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Abstract 
 

The theory of quantum gravity is aimed to fuse general relativity with quantum theory 
into a more fundamental framework. The space of quantum gravity provides both the 
non-fixed causality of general relativity and the quantum uncertainty of quantum me-
chanics. In a quantum gravity scenario, the causal structure is indefinite and the processes 
are causally non-separable. In this work, we provide a model for the information process-
ing structure of quantum gravity. We show that the quantum gravity environment is an 
information resource-pool from which valuable information can be extracted. We analyze 
the structure of the quantum gravity space and the entanglement of the space-time ge-
ometry. We study the information transfer capabilities of quantum gravity space and de-
fine the quantum gravity channel. We reveal that the quantum gravity space acts as a 
background noise on the local environment states. We characterize the properties of the 
noise of the quantum gravity space and show that it allows the separate local parties to 
simulate remote outputs from the local environment state, through the process of remote 
simulation. We characterize the information transfer of the gravity space and the correla-
tion measure functions of the gravity channel. We investigate the process of stimulated 
storage for quantum gravity memories, a phenomenon that exploits the information re-
source-pool property of quantum gravity. The results confirm the perception that the 
benefits of the quantum gravity space can be exploited in quantum computations, particu-
larly in the development of quantum computers. 
 
Keywords: quantum gravity, quantum computation, quantum Shannon theory. 
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1  Introduction 

In general relativity, processes and events are causally non-separable because the causal structure 
of space-time geometry is non-fixed. In a non-fixed causality structure, the sequence of time steps 
has no interpretable meaning. In our macroscopic world, events and processes are distinguishable 
in time and, thus, causally separable because the space-time geometry has a deterministic causal-
ity structure. The meaning of time evolution is also non-vanishing and has an interpretable no-
tion in the microscopic world of quantum mechanics. It is precisely the reason why classical and 
quantum computations are evolved by a sequence of time steps and why the term time has an 
interpretable and plausible meaning in the macro- and microscopic levels. A fundamental differ-
ence between the nature of events of general relativity and quantum mechanics is that although 
the theory of general relativity provides a non-fixed causal space-time structure with deterministic 
events, in quantum mechanics, the space-time geometry has a fixed, deterministic causality struc-
ture whereas the events are nondeterministic. Quantum gravity is provided to fill the gap be-
tween these two fundamentally different theories. The theory of quantum gravity combines the 
results of general relativity with quantum mechanics to construct a more general framework. In 
quantum gravity, the causal structure is non-fixed, and the events are probabilistic [1–7]. In the 
quantum gravity space, the computations and the information processing steps are interpreted 
without the notion of time evolution. This space-time structure allows us to perform quantum 
gravity computations and to build quantum gravity computers, which fuse the extreme power of 
quantum computations and the non-fixed causality structure of general relativity [4]. The space of 
quantum gravity can be further exploited in quantum communication protocols, in quantum AI, 
in quantum error correction, and particularly in the development of quantum computers [8–33], 
[41–51]. 

Besides the attractive properties of quantum gravity theory, the appropriate characterization 
of the information processing structure of the quantum gravity space is still missing. In this work, 
our aim was to provide a model for the information processing structure of quantum gravity. We 
show that the quantum gravity space acts as an information resource-pool and reveal that the 
quantum gravity space stimulates a noisy map on the local environment states of independent, 
physically separated local maps. This background noise of the quantum gravity space allows the 
local parties to simulate remote, physically separated processes in the quantum gravity space, in a 
probabilistic way. We call this process remote simulation, an event that can be accomplished only 
as a coin tossing in a fixed causality structure. We also study the entangled space-time structure 
of quantum gravity and define the partitions over which the information flow between the sepa-
rated processes is possible. We characterize the properties of the quantum gravity channel and the 
information transmission capability of the quantum gravity space by the tools of quantum Shan-
non theory. We introduce the terms quantum gravity memory and stimulated storage, which allow 
for the generation and storage of qubit entanglement exploiting the information resource-pool 
property of the quantum gravity space. 

This paper is organized as follows. Section 2 provides the entanglement structure of the quan-
tum gravity space, the information resource-pool property of quantum gravity, and the structure 
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of the quantum gravity channel. Section 3 studies the information flow through the quantum 
gravity environment and characterizes the correlation measures. Section 4 provides a quantum 
gravity memory and introduces the term stimulated storage. Finally, Section 5 concludes the pa-
per. 
 

2  Information Processing of Quantum Gravity 

Theorem 1 (Entangled structure of the quantum gravity environment). The space-time geome-
try (quantum gravity environment E ) formulates an entangled structure with i jE B , where iE  is 

the local environment, and jB  is the remote output of local maps A  and B , i j¹ . The 

E i jE Br  entangled structure stimulates a non-fixed causality between the local processes A  and 

B . 
 
Proof 
The proofs throughout this work assume two qubit maps A  and B , 1,2i = , with qubit 

quantum gravity environment state E . Specifically, the utilization of qubit channels is a re-
quired condition of the existence of a non-fixed causality structure between independent local 
completely positive, trace preserving (CPTP) [34–40] maps A  and B , which follow from the 
property of the shift-and-multiply unitaries [11]. 
The local CPTP maps A  and B  are independent, physically separated maps, with uncorre-

lated inputs 1A  and 2A . The local input is denoted by iA , and the local outputs and environ-

ments are denoted by iB  and iE , respectively. The remote output is referred to as jB , j i¹ . 

The inputs can convey classical or quantum information, both the same type. A local i  can be 

decomposed into the local logical channel 
i iAB , which exists between the input iA  and the out-

put iB , and the local complementary channel 
i iAE , which connects the input iA  with the local 

environment state iE . Both 
i iAB  and 

i iAE  are qubit maps. In particular, for modeling pur-

poses, we also introduce a C  qubit state, which identifies the realizations of the two local maps 

A  and B  by qubit states { }0 , 1C Î . 

Let 1
2

p =  be the probability of each map. Assuming a fixed causality, system C can be modeled 

as a 2d =  dimensional system with density 
( )1

2
0 0 1 1Cr = + .                                            (1) 

If the causality is non-fixed between the two local maps A  and B , then C  can be character-

ized by the superposition qubit state ( )1
2

0 1C = + = + , leading to the density 

( )1
2

0 0 0 1 1 0 1 1Cr = + + + .                              (2) 
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Our investigation here is that the quantum gravity environment E , which models the space-time 
geometry (Theorem 3 will reveal that the local environment states also must be qubit states), 
does exactly the same controlling mechanism as a superposition qubit state C = + . However, 

there is a fundamental difference between systems C and E . Although C can be modeled by as a 

separable qubit state, in the quantum gravity setting, E  is a subsystem of an entangled tripar-

tite system 
E i jE Br , where the quantum gravity environment E  is entangled with the two-qubit 

system i jE B  via partition E i jE B- , that is, the system E  is non-separable from i jE B . This 

injects a fundamental difference between our model and that studied in [11] because, in our 
model, the simultaneous realizations of the local maps A  and B  are a consequence of the 

entangled tripartite qubit system 
E i jE Br  and a dedicated qubit superposition control system C 

does not exist.  
However, the control state formalism C = +  still can be utilized to model the vanishing causal-

ity of the A  and B  local maps in our model, as it will be shown in Section 4. 

Specifically, taking the Kraus operators of the local channels 
1 1AE and 

2 2A B  of maps A  and 

B  

( ) ( )1 1 1 1

1 1

†AE AE
AE i ii

A Ar r= å ,                                     (3) 

( ) ( )2 2 2 2

2 2

†A B A B
A B j jj

A Ar r= å                                      (4) 

a CPTP map   can be introduced that describes the parallel realizations of the local channels 

1 1AE and 
2 2A B . This map is defined as follows: 

( ) ( )†, i ii j
A Ar r= å  

 ,                                       (5) 

where the Kraus operator iA
  is expressed as 

1 1 2 2 2 2 1 10 0 1 1AE A B A B AE
i i j j iA A A A A= Ä Ä + Ä Ä .                    (6) 

The local environment state and remote outputs 1E  and 2B  of A  and B  are entangled with 

the quantum gravity environment state E , formulating a mixed tripartite entangled qubit sys-

tem 
1 2EE B

r , in which 1E  is separable from 2EB , 2B  is separable from 1EE , and E  is entan-

gled with 1 2E B . Together with the local environment 2E  and remote output 1B , systems 
1 2EE B

r  

and 
1 2EE B

r  formulate the density matrix 

1 2 2 1

1 1
2 2E EE B E Br r r= +  .                                      (7) 

Focusing on the tripartite system 
1 2EE B

r  throughout, the following conditions have to be satis-

fied for the partitions 1 2E E B- , 1 2EE B-  , and 2 1EB E-  .  
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Because the local subsystems 1E  and 2B  have to be separable from the partitions 2EB  and 

1EE , in this tripartite system, only the quantum gravity environment E  can be entangled with 

1 2E B , and all other partitions have to be separable with respect to 1E  and 2B . From these, it 

clearly follows that the partitions 1 2EE B-   and 2 1EB E-   have to be separable, and 

1 2E E B-  has to be entangled. 
Without loss of generality, we define a tripartite qubit state that simultaneously satisfies these 
conditions as 

( )
1 2

1
EE B

r x c= W ⋅ + - W ,                                        (8) 

where  
1
3

W £ .                                                    (9) 

We further evaluate 
1 2EE B

r  in Equation (8) as 

( )

( )

1 2

1
2

1 1 1
2 2 2

 000 000 110 110

000 110 110 000 001 001
 ,

011 011 101 101 111 111

EE B
r =

W + +
æ ö+ + +÷ç ÷ç- W ÷ç ÷+ + ÷çè ø



                 (10) 

where 
1EE

r  is a separable Bell diagonal state, which can be expressed as 

 
( )( )

( )( )
( )( )

1

1 1 1
2 2 2

1 1 1
2 2 2
1 1 1
2 2 2

00 00 11 11

        00 11 11 00

        01 01 10 10 ,

EE
r = + W + +

- W + +

- W +



                                 (11) 

and in matrix form as 
1 1
2 2

1 1
2 2

1 1
2 2

1 2

1 1
2 2

1 1
2 2

1 1
2 2

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 01
0 0 0 0 0 0 0 02

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

,
EE B

r

W - W

- W

- W

- W

- W W

- W

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

                                 (12) 

whereas 
1EE

r  can be expressed in as 
1 1 1 1
2 2 2 2

1 1
2 2

1 11
2 2

1 1 1 1
2 2 2 2

0 0

0 0 01
2 0 0 0

0 0

.
EE

r

+ W - W

- W

- W

- W + W

æ ö÷ç ÷ç ÷ç ÷ç= ÷ç ÷ç ÷÷ç ÷çè ø

                                         (13) 

These will be referred via the partitions 1EE , 2EB , and 1 2E E B-  of 
1 2EE B

r , respectively. In 

particular, for 1
3

W £ , the subsystems 
1EE

r , 
2EB

r , and 
1 2E Br  remain separable, while 

E
r  is 

entangled with 
1 2E Br ; thus, it straightforwardly follows that the system of Equation (10) can be 

used in the remaining part of the proof. 
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The separability conditions can be checked by taking the partial transposes ( )
1

E

E

T

Er 

 , 

( ) 1

1

E

E

T

Er , ( ) 1

1 2

E

E

T

E Br , and ( ) 2

1 2

B

E

T

E Br  of 
1 2EE B

r .  

The positivity of ( )
1

E

E

T

Er 

  and ( ) 1

1

E

E

T

Er  trivially follows from Equation (13) because 
1EE

r  is 

a separable Bell diagonal state. 
In particular, we will show the partial transpose of 

1 2EE B
r  with respect to 2B , which can be ex-

pressed as follows: 

( )

1 1 1 1
2 2 2 2

1 1
2 2 2

1 2

1 1
2 2

1 1
2 2

1 1
2 2

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 01
0 0 0 0 0 0 0 02

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

.B

E

T

E Br

W

- W - W

- W

- W

- W W

- W

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç= ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷è ø

                             (14) 

This partial transpose is non-negative; hence, 

( ) 2

1 2
0B

E

T

E Br ³ ,                                            (15) 

and similarly, with respect to 1E , 

 ( ) 1

1 2
0E

E

T

E Br ³ .                                            (16) 

Tracing out 2B  from 
1 2EE B

r , one can check easily that the partial transpose of the resulting ma-

trix ( )
2 1 2EB E BTr r  with respect to E  and 2E  is positive because ( )

1
0E

E

T

Er ³

  and 

( ) 1

1
0E

E

T

Er ³ . 

Specifically, the partial transpose of 
1 2EE B

r  with respect to E  is negative; hence, 

( )
1 2

0E

E

T

E Br <

 ,                                           (17) 

which immediately proves that the quantum gravity environment E  (the space-time geometry) 

is entangled with 1 2E B . 

The entangled structure of quantum gravity environment E  is depicted in Fig. 1. The informa-

tion transmission is realized through the partition E i jE B- . 
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1B

1A

E

1E

A

1 1AB

1 1AE
2A

B

2 2A B

2 2A E

2B

2E

2 1EE B
r

E

1 2EE B
r

 
Figure 1. The density matrix 

1 2 2 1

1 1
2 2E EE B E Br r r= +  . The local environment state iE  and the 

remote output jB  of A  and B  are entangled with the quantum gravity environment state 

E , via the partition E i jE B- . The entanglement between the local environments and the 

quantum gravity environment (or space-time geometry) allows the parties to simulate locally the 
remote outputs from their local environment. (The wavy lines illustrate the entanglement; the 
arrow refers to the direction of the information flow.) 
 
From the map   of (5), it follows that the entangled structure of the density r  leads to a non-

fixed causality between the local maps A  and B , which conclude the proof. 
■ 

 
Note that the strength of the correlation of the local environment state iE  and the remote output 

jB , i j¹  can be characterized by the amount of information that is transferred through parti-

tions 1EE  and 2EE . These questions, along with the information transmission capabilities of 
the quantum gravity environment, will be revealed next. 
 
Theorem 2 (The information resource-pool property of quantum gravity). Quantum gravity acts 
as a background noise in form of a noisy CPTP map i jE B

  on the local environment state iE , 

which allows the parties to simulate the remote output jB  as i jE B
j iB E =    with probability 

1
2

p > . The quantum gravity environment is an information resource-pool for the local parties. 

 
Proof 
Theorem 1 has revealed that, in the quantum gravity space, the local environment iE  and the 

remote output jB  of the local maps A and B  together with the quantum gravity environ-
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ment E  formulate an entangled tripartite qubit structure. We step forward from this point and 

show that the entangled E i jE B-  structure allows the local parties to simulate the remote out-

put jB  from the local environment jE  with probability 1
2

p > , above the classical limit 1
2

p =  

(i.e., a coin tossing), which is precisely the case in a fixed causality structure where the local par-
ties are independent [10]. 
The quantum gravity setting allows the parties with a probability p  to simulate the remote out-
put from the local environment state through the local degrading map, in which the degrading 
map is a consequence of the quantum gravity environment. The remote output locally will be 
simulated from the local environment iE  via the local CPTP map i jE B

 , the process of which 

is called remote simulation. It means that Alice can simulate 2B  from her local environment state 

1E  as 1 2
2 1

E BB E =   , and vice versa, Bob can simulate Alice’s output 1B  as 
2 1

1 2
E BB E =    (Note: The notation   stands for the simulation, and the local degrading map 

i jE B
  will be used in the right-hand side in the equations throughout.) 
However, in the quantum gravity scenario, the information transmission through the partitions 
cannot be described by an ideal (i.e., noiseless) map; thus, the local degrading map i jE B

  can 
be applied only with success probability p . Thus, the remote simulation is a noisy process, that 
is, it is probabilistic. If the I identity map is realized on iE , then the remote simulation is not 

possible from iE . This outcome has probability 1 p- . 
In particular, the probabilistic remote simulation process can be characterized by a CPTP map 

 , defined as 

( )1i jE Bp p I= + -  ,                                    (18) 

and the output of this map is as follows: 

( )( )
( )

1

1 .

i j

j i
E B

i

j i

B E

E p p I

pB p E



¢ =

= + -

= + -






                                    (19) 

It is trivial that if the parties have no information about each other, then the remote output jB  

can be simulated from the local environment iE  only with probability 1
2

p = ; hence, 

 ( )1
2

i jE B I= +                                            (20) 

and 
( )1

2
.j j iB B E¢ = +                                              (21) 

This is precisely the case in a standard scenario, where the quantum gravity effects are not pre-
sent. The situation changes if we step into the quantum gravity space, which leads to success 
probability 1

2
p > . To see it, we demonstrate this statement by assuming a case when both local 

CPTP maps A  and B  are the so-called entanglement-breaking channels. 

The Kraus representation of the A  entanglement-breaking channel is evaluated as 
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( ) ( ) ( ) ( ) ( )†,
A A

A AA A A A i AA i
i

I N Nr r r r
¢ ¢

¢ ¢ ¢= Ä = å                   (22) 

where AAr ¢  refers to an entangled input system, and 
( ) ,
A
i A i A A
N I x V

¢

¢¢ ¢
= Ä                                         (23) 

where A¢  and A¢¢  refer to the input and output systems, and the Kraus-operators ( )A
iN

¢  are unit 

rank. The sets { }i A
x

¢¢
 and { }AV

¢
 each do not necessarily form an orthonormal set. 

Thus, for an entangled input iA¢  of an entanglement-breaking channel 
i iAB , it will destroy every 

entanglement on its local output iB . Assuming a maximally entangled input system 
-

¢ ¢=
Y = å 11

0

d

iAA A Ad
i i , the output of A  can be expressed as follows: 

 ( ) ( ) A B
A X x xAA

x

p x r r
¢

Y Y = Äå ,                               (24) 

where ( )Xp x  represents an arbitrary probability distribution, and rAx  and rBx  are the separable 

density matrices of the output system. The logical channel 
i iAB  performs a complete von Neu-

mann measurement on its input system r  and outputs ( )s r=�EB ; hence, 
i iAB  is expressed 

as 
( ) { } ,

i iAB x x
x

Trr r s= På             (25) 

where { }Px  represents a positive operator valued measure (POVM) on r , and sx  is the output 

density matrix of the channel [40]. The local 
i iAB  further can be decomposed into the CPTP 

map 1

i iAB
 , a measurement operator { }Px , and a second map 2

i iAB
 , which outputs the density 

matrix sx , together called conditional state preparation: 
1 2

i i i i i i
AB AB AB

= P    ,                    (26) 

where 1

i iAB
I=  and 2

i iAB
I= . 

Introducing the notation XP  for the X-basis and ZP  for the Z-basis, let the local 
i iAB  channels 

be defined as follows: 

1 1 1AB I I= P  ,                                           (27) 

where 
1 1

1 2 2
X ZP = P + P ,                                            (28) 

and 

2 2 2A B I I= P  ,                                          (29) 

where 

2 .ZP = P                                                   (30) 

Let the local i jE B
  maps of A  and B  be defined as follows: 
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 1 2E B Z = P                                                (31) 
and 

2 1E B Z = P .                                               (32) 
Thus, each i jE B

  performs a projective measurement in the Z-basis on the local environment 
state iE . 

Using Equations (31) and (32) along with the local channels 
1 1AE  and 

2 2A E , the remote out-

puts 2 1,B B  are evaluated as 

1 12
Z

AEB = P                                             (33) 

and 

2 21
Z

A EB = P .                                           (34) 

For this setting, the state of 
E i jE Br  is evaluated as follows: 

2 1

1 2

, 
1

, 
1

if 
.

if 

E

E i j

E

XE B

E B
ZE B

r
r

r

ìïï P =Pï= íïï P =Pïî







                                       (35) 

Thus, if 1
XP = P , then Bob simulates Alice’s output from his local environment 2E  through the 

partition 2 1E E B-  as 
2 21

Z
A EB = P , whereas for 1

ZP = P , Alice simulates Bob’s output 

from 1E  via 1 2E E B-  as 
1 12

Z
AEB = P . 

The action of Equations (27)-(32) can be rephrased by the process matrix formalism of [10], as 
follows. The process matrix 1 1 2 2B E B EW  that describes the causality relations of the local maps 

A  and B  of 
E i jE Br  in the quantum gravity scenario can be expressed as 

( )( )1 1 2 2 1 1 2 2 1 1 2 2 11 1
4 2

B E B E B E B E E A A E AW I Z X Z Z Z= + + ,                   (36) 

where X and Z are the Pauli operators. By applying the proof of Appendix E from [10], immedi-
ately yields that this process matrix identifies a causally non-separable process; and, the 

2 2
4

p +=  success probability for the realization of the local degrading map i jE B
  also straight-

forwardly follows for 1 1 2 2B E B EW . 
From these arguments, the main conclusion regarding the information resource-pool property of 
the quantum gravity environment can be derived. In the quantum gravity setting, the local map 

i jE B
  can be realized with probability 2 2

4
p += ; hence, the local map   from Equation 

(20) can be rewritten as 

( )2 2 2 2
4 4

1i jE B I+ += + -                                    (37) 

and 

( )( )
( )

2 2 2 2
4 4

2 2 2 2
4 4

1

1 .

i j

j i
E B

i

j i

B E

E I

B E

+ +

+ +

¢ =

= + -

= + -






                              (38) 
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Thus, from the local environment iE , the remote output jB  can be simulated via the local map 

  as i jE B
j iB E =    with probability 1

2
p > . In particular, the quantum gravity environ-

ment acts as a noisy map on the local environment state and behaves as an information resource-
pool for the local parties. 
The model of remote simulation in the quantum gravity environment is summarized in Fig. 2. 
 

1B

1A

1E

A

1 2E B

I

1 1AB

1 1AE

2B

2A

2E

B

I

2 2A B

2 2A E

1B 2B

2 1E B

I
1E

I
2E

p p

1 p- 1 p-

 

 
Figure 2. The information resource-pool property of quantum gravity. The local CPTP maps 

A  and B  are independent, physically separated maps; the inputs 1A  and 2A  are uncorre-

lated variables conveying classical or quantum information; and 1 2E B  and 2 1E B  are local 
CPTP maps (called local degrading maps or background noise of quantum gravity). The local 
outputs and environment states are referred to as iB , iE , 1,2i = , respectively. The quantum 

gravity setting allows the parties with a probability of 1
2

p >  to simulate the remote output from 

the local environment state through the local degrading map E B . Alice can simulate 2B  from 

her local environment state 1E  as 1 2
2 1

E BB E =   , whereas Bob can simulate Alice’s output 

1B  as 2 1
1 2

E BB E =   . The quantum gravity acts as a noise on the local environments; thus, 
it behaves as an information resource-pool for the local parties about the remote CPTP maps. 
 
These results confirm that, in the quantum gravity setting, there exists local independent CPTP 
maps, for which the local environments can be used to simulate the remote outputs with success 
probability 1

2
p > . The quantum gravity environment, indeed, acts as an information resource-

pool for the local parties. 
■ 

 
In Theorem 3, we reveal the structure of the quantum gravity channel that allows to model the 
quantum gravity space as an information transmission device between the iE  local environment 

and the remote output jB . 
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Theorem 3 (The structure of the quantum gravity channel) The local CPTP maps, 

i iAB , i jE B
 , 1,2i = , j i¹ , formulate the quantum gravity channel 

i jAB  with remote logi-

cal channel i j

i j i i

E B
AB AE

=     and local complementary channel 
i iAE . The map 

i jAB  

is anti-degradable, with local input iA , remote output jB , and local environment state iE .  

 
Proof 
In Theorem 2, we have seen that by exploiting the extra resources of quantum gravity, Alice can 
simulate Bob’s output with probability 1

2
p > , above the standard limit 1

2
p = . Here, we show 

that it leads to a well-defined channel structure—called the quantum gravity channel—between 
Alice and Bob. The causality structure of quantum gravity space-time geometry leads to an inter-
esting configuration, namely, it brings alive a so-called remote simulation map, which acts locally 
at the parties, on their local environment states. The quantum gravity channel is referred by the 
CPTP map 

i jAB . The dimension of the local input iA  of 
i jAB  is denoted by 

iA
d , and the 

dimensions of the local environment iE  and the remote output jB  are referred as 
iE
d  and 

jB
d . 

The map 
i jAB  is decomposed into a logical channel 

i jAB  that exists between the local input 

iA  and the remote output jB , and into a local complementary channel 
i iAE , which exists be-

tween the local input iA  and the local environment state iE . The logical channel 
i jAB  is re-

ferred as the remote logical channel of 
i jAB  throughout, and it has the decomposition of 

i j

i j i i

E B
AB AE

=    ; thus, this channel could exist only with probability p.  

The structure of the quantum gravity channel 
i jAB  is summarized in Fig. 3. 

jB

iA

iE

i jAB

i jE B


I

i jAB

i iAE
I iE

p

1 p-

jB

2
jB

d =

3
iA
d £ 2

iE
d =



 
Figure 3. The quantum gravity channel 

i jAB  with remote logical channel 
i jAB  and local 

complementary channel 
i iAE . The input of the channel is iA , and the output is jB , 1,2i = , 

i j¹ . The 
i jAB  remote output channel exists with probability 1

2
p > , and 

i jAB  is an anti-

degradable map; thus, from the local environment state iE , the remote output jB  can be locally 

simulated by i jE B
 . In ( )1i jE Bp p I= + -  , the map i jE B

  performs the so-called 

remote simulation. 
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Because the gravity channel 
i jAB  is an anti-degradable qubit channel, without loss of general-

ity, the linear map of 2 2:
i jAB M M  can be rewritten as 

( ) ( )( )1 1
2 2

:
i jAB k k k k k kl k

I w I t wr l r+  + +å å , where kt  and kl  formulate the matrix 

A Bi j

T  as 

1

2

3 3

1 0 0 0

0 0 0

0 0 0

0 0

A Bi j

T

t

l
l

l

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

 .                                            (39) 

From Equation (39), 
i jAB  can be rewritten as  

( )
i jl AB kTrr r .                                              (40) 

For the input dimension Ad  of the qubit gravity channel 
i jAB  with local environment dimen-

sion 2
iE
d = , a required condition on 

iA
d  immediately follows from Theorem 4 of [40], namely, 

3
iA
d £ . If 2

iA
d = , then the remote output jB  can be simulated from the local environment 

iE , i j¹  because the complementary channel 
i iAE  of 

i jAB  is degradable, whereas if 

3
iA
d = , then 

i iAE  is both degradable and anti-degradable. 

Furthermore, because 
i jAB  is qubit channel, for the dimension 

jB
d  of the remote output, the 

relation 2
jB

d =  trivially follows. The condition 2
iE
d =  on the Choi rank is satisfied only if 

( ) ( )2 2 2
1 2 3 31 tl l l =  - ,                                       (41) 

and 

( )( )
3 1 2

2 2 2
3 1 2

,

1 1 ,t

l l l

l l

=

= - -
                                          (42) 

where 1il £ .   

Introducing ( )1
1cosu v l-= = , the matrix in Equation (39) can be rewritten as  

1 0 0 0

0 cos 0 0
,

0 0 cos 0

sin sin 0 0 cos cos

A Bi j

u
T

v

u v u v

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø

                              (43) 

where the anti-degradability of the qubit gravity channel 
i jAB  implies that 

sin cosu v> ,                                                   (44) 
which also follows from Theorem 5 of [40]. The Kraus representation of 

i jAB  is 

( ) † †
i jAB A A A Ar r r+ + - -= + , where 
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( )
( )

1
1 1 1 1 2

12 2 2 2
2

cos 0
cos cos sin sin

0 cos

v u
A v uI v uZ

u u+

æ ö- ÷ç ÷ç= + = ÷ç ÷ç + ÷çè ø
,             (45) 

and 
( )

( )
1

1 1 1 1 2
12 2 2 2
2

0 sin
sin cos cos sin

sin 0

v u
A v uX i v uY

u v-

æ ö- ÷ç ÷ç= - = ÷ç ÷ç + ÷çè ø
,            (46) 

where X, Y, and Z are the Pauli operators. One can get the condition sin cosv u³ , which is 

analogous to Equation (44), however, in a slightly different form. 
Assume that there are two local maps, A  and B , in the system, with remote logical channels 

1 2AB  and 
2 1A B . Taking the superset   of these gravity channels, the result is a convex set 

because   formulates a supergravity channel as 

1 2 2 1

1 1
2 2

0 0 1 1AB A BF F
= Ä + Ä�   ,                          (47) 

with complementary channel  

1 1 2 2

1 1
2 2

0 0 1 1C
AE A EG G

= Ä + Ä�   ,                          (48) 

where F  and G  are elements of the Stinespring representation.  
From the set { }ik kA  of Kraus operators of the remote simulation map i jE B

 , that is, 1 2E B  

and 2 1E B , operator iA  of i jE B
  is as follows: 

0 10 0 1 1i k kA A A= Ä + Ä .                                    (49) 

Applying i jE B
  on C� results in  

( ) ( )
( )

1 2 2 1

1 1 2 2

1 2 2 1

1 1
2 2
1 1
2 2

0 0 1 1

0 0 1 1

.

i jE B E B E BC
AE A EG G

AB A BF F

  = Ä + Ä

= Ä + Ä

=

  �    

 

�

    (50) 

Using Lemma 17 from [40], one can readily see that the super gravity channel   is anti-
degradable because applying map FTr  on Equation (50) leads to 

( )
( )

( )( )
( )

1 2 2 1

1 2 2 1

1 1
2 2

1 1
2 2

0 0 1 1

.

i jE BC
F

F

F AB A BF F

AB A B

Tr

Tr

Tr



=

= Ä + Ä

= +

�



 

 

               (51)  

These results conclude that the quantum gravity channel 
i jAB  is anti-degradable and allows the 

parties to perform the remote simulation of outputs jB  from the local environment state iE  by 

utilizing the map i jE B
 . This degrading map arises from the extra informational resource-pool 

property of quantum gravity, and the realization of this map is trivially not possible with prob-
ability 1

2
p >  in the standard scenario, where the causality is fixed and non-vanishing.  

■ 
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3  Information Transfer of Quantum Gravity 

Theorem 4. (Information transfer of quantum gravity) The quantum gravity environment allows 
the transfer of classical and quantum information between the local maps A  and B . The 
information flow is realized through the quantum gravity environment via the partition 

E i jE B-  of the tripartite system 
E i jE Br . 

 
Proof 
The correlation measure can be settled between subsystems E iE  and E jB . For simplicity, we 

will use 1EE  throughout to characterize exactly the information transmission between the local 
environment states and the quantum gravity environment state. We derive various correlation 
measures for the output system 

1EE
r .  

Specifically, in this special quantum gravity communication scenario, Alice and Bob cannot trans-
mit directly to each other any information. Instead of a direct signaling, the degraded local envi-
ronment 2 1B E¢ =   , see Equation (18), and the remote output 2B  will characterize the cor-

relation between Alice and Bob’s maps A  and B , despite the fact that all correlations are 
transmitted via the entangled quantum gravity environment. Thus, in fact, the communication is 
realized through the quantum gravity environment E , via E iE  and E jB . The entangled Hil-

bert space E i jE B- , in fact, acts as a communication channel.  

Assuming the case that Alice simulates Bob’s output, we introduce the CPTP map 
( )

( )( )

2 2 2

2 1

1

:

1 ,i jE B

B M M

B E

E p p I


¢= =

= + -












                               (52) 

which gets the remote output 2B  as input and outputs Alice’s noisy 2 1B E¢ =   , see Equa-

tion (18) and Theorem 3. Thus, it is a noisy evolution on Bob’s ideal 2B  that results in 2B ¢ . We 
step forward from the results of Theorem 3 to drive the information transmission capabilities of 
channel ( )2B  by quantifying the amount of information that is conveyed by 1EE , using the 

system defined in Equation (8). Hence, the analysis will be made from Alice’s viewpoint, via sub-
system 

1EE
r . 

First, we rewrite the Bell-diagonal system 
1EE

r  from Equation (13) as 

1

3

1

1

4EE i i i
i

I I I I cr s s s s
=

æ ö÷ç ÷ç= Ä + ⋅ Ä + Ä ⋅ + Ä ÷ç ÷ç ÷çè ø
år s

 
 ,                   (53) 

where r  and s  are the Bloch vectors, s s s sé ù= ë û


, ,x y z  with the Pauli matrices si , and ic  is the 

real parameter - £ £1 1ic  [36–37, 50]. For a Bell diagonal state = = 0r s . For ( )= 0, 0,rr  



 16

and ( )= 0, 0,ss , the input state in Equation (53) can be given in a matrix representation as fol-

lows:  

1

1 0 0
3 1 2

0 1 0
3 1 2

0 1 0
1 2 3

0 0 1
1 2 3

1

4E

r s c c c

r s c c c
E c c r s c

c c r s c

r

+ + + -

+ - - +

+ - + -

- - - +

æ ö÷ç ÷ç ÷ç ÷= ç ÷ç ÷ç ÷÷ç ÷çè ø
 .                        (54) 

The eigenvalues + - + -, , ,u u v v  of 
1EE

r  are defined as 

( ) ( )

( ) ( )

2 2
3 1 2

2 2

3 1 2

1
1 0,

4
1

1 0,
4

v c r s c c

v c r s c c

+

-

æ ö÷ç= - + - + + ³÷ç ÷çè ø
æ ö÷ç= - - - + + ³÷ç ÷çè ø

                       (55) 

( ) ( )

( ) ( )

2 2
3 1 2

2 2

3 1 2

1
1 0,

4
1

1 0.
4

u c r s c c

u c r s c c

+

-

æ ö÷ç= + + + + - ³÷ç ÷çè ø
æ ö÷ç= + - + + - ³÷ç ÷çè ø

                       (56) 

From these eigenvalues, the - £ £1 1ic  parameters of 
1EE

r  can be expressed as 

( )1 ,c v v+ -= -                                      (57) 

( )2c v v+ -= - - ,                     (58) 

and 
( )3 21 2 1 2 .c v v c+ -= - ⋅ - = + ⋅                          (59) 

As one can readily check, for these parameters, the relations + + £1 2 3 1c c c  and 

{ } 1
2

max , , ,v v u u+ - + - £  hold in (54). Some trivial steps then straightforwardly yields that W  

can be expressed from the eigenvalues ,v v+ -  as 

( )1 2 v v+ -W = - - ,                                      (60) 

from which the correlations in 
1EE

r  can be exactly determined in function of W . 

The ( )
1EE

I r  mutual information function measures the total correlation in 
1EE

r . The mutual 

information function of 
1EE

r  can be expressed as follows: 

( ) ( ) ( ) ( )
1 1 1E E EE E EI S S Sr r r r= + -   .                       (61) 

Using the eigenvalues of 
1EE

r , ( )
1EE

I r  can be rewritten as 

( ) ( ) ( )
1 1 2 2 2 2log log log log

E EE EI S S u u u u v v v vr r r + + - - + + - -= + + + + +  , (62) 

where ( )S ⋅  is the von Neumann entropy and 

( ) ( ) ( ) ( ) ( )2 2
1 1

1 1 log 1 1 log 1
2 2E

S r r r rr = - - - - + + ,               (63) 

( ) ( ) ( ) ( ) ( )
1 2 2

1 1
1 1 log 1 1 log 1

2 2ES s s s sr = - - - - + + .                (64) 

The amount of purely classical correlation ( )
1EE

r  in 
1EE

r  can be expressed as follows:  
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( ) ( ) ( )
( ) ( )

1 1

1 1

1

min ,
E

k

E E E

E E k
E

k

S S E

S pkS

r r

r s

= -

= - å


 
        (65) 

where 1

1

EE

E

k k

E k k k

r r

r
r = 



 is the post-measurement state of 
1E

r , the probability of result k is 

Ekp d k kr=  , 2d =  is the dimension of system 
E

r , and kq  makes up a normalized prob-

ability distribution in the rank-one POVM elements =k kE q k k  [50].  

The purely classical correlation can also be expressed by the following formula:  
( ) ( ) { }

1 1 2 3min , , ,
E EE S f f fr r= -          (66) 

where the functions 1 2,f f , and 3f  are defined as follows [36–37, 50]: 

( ) ( )( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

1 3 2 3

3 2 3

3 2 3

3 2 3

1 1
1 log 1

4 2 1

1 1
1 log 1

4 2 1

1 1
1 log 1

4 2 1

1 1
1 log 1 ,

4 2 1

f r s c r s c
s

r s c r s c
s

r s c r s c
s

r s c r s c
s

= - + + + + + +
+

- - + - - + -
+

- + - - + - -
+

- - - + - - +
+

  (67) 

( ) ( ) ( ) ( )= - - + - + - + + + +2 2 2 2
2 1 2 1 1 2 1

1 1
1 1 log 1 1 log 1

2 2
f r c r c r c r c ,    (68) 

and  

( ) ( ) ( ) ( )= - - + - + - + + + +2 2 2 2
3 2 2 2 2 2 2

1 1
1 1 log 1 1 log 1

2 2
f r c r c r c r c .   (69) 

As follows, the ( )( )2C B  classical capacity of channel ( )2B  is 

( )( ) ( )
1

1

2
1

lim max
E

EE

E
n

C B I
n r

r
¥ "

=


 .                            (70) 

From the mutual information ( )
1EE

I r  and the classical correlation ( )
1EE

r , the ( )
1EE

r  

quantum discord is as follows: 
( ) ( ) ( )

( ) ( )
( ) { }( )

( ) { }

1 1 1

1

1

2 2 2 2

1 2 3

2 2 2 2 1 2 3

log log log log

min , ,

log log log log min , , .

E E E

E

E

E E E

E

E

I

S S u u u u v v v v

S f f f

S u u u u v v v v f f f

r r r

r r

r

r

+ + - - + + - -

+ + - - + + - -

= -

= + + + + +

- -

= + + + + +

  





 

(71) 

The ( )
1Ecoh EI r  coherent information of 

1EE
r  can be expressed as 
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( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( )

1 1 1

1 1 1

1

1 2 2 2 2

1

1

1

log log log log 1.

E E E

E E E

E

E

coh E E E

E E E

E

E

I

I

I

S S u u u u v v v v

r r r

r r r

r

r r + + - - + + - -

= + - =

= - + -

= -

= + + + + + -

  

  





 

 
 

 (72)             
The ( )( )2Q B  of the map ( )2B  can be given as the maximization of the coherent informa-

tion ( )
1Ecoh EI r  of 

1EE
r  as  

( )( ) ( )

( ) ( )( )

( )( )
( ) ( )

1

1 1

1
1

1

1

2

2 2

2 2

1
lim max

1
lim max 1

1
lim max 1

log log1
lim max .

log log 1

E
A B

E E
A B

E
EE

E

EE

coh E
n

E E
n

E
n

E

n

Q B I
n

n

I
n

S S u u u u

v v v vn

r r

r r

r

r

r

r r

r

r r

¥ "

¥ "

¥ "

+ + - -

¥ " + + - -

=

= + -

= -

æ ö+ + + +÷ç ÷ç= ÷ç ÷ç + - ÷çè ø







 







 

   (73) 

Because 
1EE

r  is a Bell diagonal state with = = 0r s , ( ) ( )
1

1
E ES Sr r= = , ( )( )2Q B  is 

simplified to 

( )( ) ( )( )
1

1

2
1

lim max 1 .
E

EE

E
n

Q B S
n r

r
¥ "

= -


                          (74) 

The results of the correlation measure analysis are summarized in Fig. 4.  
 

 
Figure 4. The correlation measures between the quantum gravity environment E  and the local 

environment 1E , evaluated on 
1EE

r , in function of W , 1 3W £ . As W  increases, the quantum 

influences become stronger, and the coherent information strongly increases. (The coherent infor-
mation is shown in the absolute value.) 
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The quantum gravity environment allows the transfer of classical and quantum information 
through the entangled partition E i jE B-  of 

E i jE Br , which concludes that the local maps A  

and B  can extract classical and quantum information from the quantum gravity environment.  
■ 

 

4  Stimulated Storage in Quantum Gravity Memories  

The quantum gravity scenario allows us to build quantum memories with a non-fixed causality. 
In this section, we propose an example for this statement. Our quantum gravity memory is a 
quantum SR latch (S—set, R—reset), built from a pair of cross-coupled Toffoli-NOR quantum 
gates. 
In classical computer architectures, the SR latch (flip-flop or bistable multivibrator) is one of the 
most basic and fundamental storage elements and building blocks of digital electronics devices. 
An SR latch consists of two cross-coupled NOR gates for the storing of one-bit information, and 
it operates with two stable states. The SR latch has two control inputs and two signal inputs, 
which are the back-looped outputs of the neighboring NOR gate (called cross coupling). The out-
put of the classical SR latch is controlled by the S and R inputs, which allows only one stable 
output realization, Q , or its complement, Q . The state transitions of the cross-coupling structure 
have a fixed causal structure in a classical SR latch.  
In particular, in a quantum gravity SR latch, both output realizations are simultaneously allowed 
as stable state, which makes possible the stimulated storage of a qubit entanglement 

( )1
2
QQ QQj = + , utilizing the elements of the standard basis { }0 , 1iA Î  as inputs. 

The proposed quantum gravity SR latch exploits the information resource-pool property (see 
Theorem 2) of the quantum gravity space to preserve the entanglement.  
The NOR

ToffC  Toffoli-NOR qubit gate with control qubit inputs x  and y  and a target qubit z  can 

be defined as 
( ) ( ), , ,NOR

ToffC G x y z z x y= = Å ⋅                                   (75) 

where ( )G ⋅  refers to gate, and Å  stands for the XOR-operation. 

The NOR
ToffC  quantum circuit can be characterized by the density 

 
000 001 001 000 010 010 011 011

100 100 101 101 110 110 111 111 ,

NOR
ToffC = + + + +

+ + +
                (76) 

which in matrix form can be expressed as 
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0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
.

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

NOR
ToffC

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç= ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø

                                    (77) 

The NOR
ToffC  structure can be decomposed into :NOT a a , ( ) ( ): , ,CNOT a b a a b Å , and 

X  and 
†
X  transformations, where  

 

 
1 11

,
1 12

i i
X

i i

æ ö+ - ÷ç ÷ç= ÷ç ÷- + ÷çè ø
                                      (78) 

and 
† 1 11

.
1 12

i i
X

i i

æ ö- + ÷ç ÷ç= ÷ç ÷+ - ÷çè ø
                                      (79) 

The NOR
ToffC  Toffoli-NOR quantum circuit is shown in Fig. 5. 

 
Figure 5. The Toffoli-NOR qubit gate. The gate has two control qubit inputs x and y and a tar-
get qubit z, which is initialized in 0 . 

 
The truth table of the NOR

ToffC  gate is as follows: 
x y z x y⋅ ( )z x yÅ ⋅

0 0 0 1 1 
0 1 0 0 0 
1 0 0 0 0 
1 1 0 0 0 

Table 1. The truth table of the Toffoli-NOR qubit gate. 
 
The SR  quantum gravity SR latch memory consists of two cross-coupled NOR

ToffC  circuits, re-

ferred by the local maps S  and R  and defined by the following map: 
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( ) ( )†,
SR SR

SR i ii j
A Ar r= å ,                                    (80) 

where { }0,1S Î , { }0,1R Î . The map of SR  describes the parallel realizations of the local 

maps S  and R . 

The Kraus operator SR
iA  of Equation (80) is expressed as  

1 2 2 10 0 1 1AQ AQ AQ AQSR
i i j j iA A A A A= Ä Ä + Ä Ä ,                 (81) 

where { }0,1iA Î  is the local input, { }0,1Q Î  is the output R , { }0,1Q Î  is the output 

S , and the Kraus operators of S  and R  are 

( ) ( )2 2
†AQ AQ

S i ii
A Ar r= å ,                                    (82) 

( ) ( )1 1
†
.AQ AQ

R j jj
A Ar r= å                                    (83) 

The control inputs R ,S  of S  and R  are entangled with the quantum gravity environment 

state E . In the quantum gravity SR latch, input R  is separable from ES  and input S  is sepa-

rable from ER ; however, E  is entangled with SR , formulating the tripartite system (see Theo-
rem 1)  

( )1
ERS

r k x k c= ⋅ + - ,                                      (84) 

where 1
3

k £ , following the structure of (10). 

The main contribution of the SR  quantum gravity SR latch is that the non-fixed causality of 

the E  quantum gravity structure leads to the simultaneous realizations of the Q  and Q  out-
puts, which can be used as the stimulation and storage of qubit entanglement, utilizing the re-
source-pool property of quantum gravity (see Theorem 2). 
The active S and R control commands are  

: 1 , 0S Q Q= =                                         (85) 

and  
: 0 , 1R Q Q= = ,                                       (86) 

and in terms of the control state formalism, the realizations of the local maps is 0 :C SR=  

and 1 :C SR= . 

 
The truth table of the SR  quantum-gravity SR-latch is as follows: 

C S R Q  Q  
0 1 0 1 0 
1 0 1 0 1 

Table 2. The truth table of the quantum-gravity SR-latch. 
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Initializing the circuit in 1 20 , 0A A= =  and by the control state (see (2)) 

( )1
2

0 1C = + , one obtains  

( )1
2

C SR SR= + ,                                        (87) 

thus, the resulting output of SR  is evaluated as 

( )1
2
QQ QQj = + .                                       (88) 

The SR  quantum gravity SR latch with quantum gravity control is depicted in Fig. 6. The 

system is initialized with inputs { }0,1iA Î . The outputs Q  and Q  are entangled, stimulated, 

and kept in a stable state by the quantum gravity space 
ERS

r .  

E

ERS
r

NOR
ToffC

R

1A

2A

S

Q

Q

SR

R

NOR
ToffC

S

j

 
Figure 6. Stimulated storage via the SR  quantum gravity SR latch memory (S—set, R—
reset). The S and R inputs are controlled by the quantum gravity environment, formulating the 
tripartite system 

ERS
r  with entangled partition E RS- . The non-fixed causality of the quan-

tum gravity structure leads to the parallel realizations of maps S  and R  (Toffoli-NOR gates) 
and the entanglement of Q  and Q . The resource for the stimulation and storage processes is 
provided by the quantum gravity environment.  
 
In this example, we showed that the information resource-pool property of the quantum gravity 
environment can be exploited in quantum memories. We proposed a quantum gravity memory 
device and introduced the term stimulated storage, which allows the stimulation and storage of 
qubit entanglement, exploiting the information resource-pool property of the quantum gravity 
environment.  
The results indicate that the structure of the quantum gravity space can be further exploited in 
the development of quantum devices and quantum computers. 
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5  Conclusions 

The theory of quantum gravity integrates the fundamental results of quantum mechanics with 
general reality. This fusion injects and adds several benefits to quantum mechanics, most impor-
tantly the non-fixed causality structure of space-time geometry and the existence of causally non-
separable processes. In this work, we provided a model for the information processing structure of 
the quantum gravity space. We analyzed the connection of the gravity environment with the local 
processes and revealed that the quantum gravity environment is an information transfer device. 
This property makes the use of quantum gravity space as an information resource-pool available 
for the parties. We introduced the term remote simulation and showed that the quantum gravity 
space induces noise on the local environment states, which allows the parties to simulate locally 
separated remote systems. We investigated the terms of quantum gravity memory and stimulated 
storage, which allows for the generation and preservation of the entanglement of qubits exploiting 
the information resource-pool property of quantum gravity. The information processing structure 
of quantum gravity can be further exploited in quantum computations, in quantum error correc-
tion, in quantum AI, in quantum devices, and particularly in the development of quantum com-
puters. 
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Supplemental Information 
 
S.1  Notations 
The notations of the manuscript are summarized in Table S.1. 
 
Table S.1. The summary of the notations used in the manuscript.  
 

Notation Description 

A , B  Independent local CPTP maps in the quantum 
gravity space. 

E  Quantum gravity environment (models the space-
time geometry). 

{ }0 , 1C Î  Controller state in a fixed causality. Controls the 
realization sequence of local maps. 

{ }C Î +  

Controller state in a non-fixed causality structure, 
( )1

2
0 1+ = + . Models the vanishing causal-

ity between the local maps A , B  in the quan-
tum gravity space. 

,i iB E  
Local output and local environment state of a local 
CPTP map i . 

,j jB E  
Remote output and environment state of a remote 
CPTP map j . 

E i jE Br   
Entangled tripartite qubit system. Defines the en-
tanglement structure of the space-time geometry 
with local environment iE  and remote output jB . 

1 2 2 1

1 1
2 2E EE B E Br r r= +   

Density of parallel realizations of local maps A , 

B  in a non-fixed causality. 

( ) 2

1 2

B

E

T

E Br  

Partial transpose of 
1 2EE B

r , with respect to subsys-

tem 2B . If ( ) 2

1 2
0B

E

T

E Br ³ , then 2B  is separable 

from 1EE , while for ( ) 2

1 2
0B

E

T

E Br < , the partition 

2 1EB E-   is entangled. 

E i jE B- , i E jE B-  , j E iB E-   
Partitions of 

E i jE Br . Partition E i jE B-  is entan-

gled, i E jE B-  , j E iB E-   are separable. Parti-
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tion E i jE B-  models the entangled space-time 

geometry of the quantum gravity space. 

1 1AB ,
2 2A B  

Local logical channels of maps A  and B , de-
fined by Kraus operators 

( ) ( )1 1 1 1

1 1

†AB AB
AB j jj

A Ar r= å  and 

( ) ( )2 2 2 2

2 2

†A B A B
A B j jj

A Ar r= å . 

1 1AE ,
2 2A E  

Local complementary channels of maps A ,  and 

B , defined by Kraus operators 

( ) ( )1 1 1 1

1 1

†AE AE
AE j jj

A Ar r= å  and 

( ) ( )2 2 2 2

2 2

†A E A E
A E j jj

A Ar r= å . 

i jE B
  

Local simulation map. Allows the remote simulation 
of remote output jB  from the local environment 

state iE , as i jE B
j iB E =    through the quan-

tum gravity environment. The existence of i jE B
  

is the consequence of the entangled space-time ge-
ometry 

1 2EE B
r . 

  

CPTP map which models the simultaneous realiza-
tions of the local channels 

1 1AE , 
2 2A B , defined as 

( ) ( )†, i ii j
A Ar r= å  

 . 

  

Local CPTP map, describes the probabilistic simu-
lation via i jE B

  on the local environment iE  as 

( )1i jE Bp p I= + -  . The output of the 

map is 1 1
2 2

.j j iB B E¢ = +  
XP , ZP  Projective measurement in the X and Z basis. 

1 1 2 2B E B EW  

Process matrix, describes the causality relations of 
the local maps A  and B  of 

E i jE Br  in the 

quantum gravity space. 

i jAB  

The quantum gravity channel. It has a logical 
channel 

i jAB , that exists between the local input 

iA  and the remote output jB , and a local comple-

mentary channel 
i iAE , which exists between the 

local input iA  and the local environment state iE . 
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The logical channel 
i jAB  is called the remote logi-

cal channel of 
i jAB , i j

i j i i

E B
AB AE

=    . 

The remote logical channel exits with probability p. 

( )2B  

CPTP map 2 2M M , which gets as input the 

remote output 2B , and outputs 2 1B E¢ =   , 

where ( )1i jE Bp p I= + -  . 

1EE
r  Bell diagonal state to quantify the correlations that 

is transmitted via the quantum gravity space E .  

+ - + -, , ,u u v v  Eigenvalues of 
1EE

r , { } 1
2

max , , ,v v u u+ - + - £ . 

1 2 3, ,c c c  

Parameters defined from the eigenvalues ,v v+ -  as 

( )1 ,c v v+ -= - ( )2c v v+ -= - -  and 

( )3 21 2 1 2c v v c+ -= - ⋅ - = + ⋅ , 

+ + £1 2 3 1c c c . 

( )I ⋅  Mutual information function. 

( )⋅  Classical correlation function. 

( )⋅  Quantum discord. 

( )cohI ⋅  Coherent information. 

( )( )2C B , ( )( )2Q B  
Classical and quantum capacity of channel 

( )2B . 

NOR
ToffC  

Toffoli-NOR qubit gate, defined as 

( ), , ,NOR
ToffC G x y z z x y= = Å +  where x  and y  

are the control qubit inputs, z  is the target qubit. 

X ,
†
X  Square-root X operation and its adjoint. 

SR  

Quantum gravity SR-latch memory. Consist of two 
cross-coupled NOR

ToffC  circuits, referred by the local 

maps S  and R , ( ) ( )†,
SR SR

SR i ii j
A Ar r= å .

( )1
2
QQ QQj = +  

Entanglement of qubit of outputs Q  and Q   in the 
quantum gravity SR . 

 
 

S.2  Abbreviations 
 

CNOT  Controlled-NOT 
CPTP   Completely Positive Trace Preserving 



 30

GHZ   Greenberger–Horne–Zeilinger 
NOR    Negation of OR 
POVM   Positive Operator Valued Measure 
SR     Set-Reset 

 
 
 
 


