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ABSTRACT  

We propose the adaptive multicarrier quadrature division (AMQD) modulation technique for continuous-variable 
quantum key distribution (CVQKD). The method granulates the Gaussian random input into Gaussian subcarrier 
continuous variables in the encoding phase, which are then decoded by a continuous unitary transformation. The 
subcarrier coherent variables formulate Gaussian sub-channels from the physical link with strongly diverse transmission 
capabilities, which leads to significantly improved transmission efficiency, higher tolerable loss, and excess noise. We 
also investigate a modulation-variance adaption technique within the AMQD scheme, which provides optimal capacity-
achieving communication over the sub-channels in the presence of a Gaussian noise.   

Keywords: continuous-variable quantum key distribution, Gaussian modulation, quantum cryptography, quantum 
Shannon theory. 
 

1. INTRODUCTION  
Continuous-variable (CV) quantum key distribution (QKD) systems allow for the establishment of an unconditionally 
secure quantum communication over the current standard telecommunication networks. CVQKD systems possess 
several benefits and advantages over the DV (discrete variable) protocols, since they do not require specialized devices 
or unreachable special requirements in an experimental scenario [11-18], [22-30]. CVQKD systems are based on 
continuous variables such as Gaussian random position and momentum quadratures in the phase space. The Gaussian 
modulated coherent states are transmitted over a noisy quantum channel, where the presence of an eavesdropper adds a 
white Gaussian noise to the transmission. Since CVQKD schemes were developed and introduced just a few years ago, 
there are still many open questions regarding the optimal encoding scheme. A Gaussian modulation is a robust and easily 
applicable finding in a practical scenario, and allows for the implementation of the protocol in the experiment; however, 
CVQKD is still very sensitive to the imperfections of the transmission and the practical devices. The performance of the 
protocol is strongly determined by the excess noise of the quantum channel, and the transmittance parameter of the 
physical link (specifically, the Gaussian noise of the quantum channel models the eavesdropper’s optimal entangling 
cloner attack [2-3], [11-18], and the channel is referred to as a Gaussian quantum channel). Since the amount of tolerable 
loss and the excess noise are central parameters from the viewpoint of the running of CVQKD, it would be very 
desirable to make some optimization steps in the encoding and decoding process to override the current limitations and 
to improve the quality of the quantum-level transmission. Our aim is to provide a solution to this problem by introducing 
the adaptive multicarrier quadrature division (AMQD [23]) modulation technique for CVQKD, which can be applied 
both in one-way and two-way CVQKD to increase the tolerable loss and excess noise. In traditional telecommunications, 
OFDM (orthogonal frequency-division multiplexing) is a well-known and widely applied technique for improving the 
bandwidth efficiency over noisy communication networks [6-10]. In an OFDM scheme, the information is encoded in 
multiple carrier frequencies, and its main advantage over single-carrier transmission is that the subcarrier-based 
transmission can attenuate and overwhelm the problems of diverse and unfavorable channel conditions. OFDM systems 
have been admitted to be a useful encoding method in traditional networking; however, no similar method exists for 
CVQKD. If a similar solution were available for continuous variables, one could enjoy similar benefits in a quantum-
communication scenario; however, up to this point no analogous answer exists for quantum-level transmission. With this 
in mind, we introduce the idea of AMQD, which works on continuous variables and for which similar benefits can be 
reached in the process of quantum-level information transmission, e.g., in a classical scenario by the application of the 
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OFDM. In the standard coding scenario, Alice, the sender, modulates and separately transmits each coherent state in the 
phase space. This standard modulation scheme is referred as single-carrier modulation throughout, consistent to its 
traditional meaning. 

The key idea behind AMQD modulation is as follows. Alice draws a zero-mean, circular symmetric complex 
Gaussian random vector, which is then transformed by the inverse Fourier operation. At a given modulation variance, 
Alice prepares her Gaussian subcarrier CVs, which are then fed into the channel. Bob, the receiver, applies the inverse 
unitary of Alice’s operation, which makes it possible for him to recover the noisy version of Alice’s input coherent 
states. This kind of communication will be referred as multicarrier modulation.  

What are the main advantages of this kind of communication? There are several fine corollaries. First of all, the 
Gaussian subcarrier CV states sent through the channel, which overall allows higher tolerable loss and excess noise at a 
given modulation variance. Second, the Gaussian quantum channel can be viewed as several parallel Gaussian quantum 
channels, called sub-channels, each dedicated for the transmission of a given subcarrier with an independent, and 
significantly lower noise variance. Third, the information transmission capability of the sub-channels is very diverse, 
depending on the variance of the subcarrier CV, which allows for the development of smart adaptive modulation 
techniques for the proposed multicarrier quadrature division-encoding technique. The idea behind this is to use only the 
“good” Gaussian sub-channels for the transmission, and to not send any valuable information over the so noisy sub-
channels. It is a particularly convenient approach, since the result of the adaptive allocation is a better performance of the 
protocol at low SNRs (signal-to-noise ratio) and higher tolerable loss, which are crucial cornerstones in an experimental 
CVQKD that operates in practice at very low SNRs. From these, the purposes are now clear. We have to find the 
operation that works on continuous variables and outputs the subcarrier quadratures, which can divide the physical 
Gaussian channel into Gaussian sub-channels. We also need the continuous unitary inverse of this operation. If we have 
it, then we have to find an adaptive modulation-variance allocation mechanism, which allows no to send valuable 
information over the very noisy Gaussian sub-channels. Fortunately, these features are all included in our AMQD coding 
scheme. The AMQD modulation granulates Alice’s initial Gaussian states into several subcarrier Gaussian CVs, which 
divide the physical channel into several Gaussian sub-channels. Bob applies an inverse continuous unitary operation, 
which allows him to obtain Alice’s initial (noisy) coherent states. The proposed AMQD modulation offers several 
important features, but the main improvement is in the quality of the quantum-level transmission, since the subcarriers 
allow a more efficient communication over the same quantum channel at a given modulation variance. 

This paper is organized as follows. In Section 2, preliminaries are proposed. Section 3 introduces the multicarrier 
quadrature division scheme. In Section 4, the adaptive modulation variance allocation mechanism is discussed. Finally, 
Section 5 concludes the results. For further details and information see [23]. 

2. PRELIMINARIES 

In the standard single-carrier modulation scheme, the input coherent state i ix pj = +i i  is a Gaussian state in the 

phase space , with i.i.d. Gaussian random position and momentum quadratures , , 

where  is the modulation variance. The coherent state 
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In the single-carrier scenario, the transmission of this complex variable over the Gaussian quantum channel   can be 

characterized by the (T )  normalized complex transmittance variable  

( ) ( ) ( )Re ImT T T= + Î  i  ,                                                    (1) 

where ( )0 Re 1 2T£ £  stands for the transmission of the position quadrature, ( )0 Im 1 2T£ £  is the 

transmission of the momentum quadrature, with relation  
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by our convention. The ( )0 T£  1£ ) magnitude of the (T   complex variable is  
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models the Gaussian noise of the quantum channel (also a zero-mean, symmetric circular complex Gaussian random 
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where  is the modulation variance (single-carrier) of the input Gaussian signal.  
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is the average modulation variance of the i-th Gaussian subcarrier CV transmitted via the i-th Gaussian sub-channel. 
At this point, the capacity formulas of (8) and (10) require some clarification. Assuming a Gaussian quantum channel, 
one can find two different capacity formulas for the real dimension and the complex dimension. The reason is as follows. 



 
 

 

 

The noise is independent on the real and imaginary parts (i.e., on the position and momentum quadratures), and each use 
of the complex Gaussian channel is in particular analogous to two uses of the real Gaussian channel. From this 
distinction, two different types of capacity formulas can be derived for the same Gaussian channel, i.e., the real-
dimension capacity and the complex-dimension capacity.  
The real dimension capacity of an AWGN is 
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while the complex dimension capacity is precisely 
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In (13) the use of the complex domain is justified by the fact that circular symmetric complex Gaussian random variables 
will be transmitted through the Gaussian quantum channel.  
The SNR of the channel is  
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For further information see [23]. 

3. MULTICARRIER QUADRATURE DIVISION MODULATION  

In terms of the CV scenario, by a convention the x  position quadrature could be used as a computational basis. We 

will also do this throughout. (The continuous-variable quantum Fourier transformation will be abbreviated as CVQFT.) 
Let the Gaussian variable be 
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For an n-dimensional Gaussian random vector , , where  is the covariance 

matrix, the Fourier transform and its inverse: 
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Proposition 1.  The  variance of a Gaussian subcarrier CV 2
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Proof.  
First, we propose the CVQFT operation acting on the continuous variables, and then we rewrite it as a zero-mean, 
circular symmetric complex Gaussian random variable [23].  

Assuming x  position computational basis, function  acts on the coherent input ( )F ⋅ ij  as follows [1]: 
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wavefunctions in the position space x, and momentum space p for the state ij , respectively. The notation x y  
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The inverse function of (21) is defined as  

( )1
iF p xj- = ij .                                                                   (27) 

A Gaussian modulated coherent state i ix pj = +i i ), where ,  are the position and 

momentum quadratures, respectively; can be rewritten as a zero-mean, circular symmetric complex Gaussian random 

variable , 
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The i-th subcarrier CV is defined as  
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where CVQF  is the continuous-variable QFT operation.  T
Let us to derive the Fourier transform of the Gaussian input [7-8]. First, we rewrite (31) in the position basis x as 
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The  Fourier transform of the Gaussian signal  is also Gaussian in the conjugate-variable space, with 
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Proof.  
Let n is the number of Alice’s input Gaussian states. The n input coherent states are modeled by an n-dimensional, zero-
mean, circular symmetric complex random Gaussian vector  
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where  is the stands for single-carrier modulation variance (precisely, the variance of the real and imaginary 
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A n-dimensional Gaussian random vector is expressed as , where  is an (invertible) linear transform from 
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In the first step of AMQD, Alice applies the inverse FFT operation to vector z  (see (37)), which results in an n-
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where  is the Fourier transform of ( )(F T  ) (49). The n-dimensional  complex vector is evaluated as ( )F D

( )
( ) ( )( ) ( )

( ) ( )2 22 2
1

1
2 2

F F nT
F F F n

F e e

s s
æ ö÷ç ÷ç ÷ç- D + + D ÷ç ÷ç ÷÷ç- D D D è

D = =


C ø

,                                           (52) 

which is the Fourier transform of the n-dimensional zero-mean, circular symmetric complex Gaussian noise vector 
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The CVQFT-transformed noise vector in (52) can be rewritten as 
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with independent components  and  on the quadratures, for each 

. It also defines an n-dimensional zero-mean, circular symmetric complex Gaussian random vector 

 with a covariance matrix 
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and the noise variance  of the independent Fourier-transformed quadratures is evaluated as ( )
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where  is the noise variance of the Gaussian quantum channel 2s  ,  is the  identity matrix, hence 

, and 
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, with independent noise variance  on the quadrature 

components (For simplicity, the notation of  will be omitted from the description.). The LHS of 
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2
F
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n n´I (55) is justified by 

Proposition 1 and (36). It is an important corollary regarding the noise variance of the Fourier-transformed vector (54). 
An AMQD block is formulated from n Gaussian subcarrier continuous variables, as follows:  
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where j is the index of the AMQD block,  is defined in ( )(F T  (51), , where  is 

shown in 

( ) ( )( 1F F F-=d z ( )1F- z

(45), while 

( )
( ) ( ) ( )(
( ) ( ) ( )( )

1

1

1

, , ,

, , ,

, , .

T
n

T
n

T
n

j y j y j

F j F d j F d j

F j F j F j

é ù é ù é ù=ë û ë û ë û
é ù é ù é ù=ë û ë û ë û
é ù é ù éD = D D ùë û ë û ë

y

d





 û

                                               (58)        

The squared magnitude  
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identifies an exponentially distributed variable, with density ( ) ( )
2221 2 ,nf wt s

wt s -= e  and from the Parseval theorem 

[6] it follows that  
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while the average quadrature modulation variance is 
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where  is the modulation variance of the quadratures of the subcarrier 2

iw
s if  transmitted by sub-channel i .  

The transformed vector y  in (48) and (58) clearly demonstrates that the physical Gaussian channel is, in fact, divided 

into n Gaussian quantum channels with independent noise variances. Each i  Gaussian sub-channel is dedicated for the 

transmission of one Gaussian subcarrier CV from the n subcarrier CVs. 
   ■ 

For the further details see [23]. 
 
3.1 Gaussian noise of the Gaussian sub-channels 

Eve’s optimal entangling cloner attack [2] in the multicarrier modulation setting is described as follows. Let the 

quadratures of the i-th subcarrier if  transmitted by i  be 
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The part  of is sent back to iB i , which system has the following quadratures: 
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The simplified view of Eve’s Gaussian attack in the multicarrier scenario is summarized in Fig. 2. Eve attacks each sub-

channel with a BS with transmittance , ,Eve iT Î 
2

,0 Eve iT< 1< , and an entangled ancilla EBY  with variance W. 

The quadratures of the i-th sub-channel are ( , Eve’s quadratures are ( , Bob’s received noisy 

quadratures are ( . Each sub-channel is characterized with a Gaussian noise  on the quadrature 

components, with independent noise variance .  
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As shown in (53), Eve’s optimal Gaussian attacks define an n-dimensional zero-mean, circular symmetric complex 
Gaussian random noise vector. In the AMQD scenario, the appropriate noise vector is given by (52) and (55), as 

, and , respectively. For the security proof of AMQD against 

optimal Gaussian collective attacks is being presented in Theorem 4. For the further details see [23]. 
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4.  ADAPTIVE MODULATION VARIANCE ALLOCATION MECHANISM 
The run of the multicarrier quadrature division is sketched as follows. In the initial phase, Alice draws an n-dimensional, 

zero-mean circular symmetric complex Gaussian random vector , ( ) (1, , 0,
T

nz z= + = Î zz x p K i
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, and ,  are i.i.d. Gaussian random variables that identifies the x position 

and p momentum quadratures in the phase space , while  is the modulation variance (at a single-carrier 

transmission).  
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In the next step, Alice applies the inverse FFT on , that gives her the results of an n-dimensional, zero-mean circular 

symmetric complex Gaussian random vector . According to , she prepares 

the 

( ) (1 0,
T

= Î dp K  d

1 nf  Gaussian subcarrier CVs, by modulating with s  the position and momentum quadratures, where 
0

2
w

s¹ 2
w

if  is the i-th subcarrier continuous variable. The n subcarrier coherent states if  divide the physical Gaussian 

quantum channel into n physical Gaussian quantum channels, each equipped with an independent noise variance .  2

i
s


In the decoding phase, Bob applies the CVQFT unitary operation U  on the received noisy Gaussian subcarrier CVs, 

if¢ , which results him the noisy coherent state versions of Alice’s Gaussian variables, 1 1n nzj¢ ¢= = z  ¢

)

, and 

the Fourier transformed sub-channel noise variance . The CVQFT-transformed ( )i
2
F

s ( )( 2
i iF T   transmission 

parameters of the Gaussian sub-channels are strongly diverse (this will be shown in Section 4), which makes available 
the use of an adaptive variance modulation to improve the tolerable noise and excess noise. 
The steps of multicarrier quadrature division modulation are summarized in Fig. 1 [23].  
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modulation

1d

nd

  

1f¢1f

nf
(AW

1j¢

GN)

1, , nz z

nf¢

nj¢

Modulated CV 
subcarriers

Circ. sym. complex 
random Gaussian 

variables

( ) ( )CVQFTIFFT

1F- U

 
Figure 1. The AMQD modulation scheme. Alice draws an n-dimensional, zero-mean, circular symmetric complex Gaussian random 

vector , which are then inverse Fourier-transformed by . The resulting vector  encodes the subcarrier quadratures for the 
Gaussian modulation. In the decoding, Bob applies the U unitary CVQFT on the n subcarriers to recover the noisy version of Alice’s 
original variable as a continuous variable in the phase space. 

z 1F- d

 
(Note: In the two-way protocol, Bob sends the subcarrier CVs to Alice, who generates coupled Gaussian CVs with her 
BS. The resulting Gaussian subcarrier CV is then sent back to Bob, who applies the CVQFT operation. Alice also 
applies a CVQFT operation on her system.) The reason behind the improvement is that the dB limits of the transmission 
over the Gaussian quantum channel can significantly be extended by the Fourier-transformed multicarrier continuous 
variables.  

The modulation variances of each of the i  sub-channels (zero or nonzero) are dependent on the value of . This 

parameter is defined as 
Even

1
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where l  is the Lagrange multiplier as  
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where  is the expected transmittance of the n sub-channels under an optimal Gaussian attack. *T

From l , and the  modulation variances of the 2
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s i  sub-channels, a Lagrangian can be constructed as  
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By the Kuhn-Tucker condition [6], [9-10], follows that 
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After some calculations, one gets the following average modulation variance: 
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One can readily see that in (68), each sub-channel is allocated by a different modulation variance, depending on the 

actual value of ( )( 2
i iF T  . The reason for this is as follows. Only those l  sub-channels can transmit 

information for which ; otherwise, the channel gets zero modulation variance. (In general, this kind of strategy 

is called water-filling [6], [9-10].) Since it is not a reasonable assumption in a practical CVQKD that the transmitter 
would have an exact knowledge about the state of each Gaussian sub-channels, at this point we have to introduce a more 
flexible technique. Our answer is as follows.  
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It is particular convenient, since at a given  bound, it is enough to find a given Even ( )( 2
1 1max l l

i
F T   for those 

i  sub-channels, for which  hold.  i En n< ve

ve
2

Particularly, the significance of the adaptive-variance modulation proposed in (69) is crucial for low SNRs, which is 
precisely the case in a long-distance scenario, since the information transmission capability of the Gaussian sub-channels 
become very sensitive in the low SNR regimes [4], [6], [9-10]. At low SNRs the constant allocation provides an optimal 
solution [9-10], because its performance is very close to the exact allocation and can be performed with no exact 
knowledge about the state of the sub-channels. This is very good news, because the proposed AMQD modulation 
scheme allocates a constant modulation variance for the good Gaussian sub-channels. For the further details see [23]. 

The modulation variance adaption scheme is summarized in Fig. 2. The parameter  of the Gaussian sub-channels is 

depicted in yellow. If  is under a critical limit , the channel is assumed to be useful and can be used for 

information transmission. If , Alice allocates a constant modulation variance  according to 
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the Gaussian sub-channel  . If , Alice allocates zero modulation variance for in ³ En ve i , i.e.,  [23].  2 0
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Figure 2. The constant modulation variance allocation mechanism. If the i-th sub-channel  is very noisy, i.e., , Alice 

will not use that sub-channel, i.e., the modulation variance  of 

i i Even n³
2

iw
s if  is 0. Only those sub-channels will be used for the transmission 

for which  is under the critical bound  (red dashed line). Assuming l  sub-channels with , the modulation variance 

for these sub-channels is chosen to be a constant 
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The AMQD is equipped with all of those properties that allow it to meet the requirements of an experimental protocol, 
since its real potential is brought to life at very low SNRs. As a fine corollary, the transmission efficiency significantly 
can be boosted in an experimental long-distance CVQKD scenario [23]. 
 

5.  CONCLUSIONS 
The CVQKD protocols represent one of the most capable practical manifestations of quantum information theory. While 
the DVQKD protocols cannot be implemented within the framework of current technology, the CVQKD schemes can be 
established over standard communication networks and practical devices. Besides the attractive properties, the CVQKD 
schemes have an extreme sensitivity to the channel noise and other loss which allow no to use these protocols with such 
a high efficiency as it is available for traditional protocols in a traditional telecommunication scenario. To resolve the 
problem of low tolerable loss and excess noise, we introduced a new modulation scheme for CVQKD. The input 
Gaussian variables are transformed into several Gaussian subcarrier CVs, which are then transformed back by the 
continuous unitary CVQFT operation at the receiver. The transmission is realized through several Gaussian sub-
channels, each dedicated to a given subcarrier with an independent noise variance. The AMQD modulation allows 
higher tolerable loss and excess noise in comparison with the standard modulation, and can be applied in both one-way 
and two-way CVQKD. We also investigated an adaptive modulation variance allocation mechanism for the scheme, 
which can significantly improve the efficiency of the transmission, particularly in the low SNR regimes.  
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