
Formal Security Verification of Transport
Protocols for Wireless Sensor Networks

Vinh-Thong Ta1, Amit Dvir4, and Levente Buttyán2,3

INRIA, CITI/INSA-Lyon, F-69621, Villeurbanne, France1

Laboratory of Cryptography and System Security (CrySyS), BME, Hungary2

MTA-BME Information Systems Research Group,
Magyar tudósok körútja 2, 1117 Budapest, Hungary3

Computer Science School, The College of Management - Academic Studies, Israel4

vinh-thong.ta@inria.fr, azdvir@gmail.com, buttyan@crysys.hu

Abstract. In this paper, we address the problem of formal security
verification of transport protocols for wireless sensor networks (WSN)
that perform cryptographic operations. Analyzing this class of protocols
is a difficult task because they typically consist of complex behavioral
characteristics, such as launching timers, performing probabilistic behav-
ior, and cryptographic operations. Some of the recently published WSN
transport protocols are DTSN, which does not include cryptographic se-
curity mechanism, and two of its secured versions, SDTP and STWSN1.
In our previous work, we formally analyzed the security of Distributed
Transport for Sensor Networks (DTSN) and Distributed Transport Pro-
tocol for Wireless Sensor Networks (SDTP), and showed that they are
vulnerable against packet modification attacks. In another work we pro-
posed a new Secure Transport Protocol for WSNs (STWSN), with the
goal of eliminating the vulnerability of DTSN and SDTP, however, its
security properties have only been informally argued. In this paper, we
apply formal method to analyze the security of STWSN.

1 Introduction

Wireless Sensor Networks [2] consist of a large number of resource constrained
sensor nodes and a few more powerful base stations. The sensors collect various
types of data from the environment and send those data to the base stations using
multi-hop wireless communications. Some typical applications that require the
use of a transport protocol for ensuring reliable delivery and congestion control
are: reliable control and management of sensor networks; remotely program-
ming/retasking sensor nodes over-the-air. It is widely accepted that transport
protocols used in wired networks (e.g., the well-known TCP) are not applicable
in WSNs, because they perform poorly in a wireless environment and they are

1 STWSN and SDTP+ are the same. SDTP+ is the protocol name used in [1], however,
because it is not only a minor extension of SDTP, but is based on a completely
different security solutions, it is better to change the name to STWSN.



2 V.-T. Ta, A. Dvir, L. Buttyán

not optimized for energy consumption. Therefore, a number of transport pro-
tocols specifically designed for WSNs have been proposed in the literature (see,
e.g., [3] for a survey). The main design goal of those transport protocols is to
achieve reliability and energy efficiency. However, despite the fact that WSNs
are often envisioned to operate in hostile environments, existing transport pro-
tocols for WSNs do not address security issues at all and, as a consequence, they
ensure reliability and energy efficiency only in a benign environment where no
intentional attack takes place [4].

Attacks against WSN transport protocols can be attacks against reliability
and energy depleting attacks. In the first case, the attackers can cause unde-
tected or permanent packet lost, while in the second case the attackers make
the sensor nodes deplete their battery by performing futile computations. Some
of the recently published WSN transport protocols are DTSN [5], and two of
its security extensions, SDTP [6] and STWSN [1]. Many tricky attack scenarios
have been found against WSN transport protocols, and even secure WSN trans-
port protocols that were believed to be secure, have turned out to be vulnerable.
The main reason is that the designers reason about the security of their protocol
based only on manual analysis, which is error-prone. DTSN and SDTP have
been analyzed based on formal method in [7], and were shown to be vulnerable
against packet modification attacks.

STWSN is designed with the goal of eliminating the vulnerability of DTSN
and SDTP, however, its security properties have been argued only informally.
Our goal is to apply formal method to analyze WSN transport protocols, which
provide a more reliable and systematic way of security proof. In this paper,
we apply formal method to analyze the security of WSN transport protocol. In
particular, using the process algebra language, cryptprobtime, proposed in [7], we
showed that the STWSN protocol is secure against packet modification attacks.

2 Related Works

We provide a brief overview of the DTSN and SDTP protocols, which are two
recent and representative WSN transport protocols, and they are closely related
to the STWSN protocol.

DTSN [5] is a reliable transport protocol developed for sensor networks where
intermediate nodes between the source and the destination of a data flow cache
data packets in a probabilistic manner such that they can retransmit them upon
request. The main advantages of DTSN compared to the end-to-end retrans-
mission mechanism is that it allows intermediate nodes to cache and retransmit
data packets, hence, the average number of hops a retransmitted data packet
must travel is smaller than the length of the route between the source and the
destination. Intermediate nodes do not store all packets but only store packets
with some probability p, which makes it more efficient. DTSN uses positive ac-
knowledgements (ACK s), and negative acknowledgements (NACK s) to control
caching and retransmissions. An ACK refers to a data packet sequence number
n, and it should be interpreted such that all data packets with sequence number



Formal Sec. Ver. of Trans. Prot. for WSNs 3

smaller than or equal to n were received by the destination. A NACK refers to a
base sequence number n and it also contains a bitmap, in which each bit repre-
sents a different sequence number starting from the base sequence number n. A
NACK should be interpreted such that all data packets with sequence number
smaller than or equal to n were received by the destination and the data packets
corresponding to the set bits in the bitmap are missing.

Reasoning about the security of DTSN : Upon receiving an ACK packet, in-
termediate nodes delete from their cache the stored messages whose sequence
number is less than or equal to the sequence number in the ACK packet, be-
cause the intermediate nodes believe that acknowledged packets have been de-
livered successfully. Therefore, an attacker may cause permanent loss of some
data packets by forging or altering ACK packets. This may put the reliability
service provided by the protocol in danger. Moreover, an attacker can trigger
unnecessary retransmission of the corresponding data packets by either setting
bits in the bit map of the NACK packets or forging/altering NACK packets.

SDTP [6] is a security extension of DTSN aiming at patching the security
holes in DTSN. SDTP protects data packets with MACs (Message Authentica-
tion Code) computed over the whole packet. Each MAC is computed using a
per-packet key correspond to each packet. The intermediate and source nodes
cache packets along with their MACs, and whenever the destination wants to
acknowledge the first n packets it sends an ACK message with the key for the
MAC corresponding to this packet. Similarly, when the destination request the
retransmission of packets it sends a NACK message with the keys corresponding
the given packets. The rationale behind the security of SDTP is that only the
source and destination knows the correct keys to be revealed.

Reasoning about the security of SDTP : The main security weakness of the
SDTP protocol is that the intermediate nodes store the received data packets
without any verification. Intermediate nodes do not verify the origin and the
authenticity of the data packets or the ACK and the NACK messages, namely,
they cannot be sure whether the data packets that they stored were sent by the
source node, and the control messages were really sent by the destination. Indeed,
the security solution of SDTP only enables intermediate nodes to verify the
matching or correspondence of the stored packets and the revealed ACK /NACK
keys. Hence, SDTP can be vulnerable in case of more than one attacker node
(compromised node) who can cooperate.

In [7] we formally proved that an attacker may cause permanent loss of some
data packets both in DTSN and STDP, by forging or altering the sequence
number in ACK message. We also showed that an attacker can trigger futile
retransmission of the corresponding data packets by either setting bits in the
bit map of the NACK packets or forging/altering NACK packets. The first case
violates the reliability while the second case violates the energy efficiency re-
quirement. In [1] we proposed a new secured WSN transport protocol, called
STWSN, and argued its security. However, the security of STWSN has not been
analyzed based on formal method so far. In this paper, we perform formal secu-



4 V.-T. Ta, A. Dvir, L. Buttyán

rity analysis of STWSN and prove that it is secure against the successful attack
scenarios in case of DTSN and SDTP.

3 STWSN - A Secure Distributed Transport Protocol for
WSNs

We proposed STWSN in [1], in order to patch the security weaknesses can be
found in DTSN and SDTP. STWSN aims at authenticating and protecting the
integrity of control packets, and is based on an efficient application of digital
signature and authentication values, which are new compared to SDTP. The se-
curity mechanism of STWSN is based on the application of Merkle-tree [8] and
hash chain [9], which have been used for designing different security protocols
such as Castor [10], a scalable secure routing protocols for ad-hoc networks, and
Ariadne [11]. Our contribution is applying Merkle-tree and hash chain in a new
context. The general idea of STWSN is the following: two types of “per-packet”
authentication values are used, ACK and NACK authentication values. The
ACK authentication value is used to verify the ACK packet by any intermedi-
ate node and the source, whilst the NACK authentication value is used to verify
the NACK packet by any intermediate node and the source. The ACK authen-
tication value is an element of a hash chain [9], whilst the NACK authentication
value is a leaf and its corresponding sibling nodes along the path from the leaf
to the root in a Merkle-tree [8]. Each data packet is extended with one Message
Authentication Code (MAC) value (the MAC function is HMAC), instead of two
MACs as in SDTP. STWSN adopt the notion and notations of the pre-shared
secret S, ACK , and NACK master secrets KACK , KNACK , which are defined
and computed in exactly the same way as in SDTP [6]. However, in STWSN the

generation and management of the per-packet keys K
(n)
ACK , K

(n)
NACK is based on

the application of hash-chain and Merkle-trees, which is different from SDTP.

3.1 The ACK Authentication Values

The ACK authentication values are defined to verify the authenticity and the
origin of ACK messages. The number of data packets that the source wants
to send in a given session, denoted by m, is assumed to be available. At the
beginning of each session, the source generates the ACK master secret KACK

and calculates a hash chain of size (m+1) by hashing KACK (m+1) times, which
is illustrated in Figure 1. Each element of the calculated hash-chain represents a

per packet ACK authentication value as follows:K
(m)
ACK ,K

(m−1)
ACK ...,K

(1)
ACK ,K

(0)
ACK ,

where K
(i)
ACK = h(K

(i+1)
ACK ) and h is a one-way hash function. The value K

(0)
ACK

is the root of the hash-chain, and K
(i)
ACK represents the ACK authentication

value corresponding to the packet with sequence number i. When the destination
wants to acknowledge the successful delivery of the i-th data packet, it reveals

the corresponding K
(i)
ACK in the ACK packet.



Formal Sec. Ver. of Trans. Prot. for WSNs 5

Fig. 1. The element K
(i)
ACK , i ∈ { 1, . . . , m}, of the hash-chain is used for authenticat-

ing the packet with the sequence number i. The root of the hash-chain, K
(0)
ACK , which we

get after hashing (m+ 1) times the ACK master key KACK . This root is sent to every
intermediate node in the open session packet, which is digitally signed by the source.

3.2 The NACK Authentication Values

For authenticating the NACK packets, STWSN applies a Merkle-tree (also
known as hash-tree), which is illustrated in Figure 2. When a session has started,

the source computes, the NACK per-packet keys K
(n)
NACK for each packet to be

sent in a given session. Afterwards, these NACK per-packet keys are hashed and

assigned to the leaves of the Merkle-tree: K
′(n)
NACK = h(K

(n)
NACK ). The internal

nodes of the Merkle-tree are computed as the hash of the (ordered) concatena-
tion of its children. The root of the Merkle-tree, H(hp, Sp), is sent by the source
to intermediate nodes in the same open session packet that includes the root of

the hash-chain. For each K
(j)
NACK , j ∈ {j1, . . . , jm}, the so called sibling values

Sj1, . . . , Sjt , for some t, are defined such that the root of the Merkle-tree can be

computed from them. For instance, the sibling values of K
(j1)
NACK are K

(j2)
NACK ,

S1, . . . , Sp. From these values H(hp, Sp) can be computed.

Fig. 2. The structure of Merkle-tree used in STWSN. Each internal node is computed
as the hash of the ordered concatenation of its children. The root of the tree, H(hp, Sp),
is sent out by the source.



6 V.-T. Ta, A. Dvir, L. Buttyán

3.3 The operation of STWSN

In this section a short flow of the STWSN protocol is given, for more information
please refer to [1]. When a session is opened, first, the source computes the ACK
and NACK master keys KACK and KNACK , respectively. Then, the source
calculates the hash-chain and the Merkle-tree for the session. Afterward, the
source sends an open session message with the following parameters: the roots

of the hash chain (K
(0)
ACK) and of the Merkle-tree (H(hp, Sp)), the length of

the hash chain (m + 1), the session SessionID , the source and destination IDs.
Before sending the open session packet, the source digitally signs it to prevent
the attackers from sending fake open session packets. When the destination
node receives an open-session packet sent by the source, it verifies the signature
computed on the packet. Upon success, the destination starts to generate the
same values as the source and sends an ACK packet to the source. Upon receipt
of an open session packet and the corresponding ACK packet, an intermediate
node verifies signature computed on the packet, and in case of success, it stores
the root values of the hash chain and the Merkle-tree, the session ID, SessionID ,
and forwards the packet towards the destination. Otherwise, an intermediate
node changes its probability to store packets in the current session to zero.

After receiving an ACK message corresponding to the session open packet,
from the destination, the source starts to send data packets. Each data packet is
extended with the MAC, computed over the whole packet (except for the EAR
and RTX flags), using the shared secret between the source and the destination.
Upon receipt of a data packet, an intermediate node stores with probability p
the data packet and forwards the data packet towards the destination. Upon
receiving a data packet with sequence number i, first, the destination checks
MAC using the secret shared between the source and the destination. Upon
success, the destination delivers the packet to the upper layer. Otherwise, the
packet is ignored and dropped. Upon the receipt of a packet with a set EAR flag,
the destination sends an ACK or a NACK packet depending on the existence of
gaps in the received data packet stream. The ACK packet that refers to sequence

number i is composed of the pair (i, K
(i)
ACK ). Similarly, the NACK packet with

base sequence number i is extended with the ACK authentication value (K
(i)
ACK ),

and if the destination wants to request for re-transmission of some packet j, then

it also includes the corresponding NACK authentication values K
(j)
NACK , Sj1, . . . ,

Sjq in the NACK packet.

When an intermediate node receives an ACK packet, (i, K
(i)
ACK ), it verifies

the authenticity and the origin of the ACK message by hashing K
(i)
ACK i times,

and comparing the result with the stored root value of the hash chain. If the two
values are equal, then all the stored packets with the sequence number less than
or equal to i are deleted. Afterward, the intermediate node passes on the ACK
packet towards the source. Otherwise, the ACK packet is ignored and dropped.
In case of NACK packet that refers to the sequence numbers i, the same is
perform for the ACK part. From the NACK part the root of the Merkle-tree is
re-generated, and in case of equality, the stored data packets are re-transmitted



Formal Sec. Ver. of Trans. Prot. for WSNs 7

and the NACK is modify. Afterward, forwards the NACK with the modified list
towards the source. When the source node receives an ACK packet or NACK
packets it perform the same steps as the intermediate (with the fact the p = 1).

In DTSN and SDTP, the destination sends an ACK or a NACK packet upon
receipt of an EAR. In order to mitigate the effect of EAR replay or EAR forging
attacks where the EAR flag is set/unset by an attacker(s), STWSN uses two
new mechanisms: status timer and limiting the number of responses to EARs.
The status timer is set at the destination and its duration could be a function of
the source EAR timer. To counter that attackers always set the EAR bits, the
destination limits the number of responses on receiving a set EAR flag. In the
period of the destination’s EAR timer the destination will not send more than
X control packets.

4 Formal security analysis of STWSN using cryptprobtime

In this subsection, we perform a formal security analysis of STWSN based on
a mathematically sound formal language, the cryptprobtime calculus [7], which has
been used to analyze the security of DTSN and SDTP. We start with a brief
description of cryptprobtime, and provide the proof technique based on it, finally, we
turn to prove the security of our proposed STWSN protocol.

4.1 The cryptprobtime calculus

Due to lack of space we only provide a very brief overview of the cryptprobtime

calculus, interested readers are referred to [7] for further details. cryptprobtime is a
probabilistic timed calculus, for modeling and analyzing cryptographic protocols
that involve clock timers and probabilistic behavioral characteristics. cryptprobtime

has been successfully used for analyzing the security of DTSN and SDTP [7].

The basic concept of cryptprobtime is inspired by the previous works [12], [13], [14]
proposing analysis methods separately for cryptographic, timed, and probabilis-
tic protocols, respectively. Specifically, it is based on the concept of probabilistic
timed automata, hence, the correctness of cryptprobtime comes from the correctness

of the automata because the semantics of cryptprobtime is equivalent to the semantics
of the probabilistic timed automata.

The formal syntax of cryptprobtime is composed of two main building blocks,
namely, the terms which model protocol messages and their components, and
probabilistic timed processes which describe the internal operation of commu-
nication partners according to their specification. Terms can be, for example,
random nonces, secret keys, encryptions, hashes, MACs and digital signatures
computed over certain messages, and they can represent entire messages as well.
The set of terms also includes communication channels (denoted by ci, for some
index i) defined between participants, such that messages can be sent and re-
ceived through these channels. We distinguish public and private channels, where
the attackers can eavesdrop on public channels, while they cannot in the private
case. The set of probabilistic timed processes defines the internal behavior of



8 V.-T. Ta, A. Dvir, L. Buttyán

the participants, namely, each process defines an action can be performed by a
given participant. For instance, input and output processes define the message
receiving and sending actions, respectively. Processes also define the message
verification steps that a communication partner should perform on the received
messages (e.g., signature verification, comparisons, MAC verification). Finally,
processes can also be used to define the whole protocol, composing of several
communication partners running parallel. This is similar to the terminology of
sub-procedures and main-procedure in programming languages (e.g., C, Java).
We denote probabilistic timed processes by procAi with i ∈ {1, 2, . . . , k} for some
finite k, and A can be the name of a communication partner or a protocol (e.g.,
procSrc represents the process that describes the behavior of the source node).
Non-channel terms are given the name of a message or its components (e.g., ID
is a term that models a message ID).

The operational semantics of cryptprobtime is built-up from a probabilistic timed
labeled transition system (PTTS) defined specifically for this calculus. The

PTTS contains the rules of form s1
α, d→ s2, where s1 describes the current state

of a given process, while s2 represents the state we reach after some action α
has been performed, which consumes d time units. For instance, α can be the
message sending action, while s1 and s2 are the states before and after the
message has been sent, respectively. There are three types of actions that can
be performed by the communication partners: (i) silent (internal computation)
action; (ii) message input or (iii) message output on a channel. Silent action
(e.g., message verification steps) are not visible for an external observer (en-
vironment), while message input and outputs on a public channel are visible.
Message input and output on a private channel can be seen as silent actions.
The PTTS of cryptprobtime contains the rules that define all the possible actions of
the communication partners, according to the protocol description.

In order to prove or refute the security of protocols and systems, cryptprobtime is
equipped with the weak probabilistic timed (weak prob-timed) labeled bisimilarity.
The bisimilarity definition is used to prove or refute the behavioral equivalence
between two variants of a protocol or system. The definition of weak prob-timed
bisimilarity is given as follows:

Definition 1 (Weak prob-timed labeled bisimulation for cryptprobtime)
We say that two states s1 = (procA1, v1) and s2 = (procA2, v2) are weak

prob-timed labeled bisimilar, denoted by (s1 <pt s2)

1. if an observer who can eavesdrop on the network communication cannot dis-
tinguish the message output or input in states s1 and s2 (which we called as
statically equivalence [7]);

2. if from s1 we can reach the state s′1 after a silent (internal) action after
d1 time units, then s2 can simulate this action via the corresponding silent
action trace after d2 time units, leading to some s′2, and s′1 <

p
t s
′
2 holds again.

3. if from s1 we can reach the state s′1 after a non-silent labeled transition (i.e.,
message input or ouput) after d1 time units, then s2 can simulate this action
via the corresponding labeled transition trace after d2 time units, leading to
some s′2, and s′1 <

p
t s
′
2 holds again,



Formal Sec. Ver. of Trans. Prot. for WSNs 9

and vice versa. We say that two variants of a protocol Prot1 and Prot2 are weak
prob-timed labeled bisimilar if their initial states (sinit1 , sinit2 ) are weak prob-timed
labeled bisimilar.

In this definition, sj is a protocol (system) state, which is composed of the

pair (procAj , vj), where procAj is a cryptprobtime process, representing the current
behavior of the participants in the protocol, and vj is the current timing value(s)
of the clock(s). Hence, based on this definition whenever we refer to a (prob.
timed) protocol A we mean the state sinit, sinit = (procAinit, vinit).

Intuitively, Definition 1 says that two versions of a given protocol are “be-
havioral” equivalent if any action (formally, any labeled transition) that can
be performed by one protocol version can be simulated by the corresponding
action(s) (formally, a corresponding trace of labeled transition) in the another
version, and vice versa. More precisely, if s1 and s2 are in weak prob-timed la-
beled bisimulation, then the behavior of the two protocol versions procA1 and
procA2 are equivalent for an observer (environment) who eavesdrops on the com-
munication between every pair of partners.

4.2 Security proof technique based on cryptprobtime

We apply the proof technique that is based on Definition 1. Namely, we define
an ideal version of the protocol run, in which we specify the ideal (i.e., secure)
operation of the real protocol. This ideal operation, for example, can require that
honest nodes always know what is the correct message they should receive/send,
and always follow the protocol correctly, regardless of the attackers’ activity.
Then, we examine whether the real and the ideal versions, running in parallel
with the same attacker(s), are weak prob-timed bisimilar.

Definition 2 Let the cryptprobtime processes procProt and procProtideal specify the
real and ideal versions of some protocol Prot, respectively. We say that Prot is
secure (up to the ideal specification) if (procProt, vinit) and (procProtideal, vinitideal)
are weak prob-timed bisimilar:

(procProt, vinit) ≈pt (procProtideal, vinitideal),

where vinit and vinitideal are the initial values of the clocks (typically in reset sta-
tus). The strictness of the security requirement, which we expect a protocol to
fulfill, depends on how “ideally secure” we specify the ideal version. Intuitively,
Definition 2 says that Prot is secure if the attackers cannot distinguish the op-
eration of the two instances based on the message outputs (and inputs). In the
rest of this section, we refer to the source, intermediate and destination nodes
as S, I and D, respectively.

Let us consider a simplified network topology for the STWSN protocol. We
assume the network topology S−I−D, where “ − ” represents a bi-directional
link. Moreover, public communication channels are defined between each node
pair for message exchanges, csi between S and I, cid between I and D. We also



10 V.-T. Ta, A. Dvir, L. Buttyán

assume the presence of an attacker or attackers who can eavesdrop on public
communication channels, and can use the eavesdropped information in their
attacks (e.g., modifying the ACK/NACK packets and forward them).

The main difference between the ideal and the real systems is that in the
ideal system, honest nodes are always informed about what kind of packets or
messages they should receive from the honest sender node. This can be achieved
by defining private (hidden) channels between honest parties, on which the com-
munication cannot be observed by the attacker(s). Figure 3 shows the difference
in more details. In the ideal case, three private channels are defined which are not
available to the attacker(s). Whenever S sends a packet pck on public channel
csi, it also informs I about what should I receive, by sending at the same time
pck directly via private channel cprivSI to I, hence, when I receives a packet via
csi it compares the message with pck. The same happens when I sends a packet
to D, and vice versa, from D to I and I to S. Whenever a honest node receives
an unexpected data (i.e., not the same as the data received on private channel),
it interrupts its normal operation. The channels cprivSD and cprivID can be used
by the destination to inform S and I about the messages to be retransmitted.

Fig. 3. procSrc, procInt and procDst denote the cryptprobtime processes that specify the
operation of the source, the intermediate and the destination nodes, respectively. In
the ideal version, the private (hidden) channels cprivSD, cprivID and cprivSI are defined
between procSrc and procDst, procInt and procDst, procSrc and procInt, respectively.

With this definition of the ideal system we ensure that the source and inter-
mediate nodes are not susceptible to the modification or forging of data packets
and ACK/NACK messages since they make the correct decision either on re-
transmitting or deleting the stored packets. Namely, this means that the honest
nodes only handle the messages received on public channels when they are equal
to the expected messages received on private channels.

The attacker model MA: We assume that the attacker(s) can intercept
the information output by the honest nodes on public channels, and modify
them according to its (their) knowledge and computation ability. The attacker’s
knowledge consists of the intercepted output messages during the protocol run
and the information it can create. The attacker(s) can modify the elements of
the ACK /NACK messages, such as the acknowledgement number and the bits



Formal Sec. Ver. of Trans. Prot. for WSNs 11

for retransmissions, as well as the EAR and RTX bits, and sequence numbers in
data packets. The attacker can also create entire data or control packets based on
the data it possesses. Further, an attacker can send packets to its neighborhood.
We also consider several attackers who can share information with each other.

To describe the activity of the attacker(s), we apply the concept based on the
so-called environment, used in the applied π-calculus [12] to model the presence
of the attacker(s). Every message that is output on a public channel is available
for the environment, that is, the environment can be seen as a group of attackers
who can share information with each other, for instance, via a side channel. This
definition of attackers allow us to apply the weak prob-timed bisimilarity in our
security proofs.

4.3 Security analysis of STWSN based on the cryptprobtime calculus

As already mentioned in Section 3, STWSN uses different cryptographic primi-
tives and operations such as one-way hash, message authentication code (MAC),

and digital signature. In cryptprobtime, secret and public keys can be defined by
(atomic) names, and cryptographic operations can be defined as functions (for
modelling crypto-primitive generation) and equations (for cryptographic verifi-
cation):

Keys: sksrc, pksrc, Kack; Knack; Ksd;

Functions: sign(t, sksrc); H (t);
Equation: checksign(sign(t, sksrc), pksrc) = ok;

Functions: K (n, ACK ); K (n, NACK );
mac(t, K (n, ACK )); mac(t, K (n, NACK ));

Equations:
checkmac(mac(t, K (n, ACK )), K (n, ACK ))= ok;
checkmac(mac(t, K (n, NACK )), K (n, NACK ))= ok.

where sksrc and pksrc represent the secret and public key of the source node.
Kack, Knack and Ksd represent the ACK /NACK master keys, and the shared
key of the source and the destination for a given session, which are freshly gener-
ated at the beginning of each session. The functions sign(t, sksrc) and H (t) define
the digital signature computed on the message t using the secret key sksrc, and
the one-way hash computed on t, respectively. The equation checksign(sign(t,
sksrc), pksrc) = ok defines the signature verification, using the corresponding
public key pksrc. We do not define an equation for the hash function H(t) in or-
der to ensure its one-way property. Namely, H(t) does not have a corresponding
inverse function which returns t, and H(t1) = H(t2) holds only when t1 and t2
are the same.

For simplicity, we assume the network topology S−I−D, where “ − ” rep-
resents a bi-directional link, while S, I, D denote the source, an intermediate



12 V.-T. Ta, A. Dvir, L. Buttyán

node, and the destination node, respectively (like in Figure 3). However, we em-
phasize that the security proofs in this simplified topology can also be applied
(with some extension) and remain valid in the topologies that contain more in-
termediate nodes. We define symmetric public channels between the upper layer
and the source, csup; the upper layer (i.e. the application that uses the protocol)
and the destination, cdup; the source and the intermediate node, csi; the inter-
mediate node and the destination cid. The public channels csiACK , csiNACK ,
cidACK and cidNACK are defined for sending and receiving ACK and NACK
messages between the source and the intermediate, and between the destination
and the intermediate nodes, respectively. Public channels csiOPEN and cidOPEN
are defined for delivering the open-session messages between S and I, as well as I
and D. To apply Definition 1 in our proofs, additional public channels cbadOPEN ,
cbadPCK , cerror and csessionEND are defined for sending and receiving bad packet,
error and session-end signals. Honest nodes send out these signals when error or
session-end is detected at these nodes. Finally, we add a public channel cemptyC
for signalling that the cache has been emptied at a given node.

According to the proof technique, we define an ideal and a real version of the
STWSN protocol. In the ideal version of the STWSN protocol the definition of
the processes procSrc, procInt, and procDst in cryptprobtime are extended (compared
to the real version) with some additional equality checks between the messages
received on the corresponding private and public channels. Specifically, processes
procDst and procInt output the special constant BadOpen on channel cbadOPEN
when they receive an unexpected open-session packet (i.e., when the message
which the honest nodes receive on the public channels csiOPEN and cidOPEN is
not equal to the corresponding packet received on the private channels cprivSI
and cprivID, respectively). Process procDst outputs the constant BadData on
cbadPCK when it receives an unexpected data packet. After receiving an un-
expected ACK /NACK , the processes procSrc and procInt output the constant
BadControl on cbadPCK . Finally, after emptying the buffer procSrc and procInt
output the constants EmptyCacheS and EmptyCacheI, respectively.

We examined the security of STWSN regarding the following scenarios: In
the first scenario SC-1, the attacker(s) modifies the ACK/NACK messages, while
in the SC-2 the attacker(s) modifies the EAR and RTX bits in data packets.

Let us name the cryptprobtime processes that define the real and ideal versions of
STWSN by procSTWSN and procSTWSN ideal, respectively.

– Scenario SC-1: STWSN is not vulnerable to the attack scenario SC-1 be-
cause process procSTWSN ideal can simulate (according to Definition 1) ev-
ery labeled transition produced by procSTWSN : Recall that in STWSN S
verifies the ACK /NACK packets by comparing the stored roots of the hash-
chain and the Merkle-tree with the re-computed roots. For simplicity, we
assume that the source is storing the first three packets for a given session,
and the source wants to send four data packets in this session. This means
that the root of the hash-chain is H(H(H(H(H(Kack))))). Let assume that
the source has received an ACK packet, where ACK = (m, hm), and accord-
ing to the protocol, to make the source accept this ACK the m-time hashing



Formal Sec. Ver. of Trans. Prot. for WSNs 13

on hm must be H(H(H(H(H(Kack))))). To empty the buffer, m must be at
least 3. In case m = 4, hm must be H(Kack). This hash value cannot be com-
puted by the attacker(s) because the source and the destination never reveal
Kack, and function H(t) is defined to be one-way, so from H(H(Kack)) the
attacker cannot compute H(Kack). Hence, the attacker(s) must receive or in-
tercept H(Kack) from a honest node, which means that H(Kack) has already
been revealed by the destination. m cannot be greater than four, otherwise,
the attacker(s) must have Kack, that is, Kack must have been revealed by
the source or destination, which will never happen according to the proto-
col. When m = 3, hm must be H(H(Kack)), which cannot be computed by
the attacker(s) since according to the protocol, Kack and H(Kack) have not
been revealed yet, and we did not define any equation for the hash function
H(t), hence, from H(hi) the value of hi cannot be derived. To summarize,
either the attacker sends a correct ACK or the ACK with incorrect authen-
tication value, the ideal and the real systems can simulate each other. In the
first case, the constant EmptyCacheS, while in the second case BadControl
is output in both systems. The reasoning is similar in case of NACK message.

In the following, we examine whether the attackers can make the interme-
diate node incorrectly empty its buffer. Let us assume that I has already
accepted the open session packet and has stored the hash-chain root, denoted
by hroot, in it. The signature in the open session packet must be computed
with the secret key of the source, sksrc. This is because after receiving a
packet on channel csiOPEN , the verification [checksign(xsig, pksrc) = ok]
is performed within process procInt, and only the signature computed with
sksrc can be verified with pksrc. However, this means that hroot must be
generated by the source, that is, hroot = H(H(H(H(H(Kack))))). Again,
assume that in the current state I stores the first three data packets. From
this point, the reasoning is similar to the source’s case, namely, either the
constant EmptyCacheI or BadControl is output in both the ideal and the
real systems.

– Scenario SC-2: The formal proof regarding the second scenario is based on
a similar concept as in case of analyzing fault tolerance systems. Namely, for
reasoning about the scenario SC-2, we modify the ideal version of STWSN
as follows: we limit the number of the ACK /NACK that the destination
sends when it receives a data packet in which the EAR flag is set to 1 by the
attacker. Based on the concept of private channels where the destination is
informed about the message sent by a honest node, in the ideal system, the
destination is able to distinguish between the EAR flag set by the attacker
and the flag set by a honest node. In the ideal system, we modify the spec-
ification of the destination such that within a session, the destination will
only handle according to the protocol, the first MAX badear packets in which
the EAR flag is set to 1 by the attacker, and sends back the corresponding
ACK /NACK for them. Formally, for the first MAX badear packets with an
incorrectly set EAR flag, the destination does not output the constant Bad-



14 V.-T. Ta, A. Dvir, L. Buttyán

Data on channel cbadPCK , but only from the following incorrect packet. The
constant MAX badear is an application specific security treshold.
In the STWSN protocol, to alleviate the impact of the EAR setting attack,
the destination limits the number of responses for the packets with the EAR
flag set by either an attacker or a honest node [1]. Within a finite period
of time, called destination EAR timer (denoted by dest EAR timer), the
destination node will not send more than D control packets in total, for some
given security treshold D. Within a session, the destination launches the
timer dest EAR timer when it has received the first packet containing a set
EAR flag. Until the session ends, dest EAR timer is continually reset upon
timeout. Let tmrdst be the upperbound of the number of launching/resetting
dest EAR timer within a session. The values of dest EAR timer and D are
set such that D×tmrdst ≤ MAX badear.

The main difference between the ideal and the real STWSN specifications,
procSTWSN and procSTWSN ideal, is that in the ideal case the destination
does not need to launch the timer dest EAR timer, because it is aware of
the packets with an incorrectly set EAR flag. Instead, the destination only
limits the total number of responses for the incorrect packets to MAX badear.
To prove the security of STWSN regarding SC-2, we prove that the STWSN
protocol is secure regarding the scenario SC-2, by showing that procST-
WSN ideal weak prob-timed simulates the real system procSTWSN (instead
of resisting on bisimilarity). Intuitively, this means that the set of probabilis-
tic timed transitions of procSTWSN is a subset of the set of probabilistic
timed transitions of procSTWSN ideal. The reverse direction that procST-
WSN can simulate procSTWSN ideal, is not required for this scenario.

We also examined the other possible attack attempts (e.g., when the attacker(s)
modifies the data part in data packets, and the open-session packets) with the
same method, based on the definition of weak prob-timed bisimilarity. Namely,
we define the corresponding real and ideal versions, and we showed that they
can simulate each other regarding the outputs of the constants BadData and
BadOpen, respectively. Hence, based on the Definition 1, we showed that the
two versions are weak prob-timed bisimilar. Due to lack of space we do not
include them here, interested readers can find them in the report [15].

5 Conclusion and Future works

We addressed the problem of formal security verification of WSN transport pro-
tocols that launch timers, as well as performing probabilistic and cryptographic
operations. We argued that formal analysis of WSN transport protocols is im-
portant because informal reasoning is error-prone, and due to the complexity of
the protocols, vulnerabilities can be overlooked. An example would be the case
of SDTP, which was believed to be secure, but later, it turned out to be vul-
nerable. In this paper, using the algebra language cryptprobtime, we formally proved
that the STWSN protocol is secure against the packet modification attacks.



Formal Sec. Ver. of Trans. Prot. for WSNs 15

In this paper, we also demonstrated the expressive power of the cryptprobtime cal-
culus, and showed that it is well-suited for analyzing protocols that may include
timers, probabilistic behavior, and cryptographic operations. One interesting fu-
ture direction could be examining the usability of cryptprobtime for other class of
protocols (e.g., wired transport protocols). In addition, designing an automated

verification method based on cryptprobtime also raises interesting questions.

References

1. A. Dvir, L. Buttyán, and V.-T. Ta. SDTP+: Securing a distributed transport
protocol for wsns using merkle trees and hash chains. In IEEE International
Confenrence on Communications (ICC), pages 1–6, Budapest, Hungary, June 2013.

2. J. Yicka, B. Mukherjeea, and D. Ghosal. Wireless sensor network survey. Computer
Networks, 52(12):2292–2330, Aug. 2008.

3. C. Wang, K. Sohraby, B. Li, M. Daneshmand, and Y. Hu. A survey of transport
protocols for wireless sensor networks. Network, 20(3):34–40, May 2006.

4. L. Buttyán and L. Csik. Security analysis of reliable transport layer protocols for
wireless sensor networks. In IEEE Workshop on Sensor Networks and Systems for
Pervasive Computing, pages 1–6, Mannheim, Germany, March 2010.

5. B. Marchi, A. Grilo, and M. Nunes. DTSN - distributed transport for sensor
networks. In IEEE Symposium on Computers and Communications, pages 165–
172, Aveiro, Portugal, July 2007.

6. L. Buttyán and A. M. Grilo. A Secure Distributed Transport Protocol for Wireless
Sensor Networks. In IEEE International Conference on Communications, pages
1–6, Kyoto, Japan, June 2011.

7. V.-T. Ta and A. Dvir. On formal and automatic security verification of wsn trans-
port protocols. ISRN Sensor Networks, accepted, December 2013.

8. R. C. Merkle. Protocols for Public Key Cryptosystems. In Symposium on Security
and Privacy, pages 122–134, California, USA, April 1980.

9. D. Coppersmith and M. Jakobsson. Almost optimal hash sequence traversal.
In Fourth Conference on Financial Cryptography, pages 102–119, Southampton,
Bermuda, March 2002.

10. W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic, and
W. Kellerer. Castor: Scalable Secure Routing for Ad-Hoc Networks. In Infocom,
pages 1–9, Rio de Janeiro, Brazil, 2010.

11. Y.-C. Hu, A. Perrig, and D. B. Johnson. Ariadne: a secure on-demand routing
protocol for ad hoc networks. Wireless Networks Journal, 11(1-2):21–38, 2005.

12. C. Fournet and M. Abadi. Mobile values, new names, and secure communication.
In ACM Symposium on Principles of Programming, pages 104–115, 2001.

13. J. Goubault-larrecq, C. Palamidessi, and A. Troina. A probabilistic applied pi-
calculus. In Programming Languages and Systems, volume 4807, pages 175–190.
2007.

14. P. R. D’Argenio and E. Brinksma. A calculus for timed automata. In Formal
Techniques in Real-Time and Fault-Tolerant Systems, volume 1135, pages 110–
129. 1996.

15. V.-T. Ta and A. Dvir. On formal and automatic security verification of wsn trans-
port protocols. Cryptology ePrint Archive, Report 2013/014, 2013.


