that we can carry out this induction. Suppose that

such an {lm}m≤n has already been constructed. It is easy to see that Σ[t] is
|t|+2-fat above t for every t ∈ Σ. Hence, using Lemma 3.11, for every t ∈ ln
we can pick Ht ⊂ Σ[t] consisting of pairwise incomparable elements that is
|t| + 1-fat above t. (We may assume t /∈ Ht.) Then setting ln+1 =

⋃

t∈ln
Ht

completes the proof. �

The following fact is immediate.
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Fact 3.13 If t ∈ p ∈ P then p[t] ∈ P, p[t] ≤ p, and root(p[t]) = t.

This easily yields the following three statements.

Corollary 3.14 P is a separative partial order, and there are incompatible
conditions below every condition.

Corollary 3.15 {p ∈ P : succp(root(p)) is k-fat above root(p)} is dense in
P for every k ∈ ω.

Corollary 3.16 {p ∈ P : |root(p)| ≥ k} is dense in P for every k ∈ ω.

Next we describe how P adds a generic real. The last corollary easily
implies that if G ⊂ P is a generic filter then ẋG =

⋃

p∈G root(p) is a function
ẋG ∈

∏

m∈ω Zm+3. From now on we denote by ẋ a name for this generic real.

Remark 3.17 Some textbooks require that forcing posets have largest ele-
ments, but our P has no such element. One possible answer to this problem
is that one can actually do forcing without largest elements (since we can
basically ‘add a largest element to P’), and hence some other textbooks ac-
tually avoid largest elements in the definition of forcing posets. But there is
another possible answer in case of P; by mimicking the proof of Lemma 3.12
it is not hard to see that P is dense in

P0 = {p ⊂ Σ : ∀k ∈ ω ∀∞t ∈ p p[t] is k-fat above t},

which already has a largest element, namely Σ.

The reason why we prefer P to the apparently simpler P0 is that it fits our
fusion arguments (inductive constructions) better.

3.2 Properness and preservation of non-meagreness

It will be necessary, of course, to prove that P is proper, but for the intended
iteration we will need a stronger property. Recall that p′ ∈ P is M-generic,
if for every dense open D ⊂ P if D ∈ M then p′  “D ∩ Ġ ∩M 6= ∅”. (Here
Ġ is a name for the generic filter.)
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Definition 3.18 A forcing notion P is said to be Cohen-preserving if for
every condition p ∈ P, every countable elementary submodel M such that
p,P,≤P∈ M and every real c that is a Cohen over M, there is an M-generic
condition p′ ≤ p such that p′  “c is a Cohen real over M[Ġ]”.

We now spell out this last clause in a bit more detail. For more in-
formation see e.g. [2]. Let F = {f : Σ → Σ | ∀σ ∈ Σ f(σ) ⊃
σ}. Then the dense open subsets of

∏

m∈ω Zm+3 are precisely the sets
of the form Uf =

⋃

σ∈Σ[f(σ)], where f ranges over F . Then p′ 

“c is a Cohen real over M[Ġ]” means that if ḟ is a name for an element of
F and ḟ ∈ M then p′  “c ∈ Uḟ ”.

It is not hard to see that the notions of Cohen-preserving and second cat-
egory set preserving partial order does not depend on the underlying Polish
space. We will only use that

∏

m∈ω Zm+3 and R are the same in this respect,
which follows e.g. from the fact that we can throw away countable sets from
these spaces so that the remaining sets are homeomorphic. (See the map in
(1.1) in the discussion preceding Theorem 1.17.)

The following results are well-known, see e.g. [2].

Theorem 3.19 Cohen-preserving partial orders are proper and they pre-
serve second category sets. The countable support iteration of Cohen-
preserving partial orders is also Cohen-preserving.

Lemma 3.20 Let p∗ ∈ P, ḟ ∗ be a name for an element of F and D∗ be a
dense open subset of P such that p∗, ḟ ∗, D∗ ∈ M. Then there exists q∗ ≤ p∗

such that q∗ ∈ M ∩D∗ and q∗  “c ∈ Uḟ∗ ”.

Proof. Define

V =
⋃

{[σ′] : ∃q∗ ≤ p∗ ∃σ ∈ Σ q∗  “ḟ ∗(σ) = σ′ ”}.

It is not hard to see that V ⊂
∏

m∈ω Zm+3 is dense open and V ∈ M. Since
c is Cohen over M, we obtain c ∈ V , so we can find q∗, σ and σ′ such that
c ∈ [σ′] and q∗  “ḟ ∗(σ) = σ′ ”. Let us now fix σ and σ′, then clearly
∃q∗ ∈ D∗ q∗ ≤ p∗ q∗  “ḟ ∗(σ) = σ′ ”. Applying elementarity to this last
formula we obtain such a q∗ ∈ M. Since q∗  “ḟ ∗(σ) = σ′ ” clearly implies
q∗  “c ∈ Uḟ ”, the proof is complete. �

Now we are ready to prove the main result of the section. The proof will
essentially be an inductive construction of a condition. Unlike in the proof of
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Lemma 3.12, we will not build the tree ‘level-by level’, but we will perform
a kind of ‘back-and forth’ fusion instead. The only place where this more
complicated fusion is essential is Lemma 3.34, but we decided to use this
method here in a simpler situation as well to make the reading of Lemma
3.34 easier.

Lemma 3.21 P is Cohen-preserving (and hence proper, as well).

Proof. Let {ḟn}n∈ω enumerate the names for elements of F that are in M,
and let {Dn}n∈ω enumerate the dense open subsets of P that are in M.

For n ∈ ω we will inductively define

(i) sn ∈ Σ,

(ii) qn ∈ P,

(iii) tn ∈ Σ,

(iv) pn ∈ P,

such that for every m ≤ n the following hold:

(1) tm ∈ pn,

(2) succpm(tm) \ {s0, . . . , sn} ⊂ succpn(tm),

(3) succpm(tm) is (m+ 1)-fat above tm,

(4) p ≥ p0 and pm ≥ pn,

(5) qm = pm[tm],

(6) qn ∈ Dm,

(7) qn  “c ∈ U ˙fm
”.

We will make sure that every stage of the induction will be carried out
in M, and we will tacitly assume that all object we pick at the stages are in
M. (The whole induction will of course not be in M.)

Let us start with n = 0. Put s0 = ∅. By Lemma 3.20, Corollary 3.15
and Fact 3.13 there exists q0 ≤ p such that q0 ∈ D0, q0  “c ∈ Uḟ0

”, and
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if t0 = root(q0) then succq0(t0) is 1-fat above t0. Setting p0 = q0 finishes the
0th step. It is not hard to check that the inductive assumptions are satisfied.

Let us now assume that sm, qm, tm and pm have already been defined for
m ≤ n satisfying the inductive assumptions. For every m let {Sk

m}k∈ω be an
enumeration of the set of (m+1)-slaloms above tm. To start the n+1st step,
first we need to pick a tm for some m ≤ n. We make sure by some simple
bookkeeping that during the course of the induction each tm will be picked
infinitely many times, and when we visit the node tm for the kth time then
we take care of Sk

m (we construct a tn+1 above tm escaping Sk
m).

So let us assume that we are at the n+1st step and we pick tm for the kth

time. Inductive assumption (3) yields that succpm(tm) is (m + 1)-fat above
tm, hence so is succpm(tm) \ {s0, . . . , sn} by Fact 3.7. Thus we can fix an
sn+1 ∈ succpm(tm) \ {s0, . . . , sn} escaping the (m+ 1)-slalom Sk

m. By (2) we
have sn+1 ∈ pn as well. Applying Lemma 3.20 n+2 times we obtain a qn+1 ≤
pn[sn+1] such that qn+1 ∈

⋂

m≤n+1 Dm and qn+1  “c ∈
⋂

m≤n+1 U ˙fm
”. By

Corollary 3.15 and Fact 3.13 we may assume that if tn+1 = root(qn+1) then
succqn+1

(tn+1) is n + 2-fat above tn+1. Setting pn+1 = (pn \ pn[sn+1]) ∪ qn+1

finishes the n + 1st step.
Now we check that the inductive assumptions are satisfied. Items (1) and

(2) follow from the structure of the fusion. Namely, it is not hard to see that
at the n + 1st step we only modify pn in the ‘cone’ pn[sn+1], and this cone
does not contain the earlier tm’s, moreover, an element of succpm(tm) only
‘disappears’ from pn when it is picked as an sn+1. Items (4), (5), (6) and (7)
are straightforward from the construction, and (3) follows from (5).

Let us now define p′ = {tm}m∈ω. It is easy to see that p′ ∈ P, since we
made sure by the bookkeeping that succp′(tm) is m+1-fat above tm for every
m. Combining (1) and (4) we obtain

p′ ≤ pn (3.1)

for every n, and also that p′ ≤ p.
All that remains to be shown is that p′ is M-generic and p′ 

“c is a Cohen real over M[Ġ]”.
First we check that p′ is M-generic. Let n0 ∈ ω be fixed, then we have

to show that p′  “Dn0
∩ Ġ ∩M 6= ∅”. Let p′′ ≤ p′ be arbitrary, it suffices

to find a p′′′ ≤ p′′ such that p′′′  “Dn0
∩ Ġ ∩M 6= ∅”. Since every condition

is infinite, there exists n ≥ n0 such that tn ∈ p′′. By (6) we have qn ∈ Dn0

and also qn ∈ M, so qn  “Dn0
∩ Ġ ∩ M 6= ∅”. Thus, (3.1) and (5) imply

p′′[tn] ≤ p′[tn] ≤ pn[tn] = qn, so we are done by choosing p′′′ = p′′[tn].
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A similar argument shows that p′  “c is a Cohen real over M[Ġ]”. In-
deed, for every n0 and p′′ ≤ p′ there exists n ≥ n0 such that tn ∈ p′′. Then
qn  “c ∈ Uḟn0

”, qn ∈ M, and p′′′ = p′′[tn] ≤ p′[tn] ≤ pn[tn] = qn, so we are
done. This finishes the proof of the lemma. �

3.3 The Main Lemma

Our main lemma will describe how a single step in the iterated forcing con-
struction works.

Lemma 3.22 Let X ∈ V such that X ⊂
∏

m∈ω Zm+3 and X is non-meagre

in every non-empty open subset of
∏

m∈ω Zm+3. Then P  “X ∩ (ĊEK −

ẋ) is non-meagre in ĊEK − ẋ”.

Proof. It is not hard to see that if a set H ⊂ CEK −x is meagre in CEK −x
then there exists a decreasing sequence of open sets Un ⊂

∏

m∈ω Zm+3 such
that Un ⊂ B(CEK − x, 1

n+1
), Un ∩ (CEK − x) is dense in CEK − x and

⋂

n Un ∩H = ∅. (Here B(A, ε) denotes the ε-neighbourhood of the set A.)
Hence let us assume that there exist p ∈ P and a name {U̇n}n∈ω for a

decreasing sequence of open subsets of
∏

m∈ω Zm+3 such that p  “U̇n ⊂

B(ĊEK − ẋ, 1
n+1

), U̇n ∩ (ĊEK − ẋ) is dense in ĊEK − ẋ and
⋂

n U̇n ∩X = ∅”.
Define

Rp,{U̇n}n∈ω
= {r ∈

∏

m∈ω

Zm+3 : ∃p
′ ≤ p, p′  “r ∈

⋂

n

U̇n”}.

For the definitions and basic facts concerning analytic sets, sets with the
property of Baire, etc, we refer the reader to [13].

In the next subsection we will prove that we can assume (by replacing p
with a stronger condition, if necessary) that Rp,{U̇n}n∈ω

is analytic. Therefore
it possesses the property of Baire. Moreover, in Subsection 3.3.2 we will
prove that Rp,{U̇n}n∈ω

is non-meagre. Let us now accept these statements for
the moment. Then Rp,{U̇n}n∈ω

is co-meagre in a non-empty open set, thus
X ∩Rp,{U̇n}n∈ω

6= ∅, so we can fix an r ∈ X ∩Rp,{U̇n}n∈ω
. But then r ∈ X and

p′  “r ∈
⋂

n U̇n” for some p′ ≤ p, thus p′  “
⋂

n U̇n ∩X 6= ∅”. On the other
hand, p′ ≤ p implies that p′  “

⋂

n U̇n∩X = ∅”, which is a contradiction. �

Corollary 3.23 Let X ∈ V , X ⊂
∏

m∈ω Zm+3, X is non-meagre. Then

P  “∃t ∈
∏

m∈ω Zm+3 such that X ∩ (ĊEK + t) is non-meagre in ĊEK + t”.
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Proof. Let Q be the analogue of the rationals, that is, Q = {q ∈
∏

m∈ω Zm+3 : ∀∞m q(m) = 0}. Then X + Q is non-meagre in every

non-empty open subset of
∏

m∈ω Zm+3, hence P  “(X + Q) ∩ (ĊEK −

ẋ) is non-meagre in ĊEK − ẋ” by the previous lemma. But Q is count-
able and X + Q =

⋃

q∈QX + q, so P  “∃q ∈ Q such that (X + q) ∩

(ĊEK − ẋ) is non-meagre in ĊEK − ẋ”. But then P  “X ∩ (ĊEK − ẋ −
q) is non-meagre in ĊEK − ẋ− q” and we are done. �

We still have to prove the two statements concerning Rp,{U̇n}n∈ω
.

3.3.1 Analyticity of Rp,{U̇n}n∈ω

As above, let p ∈ P and {U̇n}n∈ω be a name for a decreasing sequence of open
sets of

∏

m∈ω Zm+3 such that p  “U̇n ⊂ B(ĊEK − ẋ, 1
n+1

), U̇n ∩ (ĊEK − ẋ) is

dense in ĊEK − ẋ and
⋂

n U̇n ∩X = ∅”. Recall that

Rp,{U̇n}n∈ω
= {r ∈

∏

m∈ω

Zm+3 : ∃p
′ ≤ p, p′  “r ∈

⋂

n

U̇n”}.

Lemma 3.24 There exists a q ≤ p such that Rq,{U̇n}n∈ω
is analytic.

We will split the proof into several steps.

Definition 3.25 Let p ∈ P. A set B ⊂ p is called a barrier if it intersects
every infinite branch of p. It is open, if s, t ∈ p, s ⊂ t, s ∈ B imply t ∈ B.

Definition 3.26 Let p and {U̇n}n∈ω be as above. Then p is nice with respect
to {U̇n}n∈ω if for every s ∈ Σ and every n ∈ ω

Bs,n = {t ∈ p : p[t]  “[s] ⊂ U̇n” or p[t]“  [s] 6⊂ U̇n”}

is a barrier. (It is clearly open.)

Note that if B ⊂ p is an open barrier and q ≤ p then q ∩B 6= ∅.

Lemma 3.27 Assume that p is nice with respect to {U̇n}n∈ω. Let q∗ ≤ p,
n∗ ∈ ω, r ∈

∏

m∈ω Zm+3 and q∗  “r ∈ U̇n∗”. Then there are t∗ ∈ q∗ and

k∗ ∈ ω such that p[t∗]  “[r|k∗] ⊂ U̇n∗”.
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Proof. There are q′ ≤ q∗ and k∗ ∈ ω such that q′  “[r|k∗] ⊂ U̇n∗”.
Since Br|k∗,n∗ is an open barrier in p and q′ ≤ p, we obtain that there is

a t∗ ∈ q′ ∩ Br|k∗,n∗. Then p[t∗]  “[r|k∗] 6⊂ U̇n∗” is impossible, since then
q′[t∗] ≤ p[t∗], q′ would force two contradicting statements. Hence p[t∗] 

“[r|k∗] ⊂ U̇n∗” by the definition of Br|k∗,n∗, and we are done. �

Lemma 3.28 Assume that p is nice with respect to {U̇n}n∈ω. Let r ∈
∏

m∈ω Zm+3 be arbitrary. Then r ∈ Rp,{U̇n}n∈ω
iff there exists a sequence

of sets Bn ⊂ p and a sequence of functions ϕn : Bn → ω such that for every
n ∈ ω

(1) |B0| = 1,

(2) Bn consists of pairwise incomparable sequences,

(3) ∀t ∈ Bn+1 ∃s ∈ Bn s $ t,

(4) ∀s ∈ Bn ϕn(s) > n,

(5) ∀k ∈ ω ∀∞s ∈ Bn ϕn(s) ≥ k,

(6) ∀s ∈ Bn {t ∈ Bn+1 : t ⊃ s} is ϕn(s)-fat above s,

(7) ∀t ∈ Bn ∃k ∈ ω p[t]  “[r|k] ⊂ U̇n”.

Proof. Let us first suppose r ∈ Rp,{U̇n}n∈ω
, that is, p′  “r ∈

⋂

n U̇n” for
some p′ ≤ p. We construct {Bn}n∈ω and {ϕn}n∈ω by induction on n. We will
make the induction hypothesis that

∀s ∈ Bn succp′(s) is ϕn(s)-fat above s.

Applying the previous lemma with q∗ = p′ and n∗ = 0 we obtain t0 ∈ p′

and k0 ∈ ω such that p[t0]  “[r|k0] ⊂ U̇0”. Put B0 = {t0}. By Fact 3.10
we may assume (by extending t0 in p′ if necessary) that succp′(t0) is 1-fat
above t0. Define ϕ0(t0) = 1. Then all requirements imposed on B0 and ϕ0

are satisfied.
Suppose that Bn and ϕn satisfying all requirements have already been

constructed. For each t ∈
⋃

s∈Bn
succp′(s) let us apply the previous lemma

with q∗ = p′[t] and n∗ = n+1. Thus we obtain ut ∈ p′, ut ⊃ t and kt ∈ ω such
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that p[ut]  “[r|kt] ⊂ U̇n+1”. Let ψ :
⋃

s∈Bn
succp′(s) → ω be an arbitrary

function satisfying

∀t ∈
⋃

s∈Bn

succp′(s) ψ(t) > n+ 1

and
∀k ∈ ω ∀∞t ∈

⋃

s∈Bn

succp′(s) ψ(t) ≥ k.

Using Fact 3.10 we may assume that ut is ψ(t)-fat above ut for every t. (Note
that extending ut in p′ if necessary does not harm any of the requirements.)
Then putting Bn+1 = {ut : t ∈

⋃

s∈Bn
succp′(s)} and ϕn+1(ut) = ψ(t) finishes

the proof of this direction.
In order to prove the other direction, let us assume that {Bn}n∈ω and

{ϕn}n∈ω satisfy all requirements. Set p′ =
⋃

nBn. It is easy to see that
p′ ∈ P and p′ ≤ p. Therefore it suffices to check that for every n0 ∈ ω we
have p′  “r ∈ U̇n0

”. Otherwise, there exists a p′′ ≤ p′ such that

p′′  “r /∈ U̇n0
”. (3.2)

It is easy to see from the construction of p′ that B′
n0

= {s ∈ p′ : ∃t ∈ Bn0
t ⊂

s} is an open barrier in p′, hence p′′ ∩ B′
n0

6= ∅. Thus there are t ∈ Bn0
and

s ⊃ t with s ∈ p′′. Then p′′[s] ≤ p[t], p′′, and p[t]  “r ∈ U̇n0
” by (7), which

is a contradiction by (3.2). �

Lemma 3.29 Let p and {U̇n}n∈ω be as above. Then there exists q ≤ p that
is nice with respect to {U̇n}n∈ω.

Proof. The proof will be similar to the previous inductive construction, so
we will omit some details. Let {(si, ni)}i∈ω be an enumeration of Σ× ω. We
inductively define a sequence Bi ⊂ p and for every t ∈ Bi a condition pt ≤ p
with root(pt) = t as follows.

The fact ‘q  ϕ or q  ¬ϕ’ will be abbreviated as q||ϕ.
There exists p′ ≤ p such that p′||“[s0] ⊂ U̇n0

”. We may assume that
succp′(root(p

′)) is 1-fat above root(p′). Let t0 = root(p′) and put B0 = {t0},
pt0 = p′.

Now assume that Bi and pt for every t ∈ Bi have already been con-
structed. For every t ∈ Bi and every u ∈ succpt(t) find p′ ≤ pt[u] such that
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p′||“[si+1] ⊂ U̇ni+1
” and succp′(root(p

′)) is ‘sufficiently fat above root(p′)’.
Then let Bi+1 be the set of these root(p′)’s and let proot(p′) = p′. This finishes

the general step of the induction. Note that pt||“[si] ⊂ U̇ni
” for every i ∈ ω

and every t ∈ Bi.
Then it is not hard to see that q =

⋃

iBi ∈ P and q ≤ p. It easily follows
from the construction that every Bi is a barrier in q. Let us now check that
q is nice with respect to {U̇n}n∈ω. So let us fix i ∈ ω, and it suffices to show
that q[t]||“[si] ⊂ U̇ni

” for every t ∈ Bi. But this is clear, since pt||“[si] ⊂ U̇ni
”

and q[t] ≤ pt. �

Now we are ready to prove Lemma 3.24.
Proof. By the previous lemma we may assume that p is nice with respect
to {U̇n}n∈ω. Define

Bp,{U̇n}n∈ω
=

{(r, {Bn}n∈ω, {ϕn}n∈ω) : r, {Bn}n∈ω and {ϕn}n∈ω are as in Lemma 3.28}

⊂
∏

m∈ω

Zm+3 × (2p)ω × (2p×ω)ω,

where Zm+3, ω and p are all equipped with the discrete topology, hence this
huge ambient product space is compact metric, therefore Polish. It suf-
fices to prove that Bp,{U̇n}n∈ω

is a Borel set in this product space, since then
Rp,{U̇n}n∈ω

, which is the projection of Bp,{U̇n}n∈ω
on the first coordinate, is

analytic. We mostly leave this standard but very lengthy computation to
the reader, and only deal with the most interesting clause, that is, Lemma
3.28 (7).

The conditions ‘∀n ∈ ω’, ‘∀t ∈ p’, ‘t ∈ Bn’, ‘∃k ∈ ω’ are clearly Borel, so
it suffices to check that for fixed n, t and k

Vn,t,k = {r ∈
∏

m∈ω

Zm+3 : p[t]  “[r|k] ⊂ U̇n”}

is Borel. But clearly

Vn,t,k =
⋃

{[s] : s ∈ Σ, |s| = k, p[t]  “[s] ⊂ U̇n”},

so it is actually a union of basic clopen sets, hence open. �
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3.3.2 Non-meagreness of Rp,{U̇n}n∈ω

Yet again, let p ∈ P and {U̇n}n∈ω be a name for a decreasing sequence of open
sets of

∏

m∈ω Zm+3 such that p  “U̇n ⊂ B(ĊEK − ẋ, 1
n+1

), U̇n ∩ (ĊEK − ẋ) is

dense in ĊEK − ẋ and
⋂

n U̇n ∩X = ∅”. Recall that

Rp,{U̇n}n∈ω
= {r ∈

∏

m∈ω

Zm+3 : ∃q ≤ p, q  “r ∈
⋂

n

U̇n”}.

Lemma 3.30 Let q∗ ≤ p, s∗ ∈ Σ and l∗ ∈ ω such that q∗  “[s∗] ∩ (ĊEK −
ẋ) 6= ∅”. Then there exist q∗∗ ≤ q∗ and s∗∗ ∈ Σ, s∗∗ ⊃ s∗ such that q∗∗ 

“[s∗∗] ∩ (ĊEK − ẋ) 6= ∅ and [s∗∗] ⊂ U̇l∗”.

Proof. Set Ċ = ĊEK − ẋ. Since p  “U̇l∗ ∩ Ċ is dense open in Ċ” and q∗ 
“[s∗] ∩ Ċ is non-empty open in Ċ” we obtain that q∗  “[s∗] ∩ U̇l∗ ∩ Ċ 6= ∅”.
Since [s∗] ∩ U̇l∗ is a name for an open subset of

∏

m∈ω Zm+3, and if an open
set meets a set then it contains a basic open set meeting the same set, we
infer that q∗  “∃ṡ∗∗ ∈ Σ, [ṡ∗∗]∩ Ċ 6= ∅, [ṡ∗∗] ⊂ [s∗]∩ U̇l∗”. Hence there exist
q∗∗ ≤ q∗ and s∗∗ ∈ Σ, s∗∗ ⊃ s∗ such that q∗∗  “[s∗∗]∩Ċ 6= ∅ and [s∗∗] ⊂ U̇l∗”.
�

Definition 3.31 We will write s||t to denote that s(i)+t(i) 6= i+2 for every
i < min(|s|, |t|).

For p ∈ P and t ∈ Σ the symbol p||t will abbreviate that s||t for every
s ∈ p.

The following fact can be easily checked by a standard argument using
that p  ϕ ⇐⇒ ∀p′ ≤ p ∃p′′ ≤ p′ p′′  ϕ. The details are left to the reader.

Fact 3.32 Let p ∈ P and t ∈ Σ. Then the following are equivalent.

1. p||t,

2. p  “[t] ∩ (ĊEK − ẋ) 6= ∅”.

We will also need one more lemma. The proof, which is left to the reader
again, follows easily from the definition of fatness.

Lemma 3.33 Let k > 0, s0 ∈ Σ, F ⊂ {s ∈ Σ : s ⊃ s0} be k-fat above s0,
and also let σ ∈ Σ such that s0||σ. Then {t ∈ F : t||σ} is k − 1-fat above s0.
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We are now ready to prove what we are aiming at.

Lemma 3.34 Rp,{U̇n}n∈ω
is non-meagre.

Proof. We have to show that Rp,{U̇n}n∈ω
intersects every dense Gδ set, so it

suffices to prove that Rp,{U̇n}n∈ω
∩
⋂

n Vn = ∅ for every sequence {Vn}n∈ω of
dense open subsets of

∏

m∈ω Zm+3. The proof will work as follows. On the
one hand, we will inductively define a strictly increasing sequence {rn}n∈ω of
elements of Σ such that [rn] ⊂ Vn, which will of course imply that if we set
r =

⋃

n rn then r ∈
⋂

n Vn. On the other hand, we will also simultaneously
carry out a fusion argument similar to the one in the proof of Lemma 3.21
and obtain a p′ ≤ p such that p′  “r ∈

⋂

n U̇n”. This will show r ∈
Rp,{U̇n}n∈ω

∩
⋂

n Vn, which will complete the proof.
Let us now start the fusion. The main differences between this argument

and the one in Lemma 3.21 will be that we will use Lemma 3.30 instead of
Lemma 3.20, and we will be building the rn’s as well.

For n ∈ ω we will inductively define

(i) sn ∈ Σ,

(ii) qn ∈ P,

(iii) tn ∈ Σ,

(iv) rn ∈ Σ,

(v) pn ∈ P,

such that for every m ≤ n the following hold:

(1) rn||tm,

(2) |rn| ≥ |tm|,

(3) tm ∈ pn,

(4) succpm(tm) \ {s0, . . . , sn} ⊂ succpn(tm),

(5) succpm(tm) is (m+ 2)-fat above tm,

(6) p ≥ p0 and pm ≥ pn,
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(7) qm = pm[tm],

(8) qm  “[rm] ⊂ U̇m”.

Let us start with n = 0. Put s0 = ∅. Applying Lemma 3.30 to p, ∅
and 0, then using Corollary 3.15 and Fact 3.13, we obtain that there exists
q0 ≤ p and r′0 ∈ Σ such that q0  “[r′0] ∩ (ĊEK − ẋ) 6= ∅ and [r′0] ⊂ U̇0”, and
if t0 = root(q0) then succq0(t0) is 2-fat above t0. Then r′0||t0 by Fact 3.32.
Hence we can clearly find an r′′0 ⊃ r′0 such that |r′′0 | ≥ |t0| and r′′0 ||t0. Finally,
since V0 is dense open, we can extend r′′0 further to obtain an r0 ⊃ r′′0 with
[r0] ⊂ V0. Setting p0 = q0 finishes the 0th step. It is not hard to check that
the inductive assumptions are satisfied. (Note that (1) and (2) follow from
|r′′0 | ≥ |t0|, r′′0 ||t0, and r0 ⊃ r′′0 .)

Let us now assume that sm, qm, tm, rm and pm have already been defined
for m ≤ n satisfying the inductive assumptions. For every m let {Sk

m}k∈ω be
an enumeration of the set of (m+ 1)-slaloms above tm. To start the n + 1st

step, first we need to pick a tm for some m ≤ n. We make sure by some
simple bookkeeping that during the course of the induction each tm will be
picked infinitely many times, and when we visit the node tm for the kth time
then we take care of Sk

m (we construct a tn+1 above tm escaping Sk
m).

So let us assume that we are at the n+1st step and we pick tm for the kth

time. Inductive assumption (5) yields that succpm(tm) is (m+2)-fat above tm,
hence so is succpm(tm)\{s0, . . . , sn} by Fact 3.7. Therefore {t ∈ succpm(tm)\
{s0, . . . , sn} : t||rn} is (m + 1)-fat above tm by (1) and Lemma 3.33. Thus,
using Remark 3.6 as well, we can fix a sn+1 ∈ succpm(tm) \ {s0, . . . , sn}
escaping the (m+ 1)-slalom Sk

m such that sn+1||rn, and |sn+1| ≥ |rn|. By (4)
we also have sn+1 ∈ pn. As sn+1||rn and |sn+1| ≥ |rn|, we obtain pn[sn+1]||rn.
Hence Lemma 3.30 applied to pn[sn+1], rn and n+1, then Corollary 3.15 and
Fact 3.13 yield a qn+1 ≤ pn[sn+1] and a r′n+1 ⊃ rn such that qn+1||r′n+1 and

qn+1  “[r′n+1] ⊂ U̇n+1”, and if tn+1 = root(qn+1) then

succqn+1
(tn+1) is n + 3-fat above tn+1. (3.3)

Then r′n+1||tn+1, hence we can clearly find an r′′n+1 ⊃ r′n+1 such that |r′′n+1| ≥
|tn+1| and r′′n+1||tn+1. Finally, since Vn+1 is dense open, we can extend r′′n+1

further to obtain an rn+1 ⊃ r′′n+1 with [rn+1] ⊂ Vn+1. Setting pn+1 = (pn \
pn[sn+1]) ∪ qn+1 finishes the n+ 1st step.

Now we check that the inductive assumptions are satisfied. For (1) and
(2) it suffices to check that rn+1||tn+1 and |rn+1| ≥ |tn+1|, which is analogous
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to the case n = 0 above. Items (3) and (4) follow from the structure of the
fusion, as already described in Lemma 3.21. Namely, at the n + 1st step we
only modify pn in the ‘cone’ pn[sn+1], and this cone does not contain the
earlier tm’s, moreover, an element of succpm(tm) only ‘disappears’ from pn
when it is picked as an sn+1. Items (6), (7), and (8) are straightforward from
the construction, and (5) follows from (7) and (3.3).

Let us now define p′ = {tm}m∈ω. It is easy to see that p′ ∈ P, since
succp′(tm) is m + 1-fat above tm for every m. Combining (3) and (6) we
obtain

p′ ≤ pn (3.4)

for every n, and also that p′ ≤ p.
What remains to be shown is that p′  “r ∈

⋂

n U̇n”, that is, p′ 

“r ∈ U̇n0
” for every fixed n0. Let p′′ ≤ p′ be arbitrary, then it suffices to

find a p′′′ ≤ p′′ such that p′′′  “r ∈ U̇n0
”. As every condition is infinite,

there exists n ≥ n0 such that tn ∈ p′′. Then (3.4), (7), and (8) imply
p′′[tn] ≤ p′[tn] ≤ pn[tn] = qn  “[rn] ⊂ U̇n”. Therefore, since the Un’s are
decreasing and r ∈ [rn], we obtain p′′[tn]  “r ∈ U̇n0

”. Thus p′′′ = p′′[tn]
works, and this finishes the proof of the lemma. �

3.4 Putting the proof together

Theorem 3.35 (Second Main Theorem) It is consistent with ZFC that
for every non-meagre set X ⊂

∏

m∈ω Zm+3 there is some t ∈
∏

m∈ω Zm+3

such that X ∩ (CEK + t) is non-meagre in CEK + t.

Proof. Iterate P of length ω2 with countable support over a model
V of the Continuum Hypothesis to obtain Vα for α ≤ ω2. If Vω2

|=
X ⊂

∏

m∈ω Zm+3 is non-meagre, then by an easy reflection argument there
is an α < ω2 such that Vα |= X ∩ Vα is non-meagre (see the anal-
ogous [1, Lemma 12.]). Applying Corollary 3.23 yields that in Vα+1

there is some tα+1 ∈
∏

m∈ω Zm+3 such that Vα+1 |= (X ∩ Vα) ∩ (CEK +
tα+1) is non-meagre in CEK + tα+1. Then Theorem 3.19 implies that Vω2

|=
(X ∩ Vα) ∩ (CEK + tα+1) is non-meagre in CEK + tα+1. Hence for the larger
set we also obtain Vω2

|= X ∩ (CEK + tα+1) is non-meagre in CEK + tα+1,
which completes the proof. �

25



4 Open problems

In this final section we collect the open questions.

Problem 4.1 Let X ⊂ R.

∀t ∈ R µCantor(X + t) = 0 =⇒ λ(X) = 0?

Problem 4.2 Is it consistent that there exist an atomless singular Borel
probability measure µ such that for every X ⊂ R with λ(X) > 0 there exists
t ∈ R such that µ(X + t) > 0?

Problem 4.3 Is P of Definition 3.9 forcing equivalent to the Miller forcing?

Problem 4.4 Does Theorem 3.35 hold for R instead of
∏

m∈ω Zm+3?
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